
1 

Supplementary Material and Methods for “An increasing Arctic-1 

Boreal CO2 sink despite strong regional sources” 2 

 3 

Anna-Maria Virkkala, Brendan M. Rogers, Jennifer D. Watts, Kyle A. Arndt, Stefano Potter, 4 

Isabel Wargowsky, Edward A. G. Schuur, Craig See, Marguerite Mauritz, Julia Boike, Syndonia 5 

M. Bret-Harte, Eleanor J. Burke, Arden Burrell, Namyi Chae, Abhishek Chatterjee, Frederic 6 

Chevallier, Torben R. Christensen, Roisin Commane, Han Dolman, Bo Elberling, Craig A. 7 

Emmerton, Eugenie Euskirchen, Liang Feng, Mathias Goeckede, Achim Grelle, Manuel Helbig, 8 

David Holl, Järvi Järveoja, Hideki Kobayashi, Lars Kutzbach, Junjie Liu, Ingrid Liujkx, Efrén 9 

López-Blanco, Kyle Lunneberg, Ivan Mammarella, Maija E. Marushchak, Mikhail Mastepanov, 10 

Yojiro Matsuura, Trofim Maximov, Lutz Merbold, Gesa Meyer, Mats B. Nilsson, Yosuke Niwa, 11 

Walter Oechel, Sang-Jong Park, Frans-Jan W. Parmentier, Matthias Peichl, Wouter Peters, 12 

Roman Petrov, William Quinton, Christian Rödenbeck, Torsten Sachs, Christopher Schulze, 13 

Oliver Sonnentag, Vincent St.Louis, Eeva-Stiina Tuittila, Masahito Ueyama, Andrej Varlagin, 14 

Donatella Zona, and Susan M. Natali 15 

 16 

Correspondence: avirkkala@woodwellclimate.org 17 

  18 



2 

 19 

1. Study domain 20 

Our study covers the Arctic-Boreal zone (ABZ) which was delineated based on the tundra and 21 

boreal biomes included in Dinerstein et al. (2017)  1. The tundra consists of treeless Arctic and 22 

sub-Arctic ecosystems, and the boreal biome is dominated by forests. Both of the biomes also 23 

include wetlands. In total, 23% of the ABZ is covered by larch forest, 38% by other types of 24 

forests (evergreen, mixed, deciduous broadleaved), 6% by wetlands, and 14% by sparse boreal 25 

vegetation that is not classified as a forest, 13% as tundra vegetation covered by shrubs, 26 

grasses, mosses, and lichens, and 6% as barren tundra with minimal vegetation, based on the 27 

land cover dataset used in this study (Supplementary Table 3). 77% of the ABZ contains 28 

permafrost which is ground that remains frozen for at least two consecutive years 2. Our study 29 

does not focus on the entire permafrost region that also includes the alpine permafrost regions 30 

further south in the Tibetian plateau, Alps, and Rockies mountain chains, for example. 31 

2. In-situ flux data summary 32 

2.1. Data screening and filtering 33 

We used the full Arctic-boreal CO2 flux (ABCflux) database 3,4 with the following modifications. In 34 

instances where chamber plots from the same site had the same coordinates, we calculated an 35 

average flux for each year and month across the chamber plots (1-12 plots per site). This was 36 

done to assure that these measurements better represent average landscape-scale conditions 37 

of the site that could be more easily linked to the geospatial data sets and compared with eddy 38 

covariance measurements. We further filled flux columns that remained NA even though the two 39 

other flux columns had data by subtracting the two flux values using variations of the equation 40 

NEE= GPP-Reco. We only included sites within our Arctic-boreal domain (i.e. tundra and boreal 41 

biomes as defined in Dinerstein et al. (2017) 1), thus a few hemiboreal sites were excluded.  42 

 43 

We removed outlier observations showing extremely high July NEE uptake in the tundra with 44 

the  Study_ID_Short identifier “Lund_Kobbefjord_Ch” with uptake values < -300 g C m-2 month-1 45 

in Greenland (range of tundra July NEE primarily between  -25 to -100 g C m-2 month-1). 46 

Moreover, we removed observations with the Study_ID_Short “Goulden_CA-NS2_tower2”, 47 

“Goulden_CA-NS3_tower3”, “McCaughey_CA-Man” showing high GPP values in the peak 48 

winter months (GPP 100-300  g C m-2 month-1 in January or February compared to the overall 49 

December-February range between -20 to 74 g C m-2 month-1). The final list of sites can be 50 

found in Supplementary Table 2.  51 

2.2 Data description 52 

The final data used in 1-km models included 199 sites and 4,981 months in total. The sample 53 

sizes for the different fluxes and model resolutions can be found in Supplementary Table 4. The 54 

majority of the data for the 1-km models was based on eddy covariance: 55% of sites and 88% 55 

of months represented this approach. Each site had from one to 213 months of measurements 56 

in our database, with the average number of months per site being 25. Long-term sites with 57 

https://paperpile.com/c/sbCgRn/JfuC7
https://paperpile.com/c/sbCgRn/pROW
https://paperpile.com/c/sbCgRn/FPxzD+yClGN
https://paperpile.com/c/sbCgRn/JfuC7
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more than 7 years of year-round data included boreal forest sites (FI-Hyy, FI-Sod, CA-Oas, CA-58 

Obs, CA-Gro, US-Uaf, SE-Deg), a wetland site (FI-Kaa), and a tundra site (US-EML). Across all 59 

the sites, most of the sites were in recently undisturbed ecosystems (i.e., ecosystems without 60 

known abrupt changes related to, e.g., fires, forest harvesting, thermokarst). There were 21 61 

sites that had experienced a fire; two of these had data from recent years (from Alaska). 3 sites 62 

reported thermokarst; 2 of these were in Alaska and 1 in Siberia, but gradual permafrost thaw 63 

was present in many more sites. At least 5 forest sites had been harvested. In total, 14% of the 64 

sites in ABCflux have experienced some level of natural or anthropogenic disturbances. This 65 

proportion is likely less than the overall proportion of disturbances across the entire ABZ. For 66 

example, 11% of the ABZ was burned during the 2002-2020 period 5, and the areas 67 

experiencing thermokarst and harvesting are also extensive. Thus, the flux site distribution 68 

might be biased towards non-disturbed or only moderately disturbed sites 6,7, leading to 69 

potential underestimations in disturbance effects on CO2 emissions. 70 

 71 

The most represented vegetation types in our database were evergreen needleleaf forests (26% 72 

of sites and 41% of months), shrub tundra (15% of sites and 10% of months), and wetlands 73 

(11% of sites and 15% of data). Note that these vegetation type statistics were based on the 74 

information extracted from the gridded land cover data set and were thus slightly different from 75 

those reported in Virkkala et al. (2021). 76 

 77 

2.3. A description of the in-situ flux variability 78 

Average net CO2 uptake during 2001-2020 was highest in July (Supplementary Fig. 7), both in 79 

the tundra and boreal, during which time almost all observations (95%) were net sinks. In the 80 

tundra, net uptake was high primarily in July while it was high during all the summer months in 81 

the boreal: during June and August in the tundra, the rate of carbon uptake was two to three 82 

times less compared to boreal ecosystems (Supplementary Fig. 7). Non-summer season 83 

(September-May) net emissions were highest in October, both in the tundra (average in-situ 84 

NEE 13 ± 12 g C m-2 month-1) and the boreal regions (average in-situ NEE 17.7 ± 17 g C m-2 85 

month-1). In both biomes, average non-summer season NEE and Reco were greater than zero in 86 

all months (excluding May in the boreal). 8% of the in-situ fluxes also show net uptake in 87 

autumn and spring months (Supplementary Fig. 19; excluding May). The magnitude of average 88 

monthly CO2 fluxes was relatively similar in both biomes across the peak winter months 89 

(December-February, in-situ NEE ranging from 9 to 14 g C m-2 month-1 in the boreal and 7 to 8 g 90 

C m-2 month-1 in the tundra). Furthermore, net emissions in the tundra in May and September 91 

were even higher than in the boreal. 92 

 93 

It is worth noting that while we had up to 10 years of data from three Siberian larch forest sites, 94 

the only year-round site was located in an ecotone close to the tundra experiencing permafrost 95 

thaw, and was a small annual CO2 source 8. The other two larch sites had some of the strongest 96 

growing season fluxes that might also indicate strong annual CO2 sinks (e.g., -240 g C m-2 97 

month-1 for July compared to ca. -150 g C m-2 month-1 for the evergreen forests). Furthermore, 98 

Siberian tundra sites in relatively similar coastal graminoid-dominated vegetation types had a 99 

https://paperpile.com/c/sbCgRn/Yf2w
https://paperpile.com/c/sbCgRn/HzCgX+WwuXn
https://paperpile.com/c/sbCgRn/xwCuG
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large variability from relatively strong sinks to large CO2 sources with average annual NEE 100 

ranging from -37 to +60 g C m-2 year-1. 101 

 102 

3. Geospatial data 103 

Predictors included in our models and their main theoretical links to fluxes are listed in 104 

Supplementary Table 3.  105 

3.1 Processing geospatial data 106 

To build a continuous dataset of gridded predictor variables, we had to gap-fill some of the 107 

predictor data (NDVI) and/or include some lower-level quality data (LST). We gap-filled and 108 

smoothed MODIS NDVI at their original temporal resolution using the method developed by 109 

Kong et al. (2019) 9. This denoising method uses weighted Whittaker approach 10 with 110 

parameter λ across space for reconstructing gap-filled and smoothed remote sensing vegetation 111 

index time series and was efficiently employed in Google Earth Engine (see here 112 

https://github.com/gee-hydro/gee_whittaker_kong2019_validation). All the available NDVI data 113 

were used but were weighted to account for good and poor quality data (e.g., snow), and the 114 

algorithm was run three times to optimize performance. We used the most recent and efficient 115 

version of this algorithm with a constant parameter λ found here 116 

(https://code.earthengine.google.com/09fef6c8c16919f8ecaa455aae5362b0). The gap-filling 117 

and smoothing method with constant λ used here was originally developed for LAI. Therefore, 118 

the available scripts developed by Kong et al. (2019) had to be adjusted for NDVI. The λ 119 

parameter was manually optimized by comparing the effects of λ set to 10-700.  120 

 121 

The GIMMS3g NDVI data includes gap-filled data provided by the data developers (flag 1: NDVI 122 

retrieved from spline interpolation, flag 2: NDVI retrieved from seasonal profile, possible 123 

snow/cloud). We used the NDVI values with a quality flag 2 if no other information was available 124 

(during the winter). During the summer, we used NDVI values with flag 1 to gap-fill data. Small 125 

remaining gaps were filled with linear interpolation. 126 

 127 

We acknowledge the uncertainties associated with gap-filling NDVI data throughout the snowy 128 

shoulder and winter seasons but took this approach to assure that our predictors have data 129 

throughout the entire year, as most of the machine learning models cannot deal with missing 130 

data accurately. We justified this decision further by the fact that we are using these data to train 131 

multivariate models where, for example, climate data is likely the most important predictor 132 

instead of the gap-filled (and temporally not variable) optical remotely sensed data during the 133 

winter. We further supported this approach with the idea that vegetation biomass (and 134 

greenness) generally stays the same (or is lower) after the last good-quality autumn pixel value 135 

throughout the winter. We verified that the winter values were higher in highly productive 136 

ecosystems (e.g., forests, where winter NDVI values were close to 0.5) compared to sparse 137 

ecosystems (e.g., tundra, where winter NDVI values were close to 0-0.2) to make sure that the 138 

vegetation indices differ spatially in expected ways. We extracted the final predictor values at 139 

https://paperpile.com/c/sbCgRn/I1Uej
https://paperpile.com/c/sbCgRn/P0EON
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our flux sites from this gap-filled and smoothed data. These correlated significantly with the non-140 

gap-filled values in the summer (Pearson correlation 0.88).  141 

 142 

The geospatial data had differences in spatial resolution and terrestrial surface coverage (e.g., 143 

lake and ocean distribution) and ABCflux site coordinate accuracy was also variable. Therefore, 144 

in cases where some sites and/or monthly observations would have received NA values, we 145 

extracted the closest non-NA pixel values. This way we were able to keep all the sites from this 146 

sparsely measured region in the analysis. 147 

 148 

3.2 Additional predictors that were tested 149 

We tested several other data sources as predictors for our models in addition to the ones listed 150 

on Supplementary Table 4. Those were dropped because (i) they were highly correlated with 151 

the other more powerful predictors that we already had (e.g., MOD13A2v006-based NDVI 152 

chosen over EVI or MOD11A2v006 surface temperature over TerraClimate-based air 153 

temperature for 1-km models; a Pearson correlation higher than 0.8 was considered as a cutoff 154 

value), (ii) they had data from a temporal period that was shorter than our study period (e.g. 155 

fractional open water cover 2002-2015 or ESA CCI annual permafrost layers 1998-2017 11,12), 156 

(iii) they had unrealistic values within our study domain (e.g., pixels indicating frozen status 157 

along the Swedish coastline in July 13, or (iv) they were missing a lot of data from the 158 

northernmost latitudes (e.g., northern Greenland) or coastlines. 159 

 160 

Some potentially important variables were difficult to aggregate to ecologically meaningful 161 

predictors to be used in our monthly models. Describing fire history was one of those predictors 162 

as no accurate circumpolar burn history products exist that would extend beyond our study 163 

period that would allow us to accurately describe how, for example, a site/pixel that burned in 164 

1970 is recovering after the fire. We tested including a ‘time since fire’ predictor based on 165 

MCD64A1v006 that goes up to 2020 14 or GFED4 that goes up to 1997 15 for each monthly 166 

observation to our machine learning model, but this variable was among the least important 167 

variables for all fluxes during the test runs (results not shown), likely due to its limitations in 168 

long-term data coverage. Additional predictors that were tested but excluded due to low 169 

importance included thermokarst coverage 16  and forest age in 2010 17. 170 

4. Machine learning models 171 

4.1 Model structure 172 

We had three response variables (GPP, Reco, and NEE) and two different spatial resolutions and 173 

time periods of models. Consequently, we built a total of six models. We used the same 174 

predictors for all the response variables and a similar set of predictors for the 1-km and 8-km 175 

models to allow for straightforward model and prediction comparisons. For example, we used 176 

MODIS tree cover for the 1-km model and AVHRR tree cover for the 8-km model, and MODIS 177 

LST for the 1-km model and TerraClimate air temperature for the 8-km model.  178 

 179 

https://paperpile.com/c/sbCgRn/rLVcW+xOpLv
https://paperpile.com/c/sbCgRn/AcxO
https://paperpile.com/c/sbCgRn/yPhII
https://paperpile.com/c/sbCgRn/MEstJ
https://paperpile.com/c/sbCgRn/jMvUP
https://paperpile.com/c/sbCgRn/oVnbG
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We used random forest models which are a powerful machine learning model. They utilize 180 

several decision trees in an ensemble model framework and thus avoid overfitting, have high 181 

accuracy, are highly adaptable, and are not significantly impacted by outliers. Random forest 182 

models bootstrap the data several times and sample the predictor variables at each split during 183 

the tree building, after which the algorithm builds an ensemble prediction 18 . However, random 184 

forest models may suffer from overfitting and extrapolating outside the conditions present in the 185 

training data 19. We tested other machine learning models (e.g., support vector machine, 186 

generalized boosted regression tree, generalized additive model, neural networks; results not 187 

shown). Random forest models outperformed those in terms of cross-validated predictive 188 

performance and produced the most realistic flux maps, which is why we only used random 189 

forest models.  190 

 191 

For all the random forest models, we assumed Gaussian error distribution. Parameters for 192 

machine learning models were tuned separately for each response variable with the “caret” 193 

package in R 20,21 using the leave-one-site-out cross validation. We tuned the number of 194 

variables randomly sampled as candidates at each split from three options in each model. The 195 

best model with the final set of parameters was chosen based on the lowest root mean square 196 

error (RMSE) values. The only parameter that was tuned was the number of variables to 197 

randomly sample as candidates at each split, and it varied from 2 to 17 in the final models 198 

depending on the response variable. 199 

 200 

We used partial dependence plots (i.e., response graphs) using the “pdp” package 22 and 201 

estimated variable importance of the predictors from each of the models using the “vip” package 202 
23 (Section Machine learning models in the main text).The values on the y axis of each partial 203 

dependence plot can be interpreted as followed: yhat is conditional on other predictors in the 204 

model and their relationships with the predictor in the plot in question. Therefore, yhat values 205 

should not be directly compared with observed or predicted values, rather the patterns in yhat 206 

should be explored more generally. The x-axis represents the actual predictor values and can 207 

be used to infer, for example, conditions that lead to changes in yhat (tipping points), and the 208 

strength and direction of the relationship. Variable importance scores were estimated by 209 

randomly permuting the values of the predictor in the training data and exploring how this 210 

influenced model performance based on RMSE values, with the idea that random permutation 211 

would decrease model performance 18. We used 100 simulations to calculate 100 importance 212 

scores which are shown in Supplementary Fig. 5-7. 213 

 214 

4.2 Model predictions 215 

We used the random forest models to predict (i.e., upscale) fluxes with the 1-km model from 216 

2001 to 2020 and 8-km model from 1990 to 2016. In total we produced 1692 upscaled flux 217 

maps. 8-km upscaled maps were further multiplied by the terrestrial surface cover within each 8-218 

km pixel based on the 1-km ESA CCI+CAVM land cover dataset to remove fluxes from water 219 

bodies. These flux maps were robust across the two pixel resolutions, and a comparison of 220 

2001-2016 average annual NEE maps showed that NEE was similar across the two pixel 221 

resolutions (Supplementary Fig. 20). The 1- and 8-km predictions had the largest differences in 222 

https://paperpile.com/c/sbCgRn/gaI13
https://paperpile.com/c/sbCgRn/uLQaO
https://paperpile.com/c/sbCgRn/Ot6aL+oLKX6
https://paperpile.com/c/sbCgRn/uLeka
https://paperpile.com/c/sbCgRn/oa6K8
https://paperpile.com/c/sbCgRn/gaI13
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Siberia, as shown by the annual budget mismatches in Fig. 4, which also prevented us from 223 

merging the two predictions and calculating trends for the entire 1990-2020 period. We also 224 

compared upscaled NEE maps from two approaches: based on modeling NEE directly, and 225 

deriving it indirectly from the upscaled GPP and Reco maps. NEE from these two approaches 226 

yielded similar results, providing confidence in our results. Budgets estimates from the NEE and 227 

GPP-Reco approaches are also similar (Table 1, Supplementary Table 1, Supplementary Fig. 20, 228 

Supplementary Fig. 21-22). Overall, our upscaling results revealed a latitudinal pattern of 229 

average CO2 fluxes, with stronger sinks in the south and weaker sinks or sources in the north 230 

(Fig. 1). However, the correlation between latitude and average NEE was moderate (Pearson’s 231 

correlation for in-situ NEE: 0.26, p=0.053; for upscaled NEE: 0.55, p<0.001), suggesting that the 232 

latitudinal climate and radiation gradients were not the sole drivers of spatial CO2 flux patterns. 233 

4.3 Model predictive performance and uncertainty 234 

The predictive performance and uncertainty analysis was described in detail in the Machine 235 

learning modeling section of the Online methods. Here we provide a longer description of the 236 

strengths and limitations of our random forest models. 237 

 238 

Overall, our models show good predictive performance. Compared to earlier ABZ upscaling 239 

efforts, our cross-validated performance metrics (Supplementary Figs. 1-3) indicate better 240 

performance. For example, the R2 of our models ranged from 0.5 to 0.78, whereas Natali et al. 241 

(2019) 24 had an R2 of 0.49 for winter NEE and Virkkala et al. (2021) 3 an R2 of 0.07 for annual 242 

NEE, R2  of 0.5 for annual GPP and annual Reco; note though that the cross validation in Natali 243 

et al. 2019 was not based on a leave-one-site out approach. However, our performance metrics 244 

also indicate that strong sinks and sources, and high GPP and Reco were underestimated - a 245 

common issue in any kind of modeling (Tramontana et al. 2016). As described with the mean 246 

bias error (MBE) metric, the models had a small tendency to underestimate fluxes (i.e., NEE 247 

models were predicting larger net uptake than net emissions), as reflected by the small and 248 

positive MBE values. However, the majority of the observed and predicted values were close to 249 

the 1:1 line, and issues associated with the model underestimating strong net sinks were clearly 250 

larger (deviation up to -150 g C m-2 month-1) than the model underestimating strong net sources 251 

(deviation up to 80 g C m-2 month-1). For NEE, it was clear that situations where the modeled 252 

month differed significantly from the average monthly flux at the site were predicted worst 253 

(shown with yellow and light green values or dark blue values; Supplementary Figs. 1-3). It is 254 

thus possible that we are missing predictors that accurately describe conditions from such 255 

different months. 256 

 257 

We also evaluated how differences in flux measurement method and the exclusion of disturbed 258 

sites impact model predictive performance (Supplementary Table 5). Overall, performance 259 

statistics were similar across the approaches.  260 

 261 

We evaluated the uncertainty of predictions by creating 20 bootstrapped datasets (with 262 

replacement; same sample size as in the original model training data) and using those to 263 

develop 20 individual models and predictions. For these bootstrapped datasets and models, we 264 

did not include the categorical month and land cover datasets as predictors due to 265 

https://paperpile.com/c/sbCgRn/lRJLP
https://paperpile.com/c/sbCgRn/FPxzD
https://paperpile.com/c/sbCgRn/3nh3
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bootstrapping resulting in situations where a factor level was entirely missing from the model 266 

training data (e.g., for barren class that had little data) which prevented us from predicting fluxes 267 

across the entire domain (i.e., predictions to barren class not possible when the model had no 268 

information about it). Out of the 20 predictions, we calculated the standard deviation to 269 

represent prediction uncertainty. Similar to the predictive performance metrics (largest issues in 270 

our models related to predicting strong sinks), the uncertainty analysis also points towards 271 

highest uncertainties in areas with strong sinks, such as in northern Europe and southwestern 272 

Russia. However, when the uncertainty estimates were presented relative to the average flux, 273 

uncertainties were highest in tundra regions and parts of northern boreal Canada which 274 

generally have low in-situ flux data coverage. In some areas of these regions, our upscaling 275 

shows unrealistically high NEE values. For example, some sparsely vegetated or barren 276 

mountainous regions in northern Siberia (Kolyma mountains) or northern Europe (Scandes 277 

mountains) showed net emissions of 30-50 g C m-2 yr-1, which appears unrealistically high 278 

compared to the low vegetation carbon inputs and overall soil carbon pools. However, we did 279 

not mask the sparsely vegetated or barren areas away from our upscaling because we had data 280 

from these vegetation classes indicating that there is small but significant growing season and 281 

annual uptake in these regions 25,26. Overall, the spatial uncertainty maps thus emphasize 282 

uncertainties both associated with model performance with strong sinks, and data gaps. 283 

 284 

To further understand the uncertainties related to data gaps, we used a multivariate 285 

environmental dissimilarity surface analysis (MESS) to define the area of extrapolation in our 286 

models 27. We used average annual environmental conditions over 2001-2020 of the 7 most 287 

important variables for this analysis (solar radiation, NDVI, land surface temperature, soil 288 

temperature, snow cover, soil organic carbon stock, soil pH, permafrost probability); average 289 

NDVI conditions were calculated for the June-August period alone. MESS represents how 290 

similar a point (i.e., a site) is to a reference set of points (i.e., all the ABZ conditions), with 291 

respect to a set of predictor variables. Negative values represent sites where at least one 292 

variable has a value that is outside the range of environments over the reference set (i.e., areas 293 

where the model extrapolates). The values in MESS are influenced by the full distribution of the 294 

reference points, so that points within the environmental range of the reference points but in 295 

relatively unusual environments will have a smaller value than those in common environments. 296 

Large positive values represent common conditions across the sites and ABZ. The analysis was 297 

done for the sites with data from January (primarily year-round sites). Our results show that 35% 298 

of the region was extrapolated (Supplementary Figure 4). If we limit our budget estimates to the 299 

area that was not extrapolated (i.e., 65% of the region), the annual NEE budget was -390 Tg C 300 

yr-1. 301 

 302 

Despite these uncertainties, our results show that machine learning-based upscaling is a 303 

promising approach for understanding recent trends in CO2 fluxes as the models can easily 304 

integrate the most recent flux data and new predictor datasets while operating at high spatial 305 

and temporal resolutions. One uncertainty in upscaling remains how natural (e.g., thermokarst, 306 

insect outbreaks) and anthropogenic (e.g., forest management) disturbances are covered by the 307 

flux sites and explained with gridded data 28. New predictors describing disturbances as well as 308 

https://paperpile.com/c/sbCgRn/kAxfI+hMcAw
https://paperpile.com/c/sbCgRn/fZEji
https://paperpile.com/c/sbCgRn/U0ui
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supporting and extending the year-round flux network are critical to improve this upscaling and 309 

other synthesis and modeling efforts. 310 

5. Comparison with CMIP6 process models, inversions and earlier 311 

upscaling efforts 312 

Supplementary Table 6 lists the CMIP6 process models and inversions included in our model 313 

intercomparison. The models had variable inputs and structures, which causes differences in 314 

model outputs. We used an ensemble of these models (i.e. mean model output) for the two 315 

model categories (process and inversion models) because the uncertainty of the ensemble is 316 

expected to be lower than the uncertainty of a single model.  317 

 318 

The average inversion NEE budget for the entire ABZ, including aquatic ecosystems while 319 

excluding fires, indicated a considerably stronger sink strength (-1054 Tg C yr-1; range of 320 

individual inversion estimates -259 to -1872 Tg C yr-1). Overall, inversions had a rather high 321 

spread of CO2 fluxes (Supplementary Fig. 17). Spread in inversion budget estimates and pixel-322 

wise fluxes was high across the entire ABZ, demonstrating some level of inversion model 323 

disagreement in all parts of the ABZ. The ensemble mean of CMIP6 process models 29 showed 324 

consistently stronger tundra CO2 sink strength (-48 Tg C yr-1) than found in this study and 325 

weaker sink strength in the boreal zone (-391 Tg C yr-1) despite the mean NEE budget being 326 

very close to ours (-501 Tg C yr-1) (Fig. 1).  327 

 328 

We observed high agreement with our upscaling compared to inversion models. However, some 329 

disagreements were also apparent, especially in some parts of central and northern Siberia, 330 

where our upscaling suggested the region to be primarily a net annual CO2 source and the 331 

inversion ensemble a CO2 sink; however, the sparsity of year-round atmospheric or terrestrial 332 

flux data from this region prevents us from reliably concluding what the current sink status of the 333 

region is. Similarly, our upscaling showed sub-Arctic Canada in the Northwest Territories to 334 

have a large distribution of annual CO2 sources whereas inversions suggested sinks. Overall, 335 

our combined NEE+fire estimates were on the higher end compared to inversions (i.e. weaker 336 

net CO2 sinks or stronger net CO2 emissions), especially in Canadian boreal, Siberian boreal, 337 

and Siberian tundra regions (Supplementary Fig. 17).  338 

 339 

There are some similarities and differences in the long-term trends in our upscaling compared to 340 

inversions. Interannual variability in upscaled NEE and inversion-based NEE is highest in 341 

Siberia. However, inversions had more interannual variability in flux budgets overall compared 342 

to our upscaling. For example, NEE + fire budgets varied by 350 Tg C yr-1 in our upscaling 343 

whereas those could range by 750 Tg C yr-1 in inversion estimates. In our NEE upscaling, 344 

interannual variability in NEE was strongly related to air temperature. For example, in 2020 with 345 

a record-warm year in Siberia, the NEE budget changed from ca. -400 to -500 Tg C yr-1 in 346 

Siberian boreal. It is possible that in 2020 Siberian ecosystems also experienced drought that 347 

should have decreased uptake as indicated by some of the inversions (Supplementary Fig. 17), 348 

which our models did not capture. However, during an extreme disturbance year in 2003 in 349 

Siberia with a high extent of fires and a decline in NDVI 30, our upscaling shows an increase in 350 

https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/dVDmr
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net CO2 emissions with NEE changing from ca. -300 to -200 Tg C yr-1 in the boreal biome and 351 

25 to 40 Tg C yr-1 in the tundra biome; this increase of net emissions was shown for most 352 

inversions in the Siberian boreal region as well. This provides confidence that our upscaling 353 

captures the impact of some of the extreme years that are increasingly important for ABZ CO2 354 

budgets. A visualization of the pixel-wise fluxes in two extreme years: the 2003 fire year and 355 

2020 warm year are shown in Supplementary Fig. 23.  356 

 357 

We also compared our results with the global upscaling product FLUXCOM (RS+METEO NEE 358 

ensemble) 28,31,32 that showed a much higher sink strength for the ABZ (tundra budget: -229 Tg 359 

C yr-1 for 1990-2013 and -225 Tg C yr-1 for 2001-2013,  boreal budget –964 Tg C yr-1 for 1990-360 

2013 and -949 Tg C yr-1 for 2001-2013), likely due to ABCfluxv1 including a much more 361 

representative set of sites compared to the FLUXNET2015 database 33 used in FLUXCOM 362 

(e.g., 136 Arctic sites in ABCflux compared to 5 sites included in FLUXCOM). The higher 363 

representativeness comes from our study including also chamber and diffusion through snow 364 

measurements, and eddy covariance data that are not found in the global FLUXNET2015 365 

repository. For example, for eddy covariance the ABCflux database includes 2775 monthly 366 

fluxes extracted from repositories (FLUXNET2015 and Euroflux and Ameriflux, for example) and 367 

2160 monthly fluxes contributed by site PIs or extracted from publications. 368 

 369 

6. Aggregating results 370 

 371 

We calculated in-situ cumulative average fluxes by first calculating mean fluxes across years at 372 

each site to avoid biasing the statistics by long-term sites. Annual fluxes were calculated for 373 

sites that had the full year of monthly flux estimates. We used the package “terra” 34 to derive 374 

zonal statistics (mean fluxes and budgets) across the key regions. 375 

 376 

  377 

https://paperpile.com/c/sbCgRn/U0ui+3nh3+qqPa
https://paperpile.com/c/sbCgRn/usOc
https://paperpile.com/c/sbCgRn/vkRnS


11 

Supplementary Tables and Figures  378 

 379 

Supplementary Table 1. Average gross primary productivity (GPP), ecosystem respiration 380 

(Reco), and net ecosystem exchange (NEE) fluxes and budgets over 2001-2020 across 381 

vegetation types. Uncertainties represent standard deviations across sites (for the in-situ data), 382 

or across bootstrapped upscaled estimates. Positive numbers for NEE indicate net CO2 loss to 383 

the atmosphere and negative numbers indicate net CO2 uptake by the ecosystem. Mismatches 384 

in the site-level versus upscaled CO2 fluxes are likely related to sites being biased to certain 385 

regions and years while upscaled summaries should provide more representative regional 386 

estimates but are influenced by model performance. NAs occurred in situations when flux data 387 

was entirely non-existent, not partitioned to GPP and Reco, or when statistics were based on a 388 

single site (not possible to calculate standard deviation).  389 

 390 

 391 

 392 

Class In-situ 
average 
NEE g C 
m-2 yr-1 

In-situ 
average 
GPP g C 
m-2 yr-1 

In-situ 
average 
Reco g C 
m-2 yr-1 

Upscaled 
average 
NEE g C 
m-2 yr-1 

Upscaled 
average 
GPP g C 
m-2 yr-1 

Upscaled 
average 
Reco g C 
m-2 yr-1 

Average 
NEE 
budget 
Tg C yr-1 

Average 
GPP 
budget 
Tg C yr-1 

Average 
Reco 

budget 
Tg C yr-1 

Barren and 

prostrate 

shrub 

-74 (± 61) NA NA  -4 (± 8) 537 (± 

23) 

513 (± 

17) 

-4 (± 17) 482 (± 

18) 

461 (± 

15) 

Graminoid 10 (± 28) 272 (± 4) 269 (± 0) 9 (± 9) 519 (± 

31) 

525 (± 

23) 

6 (± 9) 346 (± 9) 350 (± 6) 

Shrub 35 (± 37) 244 (± 

44) 

288 (± 

81) 

23 (± 9) 572 (± 

35) 

598 (± 

28) 

9 (± 6) 215 (± 5) 225 (± 2) 

Sparse boreal 

vegetation 

-33 (± 

124) 

443 (± 

229) 

442 (± 

135) 

35 (± 6) 669 (± 

29) 

698 (± 

27) 

50 (± 24) 962 (± 

20) 

1003 (± 

12) 

Tree cover, 

broadleaved, 

deciduous 

-112 (± 

NA) 

1100 (± 

NA) 

988 (± 

NA) 

-185 (± 

23) 

1568 (± 

64) 

1433 (± 

47) 

-90 (± 10) 765 (± 

11) 

699 (± 

10) 

Tree cover, 

needleleaved, 

deciduous 

-17 (± 29) NA  NA  -61 (± 18) 931 (± 

67) 

875 (± 

52) 

-148 (± 

45) 

2239 (± 

32) 

2105 (± 

26) 
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Tree cover, 

needleleaved, 

evergreen 

-36 (± 81) 773 (± 

423) 

734 (± 

431) 

-85 (± 12) 1270 (± 

47) 

1211 (± 

34) 

-222 (± 

37) 

3309 (± 

48) 

3153 (± 

29) 

Wetland -22 (± 31) 281 (± 

78) 

256 (± 

67) 

-78 (± 11) 778 (± 

39) 

697 (± 

28) 

-47 (± 10) 464 (± 9) 415 (± 6) 

Mosaic and 

mixed 

vegetation 

-54 (± 74) 697 (± 

265) 

643 (± 

223) 

-117 (± 

15) 

1358 (± 

53) 

1274 (± 

38) 

-102 (± 

14) 

1188 (± 

16) 

1114 (± 

12) 

Alaskan 

boreal 

-7 (± 60) 592 (± 

195) 

615 (± 

148) 

-12 (± 10) 495 (± 

41) 

486 (± 

32) 

-6 (± 4) 228 (± 4) 224 (± 3) 

Alaskan 

tundra 

20 (± 31) 277 (± 

90) 

298 (± 

113) 

5 (± 10) 354 (± 

28) 

360 (± 

20) 

4 (± 7) 270 (± 6) 274 (± 3) 

Canadian 

boreal 

-39 (± 72) 635 (± 

255) 

598 (± 

202) 

-32 (± 6) 557 (± 

27) 

534 (± 

20) 

-129 (± 

26) 

2214 (± 

31) 

2125 (± 

22) 

Canadian 

tundra 

NA NA NA 1 (± 4) 282 (± 

13) 

278 (± 

10) 

3 (± 20) 644 (± 

20) 

636 (± 

16) 

European 

boreal 

-53 (± 94) 837 (± 

583) 

778 (± 

614) 

-64 (± 11) 737 (± 

40) 

684 (± 

30) 

-140 (± 

20) 

1603 (± 

23) 

1488 (± 

16) 

European 

tundra 

-42 (± 52) 440 (± 

215) 

421 (± 

232) 

14 (± 4) 313 (± 

15) 

328 (± 

12) 

10 (± 5) 225 (± 6) 236 (± 4) 

Siberian 

boreal 

-105 (± 

154) 

703 (± 

NA) 

572 (± 

NA) 

-44 (± 9) 535 (± 

32) 

497 (± 

23) 

-319 (± 

61) 

3875 (± 

55) 

3599 (± 

40) 
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Siberian 

tundra 

-9 (± 30) 241 (± 

66) 

245 (± 

92) 

9 (± 5) 296 (± 

18) 

307 (± 

14) 

28 (± 24) 910 (± 

20) 

944 (± 

12) 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

Supplementary Table 2. The sites included in the analysis. For information about the sites see 401 

the Virkkala et al. (2021) 4 dataset.  402 

 403 

 404 

Study ID Short Site name Site reference Latitude Longitude Country Flux 
method 

Adkinson_CA-WP2_tower1 Alberta - Western Peatland - 
Poor Fen (Sphagnum moss) 

CA-WP2 55.5375 -112.334 Canada Eddy 
covariance 

Adkinson_CA-WP3_tower2 Alberta - Western Peatland - Rich 
Fen  (Carex) 

CA-WP3 54.47 -113.32 Canada Eddy 
covariance 

Alekseychik_RU-Murk_tower1 Mukhrino field station RU-Murk 60.9 68.7 Russia Eddy 
covariance 

Aurela_FI-Kaa_tower1 Kaamanen FI-Kaa 69.14057 27.26985 Finland Eddy 
covariance 

Aurela_FI-Ken_tower2 Kenttarova FI-Ken 67.98723 24.24305 Finland Eddy 
covariance 

Aurela_FI-SamFell_tower3 Sammaltunturi fell FI-SamFell 67.9733 24.11565 Finland Eddy 
covariance 

Aurela_FI-Sod_tower1 Sodankyla FI-Sod 67.36239 26.63859 Finland Eddy 
covariance 

Aurela_RU-Tks_tower1 Tiksi RU-Tks 71.59427 128.8878 Russia Eddy 
covariance 

Backstrand_StordalenMire_Ch Stordalen Mire Palsa 
Site,Sphagnum 
Site,Eriophorum 
Site 

68.36667 19.05 Sweden Chamber 

BangYong_US-KOC_tower1 US-KOC, Council US-KOC, Council 64.8439 -163.711 USA Eddy 
covariance 

Bergeron_CA-sOBS_tower1 Southern Old Black Spruce CA-sOBS 53.99 -105.12 Canada Eddy 
covariance 

Bjoerkman_Adventdalen_Diff Adventdalen, Svalbard heath 
shallow,meadow 
shallow 

78.167 16.067 Norway Diffusion 
through 
snow 

https://paperpile.com/c/sbCgRn/yClGN
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Bjoerkman_Latnjajaure_Diff Latnjajaure heath 
snowbed,meado
w snowbed,heath 
meadow,mesic 
meadow, heath 
shallow 

68.333 18.5 Sweden Diffusion 
through 
snow 

Boike_NO-Blv_tower1 Bayelva, Spitsbergen NO-Blv 78.9216 11.8311 Norway Eddy 
covariance 

Bret-Harte_US-ICs_tower1 Imnavait Creek Watershed US-ICs 68.6058 -149.311 USA Eddy 
covariance 

Bret-Harte_US-ICt_tower2 Imnavait Creek Watershed US-ICt 68.6063 -149.304 USA Eddy 
covariance 

Cannone_Adventdalen1_Ch Adventdalen P1 78.18506 15.92633 Norway Chamber 

Cannone_Adventdalen2_Ch Adventdalen P2 78.18511 15.92577 Norway Chamber 

Cannone_Adventdalen3_Ch Adventdalen P3 78.18517 15.92551 Norway Chamber 

Cannone_Adventdalen4_Ch Adventdalen P4 78.18529 15.92486 Norway Chamber 

Cannone_Adventdalen5_Ch Adventdalen P5 78.18534 15.92644 Norway Chamber 

Cannone_Adventdalen6_Ch Adventdalen P6 78.18539 15.92581 Norway Chamber 

Cannone_Adventdalen7_Ch Adventdalen P7 78.18541 15.92515 Norway Chamber 

Celis_EML_Ch Eight Mile Lake moist acidic 
tundra 

63.88306 -149.226 USA Chamber 

Chae_US-KOC_Ch Council US-KOC 64.8439 -163.711 USA Chamber 

Christensen_NO-Adv_tower1 Adventdalen NO-Adv 78.186 15.923 Norway Eddy 
covariance 

Christiansen_DaringLake_Ch Daring Lake Low birch 
hummock 

64.833 -111.633 Canada Chamber 

Christiansen_DiskoIsland_Ch Disko Island Arctic Station 69.254 -53.514 Greenlan
d 

Chamber 

Christiansen_Zackenberg1_Ch Zackenberg dry heath 74.467 -20.577 Greenlan
d 

Chamber 

Christiansen_Zackenberg2_Ch Zackenberg Cassiope heath; 
NY-ITEX heath 

74.475 -20.543 Greenlan
d 

Chamber 

Christiansen_Zackenberg3_Ch Zackenberg Salix heath; NY-
ITEX heath 

74.475 -20.54 Greenlan
d 

Chamber 

Davydov_Cherskiy1_Ch Cherskiy Larch-shrub 
forest, low density 

68.7 161.55 Russia Chamber 

Davydov_Cherskiy2_Ch Cherskiy Post-fire shrub 68.72 161.53 Russia Chamber 

Davydov_Cherskiy3_Ch Cherskiy Old larch forest 68.73 161.4 Russia Chamber 
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Davydov_Cherskiy4_Ch Cherskiy Dense larch 
'bamboo' stand 

68.75 161.45 Russia Chamber 

Dolman_RU-Cok_tower1 Chokurdakh RU-Cok 70.82914 147.4943 Russia Eddy 
covariance 

Dolman_RU-Ypn_tower1 Yakutsk Larix cajanderii 
stand 160 yr old 

62.255 129.619 Russia Eddy 
covariance 

Dyukarev_Siberia_Ch Middle Taiga Zone large hollow,small 
ridge 

60.9 68.7 Russia Chamber 

Eckhardt_LRD_Ch Lena River Delta Wet tundra - 
polygon 
center,Dry tundra 
- polygon rim 

72.36667 126.4667 Russia Chamber 

Egan/Risk_ImnavaitCreek_Ch Imnavait Creek heath  68.607 -149.296 USA Chamber 

Elberling_Endalen_Ch Endalen, Svalbard Moist Cassiope 
heath,Dry Dryas 
heath,Salix snow 
bed 

78.2 15.6 Norway Chamber 

Elberling_GL-Dsk_tower1 Disko Island GL-Dsk 69.253 -53.514 Greenlan
d 

Eddy 
covariance 

Emmerton_CA-LHazen1_tower1 Lake Hazen, Ellesmere Island CA-LHazen1 82.82255 -71.3809 Canada Eddy 
covariance 

Emmerton_CA-LHazen2_tower2 Lake Hazen, Ellesmere Island CA-LHazen2 81.83447 -71.3846 Canada Eddy 
covariance 

Euskirchen_RU-
Eusk_cher1_tower1 

Chersky Tower 1 RU-Eusk_cher1 68.51351 161.5312 Russia Eddy 
covariance 

Euskirchen_RU-
Eusk_cher2_tower2 

Chersky Tower 2 RU-Eusk_cher2 68.69808 161.5388 Russia Eddy 
covariance 

Euskirchen_US-TFBog_tower2 Bonanza Creek Thermokarst Bog US-BZB 64.69555 -148.321 USA Eddy 
covariance 

Euskirchen_US-TFBS_tower1 Bonanza Creek Rich Fen US-BZF 64.69635 -148.324 USA Eddy 
covariance 

Euskirchen_US-TFRF_tower3 Bonanza Creek Rich Fen US-BZF 64.70373 -148.313 USA Eddy 
covariance 

Falk_Zackenberg_Ch Zackenberg 74.5 -20.5 Greenlan
d 

Chamber 

Friborg_Se-St1_tower1 Stordalen grassland Se-St1 68.35415 19.05033 Sweden Eddy 
covariance 

Friborg_Seida_tower1 Seida Mixed tundra with 
upland tundra 
heath, peat 
plateau and 
wetlands 

67.05 62.93333 Russia Eddy 
covariance 

Friborg_Svalbard_Ch Svalbard Björnedalen 78.224 15.324 Norway Chamber 

Gasovic_FI-Salm_tower1 Salmisuo FI-Salm 62.7833 30.9333 Finland Eddy 
covariance 

Goeckede_RU-Ch2_tower2 Cherski reference RU-Ch2 68.61689 161.3509 Russia Eddy 
covariance 
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Goulden_CA-NS1_tower1 UCI-1850 burn site CA-NS1 55.87917 -98.4839 Canada Eddy 
covariance 

Goulden_CA-NS2_tower2 UCI-1930 burn site CA-NS2 55.90583 -98.5247 Canada Eddy 
covariance 

Goulden_CA-NS3_tower3 UCI-1964 burn site CA-NS3 55.91167 -98.3822 Canada Eddy 
covariance 

Goulden_CA-NS4_tower4 UCI-1964 burn site wet CA-NS4 55.91437 -98.3806 Canada Eddy 
covariance 

Goulden_CA-NS5_tower5 UCI-1981 burn site CA-NS5 55.86306 -98.485 Canada Eddy 
covariance 

Goulden_CA-NS6_tower6 UCI-1989 burn site CA-NS6 55.91667 -98.9644 Canada Eddy 
covariance 

Goulden_CA-NS7_tower7 UCI-1998 burn site CA-NS7 56.63583 -99.9483 Canada Eddy 
covariance 

Goulden_CA-Oas_tower1 Saskatchewan - Western Boreal, 
Mature Aspen 

CA-Oas 53.62889 -106.198 Canada Eddy 
covariance 

Harazano_US-Cms_tower1 Central Marsh US-Cms 71.32019 -156.622 USA Eddy 
covariance 

Helbig_CA-SCB_tower1 Scotty Creek Bog CA-SCB 61.3089 -121.298 Canada Eddy 
covariance 

Helbig_CA-SCC_tower1 Scotty Creek Landscape CA-SCC 61.3079 -121.299 Canada Eddy 
covariance 

Huemmrich_Utqia?vik_Ch Utqia?vik wet sedge tundra 71.322 -156.602 USA Chamber 

Humphreys_CA-CB_tower1 Cape Bounty CA-CB 74.915 -109.574 Canada Eddy 
covariance 

Iwata_US-Rpf_tower1 Poker Flat Research Range: 
Succession from fire scar to 
deciduous forest 

US-Rpf 65.11983 -147.512 USA Eddy 
covariance 

Iwata_US-Uaf_tower1 University of Alaska, Fairbanks US-Uaf 64.86627 -147.856 USA Eddy 
covariance 

Jarveoja_DegeroStormyr_Ch Degerö Stormyr oligotrophic 
minerogenic mire 
complex 

64.18333 19.55 Sweden Chamber 

Kade_ImnavaitCreek1_Ch Imnavait Creek wet sedge 68.606 -149.311 USA Chamber 

Kade_ImnavaitCreek2_Ch Imnavait Creek tussock 68.606 -149.304 USA Chamber 

Kade_ImnavaitCreek3_Ch Imnavait Creek heath  68.607 -149.296 USA Chamber 

Kim_Coldfoot1_Ch Coldfoot Young Black 
Spruce 

67.183 -150.297 USA Chamber 

Kim_Coldfoot2_Ch Coldfoot Young Black 
Spruce 

67.18 -150.31 USA Chamber 

Kim_Council_Ch Council, AK tundra 
sphagnum,tundra 
lichen,tundra 
tussock 

64.861 -163.711 USA Chamber 
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Kim_Fairbanks1_Ch Fairbanks Old Black Spruce 65.644 -147.471 USA Chamber 

Kim_Fairbanks2_Diff Fairbanks black spruce 
forest 

64.867 -147.85 USA Diffusion 
through 
snow 

Kim_InteriorAlaska1_Ch Interior Alaska Gold Creek White 
Spruce 

67.74 -149.76 USA Chamber 

Kim_InteriorAlaska2_Ch Interior Alaska Lower Yukon 
Black Spruce 

65.84 -149.65 USA Chamber 

Kim_InteriorAlaska3_Ch Interior Alaska Upper Yukon 
Black Spruce 

66.08 -150.17 USA Chamber 

Kim_NorthSlope1_Ch North Slope Subalpine tundra 68.175 -149.441 USA Chamber 

Kim_NorthSlope2_Ch North Slope Upland tundra 68.905 -148.876 USA Chamber 

Kim_NorthSlope3_Ch North Slope Subalpine tundra 68.18 -149.44 USA Chamber 

Kim_NorthSlope4_Ch North Slope Upland tundra 68.9 -148.88 USA Chamber 

Kim_NorthSlope5_Ch North Slope  Coastal tundra 69.84 -148.71 USA Chamber 

Kim_SouthBrooksRange1_Ch South Brooks Range Tundra-boreal 
ecotone 

67.991 -149.76 USA Chamber 

Kim_SouthBrooksRange2_Ch South Brooks Range Tundra-boreal 
ecotone 

67.99 -149.76 USA Chamber 

Kljun_CA-Ojp_tower3 Saskatchewan - Western Boreal, 
Mature Jack Pine 

CA-Ojp 53.91634 -104.692 Canada Eddy 
covariance 

Kljun_CA-sOBS_tower2 Southern Old Black Spruce CA-sOBS 53.99 -105.12 Canada Eddy 
covariance 

Kolari_FI-Var_tower1 Varrio FI-Var 67.7549 29.69014 Finland Eddy 
covariance 

Kutzbach_RU-LRD1_tower1 Samoylov Island RU-Sam 72.37398 126.4967 Russia Eddy 
covariance 

Kutzbach_RU-Sam_tower1 Samoylov Island RU-Sam 72.37398 126.4967 Russia Eddy 
covariance 

Kutzbach_RU-Sam_tower2 Samoylov Island RU-Sam 72.37037 126.4817 Russia Eddy 
covariance 

Kutzbach_Samoylov_Tower_3_cl
osedpath 

Samoylov Island RU-Sam 72.37382 126.4958 Russia Eddy 
covariance 

Kutzbach_Samoylov_Tower_3_o
penpath 

Samoylov Island RU-Sam 72.37382 126.4958 Russia Eddy 
covariance 

Kwon_US-BEO_tower2 Barrow-Bes (Biocomplexity 
Experiment South tower) 

US-BEO 71.2809 -156.597 USA Eddy 
covariance 

Kwon_US-BES  _tower1 Barrow-Bes (Biocomplexity 
Experiment South tower) 

US-BES 71.281 -156.6 USA Eddy 
covariance 

López-Blanco_GL-NuF_tower1 Kobbefjord GL-NuF 64.1382 -51.3784 Greenlan
d 

Eddy 
covariance 
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López-Blanco_GL-ZaF_tower1 Zackenberg GL-ZaF 74.48143 -20.5545 Greenlan
d 

Eddy 
covariance 

Lafleur_CA-DL1_tower1 Daring Lake CA-DL1 64.8689 -111.575 Canada Eddy 
covariance 

Lafleur_CA-DL3_tower3 Daring Lake CA-DL3 64.8722 -111.549 Canada Eddy 
covariance 

Lafleur_CA-DL4_tower4 Daring Lake CA-DL4 64.8631 -111.65 Canada Eddy 
covariance 

Lafleur_CA-Iqa_tower1 Iqaluit CA-Iqa 63.79025 -68.5601 Canada Eddy 
covariance 

Lafleur_CA-Pin_tower1 Pond Inlet CA-Pin 72.69275 -77.9576 Canada Eddy 
covariance 

Larsen_Abisko1_Ch Abisko  68.35 18.81667 Sweden Chamber 

Larsen_Abisko2_Ch Abisko Abisko Scientific 
Research Station 

68.3 18.82 Sweden Chamber 

Laurila_FI-Kns_tower1 Kalevansuo FI-Kns 60.64683 24.35617 Finland Eddy 
covariance 

Laurila_FI-Let_tower1 Lettosuo FI-Let 60.64183 23.95952 Finland Eddy 
covariance 

Laurila_FI-Lom_tower1 Lompolojankka FI-Lom 67.99724 24.20918 Finland Eddy 
covariance 

Leffler_YKD_Ch Yukon-Kuskokwim Delta  Tutakoke River 61.25 -165.62 USA Chamber 

Lindroth_SE-Fla_tower1 Flakaliden SE-Fla 64.11278 19.45694 Sweden Eddy 
covariance 

Lindroth_SE-Kno_tower1 Knottåsen SE-Kno 60.99825 16.21728 Sweden Eddy 
covariance 

Lindroth_SE-Nor_tower1 Norunda SE-Nor 60.0865 17.4795 Sweden Eddy 
covariance 

Lund_DK-ZaH_tower1 Zackenberg DK-Zah, Heath 74.47328 -20.5503 Greenlan
d 

Eddy 
covariance 

Maanavilja_Kaamanen_Ch Kaamanen 69.13333 27.28333 Finland Chamber 

Machimura_RU-Nel_tower1 Nelegel RU-Nel 62.31583 129.4997 Russia Eddy 
covariance 

Margolis_CA-Obs_tower1 Saskatchewan - Western Boreal, 
Mature Black Spruce 

CA-Obs 53.98717 -105.118 Canada Eddy 
covariance 

Margolis_CA-Qfo_tower1 Quebec - Eastern Boreal, Mature 
Black Spruce 

CA-Qfo 49.6925 -74.3421 Canada Eddy 
covariance 

Marushchak_Seida_Ch Seida Upland Tundra 
Heath,Dry 
Peatlands, 
Wetlands 

67.05 62.93333 Russia Chamber 

Mastepanov_Zackenberg_Ch Zackenberg fen 74.479 -20.555 Greenlan
d 

Chamber 

Maximov_RU-Elg_tower1 Elgeeii RU-Elg 60.016 133.824 Russia Eddy 
covariance 
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Maximov_RU-SkP_tower1 Yakutsk Spasskaya Pad larch RU-SkP 62.255 129.168 Russia Eddy 
covariance 

McCaughey_CA-Gro_tower1 Ontario - Groundhog River, 
Boreal Mixedwood Forest 

CA-Gro 48.2167 -82.1556 Canada Eddy 
covariance 

McCaughey_CA-Man_tower1 Manitoba - Northern Old Black 
Spruce (former BOREAS 
Northern Study Area) 

CA-Man 55.87962 -98.4808 Canada Eddy 
covariance 

Merbold_RU-Che_tower1 Cherskiy RU-Che 68.61304 161.3414 Russia Eddy 
covariance 

Miyazaki_MO-UFRS_tower1 Mongolia MO-UFRS 48.27333 106.8508 Mongolia Eddy 
covariance 

Mkhabela_CA-OJP_tower4 Saskatchewan - Western Boreal, 
Mature Jack Pine 

CA-Ojp 53.916 -104.69 Canada Eddy 
covariance 

Mkhabela_CA-SF1_tower1 Saskatchewan - Western Boreal, 
forest burned in 1977 

CA-SF1 54.48503 -105.818 Canada Eddy 
covariance 

Mkhabela_CA-SF2_tower2 Saskatchewan - Western Boreal, 
forest burned in 1989 

CA-SF2 54.25392 -105.878 Canada Eddy 
covariance 

Mkhabela_CA-SF3_tower3 Saskatchewan - Western Boreal, 
forest burned in 1998 

CA-SF3 54.09156 -106.005 Canada Eddy 
covariance 

Mkhabela_HJP02_tower7 HJP02 Jack Pine CA-HJP02 53.15 -104.1 Canada Eddy 
covariance 

Mkhabela_HJP75_tower5 HJP75 Jack Pine CA-HJP75 53.15 -104.1 Canada Eddy 
covariance 

Mkhabela_HJP94_tower6 HJP94 Jack Pine CA-HJP94 53.15 -104.117 Canada Eddy 
covariance 

Morgner_Adventdalen_Ch Adventdalen, Svalbard heath 
control,meadow 
control 

78.167 16.067 Norway Chamber 

Nakai_US-Prr_tower1 Poker Flats US-Prr 65.12367 -147.488 USA Eddy 
covariance 

Nielsen_Abisko_Ch Abisko Wet NE-facing 
slope 

68.35 18.81667 Sweden Chamber 

Nilsson_SE-Deg_tower1 Degerö SE-Deg 64.18203 19.55654 Sweden Eddy 
covariance 

Olivas10_Utqia?vik_Ch Utqia?vik North,Utqia?vik 
South,Utqia?vik Central 

North,South,Cent
ral 

71.32 -156.62 USA Chamber 

Olivas11_Utqia?vik_Ch Utqia?vik Vascular-
dominated,Interm
ediate,Polygon 
Rim 

71.32 -156.62 USA Chamber 

Parmentier_NO-And_tower1 Andøya NO-And 69.14278 16.02222 Norway Eddy 
covariance 

Pirk_Adventdalen_Diff Adventdalen, Svalbard Advent-fen, active 
low center ice 
wedge polyons 

78.183 15.917 Norway Diffusion 
through 
snow 

Pirk_Zackenberg_Ch Zackenberg  fen 74.5 -21 Greenlan
d 

Chamber 

Pirk_Zackenberg_Diff Zackenberg  fen 74.5 -21 Greenlan
d 

Diffusion 
through 
snow 
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Poyatos_Petsikko_Ch Petsikko Several 
hummocks and 
hollows 

69.35983 27.23136 Finland Chamber 

Rebmann_RU-Zot_tower1 Zotino RU-Zot 60.8008 89.3507 Russia Eddy 
covariance 

Rocha_US-An1_tower1 Anaktuvuk River Severe Burn US-An1 68.99 -150.28 USA Eddy 
covariance 

Rocha_US-An2_tower2 Anaktuvuk River Moderate Burn US-An2 68.95 -150.21 USA Eddy 
covariance 

Rocha_US-An3_tower3 Anaktuvuk River Unburned US-An3 68.93 -150.27 USA Eddy 
covariance 

Schuur_EML_Ch Eight Mile Lake minimal 
thaw,moderate 
thaw,extensive 
thaw 

63.88306 -149.226 USA Chamber 

Schuur_US-EML_tower1 Eight Mile Lake US-EML 63.8784 -149.254 USA Eddy 
covariance 

Semenchuk_Adventdalen_Ch Adventdalen, Svalbard dry heath 78.167 16.067 Norway Chamber 

Shaver_US-ICh_tower1 Imnavait Creek Watershed US-ICh 68.6068 -149.296 USA Eddy 
covariance 

Sonnentag_CA-SMC_tower1 Smith Creek CA-SMC 63.153 -123.252 Canada Eddy 
covariance 

Sonnentag_CA-TVC_tower1 Trail Valley Creek CA-TVC 68.74617 -133.502 Canada Eddy 
covariance 

Startsev_Anzac_Ch Mackenzie Valley, Anzac, Mid-
Boreal - Peat Plateau,MacKenzie 
Valley, Anzac, Mid-Boreal - 
Upland 

mid boreal - peat 
plateau,mid 
boreal - upland 

56.4 -111.03 Canada Chamber 

Startsev_FortSimpson_Ch Mackenzie Valley, Fort Simpson, 
High Boreal - Peat 
Plateau,Mackenzie Valley, Fort 
Simpson, High Boreal - Upland 

boreal forest - 
peat plateau 
,boreal forest - 
upland 

61.63 -121.4 Canada Chamber 

Startsev_Inuvik_Ch Mackenzie Valley, Inuvik, High 
Sub-Arctic - Peat 
Plateau,Mackenzie Valley, Inuvik, 
High Sub-Arctic - Upland 

high subarctic - 
peat plateau,high 
subarctic - upland 

68.32 -133.43 Canada Chamber 

Startsev_NormanWells_Ch Mackenzie Valley, Normal Wells, 
Low Sub-Arctic - Peat 
Plateau,Mackenzie Valley, 
Norman Wells, Low Sub-Arctic - 
Upland 

low subarctic - 
peat plateau,low 
subarctic - upland 

65.21 -127.01 Canada Chamber 

Startsev_NormanWells_Ch Mackenzie Valley, Norman Wells, 
Low Sub-Arctic - Upland 

low subarctic - 
upland 

65.21 -127.01 Canada Chamber 

Strachan_CA-LLC_tower1 Lac Le Caron (hereafter referred 
to as LLC) peatland, an 
ombrotrophic bog  

CA-LLC 52.29028 -75.2542 Canada Eddy 
covariance 

Strebel_Adventdalen_Ch Adventdalen, Svalbard 78.167 16.1 Norway Chamber 

Sullivan_AgashashokRiver_Diff Agashashok River, Noatak 
National Preserve 

NTL, treeline low 
density 
spruce,STL, 
treeline low 
density white 

67.48 -162.2 USA Diffusion 
through 
snow 
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spruce,SNE, 
white spruce 
forest,NSE, white 
spruce 
forest,NNE, white 
spruce 
forest,SSE, white 
spruce 
forest,TER, low 
density white 
spruce 

Sullivan_ToolikLake1_Diff Toolik Lake  tussock tundra 68.62 -149.605 USA Diffusion 
through 
snow 

Sullivan_ToolikLake2_Diff Toolik Lake  dry heath tundra 68.622 -149.598 USA Diffusion 
through 
snow 

Sullivan_ToolikLake3_Diff Toolik Lake  wet sedge tundra 68.625 -149.6 USA Diffusion 
through 
snow 

Sullivan_ToolikLake4_Diff Toolik Lake  riparian willow 
tundra 

68.626 -149.596 USA Diffusion 
through 
snow 

Sullivan_ToolikLake5_Diff Toolik Lake  dwarf birch tundra 68.632 -149.573 USA Diffusion 
through 
snow 

Syed_CA-WP1_tower1 Alberta - Western Peatland - 
LaBiche River,Black 
Spruce/Larch Fen 

CA-WP1 54.95384 -112.467 Canada Eddy 
covariance 

TornDengel_US-NGB_tower1 NGEE Arctic Barrow US-NGB 71.28333 -156.616 USA Eddy 
covariance 

TornDengel_US-NGC_tower1 NGEE Arctic Council US-NGC 64.85196 -163.7 USA Eddy 
covariance 

Tuittila_FI-Sii_tower1 Siikaneva FI-Sii 61.83265 24.19285 Finland Eddy 
covariance 

Uchida_Svalbard_Ch E. Brogger Glacier 79 12 Norway Chamber 

Ueyama_US-CR-Fire_tower1 Cascaden Ridge Fire Scar US-Fcr 65.39678 -149.121 USA Eddy 
covariance 

Vesala_FI-Hyy_tower1 Hyytiala FI-Hyy 61.84741 24.29477 Finland Eddy 
covariance 

Voigt_Seida_Ch Northeast Russia bare peat,peat 
plateau,upland 
tundra 

67.05 62.91667 Russia Chamber 

Voigt_Seida_Ch Northeast Russia bare peat 67.05 62.91667 Russia Chamber 

Waldrop_BonanzaCreek_Diff Bonanza Creek Sphagnum bog 64.69 -148.32 USA Diffusion 
through 
snow 

Welp_US-Bn1_tower1 Delta Junction  Populus 
tremuloides; 
understory: salix; 
Epilobium 
angustifolium and 
Festuca altaica 

63.90111 -145.373 USA Eddy 
covariance 
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Welp_US-Bn2_tower2 Delta Junction US-Bn2 63.88806 -145.739 USA Eddy 
covariance 

Wickland_BonanzaCreek_Ch Bonanza Creek permafrost 
plateau 
PP,thermokarst 
wetland TW 

64.41 -148.19 USA Chamber 

Zona_US-Atq_tower1 Atqasuk US-Atq 70.4696 -157.409 USA Eddy 
covariance 

Zona_US-Brw_tower1 Barrow Environmental 
Observatory (BEO) tower 

US-Brw 71.281 -156.596 USA Eddy 
covariance 

Zona_US-Brw_tower2 Barrow-Bes (Biocomplexity 
Experiment South tower) 

US-Brw 71.281 -156.596 USA Eddy 
covariance 

Zona_US-Brw_tower3 Barrow US-Brw 71.323 -156.609 USA Eddy 
covariance 

Zona_US-Ivo_tower1 Ivotuk US-Ivo 68.4865 -155.75 USA Eddy 
covariance 

Zyryanov_RU_IG_tower1 Igarka RU-IG 67.4812 86.43727 Russia Eddy 
covariance 

Zyryanov_RU_Tura_tower1 Tura; Nizhnyaya Tunguska River RU-Tur 64.20889 100.4636 Russia Eddy 
covariance 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

Supplementary Table 3. Predictor details.  416 

 417 

 418 

Data product 
and name  

Spatial 
resoluti
on 

Temporal 
resolution 
and period: 
Static, 
Monthly (or 
higher), 
Annual 

Quality 
flags 

Model 
(1 km 
or 8 
km) 

Reference Mechanism for driving the flux 

TerraClimate 
meteorological 
variables: air 
temperature , 
vapor pressure 
deficit, and solar 
radiation 

1/24°, 
~4 km 

Monthly 
1/1958-> 

- 1 and  
8 km 

35 Air temperatures control enzymatic 
processes and thus GPP and Reco 

36,37. 
Vapor pressure deficit is linked to GPP: 
higher moisture levels increase GPP 38. 
GPP is dependent on solar radiation 
(and in particular diffuse radiation) as a 
resource for photosynthesis 39. 

Day-time land 
surface 

1 km Monthly from 
2/2000-> 

We used bit 
0-1 value 

1 km 40 Surface temperatures are more tightly 
linked to vegetation and soil conditions 

https://paperpile.com/c/sbCgRn/IcgCz
https://paperpile.com/c/sbCgRn/ZmaiM+N93AH
https://paperpile.com/c/sbCgRn/eWUBT
https://paperpile.com/c/sbCgRn/V3Loc
https://paperpile.com/c/sbCgRn/Z89OZ
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temperature 
MOD11A2v006 

<=1: Pixel 
produced, 
unreliable or 
unquantifiab
le quality, 
recommend 
examination 
of more 
detailed QA 

than air temperatures and control 
enzymatic processes and thus GPP and 
Reco 

41 

ERA5 land soil 
moisture and 
temperature at 
0-5 cm depth, 
snow cover  

0.1°, ~9 
km 

Monthly from 
1/1950-> 

- 1 and 
8 km 

42,43 Soil moisture is an important resource 
for GPP and regulates Reco ; drier soils 
often have higher Reco than water-
saturated soils 44. Soil temperatures 
control soil respiration which can occur 
at temperatures lower than 0 C and can 
contribute to Reco up to 70% 24,45. Snow 
cover reflects both the amount of snow, 
and timing of snowmelt and snowfall 
which are important drivers of not only 
winter but also growing season fluxes 
46,47.  

Barrow 
atmospheric 
CO2 
concentrations 

Assumi
ng one 
location 
represe
nts the 
entire 
atmosp
here 

Monthly from 
1/1973 
 

- 1 and 
8 km 

48 Increasing CO2 concentrations (CO2  
fertilization) accelerate GPP49 

ESA CCI 
vegetation type 
+ Circumpolar 
Arctic 
Vegetation Map 
(CAVM) 
vegetation type 

1 km 
(ESA 
CCI 
originall
y 300 
m; 
CAVM 
1 km)   

Static - 1 and 
8 km 

Following 3 
based on 
ESA CCI 
(2017) and 
50 

Vegetation composition and structure 
are important drivers of CO2 fluxes 51 
and also act as a surrogate for many 
other environmental conditions (e.g., soil 
wetness, soil nutrients). Classes 
included in our vegetation type map are: 
barren and prostrate shrub tundra, 
graminoid tundra, shrub tundra, wetland, 
sparse boreal vegetation, needleleaved 
evergreen tree cover, broadleaved 
deciduous tree cover, needleleaved 
deciduous tree cover, mosaic and mixed 
vegetation type. 

NDVI 
MOD13A1v006  

500 m Monthly from 
2/2000-> 

We used 
SummaryQ
A bit 0-1 
value 0 
together 
with value 1 
with smaller 
weights 

1 km 52; gap-filled 
and 
smoothed 
with 
weighted 
Whittaker & 
constant 
lambda 
approach 9 

NDVI represents vegetation greenness 
and productivity patterns, and is a widely 
used vegetation index that is strongly 
correlated with GPP and partly also Reco 
and NEE 53,54. 

GIMMS3g NDVI  ca. 8 
km 

Monthly from 
7/1981 to 
12/2017 
(with recent 
updates up 
to 2022) 

We used  
data 
covering all 
the flags 0-
2; poorer-
quality data 
used only to 
gap-fill high-
quality data  

8 km 55 See above. 

MOD44B 250 m Annual from - 1 km 56 Vegetation cover is linked to the amount 

https://paperpile.com/c/sbCgRn/FROEK
https://paperpile.com/c/sbCgRn/ZZMbM+fNihQ
https://paperpile.com/c/sbCgRn/uuhc7
https://paperpile.com/c/sbCgRn/lRJLP+dvzGW
https://paperpile.com/c/sbCgRn/RfgtW+LhgYE
https://paperpile.com/c/sbCgRn/0TL5Q
https://paperpile.com/c/sbCgRn/jdtbd
https://paperpile.com/c/sbCgRn/FPxzD
https://paperpile.com/c/sbCgRn/DoTkk
https://paperpile.com/c/sbCgRn/SJ4B5
https://paperpile.com/c/sbCgRn/sLrWZ
https://paperpile.com/c/sbCgRn/I1Uej
https://paperpile.com/c/sbCgRn/odTW4+h1nwa
https://paperpile.com/c/sbCgRn/ZCEDu
https://paperpile.com/c/sbCgRn/Ofgjh
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Percent Tree 
Cover, Percent 
Non-Tree 
Cover, Percent 
Non-Vegetated 
Cover  

2000-> of green biomass and thus CO2 fluxes 57 

AVHRR 
VCF5KYR 
Percent Tree 
Cover, Percent 
Non-Tree 
Cover, Percent 
Non-Vegetated 
Cover  

Ca. 5.6 
km 

Annual from 
1982 to 2016 

- 8 km 58 See above. 

SoilGrids v2 
variables: pH 
(water solution) 
at the topsoil (0-
5 cm), soil 
organic carbon 
stock in the 
uppermost 2 m 

250 m Static - 1 and 
8 km 

59,60 Soil pH may be associated with soil 
nutrient content and thus regulates the 
availability of resources for plants and 
microbes (lower pH potentially correlates 
with stronger net CO2 sinks 61). Soil 
organic carbon stock describes the 
amount of material available for 
decomposition and may thus be 
correlated with Reco 

62.  

Topographic 
indices 
calculated from 
MERIT DEM: 
compound 
topographic 
index (CTI)  

250 m Static - 1 and 
8 km 

63 CTI is a topographic index that describes 
the accumulation of water in topographic 
depressions (synonym to topographic 
wetness index), and might thus be 
correlated with GPP and Reco 

64. 

Permafrost 
probability 

1 km Static - 1 and 
8 km 

65 Permafrost protects organic matter from 
decomposition and thus defines how 
much material is available for 
decomposition in the soil 66.  

 419 

 420 

 421 

 422 

Supplementary Table 4.  423 

 GPP Reco NEE 

Sample size for 1 km 
model 

3869 3869 4765 

Sample size for 8 km 
model 

3968 3970 4897 

 424 

 425 

 426 

 427 

Supplementary Table 5. Model performance based on different subsets of data for the 1-km 428 

models. 429 

 430 

https://paperpile.com/c/sbCgRn/ThJTt
https://paperpile.com/c/sbCgRn/1bTNv
https://paperpile.com/c/sbCgRn/69ng+TQfK
https://paperpile.com/c/sbCgRn/JkYET
https://paperpile.com/c/sbCgRn/YPb1r
https://paperpile.com/c/sbCgRn/FQMzG
https://paperpile.com/c/sbCgRn/2MZZV
https://paperpile.com/c/sbCgRn/XX8Ir
https://paperpile.com/c/sbCgRn/VDW5M
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Flux Model training data Performance estimates  

NEE All data RMSE 15.9 
R2 0.66  
MAE 12.6 

NEE Eddy covariance only RMSE 17.5 
R2 0.69  
MAE 13.7 

NEE Non-disturbed sites only RMSE 14.6  
R2 0.66 
MAE 11.5 

GPP 
 

All data RMSE 35.0 
R2  0.82  
MAE 27.2 

GPP Eddy covariance only RMSE 32.3  
R2 0.87  
MAE 24.4 

GPP Non-disturbed sites only RMSE 35.2 
R2 0.79  
MAE 28.0 

Reco All data RMSE 28.9 
R2 0.74 
MAE 23.4 

Reco Eddy covariance only RMSE 27.5 
R2 0.76  
MAE 21.5 

Reco Non-disturbed sites only RMSE 28.0 
R2 0.70  
MAE 23.2 

 431 

 432 

 433 

Supplementary Table 6. Details related to the process and inversion models included in the 434 

model intercomparison. The number of assimilated sites in the inversions in the Arctic-boreal 435 

region varies from ca. 10 up to 30 over the study period. At large scales, the inversions that 436 

have priors (i.e., prior values given by a process model; included in four out of five inversions) 437 

are hardly constrained by the priors but at regional scales and in areas with poor data coverage 438 

(e.g., Siberia), the posterior flux might be reflecting the prior flux. 439 

Model type Model name Details and reference 
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Atmospheric inversions CAMS Release v21r1 of the inversion produced by 

the Copernicus Atmosphere Monitoring 

Service (https://atmosphere.copernicus.eu/), 

driven by air-sample measurements and 

included in the Global Carbon Budget 2022; 

total land CO2 flux adjusted for fossil fuel 

emissions, cement carbonation sink, and 

lateral fluxes67.  

Atmospheric inversions sEXTocNEET Contribution to the Global Carbon Budget 

2022; total land CO2 flux adjusted for fossil 

fuel emissions, cement carbonation sink, and 

lateral fluxes67 

Atmospheric inversions CTE Contribution to the Global Carbon Budget 

2022; driven by atmospheric observations in 

Obspack Globalviewplus v7.0 and NRT v7.2 
68; total land CO2 flux adjusted for fossil fuel 

emissions, cement carbonation sink, and 

lateral fluxes67 

Atmospheric inversions NISMON Contribution to the Global Carbon  Budget 

2022; total land CO2 flux adjusted for fossil 

fuel emissions, cement carbonation sink, and 

lateral fluxes67 

Atmospheric inversions UoE Contribution to the Global Carbon  Budget 

2022; total land CO2 flux adjusted for fossil 

fuel emissions, cement carbonation sink, and 

lateral fluxes67 

Process models: coupled 

CMIP6 models 

ACCESS-

ESM1-5 

Based on historical model runs with model 

outputs from 2001 to 2014 29  

Process models: coupled 

CMIP6 models 

BCC-ESM1 Based on historical model runs with model 

outputs from 2001 to 2014 29  

Process models: coupled 

CMIP6 models 

BCC-CSM2-

MR 

Based on historical model runs with model 

outputs from 2001 to 2014 29  

https://atmosphere.copernicus.eu/
https://paperpile.com/c/sbCgRn/NhVHX
https://paperpile.com/c/sbCgRn/NhVHX
https://paperpile.com/c/sbCgRn/c5Li
https://paperpile.com/c/sbCgRn/NhVHX
https://paperpile.com/c/sbCgRn/NhVHX
https://paperpile.com/c/sbCgRn/NhVHX
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
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Process models: coupled 

CMIP6 models 

CanESM5 Based on historical model runs with model 

outputs from 2001 to 2014 29  

Process models: coupled 

CMIP6 models 

CESM2 Based on historical model runs with model 

outputs from 2001 to 2014 29; CESM2 

includes permafrost carbon in the model 

Process models: coupled 

CMIP6 models 

CMCC-ESM2 Based on historical model runs with model 

outputs from 2001 to 2014 29  

Process models: coupled 

CMIP6 models 

CNRM-ESM2 Based on historical model runs with model 

outputs from 2001 to 2014 29  

Process models: coupled 

CMIP6 models 

GFDL-ESM4 Based on historical model runs with model 

outputs from 2001 to 2014 29  

Process models: coupled 

CMIP6 models 

IPSL-CM6A Based on historical model runs with model 

outputs from 2001 to 2014 29  

Process models: coupled 

CMIP6 models 

MIROC-ES2L Based on historical model runs with model 

outputs from 2001 to 2014 29  

Process models: coupled 

CMIP6 models 

MPI-ESM1-2-

LR 

Based on historical model runs with model 

outputs from 2001 to 2014 29  

Process models: coupled 

CMIP6 models 

NorESM2-LM Based on historical model runs with model 

outputs from 2001 to 2014 29; NorESM2-LM 

includes permafrost carbon in the model 

Process models: coupled 

CMIP6 models 

UKESM1-0-LL Based on historical model runs with model 

outputs from 2001 to 2014 29  

  440 

 441 

 442 

https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
https://paperpile.com/c/sbCgRn/PG5yE
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 443 
Supplementary Fig 1. Predictive performance of the NEE model estimated using leave-one-site-444 

out approach. Colors in subplot c indicate deviance from average site-level monthly flux and 445 

indicate that the model struggles the most when observations from individual sites have a large 446 

deviance from the mean.  447 

 448 

 449 

 450 
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 451 
Supplementary Fig 2. Predictive performance of the GPP model estimated using leave-one-site-452 

out approach. 453 

 454 
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 455 
Supplementary Fig 3. Predictive performance of the Reco model estimated using leave-one-site-456 

out approach. 457 

 458 

 459 

 460 
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 461 
 462 

Supplementary Fig. 4. Maps showing the area of extrapolation for NEE models based on sites 463 

that have data at least from one January (i.e., year-round sites). 464 

 465 

 466 

 467 
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468 
Supplementary Fig. 5. Uncertainties for the upscaled and inversion NEE.  469 
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 470 

 471 
Supplementary Fig. 6. Time series of NEE from a subset of sites and their agreement with 472 

model predictions. Model fit indicates how well the model trained with the entire model training 473 

data predicts to the same data and model predictive performance shows how the models 474 

perform when a dataset excluding the specific site is used to train the model. 475 

 476 
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 477 
Supplementary Fig 7.  Average in-situ monthly NEE, GPP, and Reco in boreal and tundra biomes 478 

during the past two decades. Note that this figure is highly uncertain as it does not account for 479 

the differences in the site distribution across the two decades. Fig. 3 in the main text shows the 480 

upscaled monthly fluxes that should better represent the average fluxes across the entire ABZ. 481 

 482 

 483 

 484 

 485 
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 486 
Supplementary Fig. 8. Variable importance plots and the partial dependence plots for the most 487 

important predictors of the 1-km NEE model. 488 

 489 

 490 
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 491 
Supplementary Fig. 9. Variable importance plots and the partial dependence plots for the most 492 

important predictors of the GPP model. 493 

 494 
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Supplementary Fig. 10. Variable importance plots and the partial dependence plots for the most 495 

important predictors of the Reco model. Vegetation types include G=graminoid, B=barren, 496 

Mix=mixed forest and mosaic vegetation type, S=shrub, DB=deciduous broadleaf forest, 497 

EN=evergreen needleleaf forest, DN=deciduous needleleaf forest, SB=sparse boreal 498 

vegetation, W=wetland. 499 

 500 

 501 

 502 

503 
Supplementary Fig. 11. Correlation between average temperature and NDVI trends with 504 

upscaled average annual NEE trends over 2001-2020. The statistical significance of the NEE 505 

trend is shown with full and empty circles. 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 
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 525 

 526 

 527 
 528 

Supplementary Fig. 12. Trends (°C yr-1) for the air, land surface and soil temperature variables 529 

included in the models. Figures show that all regions are showing increases in air and soil 530 

temperatures. The Siberian tundra has the strongest air and soil temperature trends whereas 531 
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the Canadian boreal has the weakest non-significant trends. Stars in the trend values depict the 532 

significance of the trend (*= p<0.05, **=p<0.01, ***=p<0.001). 533 

 534 

 535 
Supplementary Fig. 13. Trends for the NDVI variables for the June-August period. The GIMMS 536 

dataset used here covers a longer time period (1990-2016) but is limited to 8-km pixel 537 

resolution, whereas the MODIS NDVI time series goes from 2001 to 2020 and is at 1-km pixel 538 

resolution. Average greening trends are almost equally strong across the regions in the MODIS 539 

era but there is more variability in the GIMMS era. Weakest trends are found in European 540 

tundra across both the datasets; GIMMS shows strong trends particularly in Alaskan tundra. 541 

Stars in the trend values depict the significance of the trend (*= p<0.05, **=p<0.01, 542 

***=p<0.001). 543 

 544 
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 545 
Supplementary Fig. 14. Trends (% yr-1) for the snow cover variable included in the models show 546 

that all regions experience declining snow cover in spring, autumn, and the entire non-summer 547 

(September-May) season. However, snow cover trends are stronger and statistically significant 548 

primarily in the autumn season, except for the Siberian boreal region that experiences a strong 549 

statistically significant declining trend in the spring. Declines in snow cover are the steepest in 550 

Alaskan boreal and tundra regions. Stars in the trend values depict the significance of the trend 551 

(*= p<0.05, **=p<0.01, ***=p<0.001). 552 
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 553 
Supplementary Fig. 15. Trends (% yr-1) for June-August soil moisture. Stars in the trend values 554 

depict the significance of the trend (*= p<0.05, **=p<0.01, ***=p<0.001). 555 
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 556 
Supplementary Fig. 16. Annual fire emission budgets across the key domains. Stars in the trend 557 

values depict the significance of the trend (*= p<0.05, **=p<0.01, ***=p<0.001). 558 

 559 
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 560 
Supplementary Fig. 17. Time series of NEE + fire emissions from the 1-km predictions produced 561 

in this study and the atmospheric inversions.  562 

 563 

 564 

 565 

 566 
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 567 
 568 

Supplementary Fig. 18.  Trends (°C yr-1) for the air temperature variables in different 569 

climatological seasons. Stars in the trend values depict the significance of the trend (*= p<0.05, 570 

**=p<0.01, ***=p<0.001). 571 

 572 

 573 
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 574 

Supplementary Fig. 19. Comparison of the permafrost region non-growing season net 575 

ecosystem exchange (NEE) between Natali et al. (2019) and this study across monthly 576 

upscaled budgets (a), and in-situ monthly flux data visualized with months (b) and flux 577 

measurement methods (c). Natali et al. (2019) removed negative average monthly fluxes during 578 

the non-growing season to focus on net emissions, with a total number of site-months being 859 579 

(in this study, site-months in the permafrost region totaled 1702). The October-April budget in 580 

this study was 1,181 Tg C yr-1 compared with 1,501 Tg C yr-1 in Natali et al. (2019) for the same 581 

period and domain. 582 

 583 
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 584 
 585 

Supplementary Fig. 20. A comparison of upscaled NEE at 1 and 8-km predictions and from 586 

directly derived NEE or GPP-Reco  derived NEE. 587 

 588 
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 589 
Supplementary Fig. 21. Time series of GPP across the key regions. Stars in the trend values 590 

depict the significance of the trend (*= p<0.05, **=p<0.01, ***=p<0.001). 591 

 592 

 593 
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 594 
Supplementary Fig. 22. Time series of Reco across the key regions. Stars in the trend values 595 

depict the significance of the trend (*= p<0.05, **=p<0.01, ***=p<0.001). 596 

 597 

 598 

 599 
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 600 

 601 
Supplementary Fig. 23. A visualization of how NEE + fire fluxes vary in 2003, when net CO2 602 

emission budget was the highest, and in 2020, when net CO2 emission budget was the lowest. 603 

 604 

 605 

 606 

 607 

 608 

  609 
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