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Abstract: Continuous-time algebraic Riccati equations can be found in many
disciplines in different forms. In the case of small-scale dense coefficient ma-
trices, stabilizing solutions can be computed to all possible formulations of
the Riccati equation. This is not the case when it comes to large-scale sparse
coefficient matrices. In this paper, we provide a reformulation of the Newton-
Kleinman iteration scheme for continuous-time algebraic Riccati equations us-
ing indefinite symmetric low-rank factorizations. This allows the application
of the method to the case of general large-scale sparse coefficient matrices. We
provide convergence results for several prominent realizations of the equation
and show in numerical examples the effectiveness of the approach.
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Novelty statement: In this work, we use indefinite symmetric low-rank
factorizations to extend the Newton-Kleinman iteration to general Riccati
equations with large-scale sparse coefficient matrices. We provide a conver-
gence theory for several prominent realizations of the equation and investigate
different scenarios numerically.

1 Introduction

The solutions to continuous-time algebraic Riccati equations (CAREs) play essential roles
for many concepts in systems and control theory. They occur, for example, in the design of
optimal and robust regulators for dynamical processes [2,40,47,61], model order reduction
methods for dynamical systems [26, 31, 36, 52], network analysis [3] or applications with
differential games [7, 30]. In general, CAREs are quadratic matrix equations of the form

ATXE + ETXA+ CTQC −
(
BTXE + ST

)T
R−1

(
BTXE + ST

)
= 0, (1)
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with A,E ∈ Rn×n, B,S ∈ Rn×m, C ∈ Rp×n, Q = QT ∈ Rp×p and R = RT ∈ Rm×m

invertible. For simplicity of illustration, we present the proposed algorithm and results
for the case that E is invertible; however, we outline modifications for the case of non-
invertible E matrices in Section 3.5. Among all the solutions to (1), the one of particular
interest in most cases is the stabilizing solution, here denoted as X∗ ∈ Rn×n, for which it
holds that the eigenvalues of the generalized matrix pencil

λE − (A−BR−1(BTX∗E + ST))

lie in the open left complex half-plane.
In the case of dense coefficient matrices of small dimension n, a variety of different

approaches has been established for the numerical solution of (1). Direct methods can be
used to construct the solution via an eigenvalue decomposition of the underlying Hamilto-
nian or even matrix pencils [1,5,43]. On the other hand, iterative approaches such as the
matrix sign function iteration and structure-preserving doubling avoid the eigendecompo-
sition and aim directly for the computation of the eigenspaces of interest [14, 29, 37, 53].
Other iterative approaches construct sequences of matrices that converge to the stabilizing
solution [38,42,59].
With the problem dimension n increasing, the task of solving (1) becomes more compli-

cated. Even if in those cases A and E typically become sparse, the stabilizing solution X∗
of (1) must be expected to be densely populated. Thus, the demands on computational
resources such as time and memory become infeasible when computing X∗ via classical
approaches for n ∈ O(105) and larger. Under the assumption that the dimensions of
the factored coefficients in (1) are significantly smaller than the solution dimension, i.e.,
p,m ≪ n, new iterative approaches for the solution of (1) have been developed for some
particular realizations. The key ingredient in all instances is the use of low-rank factorized
approximations of the solution X∗, typically given as Z∗Z

T
∗ ≈ X∗, where Z∗ ∈ Rn×ℓ and

ℓ≪ n. This is justified by a fast singular value decay of the solutions [10,62].
For the special case that S = 0, Q is symmetric positive semi-definite and R is symmetric

positive definite, a variety of new approaches has been developed in recent years. Methods
like the Newton and Newton-Kleinman iterations have been extended [17, 21] employing
yet another low-rank solver such as the low-rank alternating direction implicit (LR-ADI)
method [19–21,45] for the Lyapunov equations occurring in every Newton step. Projection-
based methods construct approximating subspaces to project the coefficients of (1) onto
smaller dimension and then solve small-scale Riccati equations with classical dense ap-
proaches [35, 60]. The Riccati alternating direction implicit (RADI) method [11, 28] and
the incremental low-rank subspace iteration (ILRSI) [46] are among the most successful
low-rank solvers for this variant of the Riccati equation. We refer the reader to [12,23,39]
for general overviews and numerical comparisons of these methods.
In other instances of (1), the amount of established methods decreases significantly.

In the case of Q symmetric positive semi-definite and R symmetric negative definite,
only extensions of the Newton and Newton-Kleinman iteration have been proposed for
large-scale sparse systems [25]. Recently, a new low-rank method has been developed
in [16] that allows to compute the solution to (1) with indefinite R and Q symmetric
positive semi-definite matrices. Under the assumption that the stabilizing solution X∗ is
symmetric positive semi-definite, this new low-rank method iteratively approximates X∗
via accumulating solutions to classical Riccati equations with positive definite R terms.
In this work, we are lifting all restrictions and investigate the numerical approxima-

tion of the stabilizing solution to the general CARE (1). Therefore, we focus on the
Newton-Kleinman method [38] and extend this approach to the case of large-scale sparse
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coefficient matrices by utilizing an indefinite symmetric low-rank factorization of the stabi-
lizing solution. We show that this new approach generalizes existing methods and provide
a theoretical background for several of the practically occurring scenarios. The theoretical
analysis is supported by multiple numerical experiments.
Throughout this paper, AT denotes the transposed of the matrix A. Also, we denote

symmetric positive (semi-)definite matrices A by A > 0 (A ≥ 0) and we write A > B
(A ≥ B) if A−B is symmetric positive (semi-)definite. Similarly, we use A < 0 (A ≤ 0) to
denote symmetric negative (semi-)definite matrices and write A < B (A ≤ B) if A−B is
symmetric negative (semi-)definite. Moreover, ⟨., .⟩ denotes the Frobenius inner product,
i.e., ⟨A,B⟩ = tr

(
ATB

)
for real matrices A and B of compatible dimensions. By In we

denote the n-dimensional identity matrix.
The remainder of this paper is organized as follows: In Section 2, we provide an overview

about different realizations of the continuous-time algebraic Riccati equation from the lit-
erature with their motivational background and how they fit into the presented general
formulation (1). In Section 3, we derive the Newton-Kleinman formulation for (1) based
on which we extend the approach to the large-scale sparse setting. Afterwards, we pro-
vide a theoretical analysis of the convergence behavior, formulas for an exact line search
procedure in the Newton iteration and an extension of the method to non-invertible E
matrices. Numerical experiments to support the theoretical discussions of this paper are
conducted in Section 4. The paper is concluded in Section 5.

2 Example equations from the literature

Several realizations of CAREs are displayed throughout the literature. The form (1)
we consider in this work appears to be the most general formulation of the CARE with
factorized terms that allow for low-rank approximations in the large-scale sparse setting.
Some of the most prominent realizations are outlined in the following. These will also
serve as examples in the numerical experiments in Section 4.

2.1 Linear-quadratic regulator problems

First, we may consider the CARE formulation given in (1). With the additional assump-
tions that Q ≥ 0 and R > 0, this realization can be found in optimal control for the
construction of optimal state-feedback regulators [2, 47, 61]. The corresponding optimiza-
tion problem is given by

min
u stab.

∞∫
0

y(t)TQy(t) + x(t)TSu(t) + u(t)TRu(t) d t (2a)

subject to

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).
(2b)

The task is to find a controller u that solves the optimization problem Eq. (2a) while sta-
bilizing the corresponding dynamical system Eq. (2b). Assume that a stabilizing solution
X∗ to (1) exists, then the solution to Eq. (2) is given by u(t) = K∗x(t), where the feedback
matrix is given by K∗ = R−1(BTX∗E + ST). If the matrix pencil λE − A is stabilizable
with respect to B and observable with respect to C, then a sufficient condition for the
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existence of the stabilizing solution X∗ is that[
CTQC S
ST R

]
≥ 0

holds; see [40]. Note that under the assumptions above, the stabilizing solution X∗ is
known to be positive semi-definite.

2.2 Linear-quadratic-Gaussian control and unstable model order reduction

A different realization of (1) relates to the construction of optimal controllers and model
order reduction of unstable dynamical systems. Consider the modified optimal regulator
problem

min
u stab.

∞∫
0

y(t)TQ̃y(t) + u(t)TR̃u(t) d t

subject to

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

with the feed-through matrix D ∈ Rp×m, Q̃ ≥ 0 and R̃ > 0. The corresponding CARE
that provides the optimal stabilizing control is given by

ATXE +ETXA+CTQ̃C −
(
BTXE +DTC

)T(
R̃+DTD

)−1 (
BTXE +DTC

)
= 0. (3)

The equation (3) can be rewritten as (1) by setting

Q = Q̃, R = R̃+DTD, S = DTC.

The very same equation (3) can also be found in the design of optimal linear-quadratic-
Gaussian (LQG) controllers and in the LQG balanced truncation method that is used for
the computation of reduced-order dynamical systems with unstable dynamics [26,36].

2.3 H∞ control and robust model order reduction

Another realization related to controller design and model order reduction comes in the
form of the H∞-Riccati equation

ATXE + ETXA+ CTQ̃C − ETX

(
B2R̃

−1BT
2 −

1

γ2
B1B

T
1

)
XE = 0; (4)

see [15,16,50]. This equation is typically associated with dynamical systems of the form

Eẋ(t) = Ax(t) +B1w(t) +B2u(t),

y(t) = Cx(t),

where B1 ∈ Rn×n1 models the influence of external disturbances on the control problem
and B2 ∈ Rn×m2 are the actual control inputs. The matrices R̃ > 0 and Q̃ ≥ 0 are
weighting matrices from the associated optimal control problem similar to Eq. (2a), and
γ > 0 is the robustness margin that is achieved by the constructed regulator/controller.
Equations of the form (4) can be rewritten into (1) via

B =
[
B1 B2

]
, Q = Q̃, R =

[
−γ2Im1 0

0 R̃

]
, S = 0.

In this case, the quadratic weighting term R in (1) is indefinite.
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2.4 Passivity, contractivity and spectral factorizations

As last examples, we would like to mention two equations that are related to dynamical
system properties such as contractivity and passivity as well as spectral factorizations of
rational functions [26,31,48,52]. The so-called bounded-real Riccati equation is given as

ATXE+ETXA+CTC+
(
BTXE +DTC

)T(
γ2Im −DTD

)−1 (
BTXE +DTC

)
= 0, (5)

with D ∈ Rp×m and γ > ∥H∥H∞ , where ∥.∥H∞ denotes the H∞ Hardy norm and H(s) =
C(sE −A)−1B + D is a rational function in the complex variable s ∈ C. On the other
hand, the positive-real Riccati equation reads

ATXE + ETXA+
(
BTXE − C

)T(
DT +D

)−1 (
BTXE − C

)
= 0, (6)

where the dimensions satisfy m = p. Equation (5) can be rewritten as (1) by choosing

Q = Ip, R = −
(
γ2 −DTD

)
, S = CTD,

and equation (6) can be reformulated using

Q = 0, R = −
(
DT +D

)
, S = CTD.

With the assumptions above, the R matrix is symmetric negative definite in both cases,
while Q is either symmetric positive definite or 0.

3 Low-rank inexact Newton-Kleinman iteration with line search

In this section, we derive the low-rank Newton-Kleinman iteration and provide the formu-
las for inexact steps, a line search approach and projected Riccati equations.

3.1 Derivation of the low-rank Newton-Kleinman scheme

Solving the CARE (1) is a root-finding problem with a nonlinear matrix-valued equation
and solution. Therefore, Newton’s method is a valid approach to compute a solution to
the problem [59], and it has been shown in many cases that the computed solution is
the desired stabilizing one. The basic method can be derived by considering the Fréchet
derivative of the Riccati operator

R(X) = ATXE + ETXA+ CTQC −
(
BTXE + ST

)T
R−1

(
BTXE + ST

)
, (7)

with respect to the unknown X. The first Fréchet derivative of (7) with respect to X and
evaluated in N is given by

R′(X)(N) =
(
A−BR−1(BTXE + ST)

)T
NE + ETN

(
A−BR−1(BTXE + ST)

)T
,

and the second Fréchet derivative with respect to X evaluated in N1 and N2 is independent
of X and can be written as

R′′(X)(N1, N2) = −ETN1BR−1BTN2E − ETN2BR−1BTN1E.
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As outlined in [17], the classical Newton approach is usually undesired in the case of
large-scale sparse systems when compared to the reformulation given by the Newton-
Kleinman scheme [38]. Either method is based on the solution of a Lyapunov equation
in every iteration step. However, while the classical Newton method computes an update
to the current iterate of the form Xk+1 = Xk + Nk, where Nk is given as the solution
to a Lyapunov equation, the Newton-Kleinman method computes Xk+1 directly as the
solution of the Lyapunov equation that is given by

R′(Xk)(Xk+1) = R′(Xk)(Xk)−R(Xk);

see [17]. Following this idea, the authors of [4,5] developed a Newton-Kleinman approach
for (1) solving the following Lyapunov equation

AT
kXk+1E + ETXk+1Ak + CTQC +KT

kRKk − SKk − (SKk)
T = 0 (8)

in every iteration step, with Ak = A − BKk and Kk = R−1(BTXkE + ST), and starting
with some initial stabilizing feedback K0. This K0 is chosen such that all eigenvalues of
λE − (A−BK0) lie in the open left half-plane.
To extend the scheme (8) to the large-scale sparse setting, we must first observe that the

part of the equation that does not contain the current unknown Xk+1, in other words its
right-hand side, is an indefinite symmetric matrix. To utilize this form of the right-hand
side, similar to the argumentation in [41], we propose to approximate the solution matrix
to (1) by a symmetric indefinite low-rank factorization of the form

LDLT ≈ X, (9)

where L ∈ Rn×ℓ and D ∈ Rℓ×ℓ is symmetric. By the low-rank structure of the right-hand
side coefficient matrices of (1), as well as its quadratic terms (since m, p≪ n), we expect
the solution to have numerically a low rank such that ℓ≪ n holds [10,62]. Rewriting the
right-hand side of (8) into the same shape as (9) yields

CTQC +KT
kRKk − SKk − (SKk)

T

=
[
CT KT

k S
] Q 0 0

0 R −Im
0 −Im 0

 C
Kk

ST

 , (10)

where the center matrix has the dimension 2m + p. It is possible to avoid the switching
term (the two negative identities) in the lower right corner of the center matrix in (10) by
making the following reformulations:

CTQC +KT
kRKk − SKk − (SKk)

T

= CTQC +KT
kRKk − SKk − (SKk)

T − SR−1ST + SR−1ST︸ ︷︷ ︸
=0

= CTQC − SR−1ST + (Kk −R−1ST)
T
R(Kk −R−1ST)

=
[
CT S (Kk −R−1ST)

T
]Q 0 0

0 −R 0
0 0 R

 C
ST

Kk −R−1ST

 . (11)

The reformulation in (11) also has 2m+ p as inner dimension of the factors and features
a block diagonal center matrix, which we believe to be advantageous in the implemen-
tation. Plugging (11) into (8) yields the final LDLT-factorized Lyapunov equation that
we employ in our new Newton-Kleinman iteration. The resulting method is summarized
in Algorithm 1. Lyapunov equations such as in Line 4 of Algorithm 1 can be efficiently
solved, for example, via the LDLT-factorized low-rank ADI method in [41].
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Algorithm 1: LDLT-factorized low-rank Newton-Kleinman iteration.

Input: Matrices A,B, S,C,Q,R,E from (1), stabilizing feedback K0 such that
sE − (A−BK0) is Hurwitz.

Output: Approximation LkDkL
T
k ≈ X∗ to the stabilizing solution of (1).

1 Initialize k = 0,

VT = R−1ST and T =

Q 0 0
0 −R 0
0 0 R

 .

2 while not converged do
3 Construct the residual right-hand side

Wk =

 C
VT

Kk − VT

 .

4 Solve the Lyapunov equation

AT
kXk+1E + ETXk+1Ak +WT

k TWk = 0,

for Lk+1Dk+1L
T
k+1 ≈ Xk+1 and where Ak = A−BKk.

5 Update the feedback matrix Kk+1 = R−1
(
BT(Lk+1Dk+1L

T
k+1)E + ST

)
.

6 Increment k ← k + 1.

7 end

3.2 An equivalent reformulation via low-rank updates

The efficient handling of the sparse plus low-rank operator Ak = A−BKk in the Lyapunov
equation in Line 4 of Algorithm 1 is essential for computing its solution in the large-scale
sparse case. Typically, linear systems of equations with Ak need to be solved, which can be
effectively implemented using the Sherman-Morrison-Woodbury matrix inversion formula
or the augmented matrix approach; see, for example, [34]. Since the handling of such
operators is already implemented in most software for the solution of matrix equations
such as the M-M.E.S.S. library [18], we may use a reformulation of (1) to hide the S inside
the other matrices. First, we observe that by multiplying out the terms in (1), we obtain
the equivalent CARE(

A−BR−1ST
)T

XE + ETX
(
A−BR−1ST

)
+
(
CTQC − SR−1ST

)
− ETXBR−1BTXE = 0. (12)

After some renaming of the terms in (12), we obtain

ÂTXE + ETXÂ+ ĈTQ̂Ĉ − ETXBR−1BTXE = 0, (13)

where

Â = A+ UVT, U = −B, V = SR−T, Ĉ =

[
C
ST

]
, Q̂ =

[
Q 0
0 −R−1

]
.

Running Algorithm 1 for the renamed matrices Â, B, Ŝ = 0, Ĉ, Q̂, R and E will yield
exactly the same iterates computed in every step, while hiding the original S term in Â
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and Ĉ. Note here that all the corresponding stabilizing feedbacks K̂k are changed such
that λE − (Â−BK̂k) is stabilized rather than λE − (A−BKk). In particular, the initial
stabilizing feedback must be chosen correctly. On the other hand, the final stabilizing
feedback K̂kmax , corresponding to the final iterate X̂kmax , can easily be modified to stabilize
the true associated matrix pencil λE −A via

Kkmax = K̂kmax + VT.

While the two formulations (1) and (13) are equivalent, employing the Newton-Kleinman
method for (13) rather than (1) is expected to be mildly more expensive in the general
case because the dimension of the right-hand side stays unchanged while the dimension of
the low-rank updates in Ak are increased by m columns. On the other hand, considering
the example equations from Section 2, we can also see a reduction in computational costs
using (13). In Equations (3), (5), and (6),the S term is a multiplication of the constant
term C with some appropriately sized matrix D. This fact allows us some additional
dimension reduction of the constant term in (13). As example, consider the case of the
LQG CARE in (3): The constant term in (13) can be written as

ĈTQ̂Ĉ = CTQ̃C − CTD(R̃+DTD)
−1

DTC = CT
(
Q̃−D(R̃+DTD)

−1
DT

)
︸ ︷︷ ︸

=Q̌

C = CTQ̌C.

In such cases, the size of the constant term in (13) can be reduced from 2m+p to m+p,
which improves the performance of large-scale sparse solvers that build the solution using
the constant right-hand side. We have implemented this version of Algorithm 1 for the
reformulated CARE (13) in the M-M.E.S.S. library [18] for our numerical experiments due
to the easy integration into the existing framework of CAREs of the form (13).

3.3 Convergence results

In the following theorem, we collect the convergence results for two distinct cases of (1),
depending on the definiteness of the quadratic term. The results are formulated for the
exact iterates Xk of the Newton-Kleinman iteration in Algorithm 1 rather than the low-
rank approximations LkDkL

T
k since the introduced disturbances may render the results

wrong. However, for accurate enough approximations, the results remain true in practice.

Theorem 1. Assume (1) has a unique stabilizing solution X∗, let K0 be a feedback matrix
such that the eigenvalues of λE− (A−BK0) lie in the open left complex half-plane and let
either R > 0 or R < 0 be true. Then, for the exact iterates Xk = LkDkL

T
k in Algorithm 1,

it holds that

(i) the closed-loop pencils λE −Ak with Ak = A−BKk are stable for all k ≥ 0,

(ii) lim
k→∞

Xk = X∗ and lim
k→∞

R(Xk) = 0,

(iii) the iterates Xk converge globally and quadratic to X∗,

(iv) if R > 0, then
X1 ≥ · · · ≥ Xk ≥ Xk+1 ≥ · · · ≥ X∗,

and if R < 0, then
X1 ≤ · · · ≤ Xk ≤ Xk+1 ≤ · · · ≤ X∗.

Preprint. 2024-02-10
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Proof. The results have been proven for the case R > 0 in [4]. In the case of R < 0, we
may use the convergence results from [25, Thm. 3.2], which are based on earlier results
from [9,65]. Therefore, we consider the equivalent reformulation of the CARE into classical
form (13). Since R < 0, it holds that −R > 0 and therefore, we may write (13) as

ÂTXE + ETXÂ+ ĈTQ̂Ĉ + ETXBR̂−1BTXE = 0,

where R̂ > 0. With K̂0 = K0 − R−1ST, the matrix pencil λE − (Â− BK̂0) is stable and
since R̂ > 0, we have that BR̂−1BT ≥ 0. Thus, the assumptions of [25, Thm. 3.2] are
satisfied, which proofs the results of this theorem.

Theorem 1 shows that the general convergence behavior of Algorithm 1 is only deter-
mined by the definiteness of the quadratic term. The other terms C, Q and S only affect
the definiteness of the stabilizing solution X∗, to which the method converges. Beyond the
convergence theory, the reformulations made in Section 3.1 and in the proof of Theorem 1
show that in exact arithmetic, the proposed Algorithm 1 provides the exact same iterates
as the Newton-Kleinman methods developed in [4, 25].
The techniques used to show all the convergence results in the proofs in [4, 25] are

based on the main observation that the difference of two consecutive steps in the Newton-
Kleinman scheme is given as the unique solution of the Lyapunov equation

Xk −Xk+1 =

∞∫
0

(
e(AE−1−BKk)t

)T
(Kk −Kk+1)

TR(Kk −Kk)e
(AE−1−BKk+1)t d t.

The definiteness of the difference Xk−Xk+1 depends thereby on the definiteness of the R
matrix resulting in the monotonic convergence behavior described in Theorem 1. In the
case of indefinite R, this monotonic behavior is likely to be lost as we will demonstrate
later in Section 4. However, we were not able to construct a case for which a stabilizing
solutionX∗ exists while the Newton-Kleinman method (Algorithm 1) diverges or converges
to the wrong solution. In fact, Algorithm 1 only diverged in experiments in which there
was no stabilizing X∗. This indicates that Algorithm 1 may always converge to the correct
solution; however, most of the convergence results in Theorem 1 will not be true anymore
for the case of indefinite R.
A different approach that provides a convergence theory for the case of indefinite R

is the Riccati iteration [16, 42]. This method iterates on Riccati equations with positive
semi-definite quadratic terms for which the convergence theory in Theorem 1 holds. Under
the additional assumption that Q ≥ 0 and X∗ ≥ 0 hold, the Riccati iteration constructs
iterates that monotonically converge towards X∗ as

XRI
0 ≤ · · · ≤ XRI

k ≤ XRI
k+1 ≤ X∗.

Since each of these iterates is computed via a CARE solver for R > 0, this overall iter-
ation scheme can be interpreted as splitting the two opposing convergence behaviors in
Theorem 1 into an inner and an outer iteration. Similar to the Newton methods, the
Riccati iteration provides global quadratic convergence. The main difference to the re-
sults in Theorem 1 is that the closed-loop matrix pencils constructed in the outer loop of
the iteration are not guaranteed to be stable such that additional stabilization might be
needed to employ an inner CARE solver in the large-scale sparse case.
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3.4 Inexact Newton with exact line search

Newton’s method with exact line search has first been discussed for dense generalized
algebraic Riccati equations in [13]. Based on this work, Weichelt et al. [17,66] formulated
an inexact low-rank Newton-ADI method with exact line search, focusing on the repre-
sentation of solutions in the form X ≈ ZZT. Since, in this work, we are pointing out
advantages of the X ≈ LDLT representation, we provide the required formulas in this
context and show that they can also be evaluated at low cost.
To this end, we may call the k-th and (k + 1)-st classic Newton-Kleinman iterates Xk

and Xk+1 and note that they are connected via the step matrix Nk, since Xk+1 = Xk+Nk.
Further, we denote the (k+1)-st iterate after line search with the resulting step size ξk as
Xk+1,ξk = Xk + ξkNk. In [66, Chap. 6], using earlier results from [8,13] for the dense case,
the author shows that the dependence on the step size ξk of the squared Riccati residual
norm, in the k-th Newton step, forms a quartic polynomial

fR,k(ξ) = ∥R(Xk+1,ξk)∥
2
F

= (1− ξ)2v
(k)
1 + ξ2v

(k)
2 + ξ4v

(k)
3 + 2ξ(1− ξ)v

(k)
4 − 2ξ2(1− ξ)v

(k)
5 − 2ξ3v

(k)
6 .

(14)

The coefficients are expressed in terms of the norms of the Riccati residual and its deriva-
tives evaluated in the above quantities, and expressed in low-rank form. In the context of
the equations investigated here, these terms become

v
(k)
1 = ∥R(Xk)∥2F = tr

(
(UkPkUk

T)
2
)
= tr

(
(Uk

TUkPk)
2
)
,

v2(k) = ∥L(Xk+1)∥2F = tr
(
(Fk+1Gk+1Fk+1

T)
2
)
= tr

(
(Fk+1

TFk+1Gk+1)
2
)
,

v
(k)
3 =

∥∥∥∥12R′′(Xk+1)(Nk, Nk)

∥∥∥∥2
F

=
∥∥∥ETNkBR−1BTNkE

∥∥∥2
F

= tr
(
(∆Kk+1R∆KT

k+1)
2
)
= tr

(
(∆Kk+1

T∆Kk+1R)
2
)
,

v
(k)
4 = ⟨R(Xk),L(Xk+1)⟩ = tr

(
UkPkUk

TFk+1Gk+1Fk+1
T
)

= tr
(
Fk+1

TUkPkU
T
k Fk+1Gk+1

)
,

v
(k)
5 = ⟨R(Xk),R′′(Xk+1)(Nk, Nk)⟩ = tr

(
UkPkUk

T∆Kk+1R∆KT
k+1

)
= tr

(
∆KT

k+1UkPkU
T
k∆Kk+1R

)
,

v
(k)
6 = ⟨L(Xk+1),R′′(Xk+1)(Nk, Nk)⟩ = tr

(
Fk+1Gk+1Fk+1

T∆Kk+1R∆KT
k+1

)
= tr

(
∆KT

k+1Fk+1Gk+1Fk+1
T∆Kk+1R

)
.

This is employing the Fréchet derivatives from Section 3.1, and we use that Nk = Xk+1−
Xk. Consequently, R−1BTNkE = Kk+1 −Kk = ∆Kk+1 holds. Further, we have defined
Uk =

[
Fk ∆Kk

]
and

Pk =

[
Gk 0
0 −R

]
,

to express the Riccati residual in the k-th Newton step asR(Xk) = UkPkU
T
k , extending [66,

Eqn. (6.33b)] to non-trivial center matrices. Here, L(Xk) = FkGkF
T
k denotes the final

Lyapunov residual of the k-th Newton step equations. Observe how the cyclic permutation
property of the trace allows turning all arguments into the final small dense matrices.
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Sorting terms by the powers of ξ in (14) leads to five coefficients of the fourth order
polynomial in standard form. The minimizing argument ξk is computed from the zeros of
d
dξfR,k. Then, the actual step size is

ξk = argmin
ξ∈Λ(Ã,Ẽ)∩(0,2] fR,k(ξ)

for the 3× 3 generalized eigenvalue problem for the matrix pencil

(Ã, Ẽ) =

 1 0 0
0 1 0
a1 a2 a3

 ,

1 0 0
0 1 0
0 0 a4

 ,

where a = 1
∥â∥ â and â ∈ R4 the with components

â1 = 2(v
(k)
4 − v

(k)
1 ),

â2 = 2(v
(k)
1 + v

(k)
2 − 2(v

(k)
4 + v

(k)
5 )),

â3 = 6(v
(k)
5 − v

(k)
6 ),

â4 = 4v
(k)
3 .

These last steps are exactly identical to the presentation in [17,66]. Note that additional
care is necessary when multiple consecutive iteration steps use line search since the Riccati
residual factors grow with the number of consecutive line searches and also ∆Kk+1 appends
a new block of columns, equal to its own size, with each additional line search iteration. See
the discussion in [17] after Equation (5.4) for details. In our context, the corresponding
center matrix Pk then block diagonally accumulates the corresponding center matrices
rather than simple signed identities. Note further, that alternatively an Armijo line search
can be used, but then the step size is limited to the interval (0, 1].

While the line search can help reduce the total number of Newton steps required, the
cost of the single steps can be reduced by an inexact Newton approach. The above
considerations are ensuring the sufficient decrease condition

∥R(Xk+1,ξk)∥F < (1− ξkβ) ∥R(Xk)∥F ,

for a certain positive safety parameter β. The inexact Newton acceleration, on the other
hand, is controlled by

∥L(Xk+1)∥F < τk ∥R(Xk)∥F ,

for an appropriate forcing sequence (τk)k∈N. In [66], the author suggests τk = 1
k3+1

to
achieve super-linear convergence and τk = min{0.1, 0.9 ∥R(Xk)∥F } to preserve quadratic
convergence; see [66, Table 6.1]. In general any τk → 0 for k →∞ would guarantee super-
linear convergence, while τk ∈ O(R(Xk)) ensures quadratic convergence. However, note
that while the general low-rank inexact Newton framework builds on the theory in [32],
certain definiteness conditions required in their central theorem can not be guaranteed
in general in the low-rank case such that the low-rank inexact Newton-Kleinman method
may break down. Implementations need to check this and potentially restart the method
without inexactness.

3.5 Non-invertible E matrices and projected Riccati equations

The examples for CAREs we have considered in Section 2 are all based on or associated
with linear dynamical systems. A regularly occurring situation is that these dynamical
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systems are described by differential-algebraic rather than ordinary differential equations,
in which case the E matrix in (1) becomes non-invertible. Assume that the matrix pencil
λE − A is regular, i.e., there exists a λ ∈ C such that det(λE − A) ̸= 0. Then, one
typically considers the solution of (1) over the subspace of finite eigenvalues of λE − A
via the projected Riccati equation

ATXE + ETXA+ PT
r C

TQCPr −
(
BTXE + STPr

)T
R−1

(
BTXE + STPr

)
= 0,

PT
ℓ XPℓ = X,

(15)

where Pr and Pℓ are the right and left projectors onto the subspace of finite eigenvalues
of λE−A. In general, these are given as spectral projectors via the Weierstrass canonical
form of λE − A; see, for example, [25]. While the necessary computations to obtain
these spectral projectors are typically undesired in the large-scale sparse case, for several
practically occurring matrix structures, the projectors have been formulated explicitly in
terms of parts the coefficient matrices [25,63].
In practice, a more efficient approach than explicitly forming Pr and Pℓ is the implicit

application of equivalent structural projectors. In this case, the stabilizing solution of (15)
is directly computed on the correct lower dimensional subspace. Similar to the use of the
spectral projectors, the implicit projection can, in practice, only be realized for certain
matrix structures, for which the projectors onto the correct subspaces and truncation of
the coefficient matrices are known by construction; see, for example, [6, 33, 57]. In all
cases, it needs to be noted that the steps in Algorithm 1 do not change for (15). The
case of non-invertible E matrices can typically be implemented by simply modifying the
matrix-matrix and matrix-vector operations needed in Algorithm 1 to work on the correct
subspaces.

4 Numerical experiments

The experiments reported here have been executed on a machine with an AMD Ryzen
Threadripper PRO 5975WX 32-Cores processor running at 4.02GHz and equipped with
252GB total main memory. The computer is running on Ubuntu 22.04.3 LTS and uses
MATLAB 23.2.0.2365128 (R2023b). The proposed low-rank Newton-Kleinman method in
Algorithm 1 has been implemented for dense equations using MORLAB version 6.0 [24,27]
and for large-scale sparse equations using M-M.E.S.S. version 3.0 [18, 56]. The resulting
modified versions of these two toolboxes as well as the source code, data and results of the
numerical experiments can be found at [58]. The implementations of Algorithm 1 will be
incorporated into the upcoming releases of M-M.E.S.S. and MORLAB.

4.1 Experimental setup

An overview about the used example data with the computed equation setups and corre-
sponding dimensions is shown in Table 1. The used example data are:

aircraft is the AC10 data set from [44] modeling the linearized vertical-plane dynamics
of an aircraft,

msd is a mass-spring-damper system with a holonomic constraint as described in [49],

rail(1,6) models a heat transfer problem for optimal cooling of steel profiles in two dif-
ferently accurate discretizations [22,51] using the re-implementation [54,55],
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Table 1: Overview about example data, matrix dimensions, considered equation setups and
the stability properties of the matrix pencil λE−A. The first three examples are
treated as dense and the latter three as large-scale sparse.

example n m m1 m2 p LQG HINF BR PR stability

aircraft 55 5 2 3 5 ✓ ✓ — — unstable
rail(1) 371 7 3 4 6 ✓ ✓ ✓ ✓ stable
triplechain(1) 602 1 — — 1 — — ✓ ✓ stable

msd 12 001 1 — — 3 — — ✓ — stable
triplechain(2) 12 002 1 — — 1 — — ✓ ✓ stable
rail(6) 317 377 7 3 4 6 ✓ ✓ ✓ ✓ stable

triplechain(1, 2) is the triplechain oscillator benchmark introduced in [64] with two
different sets of parameters and numbers of masses.

The data set msd has a non-invertible E matrix and is handled via structured implicit
projections as outlined in Section 3.5, following the theory in [57]. To test different sce-
narios of matrix pencil properties paired with different weighting terms, we have set up
the different formulations of CAREs as motivated in Section 2. Further on, we denote ex-
amples for equation (3) as LQG, equation (4) as HINF, equation (5) as BR and equation (6)
as PR. The modifications of the example data from the literature to fit into the described
equation types can be found in the accompanying code package [58].
To compare the solutions of different computational approaches, we evaluate three types

of scaled residual norms that have been used for similar purposes in the literature:

res1(X) =
∥R(X)∥2
∥ĈTQ̂Ĉ∥2

,

res2(X) =
∥R(X)∥2

∥Â∥2∥E∥2∥X∥2 + ∥BR−1BT∥2
,

res3(X) =
∥R(X)∥2

2∥Â∥2∥E∥2∥X∥2 + ∥ĈTQ̂Ĉ∥2 + ∥E∥22∥X∥22∥BR−1BT∥2
,

where R(.) is the Riccati operator from (7),

ĈTQ̂Ĉ = CTQC − SR−1ST and Â = A−BR−1ST.

In the case that multiple algorithms have been used to compute the stabilizing solution
to (1), we also compare the relative differences between these solutions via

reldiff(X1, X2) :=
∥X1 −X2∥2

0.5(∥X1∥2 + ∥X2∥2)
.

For compactness of presentation, we introduce the following notation for the different
methods used in the numerical experiments:

NEWTON denotes the Newton-Kleinman method from Algorithm 1,

ICARE is the built-in function from MATLAB for the solution of (1) implementing the
algorithm in [5],
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Table 2: Convergence behavior of the Newton-Kleinman method (NEWTON) for the exam-
ple (16): For each iteration step, the columns show the normalized residuals, the
two eigenvalues of the current closed-loop matrix and the two eigenvalues of the
difference of two consecutive iterates.

iter. step k res1(Xk) Λ(Ak) Λ(Xk − Xk−1)

1 5.3610e-01 −1.1049, −4.5676 —
2 3.5593e-02 −1.4100, −4.2395 3.7386e+00, −1.9830e-03
3 6.0872e-05 −1.4068, −4.2451 −5.0004e-02, 2.6109e-05
4 1.5903e-10 −1.4068, −4.2451 6.6211e-05, 1.1112e-09
5 2.1316e-14 −1.4068, −4.2451 −1.3313e-10, −1.8760e-15

SIGN denotes the sign function iteration method for Riccati equations as described in [14],

RI is the Riccati iteration for the solution of CAREs with indefinite quadratic terms;
see [16,42].

Independent of the employed algorithm and the resulting format of the computed results,
e.g., factorized or unfactorized, we denote the final approximation to the stabilizing solu-
tion X∗ by any of the algorithms as Xkmax .

4.2 Convergence behavior for indefinite terms

Before we test the proposed method on higher dimensional data sets against other ap-
proaches, we want to investigate the convergence behavior of Algorithm 1 for the case
of indefinite quadratic and constant terms. In particular the former case is not covered
by any convergence theory for NEWTON. First, consider the CARE (1) with the following
matrices

A =

[
2 1
1 −3

]
, B =

[
1 1
0 2

]
, R =

[
−1 0
0 1.5

]
, C =

[
1 1

]
,

E = I2, S = 0, Q = 1.

(16)

In this example, we have an unstable matrix pencil λE − A with one eigenvalue in the
right open and one eigenvalue in the left open half-plane. The quadratic weighting term
R is indefinite but the constant weighting term Q is symmetric positive definite. For the
stabilizing solution it holds that X∗ > 0 such that besides NEWTON, RI can be used in this
example. Due to the instability, a stabilizing initial feedback K0 is constructed for NEWTON;
see [58] for details. The convergence behavior of NEWTON for (16) is shown in Table 2.
We observe that despite the indefinite quadratic term, the iteration provides quadratic
convergence and the intermediate closed-loop matrices Ak = A − BKk are all stable.
However, the monotonic convergence behavior that is theoretically shown for definite R
matrices is clearly not present in this example, since the eigenvalues of Xk − Xk−1 have
different signs for two of the iteration steps. Also, the definiteness of Xk − Xk−1 fully
changes from step 4 to 5.
As additional verification that Algorithm 1 computes the correct, stabilizing solution,

we compare it to solutions obtained via ICARE and RI. The corresponding residuals are
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Table 3: Residual norms for all test examples and comparison methods in Section 4.2.
NEWTON provides as accurate or even more accurate solutions compared to the
standard approach ICARE. RI only works for the first considered scenario and
diverges for the second one.

example method res1(Xkmax) res2(Xkmax) res3(Xkmax)

NEWTON 9.5151e-15 2.2825e-16 8.7894e-18
example (16) ICARE 3.5804e-15 8.5887e-17 3.3073e-18

RI 3.1979e-12 7.6713e-14 2.9540e-15

NEWTON 1.9453e-14 3.4368e-16 1.2723e-17
example (17) ICARE 6.0957e-13 1.0770e-14 3.9870e-16

RI 1.7227e+40 2.5740e+19 8.3380e-02

example (18) NEWTON 3.2437e-17 3.0279e-17 9.9467e-18
ICARE 1.9624e-16 1.8318e-16 6.0177e-17

given in the first block of Table 3 and the relative differences are

reldiff(XNEWTON
kmax

, XICARE
kmax

) = 8.8968e-15,

reldiff(XNEWTON
kmax

, XRI
kmax

) = 1.0286e-13,

reldiff(XICARE
kmax

, XRI
kmax

) = 1.1175e-13.

This clearly shows that all methods approximate the same stabilizing solution.
Now, we modify the example data by increasing the positive definite part of the R

matrix in (16) such that we have now

A =

[
2 1
1 −3

]
, B =

[
1 1
0 2

]
, R =

[
−1 0
0 2

]
, C =

[
1 1

]
,

E = I2, S = 0, Q = 1.

(17)

Similar to (16), we consider the case of an indefinite weighing matrix in the quadratic
term of (1); however, the change in the data results in the stabilizing solution X∗ being
indefinite. The convergence behavior of NEWTON for this case is shown in Table 4. As in
the previous example, the convergence is quadratic towards the stabilizing solution and
the iterates do not show any monotonicity. Additionally, we do not have the stability of
all closed-loop matrices during the iteration as the one computed in the first step is clearly
unstable. We do not expect RI to work for this case due to X∗ being indefinite and, in
fact, we see in the second block row of Table 3 that RI does not converge to a solution
of (1). However, NEWTON clearly converges to the correct solution with a relative difference
to the solution computed by ICARE of

reldiff(XNEWTON
kmax

, XICARE
kmax

) = 5.6279e-15.

As final preliminary example, we want to investigate the effect of an indefinite constant
term. Therefore, we modify the previous example as follows

A =

[
2 1
1 −3

]
, B =

[
1
1

]
, Q =

[
1 0
0 −2

]
, C =

[
1 1
0 2

]
,

E = I2, S = 0, R = 1.

(18)
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Table 4: Convergence behavior of the Newton-Kleinman method (NEWTON) for the exam-
ple (17): For each iteration step, the columns show the normalized residuals, the
two eigenvalues of the current closed-loop matrix and the two eigenvalues of the
difference of two consecutive iterates.

iter. step k res1(Xk) Λ(Ak) Λ(Xk − Xk−1)

1 1.3423e+01 2.3071, −7.8315 —
2 3.1646e-01 −4.1113, −1.4164 −1.3696e+02, −7.4641e-04
3 8.2620e-03 −4.0451, −1.4620 −7.8472e-01, 2.3569e-04
4 1.9458e-06 −4.0448, −1.4626 −8.1348e-03, 7.4808e-08
5 3.3469e-14 −4.0448, −1.4626 1.5635e-06, 1.1925e-11

Table 5: Convergence behavior of the Newton-Kleinman method (NEWTON) for the exam-
ple (18): For each iteration step, the columns show the normalized residuals, the
two eigenvalues of the current closed-loop matrix and the two eigenvalues of the
difference of two consecutive iterates.

iter. step k res1(Xk) Λ(Ak) Λ(Xk − Xk−1)

1 1.9109e-01 −3.3289, −0.8111 —
2 1.4573e-02 −3.2914, −0.5227 −3.3630e-01, −1.3069e-02
3 7.0984e-04 −3.2887, −0.4383 −5.9143e-02, −9.6054e-04
4 5.7445e-06 −3.2886, −0.4301 −5.0185e-03, −7.8659e-06
5 5.0562e-10 −3.2886, −0.4300 −4.6517e-05, −4.3494e-09
6 3.0792e-17 −3.2886, −0.4300 −4.2059e-09, −2.1477e-14

Since we have already seen the effects of an indefinite quadratic term, we consider here
R > 0 for simplicity. The stabilizing solution in this example is indefinite again. Table 5
shows the convergence behavior of NEWTON for this example case. We see exactly what was
expected from Theorem 1: the closed-loop matrices are stable in all steps, the convergence
is quadratic and monotonic. Since RI has not been extended to the case of indefinite
constant terms and the solution is not positive semi-definite, we omit the comparing
computations with this method here and only provide the results of ICARE instead. The
residual norms can be found in the third block row of Table 3 and the relative difference
between the solutions computed by NEWTON and ICARE is

reldiff(XNEWTON
kmax

, XICARE
kmax

) = 8.8968e-15.

Both methods appear to approximate the same stabilizing solution.

4.3 Numerical comparisons

In this section, we compare the proposed algorithm with established solvers in different
benchmark data sets from the literature and equation scenarios. While we concentrate on
examples with small-scale dense coefficient matrices in the first part to establish trust into
the proposed NEWTON method, we present results for large-scale sparse matrices afterwards.
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4.3.1 Examples with dense coefficient matrices

An overview about the experiments presented in this section is given in the first block
row of Table 1. We decided to start by experimenting with small-scale dense coefficient
matrices since for this case, there are well established solvers that can handle the general
case (1), which we consider in this paper. Such a variety of methods is not given for
large-scale sparse matrices; therefore, here, we numerically establish trust into the solu-
tions obtained by NEWTON and show that they provide reasonable accuracy in comparison
to other approaches. For the comparison, we have selected SIGN and ICARE as two well-
established approaches for general CAREs with dense coefficient matrices. The results
of the experiments are shown in Table 6 in form of the residual norms for the different
methods and in Table 7, which shows the relative differences between the solutions com-
puted by the different approaches. For further experimental metrics such as the amount
of iteration steps taken by NEWTON and SIGN, computation times, and more, we refer the
reader to the log files of the experiments in the accompanying code package [58].
Overall, we can evaluate that NEWTON performs comparably well or even best among

all those methods. Note that we used 10−12 as convergence tolerance for the normalized
residual norm internally computed by NEWTON such that we do not expect much smaller
values for res1(Xkmax) in Table 6. Despite that, NEWTON shows in various examples up to
one order of magnitude better residuals than ICARE and often several orders of magnitude
better residuals than SIGN. The relative differences in Table 7 show numerically that all
three methods approximate the same stabilizing solution to the example equations and
provide similar solutions with many significant digits of accuracy in common. With these
results at hand, we believe that applying NEWTON in the large-scale sparse setting will
provide correct as well as sufficiently accurate solutions.

4.3.2 Examples with large-scale sparse coefficient matrices

Now we consider the case of CARE examples with large-scale sparse coefficient matri-
ces. An overview about these experiments is given in the second block row of Table 1.
Whenever possible, we used RI as comparison method where we chose RADI as solver for
the Riccati equations with positive semi-definite quadratic terms occurring in each step of
the iteration. The residual norms of the computed results are shown in Table 8 and the
relative differences for examples in which NEWTON and RI could be applied in Table 9.

The residual norms in Table 8 show NEWTON to provide accurate solutions to all exam-
ple equations. It stands out that, in all examples, NEWTON provides residual norms that
are at least three orders of magnitude better than those of the solutions provided by RI.
One possible explanation for these results is that in RI, the overall solution is accumu-
lated via column concatenation and truncation. This easily leads to the loss of numerical
accuracy especially in the cases when the stabilizing solution is badly conditioned. For
rail(6) (LQG), we could not use RI for the comparison, since the constant term in this
example is indefinite by construction. The stabilizing solution however is numerically
positive semi-definite.
The convergence behavior of NEWTON and RI for the example equations on the data set

rail(6) is illustrated in Figure 1. These and similar plots for the other sparse examples
can be found in the accompanying code package [58]. The plots show that for the cases
that RI was applicable, it strongly outperformed NEWTON in terms of computation time.
This is a result of the choice for the internal CARE solver in RI, which in our experiments
was the RADI method [11]. The residuals shown are those that the methods implicitly
compute during the iterations to determine convergence. Comparing these plots with
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Table 6: Residual norms for all dense test examples and comparison methods in Sec-
tion 4.3.1. NEWTON provides reasonably accurate and often the most accurate
approximations compared to SIGN and ICARE.

example method res1(Xkmax) res2(Xkmax) res3(Xkmax)

NEWTON 4.1073e-08 1.3682e-20 4.5781e-27
aircraft (LQG) SIGN 2.6483e-05 8.8220e-18 2.9519e-24

ICARE 1.0713e-07 3.5686e-20 1.1941e-26

NEWTON 7.4736e-07 2.4035e-20 9.7826e-26
aircraft (HINF) SIGN 3.0047e-06 9.6631e-20 3.9330e-25

ICARE 1.9949e-05 6.4155e-19 2.6112e-24

NEWTON 7.5678e-14 1.0229e-14 8.8312e-16
rail(1) (LQG) SIGN 3.1905e-10 4.3122e-11 3.7231e-12

ICARE 2.0819e-13 2.8139e-14 2.4294e-15

NEWTON 2.4749e-12 4.0514e-13 8.6384e-16
rail(1) (HINF) SIGN 5.5336e-10 9.0584e-11 1.9314e-13

ICARE 5.4824e-14 8.9746e-15 1.9136e-17

NEWTON 1.5986e-13 1.4855e-14 6.2186e-15
rail(1) (BR) SIGN 3.1304e-14 2.9089e-15 1.2178e-15

ICARE 1.3867e-13 1.2886e-14 5.3943e-15

NEWTON 9.3161e-12 6.4179e-13 2.3614e-13
rail(1) (PR) SIGN 4.3343e-10 2.9859e-11 1.0986e-11

ICARE 6.4693e-14 4.4567e-15 1.6398e-15

NEWTON 3.6923e-11 3.0799e-16 1.5397e-16
triplechain(1)(BR) SIGN 9.2343e-11 7.7027e-16 3.8506e-16

ICARE 1.6221e-10 1.3531e-15 6.7641e-16

NEWTON 6.4378e-12 6.9411e-17 1.4807e-15
triplechain(1)(PR) SIGN 3.6829e-12 3.9708e-17 8.4708e-16

ICARE 1.6286e-11 1.7559e-16 3.7457e-15
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Table 7: Relative differences for the dense test examples in Section 4.3.1. All differences
are reasonably low such that numerically we can rely on the results provided by
NEWTON.

example reldiff(XNEWTON
kmax

, XSIGN
kmax

) reldiff(XNEWTON
kmax

, XICARE
kmax

)

aircraft (LQG) 1.5687e-12 5.2915e-14
aircraft (HINF) 3.4874e-13 5.4917e-13
rail(1) (LQG) 3.3423e-10 1.0539e-11
rail(1) (HINF) 8.0362e-10 8.0170e-10
rail(1) (BR) 9.2682e-13 9.2764e-13
rail(1) (PR) 6.4985e-10 6.6590e-10
triplechain(1)(BR) 2.3524e-11 4.8920e-11
triplechain(1)(PR) 1.7659e-12 1.1858e-10

Table 8 reveals that the residuals internally computed by RI strongly diverge from the
actual normalized residual norm res1(Xkmax), which is several orders of magnitude larger.
On the other hand, for NEWTON the results seem to coincide very well.

5 Conclusions

In this work, we presented a new formulation of the Newton-Kleinman iteration for solv-
ing general continuous-time algebraic Riccati equations with large-scale sparse coefficient
matrices using low-rank indefinite symmetric LDLT factorizations of the solution. For
relevant scenarios from the literature, we could show the theoretical convergence of the al-
gorithm. We provided the updated formulas for an exact line search procedure and inexact
inner solves, and we outlined how to handle the case of projected algebraic Riccati equa-
tions occurring for matrix pencils with infinite eigenvalues. The numerical experiments
show that our proposed algorithm provides reliable and accurate solutions to the consid-
ered problem and that even in the cases for which we could not provide a convergence
theory, the algorithm appears to work perfectly fine.
While we were able to provide convergence results for many of the practically occur-

ring cases, the convergence behavior for the case of indefinite quadratic terms remains
unsolved. The numerical results suggest that even in this situation, the proposed Newton-
Kleinman method converges to the correct solution, however, the lack of monotonicity in
the constructed iterates prevents the use of established strategies for proving convergence.
Also, we have observed in our experiments that, while the new Newton-Kleinman itera-
tion outperformed all comparing methods (if there were any at all) in terms of accuracy,
it could not compete in the large-scale sparse case with the computational speed of the
Riccati iteration that employed the RADI method as inner solver. Therefore, it is in our
interest to investigate possible extensions of other, potentially faster performing methods
to the case of general algebraic Riccati equations.
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Table 8: Residual norms for all sparse test examples and comparison methods in Sec-
tion 4.3.2. NEWTON provides very accurate approximations throughout all exam-
ples with residual norms up to eight orders of magnitude smaller than RI.

example method res1(Xkmax) res2(Xkmax) res3(Xkmax)

msd (BR) NEWTON 2.1781e-13 1.4945e-17 1.8157e-19
RI 1.6943e-08 1.1626e-12 1.4124e-14

triplechain(2)(BR) NEWTON 7.0476e-13 7.5953e-21 3.4138e-21
RI 3.6606e-05 3.9451e-13 1.7732e-13

triplechain(2)(PR) NEWTON 5.0010e-13 4.6881e-21 3.5724e-24
RI 3.4240e-05 3.2098e-13 2.4459e-16

rail(6) (LQG) NEWTON 9.6445e-13 6.6215e-14 2.8035e-14

rail(6) (HINF) NEWTON 4.5192e-13 2.8799e-14 1.4346e-15
RI 1.1576e-10 7.3768e-12 3.6748e-13

rail(6) (BR) NEWTON 8.8948e-14 4.6198e-15 2.2423e-15
RI 1.6442e-10 8.5396e-12 4.1448e-12

rail(6) (PR) NEWTON 2.8870e-13 5.3150e-16 2.6375e-16
RI 5.7022e-09 1.0498e-11 5.2095e-12

Table 9: Relative differences for all sparse examples in Section 4.3.2. All differences are
reasonably low such that numerically we can rely on the results provided by
NEWTON. Due to the lack of comparison methods, relative differences could not be
provided for all test scenarios.

example reldiff(XNEWTON
kmax

, XRI
kmax

)

msd (BR) 1.8490e-12
triplechain(2)(BR) 6.9416e-11
triplechain(2)(PR) 6.9221e-11
rail(6) (HINF) 5.4646e-10
rail(6) (BR) 4.9422e-08
rail(6) (PR) 8.6206e-10
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Figure 1: Convergence of NEWTON and RI for all example equations with the rail(6) data
set: We can see that in all examples where it was applicable RI obtains its
final approximation significantly faster than NEWTON. This comes from the use of
RADI as underlying solver. However, the shown implicit residual computed by
RI is not accurate as shown in Table 8.
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[48] Green M. A relative error bound for balanced stochastic truncation. IEEE Trans.
Autom. Control, 33(10):961–965, 1988. doi:10.1109/9.7255.

[49] V. Mehrmann and T. Stykel. Balanced truncation model reduction for large-scale
systems in descriptor form. In P. Benner, V. Mehrmann, and D. C. Sorensen, edi-
tors, Dimension Reduction of Large-Scale Systems, volume 45 of Lect. Notes Com-
put. Sci. Eng., pages 83–115. Springer, Berlin, Heidelberg, 2005. doi:10.1007/

3-540-27909-1_3.

[50] D. Mustafa and K. Glover. Controller reduction by H∞-balanced truncation. IEEE
Trans. Autom. Control, 36(6):668–682, 1991. doi:10.1109/9.86941.

[51] Oberwolfach Benchmark Collection. Steel profile. hosted at MORwiki – Model Order
Reduction Wiki, 2005. URL: https://morwiki.mpi-magdeburg.mpg.de/morwiki/
index.php/Steel_Profile.

[52] P. C. Opdenacker and E. A. Jonckheere. A contraction mapping preserving balanced
reduction scheme and its infinity norm error bounds. IEEE Trans. Circuits Syst.,
35(2):184–189, 1988. doi:10.1109/31.1720.

[53] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function. Internat. J. Control, 32(4):677–687, 1980. Reprint of
Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering
Department, 1971. doi:10.1080/00207178008922881.

Preprint. 2024-02-10

http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2
http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2
https://doi.org/10.1002/pamm.201410394
https://doi.org/10.1109/TAC.2008.2006108
https://doi.org/10.1109/TAC.2008.2006108
https://doi.org/10.1109/TAC.1979.1102178
http://www.friedemann-leibfritz.de/COMPlib_Data/COMPlib_Main_Paper.pdf
http://www.friedemann-leibfritz.de/COMPlib_Data/COMPlib_Main_Paper.pdf
https://doi.org/10.1137/S0895479801384937
https://doi.org/10.1002/nla.1936
https://doi.org/10.1109/9.7255
https://doi.org/10.1007/3-540-27909-1_3
https://doi.org/10.1007/3-540-27909-1_3
https://doi.org/10.1109/9.86941
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Steel_Profile
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Steel_Profile
https://doi.org/10.1109/31.1720
https://doi.org/10.1080/00207178008922881


J. Saak, S. W. R. Werner: LDLT factorizations for solving general CAREs 26

[54] J. Saak and M. Behr. Reimplementation of optimal cooling process for a steel profile of
a rail, 2020. URL: https://gitlab.mpi-magdeburg.mpg.de/models/fenicsrail.

[55] J. Saak and M. Behr. The Oberwolfach steel-profile benchmark revisited, July 2021.
doi:10.5281/zenodo.5113560.
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