Supporting Information

2	
3	Continuous Theta-Burst Stimulation on the Left Posterior Inferior Frontal Gyrus
4	Perturbs Complex Syntactic Processing Stability in Mandarin Chinese
5	
6	Accuracy Analysis Results
7	We adopted accuracy as a valuable behavioral index to assess whether certain
8	sequence types/tasks showed ceiling effects leading to that variability in performance may be
9	greater as a function of task difficulty independent of nature of the task. Descriptive statistics
10	were shown in Table S1, and plotted in Figure S1.
11	Since the accuracy of the easiest task, that is, the simple sentence processing, did not
12	reach 90%, we assumed that none of the tasks showed a ceiling effect. Moreover, two-way
13	repeated measures ANOVA was performed for comparing either the 3 (Complex, Simple,
14	Word List) or the 4 sequence types (SR, OR, Simple, Word List). Results showed that only
15	the main effect of sequence types was significant [for 3 sequence types: $F(2, 62) = 52.472$, p
16	< .001, $\eta_p^2 = .629$; for 4 sequence types: $F(3, 93) = 34.502$, $p < .001$, $\eta_p^2 = .527$]. Post hoc
17	paired comparisons showed that the accuracy of simple sentence was significantly higher
18	than those of both complex (SR and OR) sentence and word list processing conditions [for 3
19	sequence types: $ts(31) \ge 8.670$, $p_{bonf}s < .001$, Cohen's $ds \ge 1.275$; for 4 sequence types: $ts(31)$
20	\geq 6.172, p_{bonf} s < .001, Cohen's ds \geq .828]. Nevertheless, no statistical accuracy differences
21	could be found between the complex (SR and OR) sentence and word list processing
22	conditions [Complex vs. Word List: $t(31) = .068$, $p_{bonf} = 1.000$, Cohen's $d = .009$; SR vs.

23	Word List: $t(31) = 1.860$, $p_{bonf} = .435$, Cohen's $d = .254$; OR vs. Word List: $t(31) = -2.148$,
24	$p_{bonf} = .238$, Cohen's $d = .329$]. The accuracy difference pattern was also consistent with the
25	results reported in a previous fMRI study (Liu et al., 2023: Supporting Information 1.2), in
26	which the difficulty of the word list processing (i.e., the working memory) task was well
27	matched with that of the complex sentence (either SR or OR) processing task. Therefore, the
28	cTBS effect difference between complex sentence and word list processing conditions was
29	more likely to be attributed to the nature of the task per se rather than the difficulty difference
30	between these two tasks.

31 **Table S1**

32 Sequence type accuracy under cTBS and sham conditions

Saguanga tunas	Stimulation	Moon	SD	
sequence types	conditions	Ivican		
Complex (C)	cTBS	0.744	0.123	
	sham	0.753	0.114	
OR	cTBS	0.702	0.136	
	sham	0.714	0.146	
SR	cTBS	0.786	0.135	
	sham	0.771	0.158	
Simple (S)	cTBS	0.881	0.068	
	sham	0.877	0.078	
Word List (W)	cTBS	0.740	0.115	
	sham	0.755	0.105	

33 Figure S1

- 34 Raincloud plots for accuracy of the 3 and 4 sequence types under both cTBS and sham
- 35 conditions

36

Note. W: word list processing (i.e., working memory task), colored in green; S: simple
sentence processing, colored in orange; C: complex sentence processing, colored in purple.
SR: complex sentence with subject relative clause embedded processing, colored in pink; OR:
complex sentence with object relative clause embedded processing, colored in purple.

41

42

Further Validation of the cTBS Effect Robustness

43 Behavioral Data Analysis Blind to the Conditions

Given that we intended to compare the differences (" Δ ": cTBS - sham) between the conditions (either 3 or 4 sequence types), experimenters were not bind to the sessions (cTBS or sham) during the data analyses as described in the main text. A concern was whether the blindness to the data/conditions would have biased the results. Therefore, as an *ad-hoc* test,

we invited another experimenter who was totally blind to the conditions to re-analyze the 48 CV(coefficient of variation) data which showed significance between the three/four 49 conditions. In particular, the cTBS condition was masked as the "a" condition, and the sham 50 condition was labeled as " α ", and the experimenter was asked to subtract the CV data of one 51 condition from the other according to his own will. The experimenter obtained the ΔCV from 52 the subtraction of "a - α ", and the repeated measures ANOVA showed exactly the same 53 results to those reported in the main text, thus indicating that in the present study, the 54 blindness to the conditions had little bias to the current analyses as well as the related results. 55

56 **Be**

Behavioral Data Analyses of the Whole Set of Participants

We originally recruited 33 participants in total. However, there was one more 57 participant who underwent the sham session firstly, resulting in the unbalanced numbers of 58 59 the two stimulation types for each session: "17 sham + 16 cTBS" for the first session, and "16 sham + 17 cTBS" for the second session. Therefore, before the actual data analyses, data 60 of one of the participants who attended the sham session as the first session was randomly 61 discarded. Now we added this participant's data for the ΔCV analysis of the whole set of 62 participants, and found the similar result in the comparison among the 4 sequence types [F(3,63 96) = 3.510, p=.018, η_p^2 = .099] as reported in the main text, further indicating that the cTBS 64 effect (reflected by the differences of ΔCV between the sequence types) should be robust. 65

66

Analysis of the Session Order Effect

To further assess the potential influence of session order effects, we divided the participants into two groups: Group 1 (subjects who received real cTBS first, then followed by "sham") and Group 2 (subjects who received "sham" first, followed by real cTBS). Then

we performed 3 (sequence types: Complex, Simple, and Word List) × 2 (group: Group 1 and Group 2) and 4 (sequence types: SR, OR, Simple, and Word List) × 2 (group: Group 1 and Group 2) ANOVAs separately on the indices $\Delta d'$, ΔRT , and ΔCV . In these ANOVAs, the sequence types were used as a with-subject variable while the group served as a between-subject variable. Descriptive statistics were generated for all indices and summarized in Table S2 to Table S4.

The results for $\Delta d'$ showed that the two-way interactions were significant for 3 76 sequence types $[F(2, 60) = 6.783, p = .002, \eta_p^2 = .184]$ and 4 sequence types $[F(2.259, \eta_p^2) = .184]$ 77 (67.759) = 3.888, p = .021, $\eta_p^2 = .115$]. These results indicated that the effect of sequence type 78 on $\Delta d'$ is different in Group 1 and Group 2. Nevertheless, there were no group main effects 79 observed for both 3 sequence types $[F(1, 30) = .061, p = .806, \eta_p^2 = .002]$ and 4 sequence 80 types $[F(1, 30) = .753, p = .392, \eta_p^2 = 0.024]$. Similarly, there were no sequence type main 81 effects observed for both 3 sequence types [F(2, 60) = .490, p = .615, $\eta_p^2 = .016$] and 4 82 sequence types $[F(2.614, 67.759) = 1.303, p = .280, \eta_p^2 = .042]$. Therefore, when combining 83 the two groups' data together, the session order effect on $\Delta d'$ would be "neutralized". 84

The results for ΔRT showed no significant group differences in both the 3 sequence types $[F(1, 30) = 1.154, p = .291, \eta_p^2 = .037]$ and the 4 sequence types [F(1, 30) = 1.754, p $= .195, \eta_p^2 = .055]$. Additionally, there were no significant two-way interactions observed for both the 3 sequence types $[F(2, 60) = 1.439, p = .245, \eta_p^2 = .046]$ and the 4 sequence types $[F(3, 90) = 1.025, p = .385, \eta_p^2 = .033]$. Moreover, there were no sequence type main effects observed for both the 3 sequence types $[F(2, 60) = 1.041, p = .359, \eta_p^2 = .034]$ and the 4 sequence types $[F(3, 90) = 0.932, p = .429, \eta_p^2 = .030]$.

92	The results for ΔCV showed no significant group differences in the 3 sequence types
93	$[F(1, 30) = 4.790 \times 10^{-4}, p = .983, \eta_p^2 = 1.597 \times 10^{-5}]$ or the 4 sequence types $[F(1, 30)$
94	= .068, $p = .796$, $\eta_p^2 = .002$]. Additionally, there were no significant two-way interactions
95	observed in the 3 sequence types [$F(2, 60) = .620$, $p = .542$, $\eta_p^2 = .020$] or the 4 sequence
96	types [$F(3, 90) = .547$, $p = .651$, $\eta_p^2 = .018$]. Only the sequence types showed significant main
97	effects in both the 3 sequence types [$F(2, 60) = 3,419, p = .039, \eta_p^2 = .012$] and the 4
98	sequence types $[F(3, 90) = 3.975, p = .010, \eta_p^2 = .117].$

99 Therefore, the session order was unlikely to affect the stimulation effect differences100 among the sequence types.

101 **Table S2**

102	Sequence type.	$\Delta d'$ under	Group 1	and Group 2
	1 - 1		1	1

Soguoneo typos	Stimulation	Moon	SD	
Sequence types	conditions	Wican		
Complex (C)	Group1	-0.222	0.707	
	Group2	0.077	0.614	
OR	Group1	-0.392	1.129	
	Group2	-0.093	0.947	
SR	Group1	-0.053	0.533	
	Group2	0.247	0.731	
Simple (S)	Group1	-0.155	0.423	
	Group2	0.367	0.680	
Sequence types	Stimulation	Mean	SD	

	conditions		
Word List (W)	Group1	0.422	0.758
	Group2	-0.326	0.736

Note. Group 1 contained subjects who received the real cTBS condition followed by the
"sham" condition and Group 2 contained subjects who received the "sham" condition
followed by the real cTBS condition.

Table S3

109 Sequence type *ART* under Group 1 and Group 2

Saguanga tunas	Stimulation	Moon	SD
sequence types	conditions	Ivican	50
Complex (C)	Group1	11.546	124.843
	Group2	-43.101	93.126
OR	Group1	-2.663	113.639
	Group2	-44.807	118.228
SR	Group1	25.755	162.358
	Group2	-43.368	140.120
Simple (S)	Group1	-8.663	117.969
	Group2	18.161	127.761
Word List (W)	Group1	48.368	96.601
	Group2	-1.975	105.566

- *Note.* Group 1 contained subjects who received the real cTBS condition followed by the
 "sham" condition and Group 2 contained subjects who received the "sham" condition
 followed by the real cTBS condition.
- 114
- 115 **Table S4**

116 Sequence type $\triangle CV$ under Group 1 and Group 2

Saguanca typos	Stimulation	Moon	SD	
Sequence types	conditions	witan		
Complex (C)	Group1	0.019	0.045	
	Group2	0.030	0.039	
OR	Group1	0.010	0.070	
	Group2	0.012	0.054	
SR	Group1	0.027	0.054	
	Group2	0.047	0.046	
Simple (S)	Group1	-0.003	0.081	
	Group2	-0.023	0.071	
Word List (W)	Group1	-0.012	0.066	
	Group2	-0.004	0.047	

Note. Group 1 contained subjects who received the real cTBS condition followed by the
"sham" condition and Group 2 contained subjects who received the "sham" condition
followed by the real cTBS condition.

120

121			SI Refere	ences		
122	Liu, Y., Gao, C., Wang	, P., Friederici, A	A. D., Zaco	carella, E., & Chen, I	L. (2023). F	Exploring the
123	neurobiology c	of Merge at a b	basic level	: insights from a n	ovel artific	ial grammar
124	paradigm.	Frontiers	in	Psychology,	14,	1151518.
125	https://doi.org/1	10.3389/fpsyg.20	023.11515	18		