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The exponential growth in scientific publications poses a severe challenge for human researchers.
It forces attention to more narrow sub-fields, which makes it challenging to discover new impactful
research ideas and collaborations outside one’s own field. While there are ways to predict a scientific
paper’s future citation counts, they need the research to be finished and the paper written, usually
assessing impact long after the idea was conceived. Here we show how to predict the impact of
onsets of ideas that have never been published by researchers. For that, we developed a large
evolving knowledge graph built from more than 21 million scientific papers. It combines a semantic
network created from the content of the papers and an impact network created from the historic
citations of papers. Using machine learning, we can predict the dynamic of the evolving network
into the future with high accuracy, and thereby the impact of new research directions. We envision
that the ability to predict the impact of new ideas will be a crucial component of future artificial
muses that can inspire new impactful and interesting scientific ideas.

Introduction

As we see an explosion in the number of scientific ar-
ticles [1–4], it becomes increasingly challenging for re-
searchers to find new impactful research directions be-
yond their own expertise. Consequently, researchers
might have to focus on narrow subdisciplines. A tool
that can read and intelligently act upon scientific lit-
erature could be an enormous aid to individual scien-
tists in choosing their next new and high-impact research
project, which – on a global scale – could significantly ac-
celerate science itself.

These days, a natural first choice for an AI-assistant
would be powerful large-language-models (LLM) such as
GPT-4 [5], Gemini [6] or LLaMA-2 [7] or custom-made
models [8]. However, these models often struggle in sci-
entific reasoning, and it remains unclear how they can
suggest new scientific ideas or evaluate their impact in a
reliable way in the near term.

An alternative and complementary approach is to build
scientific semantic knowledge graphs. Here, the nodes
represent scientific concepts and the edges are formed
when two concepts are researched together in a scien-
tific paper [2]. While this approach extracts only small
amounts of information from each paper, surprisingly
non-trivial conclusions can still be drawn if the underly-
ing dataset of papers is large. An early example of this is
a work in biochemistry [9]. The authors use their seman-
tic network, where nodes represent biomolecules, to find
new potentially more efficient exploration strategies for
the bio-chemistry community on a global scale. In these
semantic networks, an edge between two concepts indi-
cates that researchers have jointly investigated these re-
search concepts. The edges are drawn from papers, thus
they are created at a specific time when the paper was
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published. In this way, one creates an evolving semantic
network that captures what researchers have investigated
in the past. With such an evolving network, one can ask
how the network might evolve in the future. In the sci-
entific context, this question can be reformulated into
what scientists will research in the future. For example,
if two nodes do not share an edge, one can ask whether
they will share an edge in the next three years – or, al-
ternatively, whether scientists will investigate these two
concepts jointly within three years. This question, de-
noted as link-prediction problem in network theory [10],
has been successfully demonstrated with high prediction
quality for semantic networks in quantum theory [11] and
artificial intelligence [4].

Novelty plays an essential role in scientific ideas, but
being novel doesn’t automatically mean that an idea will
have a high impact. Impact in the scientific community
is often approximated (for lack of better metrics [12, 13])
by citations [1, 2, 14, 15], including exciting results that
find interpretable mathematical models to describe ci-
tation evolution [16–19]. Beside concrete mathematical
modelling, impact of scientific papers has also been pre-
dicted using advanced statistical and machine-learning
methods that use meta-data such as including authors
and affiliations [20], the content and the references of the
paper [21, 22]. Techniques employed for the predictions
of individual paper impact using a combination of charac-
teristics include support-vector machines [23], regression
[24–26], dense [27] or graph neural networks [28].

The prediction of a paper’s impact however is only pos-
sible after the research is completed, and long after its
underlying idea is created. A true scientific assistent or
muse however should contribute at the earliest stage of
the scientific cycle, when the idea for the next impactful
research project is born. One solution is the prediction
at the concept level. Specifically, we can ask the question
Which scientific concepts, that have never been investi-
gated jointly, will lead to the most impactful research?.
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2,444,442 
papers

Proc. Natl Acad. Sci. USA 117, 60–67 (2020)
Accurate and rapid background estimation in 
single-molecule localization microscopy using 
the deep neural network […] even when point-
spread function (PSF) engineering is in use to 
create complex PSF shapes. We trained BGnet 
to extract the background from images […].

Phys. Rev. D 97, 102002 (2018)
[…] Cosmic strings are topological defects 
which can be formed in grand unified theory 
scale phase transitions in the […] loops and the 
subsequent emission of gravitational waves, 
thus offering an experimental signature for the 
existence of cosmic strings […]

Phys. Rev. B 98, 060301 (2018)
Learning phase transitions from dynamics […] 
use of recurrent neural networks for classifying 
phases […] featuring an inherently dynamical 
time-crystalline phase, the phase diagram that 
our network […]

Nat Commun 11, 1493 (2020) 
[…] we develop a supervised machine-learning 
approach to cluster analysis which is fast and 
accurate. Trained on a variety of simulated 
clustered data, the neural network can classify 
millions of points from a typical single-molecule 
localization microscopy data set, with […].
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Fig. 1. Generation of the knowledge graph with time and citation information. Vertices are formed by scientific
concepts, which are extracted from scientific papers (titles and abstracts) from prominent academic preprint servers. Edges
are formed when concepts are investigated jointly in a scientific publication. There are 21,165,421 out of 92,764,635 papers
from OpenAlex which form at least one edge. The edges are augmented with citation information, which acts as a proxy for
impact in our work. A mini-knowledge graph (blue edges) is constructed from four randomly selected papers (p1-p4) [29–32]
from OpenAlex as an example. Here, cp4 represents the total citations of paper p4 since its publication, and cp4(y) denotes its
annual citations from 2018 to 2022. The citation value of the edge is the sum of the all papers creating the edge.

In this work, we answer this question by combining se-
mantic networks and citation networks that are purely
based on the level of scientific concepts1. Specifically,
we develop a large evolving knowledge graph using more
than 21 million scientific papers, from 1709 (starting with
a letter by Antoni van Leeuwenhoek [33]) to April 2023.
The vertices of the knowledge graph are scientific con-
cepts and the edges between two concepts contain infor-
mation about when these topics have been investigated
and how often they have been cited subsequently. We
then train a machine learning model on the historic evo-
lution of the knowledge graph. We find that the neural
network can predict with high accuracy which concept

1 GitHub: Impact4Cast

pairs, that have never been jointly investigated before in
any scientific paper, will be highly cited in the future.
Being able to predict the potential impact of new re-
search ideas – before the paper is written or the research
is done or even started – could be a cornerstone in fu-
ture scientific AI-assistants that help humans broadening
their horizon of possible new research endeavours [34].

The Knowledge Graph

Creating a list of scientific concepts – At the heart
of our knowledge graph are scientific concepts, as de-
picted in Fig. 1. We chose not to rely on existing concept
lists, such as the APS or computer science ontology [40],
for several reasons. Firstly, our goal is to ultimately cover

https://github.com/artificial-scientist-lab/Impact4Cast
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Fig. 2. Heavy-tail distribution of edge-citation rates.
Histogram of citation growth over a three-year period for con-
cept pairs initially cited zero times in 2012 (red, containing)
and 2019 (blue).

all natural sciences comprehensively, and a universal list
encompassing this breadth doesn’t currently exist. Sec-
ondly, we want to capture the most recent concepts that
might be absent from existing lists. Lastly, generating
our list ensures that we have a granular understanding
and control over the included concepts.

To build our concept list, we started with 2,444,442 pa-
pers from four publicly available preprint servers: arXiv,
bioRxiv, medRxiv, and ChemRxiv. The data cutoff is
February 2023. From these, we extracted titles and ab-
stracts of the papers. To single out concept candidates
from this extensive collection, we applied the Rapid Au-
tomatic Keyword Extraction (RAKE) algorithm based
on statistical text analysis to automatically detect im-
portant keywords [41]. Concepts with two words, like
phase transition, were retained if they appear in at least
9 papers, while longer concepts, such as single molecule
localization microscopy, needed to appear in at least 6 pa-
pers. In this way, we can increase the ratio of high-quality
concepts. To refine our list further, we developed a suite
of natural language processing tools. Finally, we got a
list which contains over 368,000 concepts. While we fo-
cus here on concepts specific to the sub-field of optics and
quantum physics (representing roughly 10% of the entire
concepts), our method can immediately be translated to
any other domain. This refined domain-specific concept
list serves as the vertices for our knowledge graph.

Creating an evolving, citation-augmented
knowledge graph – Now that we have the vertices,
we can create edges that contain information from
the scientific literature. To have citation information,
we use the works from OpenAlex [42], an open-source
database containing detailed information on more than
90 million scientific publications. Edges are drawn

when two concepts co-occur in the title or abstract of
a scientific paper. If a paper connects two vertices, the
weight of the newly formed edge is the paper’s annual
citation numbers from 2012 to 2023 together with the
total citation number since its publication. If more than
one paper creates an edge, then the edge contains the
sum of the annual citations (as well as the sum of the
total citations) gained by all papers. As research papers
appear over time, and their citations are created in time,
we effectively build an evolving, citation-augmented
knowledge graph that evolves in time (see Fig. 1).
The final constructed knowledge graph has 37,960 ver-

tices with more than 26 million edges (built from 190
million concept pairs, containing multi-edges when mul-
tiple papers create the same edge) from the OpenAlex
database, with a data cutoff at April 2023. In Fig. 2, we
see that the distribution of the 3-year citation increase
for previously uncited concept pairs exhibits a heavy tail.
This suggests that some concept pairs are cited signifi-
cantly more than would be expected from an exponential
decrease, potentially due to the influence of concept hubs
[4]. In Fig. 3, we show the fastest growing (in terms of
citation) concepts and concept pairs since 2012, where we
can recognize many highly influential topics in quantum
physics and optics research.

Results

Forecasting impact of newly created concept
connections – With an evolving knowledge graph from
the past, we can formulate the prediction of impact for
new concept pairs as a supervised learning task, as il-
lustrated in Fig. 4. For a vertex pair that has not had
any connection in the year 2016, we predict whether 3
years later this vertex pair accumulated more than a cer-
tain number of citations. Using the historical knowledge
graph, we possess an ideal supervision signal for our bi-
nary classification task. During the training phase, we
selected pairs of vertices that were not connected and
calculated 141 features for each pair. These features in-
clude 41 network features, divided into 20 node features
(such as the number of neighbors and PageRank [43] over
the past three years) and 21 edge features (including co-
sine, geometric, and Simpson similarities [44]). Addition-
ally, we incorporated 100 impact features: 58 of these are
node citation features, covering total citations and the
count of papers mentioning the concept within the last
three years. The other 42 features are about vertex pairs
and include measures such as the citation ratio between
them. The network feature is inspired by the winner of
the Science4Cast competition [11, 45], and the citation
features are developed empirically and could potentially
be improved by careful feature importance analysis. Our
neural network is a fully connected feed-forward network
with four hidden layers of 600 neurons each. The explo-
ration of more advanced architectures might improve the
prediction qualities further. The neural network has to
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Fig. 3. Fastest growing citations of concepts and concept pairs: Evolution of citations over three years for the top-
fastest growing, previously uncited concepts (a) and concept pairs (b). We find many revolutionary topics in the realm of
quantum physics and optics research in the last decade, including Perovskite devices [35], the emergence of complex and non-
hermitian topology [36], the introduction of advanced concepts of machine learning in physics [37–39] and quasi-BIC (bound
state in continuum) resonances.
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features

Fig. 4. Forecasting the impact of new research connections. Network and citation features from unconnected vertex
pairs as of 2016 are used as input to a neural network. The citation information from 2019 is used as a supervision signal to
train the neural network. After training, we evaluate the neural network’s abilities by applying it to unconnected vertex pairs
as of 2019, aiming to predict the developments in 2022 – a task involving data the network has never encountered before.

predict whether the unconnected vertex pair in 2019 will
have more than IR citations (IR is impact range).

We perform the training from IR = 1 to IR = 200. We
quantify the quality with the area under curve (AUC) of
the receiver operating characteristic curve (ROC) [46].
The AUC gives a measure of classification quality and
stands for the probability that a randomly chosen true
example is ranked higher than a randomly chosen false
example. A random classifier has AUC = 0.5. We mea-
sure the AUC for a test set (which contains unconnected
pairs not in the training set) for a prediction from 2016
to 2019, and for an evaluation dataset, with 10 million

random data from 2019 to 2022 (while keeping the train-
ing data of the neural network from the year 2016 to
2019). The evaluation dataset shows how well the neural
network performs on future, never-seen datasets. This is
motivated by our goal that ultimately we want to train
a neural network with all available data (let’s say, until
the end of 2023) and predict what happens until the fu-
ture in 2026. In Fig. 5(a), we find that the AUC scores
for both the test set and the evaluation set are beyond
0.8, in most of the cases beyond 0.9, for different val-
ues of the impact range IR. We can conclude that the
neural network can forecast a high impact of previously
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Fig. 5. Evaluating the machine-learning-based impact forecast. (a): Classification of unconnected concept pairs,
whether they will have more than certain citations 3 years later. We quantify the quality using the area under the receiver
operating characteristic curve (labeled as AUC) for different impact ranges (IR). For example, IR = 100, i.e, {< 100, >= 100},
refers to whether the citation count accumulated in three years after 2016 (test) or after 2019 (eval) is at least 100. (b): Sorted
predictions of the neural network on the evaluation set (blue curve in (a)) shows the very high quality prediction at the level
of individual concept pairs. The y-axis stands for the respective fraction of the evaluation dataset (107 data points). The
histogram is separated into 20 equal parts. (c): This significantly more challenging step shows that citation prediction goes
beyond link-predictions. Here we take unconnected vertex pairs, conditioned on a connection 3 years later. The neural network
is tasked to classify these concept pairs in low or high citations, revealing that it is not just predicting links, but is learning
intrinsic citation features. Training data contains unconnected vertex pairs from 2016 and the supervision signal of its IR 3
years later. Test data also contains unconnected vertex pairs from 2016, but only those not contained in the training dataset.
The evaluation dataset (which is a more challenging test set) contains unconnected vertex pairs from the year 2019, with ground
truth from 2022 (which is, importantly, not used during the training). In (c), IR = [5, 100], i.e, {0 − 5, >= 100}, meaning
whether the citation count accumulated in the three years after 2016 (test) or after 2019 (eval) is at most 5 or at least 100.

never-investigated concept connections to a high degree.
In Fig. 5(b), we sort the concept pairs of the evaluation
dataset with the neural network (IR = 100), and plot
their true citation counts. We further divide the 10 mil-
lion evaluation dataset into 20 equal parts and plot their
average citation count (represented by green bars) for
each 5% segment. This clearly demonstrates very good
predictions at the individual concept pair level.

Forecasting genuine impact beyond link pre-
diction – Next, we perform an even more challenging,
genuine impact prediction task that goes beyond link
prediction (i.e., predicting which concept pairs will be
investigated in the future by a scientific paper). Con-
cretely, in this second task training data is conditioned
on unconnected vertex pairs from 2016 which are actu-
ally connected in 2019. The neural network only gets
information from 2016 and has to predict whether the

newly generated concept pair will be highly impactful
or not. For that, our classification task asks whether
the newly generated edge will receive between 0-5 cita-
tions or above 100 (Fig. 5(c)). We see that the AUC
is beyond 0.7 (for the test set) and beyond 0.67 for the
evaluation set, clearly indicating that the neural network
can predict impact properties that go beyond the simpler
link-prediction task.

Extracting highly impactful cliques of concepts
– In what follows, we show one way how our results can be
applied to inspire new directions that potentially human
researchers would not have thought about. So far, we
have limited our predictions to pairs of concepts. How-
ever, incorporating a larger number of concepts could
more directly indicate a research direction. Directly pre-
dicting high-impact concept triples or quadruples is ei-
ther highly computationally expensive or necessitates en-
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Fig. 6. Clusters of concepts with high predicted impact. We demonstrate the smallest cliques (fully connected graphs)
of concepts that are pairwise highly predicted impactful. The x-axis is the size of the subgraph with the N highest predicted
edges, while the y-axis is the size of the clique (for impact range IR = 10). For clarity, we show the cliques for N = 2, 4, 6,
and 8, while cliques for N = 3, 5, and 7 are (sars cov, hibert space, dilated convolution), (deep deterministic policy gradient,
quantum circuit, cancer cell, digital economy, convolutional operation), and (bidirectional recurrent unit, monte carlo dropout,
classical deep learning, hibert space, cancer cell, decoding module), respectively.

tirely different data structures, such as hypergraphs. Al-
ternatively, we can approximate multi-concept combina-
tions in our knowledge graph by searching high-impact
cliques. Cliques are fully connected subgraphs with N
vertices. If N = 2, we have concept pairs, but for higher
N , we get a larger number of concepts.

To get the cliques, we train a neural network to predict
high-impact (for example, IR = 10) with all available
data and predict what currently unconnected pairs will
be highly impactful until 2026. We then apply the neu-
ral network to all unconnected vertex pairs (694 million
pairs) and sort the result from highly likely to be of high
impact, to least likely. With this sorted edge list, we cre-
ate a subgraph, starting from the highest predicted edge
(cancer cell with renewable energy) and add edges one by
one. In Fig. 6, we collect the first cliques of size N rang-
ing from 2 to 8. We eagerly await the year 2026 to see
whether a paper investigating the concepts Hilbert space,
QR code, transformer model and bibliometric analysis
will indeed be highly impactful. In a real application
scenario, one could personalize the list of concepts to fit
the research interest of individual scientists.

Outlook

We show how to forecast the impact of future re-
search topics. Although we view this as a significant

step towards developing truly useful AI-driven assistants,
achieving this goal requires numerous further advance-
ments. Firstly, developing methods to extract more com-
plex information from each paper will be crucial, for in-
stance by employing hyper-graph structures that carry
more information from each paper [47, 48], which has al-
ready been demonstrated to lead to exciting results in
other domains[2, 49, 50]. This might also allow for the
forecast of new concepts [51, 52] and their impact. Sec-
ondly, it will be interesting to approximate impact with
metrics that go beyond citations – which is a crucial topic
in computational sociology and the study of the science
of science [1, 2]. Additionally, introducing metrics of sur-
prise, as discussed in [53, 54], could serve as a complemen-
tary metric to citation prediction for ranking suggestions.
Finally, while the suggestion of impactful new ideas might
be a crucial component of future AI assistants, it will be
crucial to study its relation to the scientific interest of
working researchers.
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