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Dynamic computational phenotyping  
of human cognition

Roey Schurr    1,7  , Daniel Reznik    2,7  , Hanna Hillman    3, Rahul Bhui    4,5 & 
Samuel J. Gershman1,6

Computational phenotyping has emerged as a powerful tool for 
characterizing individual variability across a variety of cognitive 
domains. An individual’s computational phenotype is defined as a set 
of mechanistically interpretable parameters obtained from fitting 
computational models to behavioural data. However, the interpretation of 
these parameters hinges critically on their psychometric properties, which 
are rarely studied. To identify the sources governing the temporal variability 
of the computational phenotype, we carried out a 12-week longitudinal 
study using a battery of seven tasks that measure aspects of human learning, 
memory, perception and decision making. To examine the influence of 
state effects, each week, participants provided reports tracking their 
mood, habits and daily activities. We developed a dynamic computational 
phenotyping framework, which allowed us to tease apart the time-varying 
effects of practice and internal states such as affective valence and arousal. 
Our results show that many phenotype dimensions covary with practice and 
affective factors, indicating that what appears to be unreliability may reflect 
previously unmeasured structure. These results support a fundamentally 
dynamic understanding of cognitive variability within an individual.

Untangling sources of individual variability remains a central chal-
lenge in cognitive science. This endeavour has been revolutionized 
by the use of computational models1, which provide precise algorith-
mic accounts of cognitive processes in terms of parsimonious sets 
of parameters, collectively termed the ‘computational phenotype’2. 
Importantly, these computational parameters can be intuitively inter-
preted as cognitively meaningful entities, such as learning rate or 
risk attitude. The interpretability of the computational phenotype 
has made it an appealing tool for studying complex phenomena as 
far-reaching as brain function3–6, psychiatric illness7,8, developmental 
processes9–11 and cross-species variation12,13. For example, research 
in the field of computational psychiatry demonstrates that compu-
tational modelling can be particularly insightful for teasing apart 

different behavioural aspects of mental illness. While the link between 
anxiety and disrupted decision-making is well established14, character-
izing the specific behavioural disruption was accomplished in a study 
that estimated the computational phenotype in patients diagnosed 
with pathological anxiety and healthy controls. The study showed 
that anxiety is specifically associated with enhanced risk aversion 
(indicating less risk-taking) but not loss aversion15 (see also ref. 16). 
Another example of the merits of computational phenotyping comes 
from developmental science. Previous behavioural studies have shown 
that children tend to explore more than adults17. While this could be 
explained by generally noisier behaviour in children, a computational 
phenotyping study helped to elucidate this phenomenon, indicating 
that in fact children rely more on directed, but not random exploration, 
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statistical models to the data: an ‘independent’ model and a ‘dynamic’ 
model (as well as a ‘reduced’ independent model; see Supplementary 
Information). The independent model allowed us to quantify para
meter stability without building it into our modelling assumptions: the 
parameters for each participant were assumed to be drawn indepen-
dently each week from a participant-specific distribution. The dynamic 
model, which we describe in detail below, formalizes a more structured 
set of assumptions about how the computational phenotype evolves 
over time, thus allowing us to make insightful inferences about sources 
of its temporal variability. Model fitting yielded week-specific estimates 
for the 19 parameters comprising the computational phenotype for 
each participant. First, we examined widely used diagnostic measures, 
such as R-hat and the number of divergent transitions, that serve to 
assess the convergence of the Markov chain Monte Carlo sampling 
procedure for parameter estimation (see Supplementary Informa-
tion). Second, we verified that the parameters were identifiable. Third, 
we verified that all computational models yielded excellent posterior 
predictive checks (Supplementary Fig. 8).

We then asked whether the parameter estimates were stable over 
time within an individual. This was quantified using intraclass corre-
lations (ICC), a widely used measure of test-retest reliability. Figure 2 
shows the ICC values for the computational phenotype estimated using 
the independent model and the reduced model (see Supplementary 
Fig. 1 for an alternative calculation of the ICC and Supplementary 
Fig. 2 for a visualization of the variance components used in calcu-
lating the ICC). ICC values covered a wide range of 0.49–0.99, with 
half of the parameters showing poor-to-moderate stability and half 
moderate-to-excellent stability (according to ref. 35). In agreement 
with previous work34, models with fewer parameters tended to be 
more stable and parameters derived from the same task tended to have 
similar values. Go/No-go is a notable counterexample, including both 
the most stable and least stable parameters across tasks.

While these ICC values are imperfect, indicating variability of the 
measured computational phenotype over time, they are relatively high 
compared with those often reported in the literature20. We suspect that 
these relatively high values can be attributed to fitting our data using 
hierarchical Bayesian modelling, which adequately captures the hier-
archical structure of the data. Indeed, previous work showed that the 
fitting procedure has notable effects on parameter stability, whereby 
hierarchical models that pool information across participants promote 
parameter stability20,32–34. To test this hypothesis, we repeated the ICC 
analysis, this time fitting the behavioural data using a reduced hierarchi-
cal model. In this reduced model, sessions were not nested within par-
ticipants; instead, all sessions across all participants were considered 
independent, such that model parameters were drawn from a single 
population-level distribution. As expected, this procedure resulted 
in lower ICC values across all phenotype parameters (Fig. 2, red dots; 
for further details on this analysis, see Supplementary Information).

We used simulated data to calculate an ICC upper bound for each 
parameter on the basis of a ground-truth phenotype that was fixed 
across time (see Methods). This analysis yielded near-perfect stability 
for all parameters across tasks (Fig. 2, red vertical lines). While such 
near-perfect stability may seem surprising, it is the result of using the 
independent hierarchical model in the process of parameter estimation 
(see Fig. 2 and Supplementary Fig. 4 for lower ICC values obtained from 
the reduced model, that is, without accounting for the full hierarchical 
structure of the data). This result indicates that the lower stability values  
observed in the real data are not the result of low interparticipant 
variability or of inadequate task design (for example, a low number 
of trials), but rather that there is true longitudinal variability in the 
computational phenotype within participants.

Finally, for each task, we also calculated ICC values for the behav-
ioural measures of accuracy and mean reaction time (Supplementary 
Fig. 5). These values were mostly in the moderate range (0.5–0.75). 
Reaction times were consistently more stable than accuracy values. 

thereby reducing uncertainty about the environment by choosing 
high-uncertainty options18.

Despite the widespread use of computational phenotypes, their 
interpretation hinges critically on their psychometric properties19, 
which remain poorly understood20. This issue is even more prominent 
in longitudinal studies that address changes within individuals over 
time21,22. However, test-retest reliabilities of the computational pheno-
types remain largely unknown since computational models are rarely  
fit within the same subjects over more than one timepoint. Only a few 
studies explicitly address the reliability of computational phenotypes 
(see review in ref. 20) and rarely in more than two sessions (but see 
ref. 23). Such studies have found mixed results, with most phenotype 
parameters showing poor test-retest reliability and a few showing 
moderate to high test-retest reliability. Furthermore, a large-scale 
study focusing on the domain of self-control showed significantly lower 
reliability for task-based measurements, including the computational 
phenotype, compared with classic self-reported measurements24.

Low test-retest reliability of the computational phenotypes could 
reflect measurement noise, non-stationarity of the underlying con-
struct, or both. If the underlying construct is non-stationary, its tempo-
ral trajectory could be relatively unpredictable (for example, a random 
walk) or relatively predictable (for example, directional drift induced 
by practice). Deciphering these sources of variability necessitates a 
robust, high-powered longitudinal dataset—a task that we undertake in 
this study. Our investigation seeks to better discern the ‘noise’ and the 
‘signal’ in computational phenotypes by modelling multiple potential 
sources of temporal variability.

Over a continuous 3-month period, we engaged 90 human partici-
pants in a weekly battery of 7 online computer-based tasks: Go/No-go, 
Change detection, Random dot motion, Lottery ticket, Intertemporal 
choice, Two-armed bandit and Numerosity comparison. These tasks 
were chosen since they cover various aspects of cognition such as 
learning, memory, perception and decision making. Using these tasks, 
we estimated the computational phenotype of each participant on a 
weekly basis. In addition, the inclusion of a survey tracking individu-
als’ mood and daily activities enabled us to estimate day-specific state 
effects on the computational phenotype. This unique dataset, which we 
make publicly available, allows us to illuminate the processes governing 
the temporal variability of cognition.

Our results provide evidence for a fundamentally dynamic view of 
the computational phenotype within an individual, and indicate that 
both practice and affective effects contribute to its temporal variability.

Results
Longitudinal data for dynamical computational phenotypes
We collected data from 90 participants who performed 7 online cogni-
tive tasks on a weekly basis for 12 consecutive weeks (Fig. 1). The tasks we 
used were Go/No-go, Change detection, Intertemporal choice, Lottery 
ticket, Numerosity comparison, Two-armed bandit and Random dot 
motion. These tasks were selected for two main reasons. First, they are 
commonly used in cognitive and neurocognitive research, as well as in 
phenotyping individual, clinical and age-related variation25–31. Second, 
these tasks have well-established and validated computational models.

First, we calculated reaction time and accuracy (where applicable) 
for each task averaged (±s.d.) across weeks and participants. As can be 
seen in Supplementary Table 1, on average, participants’ performance 
was adequate and in line with previous studies using similar tasks. For 
more detailed analysis of the behavioural data, see Supplementary Fig. 6.

Next, for each participant and for each task, we fit the free para
meters with previously validated computational models using a hier-
archical Bayesian framework, which formalized various assumptions 
about within- and between-participant variability32,33. By accounting for 
the structure of the data, this hierarchical framework has been shown 
to improve parameter stability and provide a more accurate estimate 
of parameter values at the participant level33,34. In particular, we fit two 
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For each task, at least some of the computational phenotype param-
eters were characterized by higher ICC values compared with these 
summary statistics.

In what follows, we demonstrate our approach for investigating the 
dynamics of the computational phenotype by giving a detailed account 
of a single task. We chose the Go/No-go task (Figs. 3 and 4) because this 
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Fig. 1 | Experimental tasks and models. a, Participants performed 7 cognitive 
tasks and a survey on a weekly basis for 12 consecutive weeks. The left column 
shows an example screen from each task. The middle column shows the 
computational model used to fit participants’ behavioural data from each task. 

The right column shows the free parameters that we fit to individual participants. 
The collection of these parameters constitutes the computational phenotype.  
b, Three potential sources of temporal variability: random noise, practice and 
state effects reflecting changes in mood and daily activities.
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task has the richest computational phenotype (six parameters), and 
it illustrates all of the dynamic effects (practice and mood) found in 
other tasks. We then summarize the results of the remaining six tasks 
(see Supplementary Information and Supplementary Figs. 6 and 7 for 
further details). Finally, across all tasks we verified that the reported 
practice effects persist also after excluding the first session, meaning 
that they are not an artefact of insufficient understanding of the task 
at the first session (see Supplementary Information).

Structure and noise in the temporal variability of the  
Go/No-go task
In the Go/No-go task, participants were trained to choose between 
pressing a key on their keyboard (‘Go’) or withholding a key press 
(‘No-go’) depending on which of four visual stimuli they were shown. 
Participants were probabilistically rewarded or punished on the basis 
of their responses. Previous work36 developed a model that captures  
the key behavioural characteristics in this task, which we adopt in  
our study. This model posits that responses depend on three  
factors: expected reward for each stimulus–response combination, an 
unlearned ‘Go’ bias and a learned ‘Go’ bias that increases with average 
reward for a cue and decreases with average punishment. The learned 
bias allows the model to capture the tendency to approach rewarding 
stimuli (‘Go’) and avoid punishing stimuli (‘No-go’), a form of Pavlovian 
misbehaviour that can disrupt correct instrumental performance. This 
manifests as an increased probability of incorrect ‘Go’ responses in 
the ‘No-go to win’ condition and an increased probability of incorrect 
‘No-go’ responses in the ‘Go to avoid’ condition. Notably, we departed 
from the original model36 by modelling neutral outcomes as rewards 
(+1) in the punishment conditions and as punishments (−1) in the reward 
conditions. This reflects the assumption that participants perceive 
outcomes in a context-dependent manner37,38.

The strengths of the ‘Go’ biases are controlled by two parameters: b 
for the unlearned (instrumental) bias and π for the learned (Pavlovian) 
bias. The instrumental and Pavlovian learning processes are jointly 
controlled by a learning rate parameter (ε) and the ‘effective size’ (ρ) 
of different outcome types. We fit a separate ρ parameter for neutral 
outcomes to accommodate their distinct role in governing participants’ 
performance. Finally, noise in the action selection process is controlled 
by a lapse rate parameter (ξ) that captures the probability of random 
responses.

At the behavioural level, participants’ performance improved 
across the 12 weeks. Figure 3a shows the group-level overall accuracy 
and accuracy in each task condition over time. All conditions except 
‘Go to win’ were well fit by a power-law curve (R2

adj > 0.8, P < 0.001, 
random permutation test of the session order), consistent with classic 
models of practice effects39,40. Turning to the independent model fits, 
the posterior predictive checks indicate that our version of this Pavlo-
vian reinforcement learning (RL) model, which treats neutral outcomes 
as potential reinforcers, captures the key behavioural characteristics 
of the task (Fig. 3b; see Supplementary Figs. 9 and 10 for the results  
of the original model proposed in ref. 36). Figure 4 shows the mean 
estimated parameters over time in all participants. Some parameters 
(for example, the effective neutral outcome size) show a clear trend 
over time, while others show fluctuations with no clear structure (for 
example, the lapse rate). Parameter stability for this task spanned a 
wide range: lapse rate ξ (median ICC = 0.45), Pavlovian bias π (0.48), 
effective size of neutral outcomes ρneut (0.65), Go bias b (0.66), learning 
rate ε (0.9) and effective size of reward/punishment ρrew\pun (0.99).

To better understand potential sources of temporal variation, we 
refit the Pavlovian RL model with a dynamic model in which parameter 
values are governed by three sources of temporal variation: (1) prac-
tice effects (that is, monotonic directional changes); (2) state effects 
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Fig. 2 | Stability of the computational phenotype. Violin plots show the 
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colours indicate tasks). Black points mark the median, colour shaded areas mark 
the interquartile range (IQR). Red vertical lines mark the upper stability bound 
estimated using simulated data with a phenotype that is fixed in time. Red points 
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(affective valence and arousal, extracted from an analysis of the survey 
data; Supplementary Fig. 12); and (3) random noise. Practice effects 
were modelled as a power-law change in time39,40, while state effects 
were modelled as fluctuations around each participant’s baseline, 
based on the daily self-report surveys. Intuitively, valence captures  
the positivity versus negativity axis of participants’ affective state, 
whereas arousal captures the excited versus calm axis41. Finally, we 
added a random noise effect to model any other source of variability 
that is not accounted for by the aforementioned sources. We quantified 
the relative contribution (RC) of each source to the computational phe-
notype by calculating its standard deviation over time relative to the 
sum of standard deviations of all the sources. Figure 4 shows the relative 
contributions of different sources to each of the phenotype parameters 
in the Go/No-go task. Noise had the strongest contribution for 4 of 6 
task parameters, followed by practice effects. See Supplementary Fig. 2 

for a breakdown of the conventional variance components underlying 
the ICC calculation.

To quantify the statistical strength of each source contribution, 
we calculated the probability of direction (PD), that is, the proportion 
of the posterior distribution that has the same sign as the median42. 
Rather than a binary cut-off such as exclusion of zero from the highest 
density interval, this allows for a graded quantification of the effects, 
with recommended interpretation of ≤95 (‘uncertain’), ≥95 (‘possibly 
existing’), ≥97 (‘likely existing’), ≥99 (‘probably existing’) and ≥99.9 
(‘certainly existing’). For the Pavlovian bias, we found a certainly exist-
ing negative effect of practice (PD = 100, median RC = 0.23). The sign 
of the reported effect (positive or negative) indicates the direction of 
the association between each parameter and the variability source 
(indicated by black arrows in Fig. 4; for example, the Pavlovian bias 
decreased with practice). For the lapse rate, valence had a probably 
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existing negative effect of practice (PD = 97, median RC = 0.14). For 
the effective size of reward/punishment, as well as the effective size 
of neutral outcomes, we found certainly existing positive effects of 
practice (PD = 100, median RC = 0.51 and 0.52, respectively).

These results indicate heterogeneous sources of variability across 
the computational phenotype in the Go/No-go task, where some 
parameters are driven mostly by practice effects (ρrew\pun, ρneut, π), while 
others are driven mostly by random noise (ξ, b, ε). See Supplementary 
Information for similar analysis of the ‘non-learning’ participants  
which were excluded due to low task performance36,43.

Below we report the results for each one of the remaining tasks. 
For each task, we give a brief description of the task followed by the 
relevant computational model, and then report the stability scores of 
the phenotype parameters and the dynamic effects that account for 
their temporal variability. The relative contribution of each source 
to the computational phenotype of these tasks is presented in Fig. 5.

Change detection
In the Change detection task, participants had to indicate whether 
two consecutively presented images depicting coloured squares were 
identical. We modelled this task using the absolute difference model 
(MAD)44, which assumes that participants compare each pair of cor-
responding squares in the two images independently on the basis of 

noise-corrupted representations. Participants deem the corresponding 
squares different with a probability that depends on a detection thresh-
old and on the absolute difference between their representations. 
The noise in the image representation is accounted for by a sensitivity 
parameter σ, and the decision threshold is controlled by the detection 
threshold θ. Here we assume that both parameters increase linearly with 
set size44. This requires two more free parameters: the slope of σ and 
the slope of θ with set size. Here we focus on the dynamics of σ and θ.

At the behavioural level, most task conditions showed stable accu-
racy values over time, except for the eight-items-single-target condition 
(Supplementary Fig. 6). Accuracy in this condition was well captured 
by a power-law curve (R2

adj = 0.7, P < 0.01, random permutation test). 
The detection threshold and noise parameters were highly stable 
(median ICC = 0.96; Fig. 2). The dynamic model revealed certainly exist-
ing positive effects of practice for detection threshold (PD = 100, median 
RC = 0.37) and for sensitivity (PD = 100, median RC = 0.33; Fig. 5).

Random dot motion
In the Random dot motion task, participants viewed 200 moving dots 
and had to indicate the direction (left/right) of the coherently moving 
dots among them. Coherence levels were 5%, 10%, 35% or 50% of all dots.

To model participants’ responses and reaction times, we used 
the drift diffusion model45,46. This model assumes that participants 
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each parameter, the left plot shows its mean ± s.e.m. across participants in each 
week (derived from the independent model; error bars show the s.e.m. across 
participants), and the right plot shows the relative contribution of each source 
(derived from the dynamic model). Arrows indicate the direction of the effect on 

each parameter over time for effects with PD > 95: up, positive; down, negative. 
The centre line marks the median, the box limits indicate the IQR and whiskers 
extend to the most extreme data points not considered outliers (points that are 
farther than 1.5 IQR from the box limits).
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accumulate noisy evidence in favour of each potential response and 
respond when the accumulated evidence passes a certain threshold.

In the drift diffusion model, evidence accumulation is controlled 
by the drift rate parameter δ. Here we assume that the drift rate is  
linear with the coherence level47 and thus fit a single drift rate for  
each session. The threshold for decision is controlled by the decision 
boundary α. Lastly, the reaction times are modelled as the sum of 
the evidence accumulation time and the non-decision time τ, which 
captures processes such as stimulus encoding and motor response.

Behaviourally, the accuracy across all motion coherence values 
improved over time and all conditions were well described by  
a power-law curve (R2

adj ≥ 0.9 , P < 0.01 for all conditions using a  
random permutation test; Supplementary Fig. 6). Model para
meters showed moderate stability: decision boundary α (median  
ICC = 0.56), non-decision time τ (0.68) and drift rate δ (0.73; Fig. 2). 
Supplementary Fig. 7 shows the mean parameter values over time 
estimated using the independent model. While the decision boundary 

α and the non-decision time τ decreased, the drift rate δ increased  
with practice. Using the dynamic model, we found a certainly existing 
negative effect of practice (PD = 100, median RC = 0.25) for the  
decision boundary and a certainly existing positive effect of practice 
(PD = 100, median RC = 0.41) for the drift rate (Fig. 5).

Lottery ticket
In the Lottery ticket task, participants chose to bet on one of two  
displayed tickets48. The ‘risky’ ticket offered a gamble between a very 
high and a very low sum of money, while the ‘safe’ ticket offered a  
gamble between two moderate sums of money. We used a risk-sensitive 
utility function48 to estimate the perceived expected value of each 
ticket, which was governed by the risk attitude parameter ρ. Higher 
ρ indicates a higher tendency to prefer risky choices. We used a soft-
max probability function to model participants’ choice stochasticity, 
governed by the inverse temperature parameter β. Larger β indicates 
less stochastic behaviour.
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Both task parameters were highly stable (median ICC = 0.95 
and 0.9, respectively; Fig. 2). Supplementary Fig. 7 shows the mean 
parameter values over time estimated using the independent model.  
Using the dynamic model, we found a certainly existing positive  
practice effect (PD = 100, median RC = 0.32) for inverse temperature. 
For the risk attitude, we found a certainly existing positive effect of 
practice (PD = 100, median RC = 0.51).

See Supplementary Information for similar analysis of the excluded 
participants who chose the ‘safe’ ticket almost exclusively. Note that 
attempting to fit the data of all participants simultaneously resulted 
in severe convergence issues, indicated by large R-hat values and by a 
large number of divergences. This is probably the result of the extreme 
differences in phenotype parameters that best explain the different 
behaviour patterns of the two groups (Supplementary Figs. 16 and 17).

Intertemporal choice
In the Intertemporal choice task, participants were asked to choose 
between a small but immediate amount of money and a larger but 
temporally delayed amount.

For modelling participants’ behaviour, we adopted a previously 
introduced model49 in which the tendency to prefer delayed rewards is 
represented by the discount rate parameter k. Larger k values indicate 
greater impulsivity and preference to receive immediate rewards.  
We adapted the original hyperbolic function model with a softmax 
probability function to model participants’ choice stochasticity,  
governed by the inverse temperature parameter β50. See Supplemen-
tary Information and Supplementary Fig. 18 for an analysis based on 
the original model without the softmax decision rule.

Both task parameters showed excellent stability (median ICC = 0.91 
and 0.93 for β and k, respectively; Fig. 2). Supplementary Fig. 7 shows 
mean parameter values over time based on the independent model, 
suggesting that inverse temperature increases with practice. Using the 
dynamic model, we found a certainly existing effect of practice on the 
inverse temperature (PD = 100, median RC = 0.23), as well as a certainly 
existing effect of valence (PD = 100, median RC = 0.13). These results 
indicate that decisions became more deterministic with practice. 
For the discount rate, we found a certainly existing effect of practice 
(PD = 100, median RC = 0.21), associated with reduced discounting of 
future reward.

Two-armed bandit
In the Two-armed bandit task, participants chose between two ‘slot 
machines’ labelled either R (risky) or S (safe), yielding four conditions, 
which we refer to as SS, RR, RS and SR based on the presented labels. 
While risky machines led to a different reward outcome every time, 
the safe machines provided the same outcome every time. To model 
participants’ behaviour, we used a previously introduced model51, 
which accounts for different types of exploratory behaviour. Specifi-
cally, we used a probit regression model in which choice is probabilisti-
cally governed by three factors. Exploitative choices are promoted by 
the weight of the estimated value difference of the two machines wV. 
Directed exploration is governed by the weight of the relative uncer-
tainty between the two machines wRU. Random exploration is controlled 
by the weight of the signed total uncertainty wsign(V)/TU. We deviated 
from the original model by using the sign of V rather than V itself. This 
promoted model convergence and led to a better fit to behavioural 
data in an independent dataset (see Supplementary Information).

Behaviourally, the probability of choosing the machine with the 
higher expected value increases over weeks in all conditions and is fit 
reasonably well by a power-law curve (Supplementary Fig. 6; RS/SR: 
R2
adj ≥ 0.4, P < 0.05, random permutation test; SS: R2

adj = 0.8, P < 0.01;  
RR: R2

adj = 0.6, P < 0.01, random permutation test). Using the inde
pendent model, we found that all task parameters increased with  
practice (Supplementary Fig. 7). While the weight for the estimated 
value difference wV seemed to increase gradually, the weights for 

uncertainty-driven behaviour (wsign(V)/TU and wRU) dramatically increased 
between the first and second sessions, and fluctuated afterwards.

These observations are in line with the stability results for the 
model parameters (Fig. 2). The weight for estimated value difference 
between arms wV showed poor stability (median ICC = 0.49), while 
the weights for relative uncertainty wRU and signed total uncertainty 
wsign(V)/TU showed moderate stability (median ICC = 0.61 and 0.62, 
respectively). Using the dynamic model, we found a certainly existing 
positive effect of practice for all model parameters (Fig. 5; PD = 100, 
median RC = 0.43 for the wV, median RC = 0.48 for wsign(V)/TU and median 
RC = 0.29 for wRU). For the weight of relative uncertainty wRU, we also 
found a likely existing effect of valence (PD = 98, median RC = 0.058).

Numerosity comparison
In the Numerosity comparison task, participants indicated which of 
two presented clusters of golden coins contained more coins. To model 
participants’ responses, we assumed that the number of coins in each 
cluster is encoded as a noisy estimate that follows a normal distribution 
centred around the true value a, with a magnitude-dependent noise 
a2w2 (ref. 52). The parameter w is the Weber fraction, which controls 
the magnitude-dependence of noise.

Behaviourally, participants’ accuracy in this task was very stable 
(Supplementary Fig. 6). The subtle improvement in accuracy over time  
was fit well by a power-law curve (R2

adj = 0.65 , P < 0.001, random  
permutation test). Inspection of the average parameter value based 
on the baseline model did not indicate any clear temporal trend. The 
Weber fraction showed good stability (median ICC = 0.81). Using  
the dynamic model, we found a certainly existing negative effect of 
practice (PD = 100, median RC = 0.3).

Discussion
In this study, we introduced a longitudinal dataset and a statistical 
framework that together allowed us to explore the dynamic nature 
of the computational phenotype. Our model, fit to 90 participants 
performing 7 tasks across 12 weeks, revealed the existence of three 
dynamical processes influencing computational parameters: practice, 
affective state and random noise. While this list is not exhaustive, it 
supports the view that the nature of the computational phenotype is 
dynamic and that some of its variability tracks meaningful changes in 
participant-related factors, rather than simply reflecting unreliability 
(cf. 24,53). This view emphasizes the structured temporal variation in the 
computational phenotype and suggests that it should be measured 
to provide insight into inter- and intra-individual cognitive variation.

Practice effects
In our study, almost all of the parameters comprising the computational 
phenotype were affected by practice. Even though we aimed to reduce 
practice effects by using different stimuli across weeks (for example, 
different fractal images in the Go/No-go task), we found a monotonic 
increase in the average accuracy in tasks where objective accuracy can 
be defined. Interestingly, in tasks that indicate personal preference, 
such as the Intertemporal choice task, the choices that participants 
made became less stochastic with practice.

Our findings are consistent with existing studies examining the 
effects of repetitive task administration on performance and on the 
estimated computational phenotype. The behavioural practice effects 
associated with improved task performance we report in our study 
are consistent with previous studies on repetitive administration  
of the Random dot motion23,54–56, Numerosity comparison57 and  
Change detection58 tasks. The changes we observed in the parameters 
of the models for the Random dot motion and the Intertemporal choice 
tasks are also consistent with the previous literature23,56,59.

Even though task performance was already adequate in the first 
session, we observed continued improvement in task performance 
for some of the tasks well after the first few sessions. Since practice 
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effects are a main confounding factor in longitudinal studies, these 
results imply that one cannot safely assume that task performance 
plateaus after a session or two, let alone after baseline practice (see 
discussion in ref. 20). Nevertheless, we found that practice effects 
were captured well by a power-law function, meaning that the relative 
contribution of practice effects diminishes with time. This is important 
for longitudinal experimental designs, since it could potentially allow 
other meaningful sources of longitudinal variability to become more 
prominent in later sessions (when they are less likely to be washed out 
by large practice effects).

Affective state effects
Previous studies examined the effects of affect on the computational 
phenotype by manipulating mood or stress. For example, acute stress 
induction altered ‘model-based’ but not ‘model-free’ decision making60. 
In another study, induction of positive or negative mood throughout 
the task was associated with biased reward perception61,62. In the current 
study, we focused on day-to-day spontaneous mood fluctuations63. We 
found that these fluctuations (particularly affective valence) were asso-
ciated with temporal variation in 3 parameters: inverse temperature 
(Intertemporal choice), lapse rate (Go/No-go) and weight of relative 
uncertainty (Two-armed bandit). Interestingly, these parameters are 
all associated with choice stochasticity. However, the specific effect of 
valence on choice stochasticity differed between parameters. Higher 
valence (more positive mood) was associated with more stochastic 
choices in the Intertemporal choice task (lower inverse temperature) 
but more deterministic choices in the Go/No-go task (lower lapse 
rate). In the Two-armed bandit task, higher valence was associated 
with lower weight of relative uncertainty, thereby reducing the effect 
of uncertainty-guided directed exploration.

These findings hint at a complex relationship between mood and 
choice stochasticity. The positive relationship between valence and 
decreased choice stochasticity we report for two of three parameters 
is partially consistent with a previous study showing that positive mood 
predicted increased exploitation and high arousal predicted increased 
exploration64 (but see ref. 65). Our mixed findings could reflect funda-
mentally different sources of choice stochasticity in different tasks, each 
affected differently by mood. Our data-driven approach using principal 
component analysis (PCA) led to a general valence component, and 
future studies might benefit from a fine-grained analysis of the specific 
effects of different emotions on the computational phenotype.

A longitudinal design improves our understanding of 
cognition
Our findings show that employing a longitudinal design permits a more 
nuanced comprehension of cognitive processes across longer time-
scales. An illustrative case of this point is the Go/No-go task. Using a 
well-established Pavlovian RL model of this task36, we were not able to 
fully capture participants’ behaviour (Supplementary Fig. 9). Specifi-
cally, the model failed to account for participants’ correct responses in 
the avoid-punishment conditions. Previous work using other reinforce-
ment learning tasks suggests that participants perceive outcomes in a 
context-dependent manner37,38. On the basis of this idea, we were able to 
resolve the disagreement between the predicted and observed data by 
introducing a minor modification to the model, allowing the agent to 
learn from neutral outcomes (see Methods). Specifically, the modified 
model assumes that participants perceive neutral stimuli as rewards 
in the presence of punishments and as punishments in the presence 
of rewards. It is noteworthy that the original model adequately fit the 
data from the first session (Supplementary Fig. 10), which may explain 
why the proposed modified model remained undiscovered until a lon-
gitudinal perspective was taken. Only through observing participants’ 
behaviour over time did this subtle nuance emerge as a robust effect.

One additional striking observation which became evident with 
the longitudinal design is the increased accuracy in the ‘No-go to win’ 

condition. One of the most established behavioural findings in the 
Go/No-go paradigm is that participants are better in learning ‘Go’ 
responses in reward conditions and ‘No-Go’ in punishment condi-
tions36. In our study, while we observed improvement in all conditions 
of the Go/No-go task over sessions, the ‘No-go to win’ condition showed 
the most significant improvement in accuracy and even surpassed  
the ‘Go to avoid’ condition, thus reducing the preference towards 
‘No-go’ responses in the punishment conditions. This is probably  
explained by the decrease we found in the Pavlovian bias with  
practice, such that participants became less likely to withhold a key 
press in this punishment condition.

Modelling limitations
For most of the parameters in the computational phenotype, a large 
fraction of the temporal variability was not attributed to one of the 
systematic sources we explored in this study (practice and state effects) 
but was associated with noise. One reason for this could be lack of rele
vant data that could have been collected longitudinally. While the daily 
surveys covered a wide range of questions that targeted participants’ 
mood and daily habits, it is possible that relevant factors remained 
unexplored. Furthermore, the surveys related to the participants’ daily 
state, rather than to momentary state during task performance (for 
example, ref. 61, which would require a more frequent and fine-grain 
mood assessment), which was out of the scope of the current study.

Alternatively, it might be possible to reduce the prominence of 
noise by refining the dynamic model. For simplicity, as well as for pro-
moting the convergence of our estimation procedure, we assumed 
similar effects across participants. In modelling the practice effects, 
we assumed a power-law change over time, whereby the magnitude is 
modulated by the participant-specific baseline, and the exponent was 
sampled from a population distribution. In modelling the state effects, 
we normalized the state measures within each participant and assumed 
population-level effects only. We made these modelling choices to trac-
tably capture the primary effects observed in the data. This approach 
may conceal more nuanced participant-specific effects that potentially 
await to be revealed. To capture such effects, a more intricate model-
ling approach could be pursued, albeit at the cost of increased model 
complexity and potential challenges in parameter estimation.

Overall, we believe that capturing additional sources of variability 
in the computational phenotype is necessary to gain a deeper under-
standing of the underlying cognitive processes. While understanding 
these sources will not necessarily make the measurement more stable, 
in principle it could be used to obtain a ‘cleaner’ measurement. For 
example, by collecting data that account for participants’ affective 
state, one could regress out the state effects from the measured phe-
notype. Structural and functional neural states could also be longi-
tudinally recorded concurrently with task performance to increase 
modelling accuracy in future studies66. Neural data can also be used 
to associate the computational phenotype with specific biological 
phenotypes67. Although collecting reliable neurophysiological daily 
point-estimates is a challenging task, recent advances in individualized 
brain imaging make this direction practically feasible68–72 and particu-
larly exciting in the context of translational neuroscience, potential for 
clinical application and precision medicine73,74.

It is important to consider that participants in our study performed 
each task once a week, meaning that our dynamic model captured 
practice-related and affect-related effects on the basis of this tempo-
ral resolution of longitudinal probing. The effects we report might 
be different when applying a different experimental protocol where 
participants perform the tasks every day or once a month. For exam-
ple, we would expect the practice effects to be reduced as the spacing 
between sessions is increased.

The results we present here in terms of phenotype dynamics over 
time could depend on the specific variant of the task. For example, 
different methods for risk elicitation in the Lottery ticket task differ in 
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terms of parameter magnitude and reliability75,76. More work is needed 
to determine how parameter stability is affected by the presentation 
method (for example, presenting the different lotteries as a single list 
or trial by trial, as we did here).

Different statistical approaches could be used to study the effects 
that influence the dynamics of the computational phenotype. We chose 
a generative Bayesian model that makes explicit assumptions about the 
functional form of these dynamical effects and their underlying prior 
distributions. The main advantages of this approach are in providing 
the full posterior distribution of the model parameters and in providing 
a suitably flexible hypothesis space supporting stronger inference. This 
contrasts with techniques such as linear regression, which is less suit-
able in this case, since its hypothesis space is too restrictive. Consider 
for example the well-established power-law form of practice effects39,40. 
While our generative model allows fitting of power-law parameters for 
each participant, a linear regression model would require defining a 
fixed practice curve across the population, with the regression coef-
ficient as a single free parameter that scales this curve.

An interesting future direction would be to model all tasks simulta-
neously, rather than one by one. This would allow revelation of potential 
relationships in the computational phenotype across tasks and uncov-
ering of unified cognitive processes that underlie seemingly disparate 
computational parameters. Our findings reveal one challenge associ-
ated with this approach: the prevalence of practice effects might lead 
to spurious correlations among computational parameters that are 
in fact independent of each other. Therefore, a systematic examina-
tion of cross-task relationships might require a more sophisticated 
experimental design that would allow us to tease apart spurious and 
true sources of shared variation.

The modelling framework we present here combines task-specific 
computational models with a general dynamic model of the computa-
tional phenotype. Together, they comprise a generative model in the 
sense that given model parameters, one can produce a time series of 
phenotype values (with practice effects and affective effects governed 
by the model parameters) and simulate behavioural data77. This gen-
erative model, however, is not mechanistic78. While we hint at specific 
relations between certain state effects (for example, affective valence) 
and phenotype parameters (for example, uncertainty-guided directed 
exploration), understanding a mechanism that underlies these relation-
ships is an open question in cognitive neuroscience.

Establishing the reliability of the computational phenotype is 
crucial if one seeks to study human cognition through computational 
models of behaviour. As illustrated in ref. 20, characterizing parameter 
reliability is only the first step in a hierarchy of steps, which was beyond 
the scope of our current research. An important next step in laying the 
psychometric foundation of computational phenotypes would be to 
establish their external validity and to compare it with the external 
validity of simpler summary statistics of task performance24.

Conclusions
Our study demonstrates that the computational phenotype can be 
highly dynamic. These dynamics to some extent reflect random fluctua-
tions and in this sense are truly ‘unreliable’ (that is, there is temporal 
variation that we do not yet know how to capture). At the same time, 
many parameters show structured covariation with time (specifically, 
practice effects) and with affective state. This suggests that the quest 
for reliable computational phenotypes may be the wrong way to think 
about such constructs. Rather, the quest must be redirected towards 
understanding the multiple sources of temporal variation underlying 
cognition.

Methods
Participants
Participants were recruited from Amazon Mechanical Turk through 
CloudResearch services. To increase the likelihood of continued 

participation throughout the study, the participant pool was filtered 
to have an approval rating of 90% or above. Participants were com-
pensated at a rate of US$10 per hour (henceforth, $ are in US$). An 
additional payment of $6 per week in task bonuses could also be earned 
on the basis of performance. Participants were also eligible to receive 
one-time $5 and $10 bonuses on the basis of continued participation 
after 4 weeks and 8 weeks, respectively (study milestones). Participants 
who finished all 12 weeks of the study were awarded an additional $15 
completion bonus. Participants read the study description via Amazon 
Mechanical Turk and indicated whether they agree to participate with 
a button press. The study was approved by the Institutional Review 
Board of Harvard University and was performed in accordance with 
the relevant guidelines and regulations.

In total, 141 participants were recruited for the study. Participants 
were considered to take part in the study if they provided answers to the 
demographics and personal survey questionnaires that were admin-
istered together on the first day of the study. Due to a technical issue, 
demographic data were not collected from one participant. Since the 
main interest of the study was to examine the temporal dynamics of the 
computational phenotype, we only included participants who had at 
least six weeks of task data with no more than three missing consecutive 
weeks for each task. Out of the initial cohort, 90 participants (mean 
age: 39.4 ± 10.8 years; 47 identified as males, 41 identified as females, 
1 identified as queer) satisfied these criteria. All further analyses were 
performed on this subset of participants.

Design and procedure
The study comprised seven experimental tasks (described below). 
On the basis of the average amount of time required for each task, 
the tasks were divided into three groups or ‘sessions’ performed on 
a weekly basis (two to three tasks per day). The order of tasks was 
shuffled each week within the session; however, tasks did not rotate 
between sessions and session order remained fixed for all participants 
throughout the entire study. Participants completed 1 session a day 
for 3 consecutive days, every week for 12 consecutive weeks. At the 
beginning of each session, participants completed a survey that asked 
36 questions pertaining to their mood and health (for example, “How 
stressed are you now?”; see Supplementary Information for all the 
survey questions). In the first session of the experiment, participants 
also completed a survey about their demographic data and personality 
traits, including the Barratt Impulsiveness Scale79 and the DOSPERT 
scale for domain-specific risk attitude80.

Below we summarize the procedure for each task. Detailed descrip-
tions can be found in Supplementary Information.

Go/No-go. The design of this task was modified from a previously 
published version36. The task had 3 blocks, each 80 trials long with a 
distinct set of 4 visual stimuli. On each trial, participants were shown 
one of the stimuli and asked to choose between pressing the space 
bar (‘Go’) or withholding a press (‘No-go’). At the end of the trial, 
participants received feedback in the form of reward (gain of points), 
punishment (loss of points) or a neutral outcome (neither gain  
or loss of points). Each stimulus prescribed a correct response:  
‘Go to win’, ‘Go to avoid punishment’, ‘No-go to win’ and ‘No-go to 
avoid punishment’. If a stimulus was associated with the outcome 
rule ‘to win’ and the correct response was selected, there was an 80% 
chance that the participant would win points (indicated by a green 
thumbs-up image) and a 20% chance that they would neither win nor 
lose points (indicated by a flat grey hand image). If the stimulus was 
associated with the outcome rule ‘to avoid punishment’ and the cor-
rect response was selected, there was an 80% chance that the partici-
pant would neither win nor lose points (indicated by a flat grey hand 
image) and a 20% chance that they would lose points (indicated by  
a red thumbs-down image). If an incorrect response was selected, 
there was an 80% chance of receiving a neutral outcome in the win 
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conditions or a punishment outcome in the punishment conditions. 
Each trial was followed by a 750–1,500 ms intertrial interval with a 
fixation cross.

Following previous work36, we classified participants into learners 
and non-learners. We defined non-learners as participants who had an 
average accuracy of less than 0.55 throughout the study. We focused 
our analysis on the 66 participants who were classified as learners out 
of 90 participants (for comparison, a previous study36 found a similar 
fraction of learners, 19 out of 30 participants).

Change detection. The Change detection task, based on previous 
work44, tests the participants’ ability to detect a change between  
pairs of images. The images were sets of coloured squares arranged 
in a ring formation. On each trial, one image was shown for 100 ms, 
followed by an intertrial interval (grey screen with white fixation cross 
presented for 1,500 ms), and then a probe image, which was either the 
same as the first image (no-change condition) or different (change 
condition). In the change condition, one or more of the squares change 
colour. After the second image was shown, participants were asked 
whether the two presented images were the same or different and how 
confident they were in their decision. Participants received feedback 
stating whether they were correct or incorrect.

The task consisted of 5 blocks, each with 40 trials. In four of the 
blocks, the set size (the number of squares in the array) was either 
three, four, six or eight squares. In addition, there was one block with 
a set size of eight squares, in which between zero and four squares 
changed colour on each trial (the ‘multiple targets’ block). Set size did 
not change within blocks except during the practice trials.

Random dot motion. On each trial of the Random dot motion task, 
participants were tasked with reporting the direction (left versus right) 
of a cloud of moving dots. While some percentage of the dots (5%, 10%, 
35% or 50%) were moving coherently in the same direction, other dots 
were moving in random directions. Participants completed 4 experi-
mental blocks, each containing 96 trials. On every trial, the participant 
was shown a cluster of 200 randomly distributed white dots on a dark 
grey background. Participants had 1,500 ms to determine the direction 
of motion of the coherently moving dots. After each trial, a 300 ms 
intertrial interval showing a centred white fixation cross on a dark grey 
background was shown.

Lottery ticket. In the Lottery ticket task, participants chose to bet  
on one of two possible tickets48. The ‘risky’ ticket offered a gamble 
between a very high and a very low sum of money. The ‘safe’ ticket 
offered a gamble between two moderate sums of money. The odds asso-
ciated with the outcomes were always the same between tickets. For 
example, the safe ticket might provide a 20% chance of winning $2 and 
an 80% chance of winning $1.60, while the risky ticket provided a 20% 
chance of winning $3.85 and an 80% chance of winning $0.10. The task 
consisted of 3 blocks, each 10 trials long. Each block utilized a different 
monetary range: low (tickets with expected value (EV) of approximately 
$2), medium (EV ≈ $50) and high (EV ≈ $200). For modelling purposes, 
we removed trials with a win probability of 100%.

Even though this task reflects personal preference and there are 
no objective correct or incorrect decisions, we excluded participants 
who chose the same option on over 80% of the trials (these were all 
participants who chose the ‘Safe’ option), leaving 58 participants for 
further analyses pertaining to this task.

Intertemporal choice. The Intertemporal choice task is a subjective 
monetary questionnaire in which participants indicated their prefer-
ence between a smaller amount of money available immediately or a 
larger amount of money available at a later time. This task is based on 
previous work49. Each delayed monetary reward (small, medium, large) 
was used three times in the task, for a total of 27 trials.

Two-armed bandit. This task closely followed a previously pub-
lished design51. On each trial, participants chose between two ‘slot 
machines’ labelled either R (risky) or S (safe). Risky machines led to a  
different reward outcome every time; safe machines provided the  
same outcome every time. Participants were informed that one 
machine was always better than the other and their task was to make 
choices that earn as much reward as possible. Participants had to 
explore each machine to determine which one had the higher expected 
reward. The task consisted of 30 blocks, each 10 trials long. The mean 
and variance of the machines changed across blocks.

Numerosity comparison. In the Numerosity comparison task,  
participants were required to make a judgement about which ‘treasure 
chest’ has more ‘gold coins’ hovering above it. Participants were told 
that all gold coins have the same value regardless of size. Gold coins 
were represented by yellow dots on a black background in an invisibly 
bounded section above a treasure chest. There were always two chests 
presented on a screen in every trial, with one chest being on the left side 
of the screen and the other being on the right side31. The task was 160 
trials long. No two chests had exactly the same number of gold coins.

Personal survey
The personal survey consisted of 36 questions. We excluded one  
question that allowed participants to freely express any issue they find 
relevant that was not captured by the rest of the questions (question no. 
34 in the survey, see Supplementary Methods). To reduce the number of 
items used in the dynamic model (see below), we ran a dimensionality 
reduction analysis on the survey responses. For each survey item, we 
z-scored the responses across participants (ignoring missing sessions) 
and then performed PCA. We used the top two components, which 
explained 32% and 9% of the variance in the data, respectively. Missing 
sessions were linearly interpolated after running PCA. On the basis of 
the principal component loadings, we interpreted these components 
as follows (Supplementary Fig. 12):

•	 PC1 - Affective valence: this PC loaded positively on items assess-
ing positive emotions (for example, enthusiasm, happiness, 
relaxation) and negatively on items assessing negative emotions 
(for example, nervousness, being upset, irritation, sadness, 
loneliness, hostility).

•	 PC2 - Affective arousal: this PC loaded positively on all items 
assessing affective state, as well as on items assessing stress, 
energy levels, being active, sleeping well and eating healthy.

Statistical models
We modelled all the task data using a hierarchical Bayesian frame-
work, which has been shown to improve the accuracy of parameter 
estimation compared with methods that fit the data of each partici-
pant (or session) independently32,33. Specifically, for each task, the 
parameters for a given session were drawn from a participant-specific 
prior distribution. The parameters of this prior distribution, in turn, 
were drawn from a group-level distribution with weakly informative 
hyper-priors. As detailed below, we fit two main variants of this hier-
archical model: an independent model and a dynamic model. The key 
difference between them is that the independent model assumes that 
session-level parameters are conditionally independent given the 
participant-level parameters, whereas the dynamic model assumes 
that the session-level parameters have structured temporal correla-
tions induced by practice and state variables (valence and arousal).

To illustrate the advantage of accounting for the full hierarchical 
structure of the data (sessions nested within participants), in Sup-
plementary Information we provide results based on a third, reduced 
model that only considers a single level of hierarchy. This reduced 
model treats the parameters of all sessions as independent draws  
from a single group-level prior distribution.
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Independent model. In the independent model, the parameter values 
across sessions for a given participant were sampled independently 
around a participant-specific baseline:

ys
t ∼ 𝒩𝒩 (μs,σ) , (1)

where yst  is the phenotype for participant s at time t, defined in  
the unconstrained space (that is, before appropriate transformation 
was applied to ensure positivity or other constraints; see Supplemen-
tary Information for details), and σ is the standard deviation (that is, 
the dispersion of session-level parameters around the participant- 
level mean). The participant-level mean μs was sampled from a normal 
distribution at the group level:

μs ∼ 𝒩𝒩 (μg,ηg) . (2)

Notice that the session-level standard deviation, σ, was defined  
at the group level. The sampled phenotype value for participant s  
and session t is therefore the sum of two terms:

ys
t = μs + σs

t , (3)

where σs
t  is the sampled noise term for the session (which can  

be negative).
The group-level parameters σ, μg, η2

g were given weakly informative 
hyper-priors:

σ ∼ 𝒩𝒩+(0, 1) (4)

μg ∼ 𝒩𝒩(0, 1) (5)

ηg ∼ 𝒩𝒩+(0, 1) (6)

where 𝒩𝒩+(0, 1) denotes the half-normal distribution.

Reduced model. The reduced model is similar to the independent 
model, except that it is missing the participant-level priors. The para
meter values across all sessions in the dataset were sampled inde
pendently around the group baseline:

ys
t ∼ 𝒩𝒩 (μg,σ) . (7)

Dynamic model. In the dynamic model, the parameter values across 
sessions were governed by practice and state effects:

ys
t ∼ 𝒩𝒩 (μs + δsp (1 − t−b

s
) + δsvv s

t + δsaas
t ,σ) , (8)

a sum of the following terms:

•	 Baseline term: μs is the participant-specific baseline.
•	 Practice term: δsp(1 − t−b

s
) is a plateauing power law. δsp ∈ (−μs,μs) 

is the maximal possible change due to practice, modelled as a 
fraction of the participant-specific baseline. This fraction was 
fixed across participants. To promote parameter identifiability, 
we constrained the learning exponent to be e−2 < bs < e1 (other-
wise, the learning curve could flatten and trade off with the 
baseline term).

•	 State terms: δsv and δsa are the maximal possible changes due to 
valence and arousal effects, respectively. Similar to the practice 
term, they were modelled as fixed fractions of the baseline  
term μs. The state predictors vst  and as

t  were normalized within 
participant, to vary between −1 and 1 across sessions. This 
reflects the assumption that the phenotype of each participant 
is affected by the participant-specific state fluctuations around 

his or her own baseline, and ensures that the scale of the state 
terms is governed by δsv and δsa.

•	 Noise term: σs is the participant-specific noise.

The sampled phenotype value for participant s and session t is 
therefore the sum of five terms:

ys
t = μs + δsp (1 − t−b

s
) + δsvv s

t + δsaas
t + σst . (9)

In addition to the priors used in the independent model above, we 
specified each dynamic parameter δi and their weakly informative 
priors as follows:

δsi = δiμs (10)

δi = 2Φ (δpriori ) − 1 (11)

δpriori ∼ 𝒩𝒩(0, 1) (12)

This formulation ensures that δi ∈ (−1,1), such that each dynamic term 
can either increase or decrease the phenotype ys

t .

Parameter estimation. Parameters were estimated using a Markov 
chain Monte Carlo algorithm (we used the default No-U-Turn sampler) 
implemented in the Stan software package81. For each model, we ran 
4 chains with 1,000 warmup iterations and 1,000 kept iterations. We 
used default sampling parameters and initialized each parameter to 
zero in the unconstrained space. We used the posterior mean for each 
session and participant as a point estimate of the dynamic computa-
tional phenotype.

Posterior predictive checks. To check whether our computational 
models adequately matched participants’ behaviour, we simulated data 
from the fitted models and compared it to behaviour on each task (Fig. 3a  
and Supplementary Fig. 8). For each task, we generated a figure that 
captures the key behavioural signatures and compared the empirical 
data (averaged across participants and sessions) with the predicted 
data (averaged across participants, sessions and posterior samples).

Parameter identifiability. To establish parameter identifiability, we 
refit the simulated data and checked the degree of match (as measured 
by correlation) between the recovered and ground-truth parameters. 
To generate the simulated data, we used the same trial data as pre-
sented to the participants, with the following exceptions. The outcomes 
(rewards/punishments) in the Go/No-go task and the Two-armed bandit 
task were simulated on the basis of the agent’s choices. For these two 
tasks, we drew the trial-wise outcomes from the same distributions as 
those presented to the participants, resulting in somewhat different 
trials than those presented to the participants.

Parameter stability. To estimate the stability of each phenotype 
parameter over time, we followed ref. 24 and calculated non-parametric 
bootstrapped intraclass correlations, ICC(2,1), with 1,000 samples 
(bootstrapping over participants)82–85. For each phenotype parameter, 
we used the mean of the posterior distribution as a point estimate and 
calculated the ICC on the basis of a 90 × 12 data matrix (90 participants 
with 12 sessions each)32,34. However, as noted earlier, some participants 
had missing sessions and ICC cannot be calculated with missing data. 
Therefore, for each task, we calculated the ICC only on the basis of 
participants with complete data. After incorporating the behavioural 
exclusion criteria (see above), this yielded the following number of 
participants per task: Go/No-go 53, Change detection 65, Intertemporal 
choice 67, Lottery ticket 47, Numerosity comparison 69, Two-armed 
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bandit 66, Random dot motion 73. To verify that this methodological 
choice did not impact our main results, we repeated the ICC calculation 
with a different approach. This time, we used data from all participants 
but using only the maximal number of sessions, Nmax, that existed for 
all participants. For participants with more sessions, we used the first 
Nmax sessions of each participant. The Nmax values were: Go/No-go 9, 
Change detection 8, Lottery ticket 8, Two-armed bandit 8, Random 
dot motion 9, Intertemporal choice 7 and Numerosity comparison 8.

Since we were interested in quantifying the stability of the com-
putational phenotype, it is important to rule out the possibility that 
methodological considerations, rather than true variability over time, 
drove the ICC to lower values. For example, even a stable phenotype 
might seem unstable if not enough trials are used to estimate the 
computational parameters. To estimate an upper bound for the ICC 
values given our experimental design, we simulated data from an 
idealized case in which the distribution of parameter values is the 
same as in our empirical data, but each agent has a perfectly stable 
phenotype that remains unchanged throughout the 12 simulated ses-
sions. Specifically, we simulated data from 90 agents, on the basis of 
the phenotype values of the first session in the empirical data. Then, 
we refit the independent model to the simulated data to obtain new 
estimated parameters (which should now be stable over sessions) 
and calculated the ICC for each parameter. In addition to the ICC of 
the computational phenotype, we also calculated the ICC values of 
behavioural summary statistics, namely accuracy and mean reaction 
time (Supplementary Fig. 5).

Relative contribution and probability of direction. To estimate the 
relative contribution of each dynamical term to the final phenotype, 
we used the different terms of the dynamic model in the unconstrained 
space. For simplicity, we used the posterior mean of each term for each 
participant, yielding a time series of up to 12 timepoints per term. As a 
measure of amplitude, we calculated the s.d.k of each term k across 
sessions. The relative contribution of term k to the final phenotype was 
defined as: s.d.k/∑

K
i=1 s.d.i . Intuitively, dynamical terms with a wider 

spread contribute more to the variability of the phenotype over time.
Rather than using a binary test such as exclusion of zero from the 

highest density interval, we chose to quantify the evidence support-
ing each dynamical effect using the probability of direction (PD). PD 
is the percentage of posterior probability that has the same sign as 
the median42,86.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are freely available at https://github.com/
roeysc/dynamic_computational_phenotyping/data.

Code availability
The custom code used in this study is freely available at https://github.
com/roeysc/dynamic_computational_phenotyping/code.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Data availability 
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other socially relevant 
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No socially relevant categorization variables were used in the current study.

Population characteristics We recruited adult (>18 years old) Amazon Mechanical Turk participants registered in the USA. The participant pool was 
filtered to have an approval rating of 90% or above In order to increase the likelihood for continued participation throughout 
the study. More detailed information on the demographics of Amazon Mechanical Turk participants pool can be found in 
https://crowdsourcing-class.org/readings/downloads/platform/demographics-of-mturk.pdf .

Recruitment Participants were recruited from Amazon Mechanical Turk through CloudResearch services. Due to the longitudinal nature of 
our study, participants were rewarded with monetary bonuses after completing half of the study ($5) and the entire study 
($10). Therefore, it is possible that our participants were the ones who are particularly interested in increasing their 
compensation. However, since our rigid selection criterion was approval rating of 90% or above, we do not believe that this 
monetary-based potential self-selection bias influenced participants' task performance or affected our results.

Ethics oversight Participants read the study description via Amazon Mechanical Turk and indicated whether they agree to participate with a 
button press. The study was approved by the Institutional Review Board of Harvard University and was performed in 
accordance with the relevant guidelines and regulations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Study description We performed a quantitative study in which human participants performed computer-based tasks.

Research sample Participants were recruited from Amazon Mechanical Turk through CloudResearch services. Our longitudinal design involved multi-
day testing each week (during 12 weeks). Therefore we recruited participants online to allow for temporal flexibility. Ninety 
participants were included in the final analysis (mean age: 39.4 ± 10.8 years; 47 identified as males, 41 identified as females, 1 
identified as queer). The male/female ratio in our sample was nearly 0.5; the mean age of USA residents in 2020 was 38.6 
(www.statista.com), which is only slightly lower than the mean age in the current sample.  

Sampling strategy The sample size (N=90 participants) was determined based on the size of samples often used in the literature. As shown in a 
literature review by Karvelis et al. 2022 (“Individual Differences in Computational Psychiatry: A Review of Current Challenges”), most 
behavioral studies that calculated test-retest reliability of the computational phenotype used 30-60 participants. Since retention in 
longitudinal studies is often a concern, we recruited 141 participants and ended up with 90 participants who completed the study. 
We stress here that fitting model parameters using a hierarchical Bayesian framework pools information both across participants and 
across time (in this longitudinal design). Therefore, we expected a sample size of 90 participants to be more than enough for our 
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purposes. As for the sampling strategy, participants were sampled randomly. In other words, we did not use any specific strategy to 
sample participants through the online platform.

Data collection Participants were recruited from Amazon Mechanical Turk through CloudResearch services and performed all the tasks using their 
personal computers in their own time, given study limitations. There were no experimental groups in the study and all participants 
followed the same experimental procedure. Researchers were blind to the study hypotheses during data collection.

Timing Data collection started in December 1st 2019 and ended in May 27 2020. 

Data exclusions We only included participants who had at least 6 weeks of task data with no more than three missing consecutive weeks for each 
task. 

Non-participation Out of the initial cohort of 141 participants, 90 participants satisfied these criteria.

Randomization Participants were not allocated into experimental groups.
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