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ABSTRACT: Analysis of plant‐wax biomarkers from sedimentary sequences can enable past environmental and
hydrological reconstruction and provide insights into past hominin adaptations. However, biomarker preservation in
desert contexts has been considered unlikely given the sparse nature of the vegetation within the landscape. Here we
evaluate the preservation of n‐alkanes and fatty acids collected from four depositional sequences associated with
archaeological contexts in the Nefud Desert, Saudi Arabia, and the Thar Desert, India. Pleistocene and Holocene
samples were selected to understand the effects of age on preservation. The results of molecular distribution patterns
and indices, particularly the high carbon preference index and average chain length, show the preservation of plant‐
wax biomarkers in both the Holocene and Pleistocene desert sequences, while δ13C values and organic content provide
insights into the vegetation contributing to the plant‐wax organic pool. This study provides a baseline for understanding
human–environment interactions and for reconstructing changes in arid land habitats of relevance to hominins during
the Quaternary. © 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.
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Introduction
Plant‐wax biomarkers and their stable carbon (δ13C) and
hydrogen (δ2H) isotope ratios are now frequently analysed
proxies for studying past climates, vegetation and environ-
ments on global, regional and local scales. In particular, the
use of n‐alkanes (n‐alk) and n‐alkanoic acids (fatty acids; FA)
preserved in soil/sediments and palaeosols from archaeologi-
cal sites or regionally relevant lake and marine cores has
increased considerably, providing both ‘off‐’ and ‘on‐site’
palaeoenvironmental records of past climate and landscape
change of relevance to hominin populations over the last 5Ma
(deMenocal, 2011; Jha et al., 2020; 2021; Lupien et al., 2021;
Patalano et al., 2021; Villaseñor et al., 2023).

Much plant‐wax research undertaken to study past terrestrial
ecosystems has focused on either palaeosols or lake sediments
due to the potentially higher preservation of organic matter (OM;
Eglinton and Hamilton, 1967; Chikaraishi and Naraoka, 2006;
Castañeda and Schouten, 2011; Jha et al., 2020; Lupien
et al., 2021). However, plant‐wax preservation in desert sediments
has not been widely investigated due to large sediment grain size,
high temperature and perceptions of limited wax production on
these vegetation‐sparse landscapes. Nevertheless, these factors are
yet to be explored systematically in terms of their biomarker
preservation potential. For the first time, we attempted to analyse
Pleistocene and Holocene sediments from desert contexts to
assess the preservation of plant‐wax biomarkers.
Here, we use widely accepted molecular indices such as

distribution patterns, carbon preference index (CPI), average
chain length (ACL), n‐alk and FA concentration to evaluate the
preservation of n‐alk and FA in sediments collected from
archaeological sequences in the Nefud Desert, Saudi Arabia,
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and the Thar Desert, India (Figure 1). These regions were
selected because they are geographically located along much‐
discussed hominin dispersal routes (Petraglia et al., 2010, 2012;
Roberts and Stewart, 2018; Blinkhorn et al., 2020; Groucutt
et al., 2021). Moreover, both regions hold essential information
in relation to past hominin adaptive capacities (Petraglia
et al., 2010, 2012; Roberts and Stewart, 2018). We also
measured the bulk δ13C and total organic content of the
sediment samples to provide a holistic understanding of plant‐
wax preservation in these deserts and their potential for
palaeoenvironmental reconstruction. We specifically sought to
evaluate the preservation of long‐chain n‐alk (≥C25) and FA
(≥C22) compounds because they are primarily derived from
terrestrial plant‐waxes in sediment archives (Eglinton and
Hamilton, 1967; Marzi et al., 1993; Jha et al., 2020). We make
qualitative inferences based on several molecular indices (Struck
et al., 2020; Knief et al., 2020). However, we do not attempt to

provide any quantified estimate of past environment and
vegetation change in this paper.

Background
Morphological and physiological adaptations, such as increas-
ing specific leaf areas, lower water conductance and increasing
epicuticular wax content (Falcão et al., 2015), enable plants to
adapt to water‐limited contexts. Leaf epicuticular wax, rich in
organic compounds such as long‐chain aliphatic hydrocarbons,
plays a crucial role in regulating stomata for gas exchange,
preventing water loss and protecting leaves (Kerstiens, 1996).
Plant‐waxes are a mixture of straight long‐chain hydrocarbons
and their derivatives. Additionally, some branched and cyclic
hydrocarbons with secondary metabolites form a minority
group in the composition of plant‐wax. However, the chemical

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–10 (2024)

Figure 1. (a) Location of the Nefud and Thar
deserts. (b) Modern climatic context of the
region. Climatograms of the Nefud (c) and Thar
(d) deserts show temperature and precipitation
variability (1901–2020). The graph was prepared
using https://climatecharts.net/. [Color figure can
be viewed at wileyonlinelibrary.com]
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composition and distribution of a given plant‐wax depend on
several factors, including species, environment, growing season
temperature and aridity (Dodd and Poveda, 2003; Bush and
McInerney, 2013; Alfarhan et al., 2020; Jha et al., 2024). For
example, Bush and McInerney (2015) observed that leaves
growing in arid regions show comparatively higher ACL values
than vegetation from temperate zones.
A recent study of biomarker preservation and OM sourcing in

modern sediments along an elevational transect through
different temperature and humidity regimes in the Atacama
Desert, Chile, demonstrated the potential of plant‐wax com-
pounds in storing environmental information in hyper‐arid
regions (Knief et al., 2020). Additionally, studies from modern
topsoil of the hyper‐arid Atacama and Gobi Desert in Mongolia
provide vital insights into plant‐wax preservation in arid
environments (Struck et al., 2020; Knief et al., 2020). Studies
from the Atacama Desert (Wilhelm et al., 2017) and Black Rock
Desert, USA (Lerch et al., 2018), have also explored biomarker
preservation in clay‐rich older sediments. However, the
prospect of plant‐wax preservation over deeper timescales in
arid regions has not been widely explored.
Plant‐waxes deposited in soils represent a time‐averaged

signal of biosynthetic sources and local climate parameters
(Eglinton and Hamilton, 1967; Wu et al., 2019; Jha et al., 2020).
Soil OM receives input from C10 to C40 carbon‐chains belonging
to n‐alk and FA produced by bacteria, phytoplankton and
terrestrial plants (Cranwell et al., 1987). A dominance of C27 to
C35 n‐alk with odd‐over‐even preference (OEP) and C24 to C34

FA with even‐over‐odd preference (EOP) is often considered to
be a characteristic signature of terrestrial plants (Eglinton and
Hamilton, 1967; Supporting Information Fig. S1). Meanwhile,
short‐ and mid‐chain compounds (≤C25) are interpreted mainly
as the product of algae, photosynthetic bacteria and aquatic
plants (Cranwell et al., 1987). However, plant‐waxes incorpo-
rated into sediments can be impacted by diagenesis, which can
affect the characteristic distributions (OEP and EOP) of higher
plants, limiting the use of plant‐waxes as a palaeo‐proxy
(Chikaraishi and Naraoka, 2006). Therefore, it is essential to
verify the preservation of plant‐waxes in different settings before
using them for palaeoenvironmental reconstructions.

Study regions and sample collection
Nefud Desert

The Nefud Desert is situated in northern Arabia, at a critical nexus
in the Saharo‐Arabian arid belt (Figure 1). Previous research from
the region has indicated frequent climatic oscillations that
intermittently shaped past ecological and hydrological habitats
across the region (Breeze et al., 2017; Roberts Stewart, Alagaili,
et al., 2018; Groucutt et al., 2021). The Pleistocene and Holocene
sediments of Saudi Arabia have preserved abundant archaeologi-
cal sites (Petraglia et al., 2012, 2019; Groucutt et al., 2015, 2021;
Breeze et al., 2017; Jennings et al., 2016; Scerri et al., 2018).
Nevertheless, the exact nature of the hominin‐inhabited land-
scapes at different points in time remains unclear (Roberts, Stewart,
Alagaili, et al., 2018).
Samples were collected from the dated palaeo‐lake sequences

of JB‐1 (a quarry site; Fig. S2) at Jebal Qatar (<37.6 ka; Petraglia
et al., 2012; Parton et al., 2018) and at a sedimentary sequence
(PE‐1; Fig. S3) which has similar stratigraphy and comparable
chronology to Jebal Qatar 200 (JQ‐200; <11.7 ka; Crassard
et al., 2013). Samples were collected from different depths
covering different sedimentary and archaeological phases (see
Text S1). The age of the samples was determined according to

previously published age–depth models (Crassard et al., 2013;
Parton et al., 2018).

Thar Desert

The Thar Desert in western South Asia (Figure 1b) shares a
boundary with the Oriental zone and Saharo‐Arabian Belt
(Holt et al., 2013; Blinkhorn, 2021). This region has evidence
for some of the earliest modern human populations expanding
and moving eastwards across Late Pleistocene Asia (Blinkhorn
et al., 2013, 2019). The region is located at the threshold of the
Indian summer monsoon system of South Asia. Due to its
location, depending on the prevailing conditions in the past,
the Thar Desert would have provided a terrestrial biogeogra-
phical gateway to the remainder of South and Southeast Asia
(Blinkhorn et al., 2020).
Samples were collected from a pedogenically stabilized

dune (16R dune) locality (Fig. S4), which was previously dated
to between ~187 and 6 ka (Achyuthan et al., 2007; Singhvi
et al., 2010), and the Jankipura site (Fig. S5), a Mid‐ to Late
Holocene lake sequence preserved near to a pond (Table S1).
Ten samples were selected and analysed from the Nefud

(n= 5) and Thar (n= 5) deserts representing four sites and
covering the Mid‐Pleistocene to Late Holocene (Table S1).
Detailed lithological descriptions, chronology, archaeological
contexts and an overview of the modern climate and
vegetation types of the study regions are provided in Text S1.

Methodology
Extraction and chromatography of plant‐wax

Total lipid extraction (TLE) and separation was done following
the method described by Patalano et al. (2020) and Jha et al.
(2020). Briefly, dry, homogenized sediments (~55 g) were
extracted with a Büchi (E‐916) Speed Extractor using 9:1 (v/v)
dichloromethane/methanol. TLEs were separated into three
fractions using silica‐gel chromatography by elution with
hexane (F1), dichloromethane (F2) and methanol (F3) solvents.
The F1 fraction contained n‐alks and F3 fractions were
methylated using a 2% solution of HCl in methanol kept at
70°C for 20–24 h. Further purification of FA methyl esters
(FAMEs) was performed with silica‐gel chromatography with
dichloromethane and hexane as eluents.
The n‐alk and FA samples were analysed using a gas

chromatography (Agilent 7890B) system coupled to an Agilent
5977A Series Mass Selective Detector at the Max Planck Institute
of Geoanthropology (MPI‐GEA), Germany. Detailed methodol-
ogy and instrument conditions are provided in Text S1 (section 3).

Characterization of plant‐wax compounds

The source characterization of n‐alk and FA was done using
different indices such as CPI (Marzi et al., 1993) and ACL
(Eglinton and Hamilton, 1967), which have been calculated
according to the equations:

( − ) ( ) = Σ × /Σn n n nACL alk or FA C C (1)

where n≥ 24 to 35 and Cn is the concentration of n‐alk or FA
with n carbons; and

( − ) = × [(Σ /Σ )

+ (Σ /Σ )]

nCPI alk 0.5 even odd

even odd (2)

( ) = × [(Σ /Σ ) + (Σ /Σ )]CPI FA 0.5 odd even odd even (3)

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–10 (2024)
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where the concentration of carbon chains ranges from 25 to 35
for n‐alk and 24 to 34 for FA.

Total organic carbon and δ13Cbulk of sediment

Dried and powdered sediment (~1 g) was reacted with 2 M HCl
to decarbonate the samples and neutralized using Milli‐Q
water. The HCl‐treated samples were introduced into a
Thermo Scientific Flash 2000 Elemental Analyser coupled to
a Thermo Delta V Advantage Isotope Ratio Mass Spectrometer
at the MPI‐GEA. Details of the method are provided in Text S1
(section 3.3).

Results
Nefud Desert

The molecular distribution, shown by OEP in n‐alk and EOP in
FAs, is well preserved in the sediment samples (Figure 2a). The
concentration of higher chain n‐alk (C25 to C35) and FA (C24 to
C34) varied from 162.2 to 2230.8 ng g−1 and 268.1 to
1243.2 ng g−1 of dry sediment, respectively (Figure 2d). The
C27 n‐alk is the maximum carbon number (CNmax) for all
samples. The C26 FA is the CNmax for the all three samples of
site PE‐1 whereas C28 and C24 FA are dominant in JB‐1‐1 and
JB‐1‐2 samples, respectively (Table S1). The CPI and ACL

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–10 (2024)

Figure 2. Distribution of plant‐wax biomarker compounds (n‐alk and FA) in sediments collected from Nefud Desert, Saudi Arabia. See Table S1 for
sample description. [Color figure can be viewed at wileyonlinelibrary.com]
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values ranged from 9.1 to 25.2 and 26.8 to 27.8 for n‐alk and
4.7 to 6.4 and 26.1 to 26.4 for FA, respectively (Figure 2;
Table S1). The δ13Cbulk and TOC of the sediment samples
varied from–25.0 to –17.9‰ and 1.1 to 10.2%, respectively
(Table S1).

Thar Desert

The OEP in n‐alk and EOP in FA are well preserved in the
sediments (Figure 3). The concentration of long‐chain (C25–C35)

n‐alk and FA (C24–C34) varied from 43.5 to 279.3 ng g−1 and
70.8 to 6341.7 ng g−1 of dry sediment, respectively (Figure 3).
C31 is the dominant n‐alk in all samples except in a younger
sample (J18) where C29 is dominant. The CNmax in FA varies
between C24 and C30 in each sample (Table S1). The CPI and
ACL values ranged from 2.9 to 3.7 and 29.9 to 31.4 for n‐alk
and from 4.4 to 7.4 and 27.4 to 29.4 for FA, respectively
(Table S1; Figs. 3 and S2). Total organic carbon and δ13Cbulk

values of the samples varied from 0.01 to 0.4% and –25.7 to
–16.4‰, respectively (Figs. 3 and S2; Table S1).

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–10 (2024)

Figure 3. Distribution of plant‐wax biomarker compounds (n‐alk and FA) in sediments collected from Thar Desert, India. See Table S1 for sample
description.

PRESERVATION OF PLANTWAX BIOMARKERS IN DESERTS 5
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Discussion
We examined the preservation of plant‐waxes in Holocene
and Pleistocene sediments collected from archaeological sites
in the Nefud and Thar Deserts of Saudi Arabi and India,
respectively (Figure 1). The distribution pattern of n‐alk and FA
(Hoefs et al., 2002) of older sediment samples (Figs. 2, 3
and S2) are comparable to the distribution pattern of modern
plants from the Banni and Gangetic Plains, India (Jha
et al., 2020; Sarangi et al., 2022; Roy and Sanyal, 2022), as
well as the topsoil distribution of n‐alk seen in the Atacama
and Mongolia regions (Knief et al., 2020; Struck et al., 2020).
The comparison suggests that these biomarkers are potentially
well preserved in the Nefud and Thar Desert sediments.

CPI is a proxy for degradation and diagenesis in sedimentary
environments (Cranwell, 1981; Marzi et al., 1993). Generally,
a CPI close to ~1 in sediment samples is considered to indicate
a degraded sample or a sample dominated by petrogenic
sources (Cranwell, 1981; Marzi et al., 1993; Polissar
et al., 2021). Observational data have indicated that the
degradation of higher odd‐chain n‐alk (≥C25) and even‐chain
FA (≥C22) compounds, or the microbial production of shorter/
mid‐chain compounds, can lead to decreased CPI values in
sediment (Cranwell, 1981; Marzi et al., 1993; Grimalt
et al., 1988; Brittingham et al., 2017). Recent research suggests
that CPI values may also be lowered due to leaf burning during
fire events (Sarangi et al., 2022). Particularly in desert
environments, arid conditions with limited moisture prevents

© 2024 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–10 (2024)

Figure 4. Bulk stable carbon isotope, total organic content, carbon chain (CNmax) length (n‐alk and FA), biomarker concentration (n‐alk and FA),
ACL and CPI values of 10 samples from the Nefud (n= 5) and Thar (n= 5) deserts. These suggest preservation potential of plant‐waxes from
sediments in contemporary arid regions for paleoenvironmental reconstruction. [Color figure can be viewed at wileyonlinelibrary.com]
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extensive microbial degradation of chemical compounds.
Indeed, higher CPI (>1), along with well‐defined OEP
and EOP in sediments, indicate that n‐alk and FA are
well‐preserved biomarker signals (Cranwell, 1981; Marzi
et al., 1993). The average CPI values obtained in our study
are 14.1 (n‐alk) and 5.4 (FA) for the Nefud desert and 3.3
(n‐alk) and 4.9 (FA) for the Thar Desert (Table S1), which
indicate a clear predominance of well‐preserved plant‐wax in
the sediment, with minimal influence from microbial degrada-
tion or fire‐related processes in the sampled locales of the Nefud
and Thar Desert (Figure 4; Table S1; Marzi et al., 1993; Polissar
et al., 2021; Sarangi et al., 2022; Roy and Sanyal, 2022).
Qualitative assessment of the compounds suggests that the

FA concentrations (ng g–1) are much higher in the Thar Desert
and lower in Nefud Desert samples than n‐alk (Table S1;
Figure 4). Generally, concentrations of FA and n‐alk vary
considerably both at the species level and among different
plant types (C3 vs. C4) (Diefendorf et al., 2011; Freimuth
et al., 2019; Sarangi et al., 2022; Roy and Sanyal, 2022; Jha
et al., 2024). Furthermore, abundant carbon chains (CNmax) of
n‐alkyl compounds, particularly from n‐alk, has been used to
distinguish the contribution of trees and shrubs (C27, C29 and
C31) and grasses (C33 and C35) in different contexts in Africa,
India, Australia, North America, Europe and Mongolia (Bush
and McInerney, 2013; Garcin et al., 2014; Ankit et al., 2017;
Pillai et al., 2017; Aichner et al., 2018; Bliedtner et al., 2018;
Struck et al., 2020; Knief et al., 2020). However, recent studies
on the plant‐wax composition of modern C3 trees and shrubs,
and C4 grasses from India suggest that conventional theories
regarding n‐alk and FA production in plants might not be
accurate for every region and need to be verified using region‐
specific modern analogues (Roy and Sanyal, 2022; Sarangi
et al., 2022; Jha et al., 2024).
Most trees and shrubs follow C3 pathways, and grasses

follow C4 pathways, except in the temperate zone where C3

grasses can also be seen (Griffith et al., 2015). The proportion
of C4 grasses in an environment is recorded in the higher
abundance of C33 and C35 in sedimentary deposits (Garcin
et al., 2014), but temperature and aridity can also control
CNmax selection in plant‐wax distributions (Liu et al., 2018).
Broadly, long‐chain (C33 and C35) n‐alk are considered to be
tracers of grassy biomes on the landscape, whereas C31 is
found equally across plant types, and C27 and C29 are favoured
in trees and shrubs (Schwark et al., 2002; Meyers, 2003; Jansen
et al., 2006; Garcin et al., 2014; Schäfer et al., 2016; Magill
et al., 2019; Polissar et al., 2021; Jha et al., 2024). Our data
indicate the dominance of C27 and C31 for n‐alk and C26

and C28 for FA in the Nefud and Thar Desert samples,
which reflects a probable contribution from mixed C3–C4

and C3/CAM (Crassulacean acid metabolism) flexible plants
(Table S1). Temporal variation in the biomarker indices (ACL,
CPI and CNmax), TOC and δ13Cbulk values suggest the two
sampled records may show changes in palaeoenvironmental
conditions during the Pleistocene and Holocene in these regions
(Table S1). Nevertheless, given issues of diagenesis (Polissar
et al., 2021; Sarangi et al., 2022), compound‐specific isotope
analysis (CSIA) is required to confirm this in future and we focus
on preservation assessment in the current paper.
ACL is derived from the abundance of long‐chain n‐alkyl

compounds (Poynter and Eglinton, 1990) and has been
broadly used to reconstruct past climate and environments
(Castañeda et al., 2009; Bliedtner et al., 2018). ACL values
have been shown to correlate with higher growing season
temperature and aridity (Dodd and Poveda, 2003; Bush and
McInerney, 2015). The vital assumption for using ACL values
as a proxy is that plant‐waxes deriving from dry, warm grassy
biomes would have more abundant longer chain lengths

than those from forests (Cranwell, 1981; Jansen et al., 2006).
However, Wang et al. (2015) performed a systematic
examination (26 sites, 823 plants) of modern plants and
demonstrated a lack of a statistical difference between woody
and non‐woody vegetation in this regard, suggesting ACL
values may not always act as a reliable proxy for past
vegetation (Wang et al., 2015). The ACL values in our studies
are ≥26.8 and ≥29.9 (n‐alk) and ≥26.1 and ≥27.4 (FA) in the
Nefud and Thar Deserts, respectively (Figure 4; Table S1). The
qualitative assessment of ACL values when coupled with
inferences from CPI, chain length distribution, OEP and EOP
suggest the prevalence of vegetation communities dominated
by herbs, shrubs and grasses relative to trees (Figure 4,
Table S1; Bush & McInerney, 2013; Garcin et al., 2014;
Bliedtner et al., 2018). Further, the sample with the lowest
δ13Cbulk values has the highest CNmax (C33) and ACL values
(31.4) in n‐alk, which could be explained either due to the
presence of abundant C3 grasses or contributions from CAM
plants following C3 photosynthetic pathways (Figure 4; Ta-
ble S1). However, the quantitative estimate of vegetation type
and photosynthetic pathways can only be determined by
conducting future studies using CSIA.

Conclusion
Overall, the preservation of plant‐wax biomarkers in desert
sediments offers a valuable opportunity to gain insights into the
environment and adaptation of past human societies. In the
Holocene epoch, the Nefud Desert exhibits lower δ13Cbulk

values, lower ACL and higher CPI compared to the Thar
Desert. These qualitative data suggest, in a broad sense,
that humans were inhabiting and exploiting mixed C3–C4

environments in the Nefud Desert, while the Thar Desert
was seemingly predominantly characterized by a grassland
(C4)‐dominated environment during the Holocene.
We also note that the data presented here only show the

preservation of long‐chain n‐alk and FA compounds, and
the inferences presented are qualitative in nature. For future
quantitative estimation of past environments and vegetation,
biomarker assessment of modern plants and CSIA from the
studied deserts is recommended.
We demonstrate the preservation of plant‐wax in Holocene

and Pleistocene sediments taken from archaeological sites
in Saudi Arabia's Nefud Desert and India's Thar Desert. Our
data highlight the potential of these biomarkers to provide
high‐resolution quantitative palaeoenvironmental signatures.
We recommend plant‐specific biomarkers and their CSIA from
archaeological sites preserved in desert biomes as a potential
means for developing holistic understandings of past human
interactions with changeable, arid‐land environments.
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Fig. S1. Total ion chromatogram (TIC) of GCMS analysis of

n‐alk and FA fractions from sediment samples of the Thar
Desert, India. This raw data highlights the presence of plant‐
waxes in the analysed sediments.
Fig. S2. Field photograph of JB‐1 site and visible lithological
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Fig. S3. Field photograph of site PE‐1 (JQ200) showing

lithological variations with a scale. The yellow dots represent
depth of the studied samples.
Fig. S4. New geological trench near 16R dune locality. It is

an 18 m thick deposit that was first excavated in the 1980s.
The yellow dots represent depth of the studied samples.
Fig. S5. Field photograph of Jankipura site (J) showing

lithological variation and position of sample collections. The
charcoal layer is visible at the top 30 cm of the site.
Table S1. Archaeological site, chronological context,

geochemical and biomarker data from Nefud and Thar desert
samples.
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TOC, total organic carbon.
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