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THE LOCALIZATION OF ORTHOGONAL CALCULUS WITH

RESPECT TO HOMOLOGY

NIALL TAGGART

Abstract. For a set of maps of based spaces S we construct a version of
Weiss’ orthogonal calculus which depends only on the S-local homotopy type
of the functor involved. We show that S-local homogeneous functors of degree
n are equivalent to levelwise S-local spectra with an action of the orthogonal
group O(n) via a zigzag of Quillen equivalences between appropriate model cat-
egories. Our theory specialises to homological localizations and nullifications
at a based space. We give a variety of applications including a reformulation
of the Telescope Conjecture in terms of our local orthogonal calculus and a
calculus version of Postnikov sections. Our results also apply when considering
the orthogonal calculus for functors which take values in spectra.
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1. Introduction

1.1. Motivation. Weiss’ Orthogonal calculus [Wei95] studies functors from the
category of real inner product spaces and isometries to the category of based spaces
or spectra. The motivation for such a version of functor calculus comes from a desire
to study geometric and differential topology through a homotopy theoretic lens. For
example, Arone, Lambrechts and Volić [ALV07] and Arone [Aro09] utilised Weiss’
calculus to provide a comprehensive study of the (stable) homotopy type of spaces
of embeddings Emb(M,N×Rk) where M and N are fixed smooth manifolds. More
recently Krannich and Randal-Williams [KRW21] have studied the Weiss tower
of the classifying space BTOP(Rk) of the group of homeomorphisms of Rk, to
understand the homotopy type of the space of diffeomorphisms of discs. In all
of these cases, the authors are only able to ascertain geometric information up to
rational homotopy via ad-hoc means. These vastly varying approaches highlight the
need for a comprehensive account of the interactions between orthogonal calculus
and localizations.

The theory of localizations at homology theories are ubiquitous and have had
wide applications; of particular note is chromatic homotopy theory which among
other things gives a spectrum level interpretation for the periodic families ap-
pearing in the stable homotopy groups of spheres. An extensive amount of ef-
fort has been geared toward understanding how localization at homology theories–
particularly the chromatic localizations–interact with Goodwillie’s calculus of func-
tors [AM99, Kuh04, Kuh06a, Kuh06b], see e.g., [Kuh07] for a survey. Analogous
questions remain in Weiss’ orthogonal calculus, and we propose a noticeably differ-
ent approach than those applied to Goodwillie calculus.

Overview. Given a functor F from the category of Euclidean spaces to the cate-
gory of based spaces or spectra the calculus assigns a tower of functors

F

|| 		 ��   
· · · // TnF // Tn−1F // · · · // T1F // T0F

called the Weiss tower for F . The functor TnF is a categorification of the n-th
Taylor polynomial from differential calculus. The n-th layer of the tower DnF is
the homotopy fibre of the map TnF → Tn−1F , and is a categorification of homoge-
neous functions from differential calculus. Orthogonal calculus is synonymous with
being the most computationally challenging flavour of functor calculus due to the
interaction between the highly ‘geometric’ nature of the objects of study and the
highly homotopical constructions.
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Let C denote either the category of based spaces or spectra. Given a set S of
maps in C we produce an S-local Weiss tower of the following form:

F

{{ �� �� !!
· · · // T S

n F // T S
n−1F // · · · // T S

1 F // T S
0 F

DS
nF

OO

DS
n−1F

OO

DS
1 F

OO

To understand the S-local Weiss tower, we utilise Bousfield’s [Bou79, Bou75]
interpretation of localizations in terms of model structures on C. We begin by
constructing a model structure, denoted Poly≤n(J0, LSC), which captures the ho-
motopy theory of functors which are S-locally polynomial of degree less than or
equal n. Under some assumptions on the set of localizing objects the compos-
ite TnLS is a fibrant replacement functor hence satisfying the necessary universal
property.

We further construct a model structure, denoted Homogn(J0, LSC), which cap-
tures the homotopy theory of functors which are S-locally homogeneous of degree n.
Through a zigzag of Quillen equivalences we characterise the S-local n-homogeneous
functors in terms of appropriately S-local spectra with an action of O(n).

Theorem (Corollary 5.4.2). Let S be a set of maps of based spaces and n ≥ 0.
There is a zigzag of Quillen equivalences

Homogn(J0, LS Top∗) ≃Q Sp(LS Top∗)[O(n)],

where Sp(LS Top∗)[O(n)] is the category of levelwise S-local spectra with an action
of O(n).

Theorem (Corollary 5.4.4). Let S be a set of maps of spectra and n ≥ 0. There is
a zigzag of Quillen equivalences

Homogn(J0, LSSp) ≃Q LSSp[O(n)],

where LSSp[O(n)] is the category of S-local spectra with an action of O(n).

In particular, an S-local n-homogeneous functor F is determined by and deter-
mines an appropriately S-local spectrum with an O(n)-action, denoted ∂S

nF . On
the derived level, we obtain a computationally accessible classification theorem for
S-local homogeneous of degree n functors.

Theorem (Theorem 5.5.1). Let S be a set of maps of in C and n ≥ 1.

(1) A Top∗-valued S-local n-homogeneous functor F is objectwise weakly equiv-
alent to the functor

V 7−→ Ω∞[(SRn⊗V ∧ ∂S
nF )hO(n)],

and any functor of the above form is objectwise S-local and n-homogeneous.
(2) A Sp-valued S-local n-homogeneous functor F is objectwise weakly equiva-

lent to the functor

V 7−→ (SRn⊗V ∧ ∂S
nF )hO(n),
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and any functor of the above form is objectwise S-local and n-homogeneous.

Applications. We envision that the applications of this local version of orthogo-
nal calculus are vast. For example, extending the rational computations of [ALV07,
Aro09, KRW21] to higher chromatic height or another perspective on the full un-
derstanding of the Weiss tower of BO(−) in vn-periodic homotopy theory achieved
by Arone [Aro02] using computations of Arone and Mahowald [AM99].

Very little of our results use the fact that the target category is based spaces or
spectra. The largest hurdle to having a theory of localizations of orthogonal calculus
with target any (simplicial cofibrantly generated) model category is the development
of orthogonal calculus in this realm. We hope that our exposé of orthogonal calculus
with target space a localization of spaces or spectra will motivate the construction
of orthogonal calculus based on more general homotopy theories such as arbitrary
model categories or ∞-categories.

In the last part of this paper, we give several initial applications, of which we
survey here.

Bousfield classes. In [Bou79], Bousfield introduced an equivalence relation on the
stable homotopy category that has turned out to be of extreme importance. Define
Bousfield class 〈E〉 of a spectrum E to be the collection of E-acyclic spectra, and say
that E and E′ are Bousfield equivalent if and only if 〈E〉 = 〈E′〉. These Bousfield
classes assemble into a lattice, the understanding of which has been a major task
in stable homotopy theory. For example, the Nilpotence Theorem of Devanitz,
Hopkins, and Smith [DHS88, HS98] is equivalent to a classification of the Bousfield
classes for finite spectra. The Bousfield lattice has many interesting interactions
with homological localizations of orthogonal calculus.

Theorem (Example 6.3.2). Let E and E′ be spectra. The E-local orthogonal cal-
culus is equivalent to the E′-local orthogonal calculus if and only if E and E′ are
Bousfield equivalent.

Fix a prime p. Ravenel’s height n Telescope Conjecture [Rav84, Conjecture 10.5]
is the statement that the height n Morava K-theory, K(n), is Bousfield equivalent
to T (n), the telescope of any vn-self map on a finite type n complex. The Telescope
Conjecture is trivial at height n = 0, has been verified at height n = 1 and at all
primes by Bousfield [Bou79], Mahowald [Mah81] and Miller [Mil81], but in general,
is widely believed to be false.

Theorem (Corollary 6.4.3). The height n Telescope Conjecture holds if and only if
the K(n)-local orthogonal calculus and the T (n)-local orthogonal calculus are equiv-
alent.

The Weiss tower of a functor F produces a spectral sequence as it is a tower
of fibrations. We call this spectral sequence the Weiss spectral sequence. From a
computational perspective we obtain the following relation between the Telescope
Conjecture and the local Weiss spectral sequences.

Theorem (Lemma 6.4.4). If the height n Telescope Conjecture holds, then for all
r ≥ 0, the r-th page of the T (n)-local Weiss spectral sequence is isomorphic to the
r-th page of the K(n)-local Weiss spectral sequence.
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Nullifications. For functors from the category of Euclidean spaces to the category
of based spaces we also consider localization at a based space W , which is some-
times referred to as nullification. In this setting W -local objects are also called
W -periodic, following Bousfield [Bou94] and Farjoun [Far96].

We give alternative constructions for the n-polynomial and n-homogenous model
structures when the localization is a nullification. These alternative constructions
yield an identical n-polynomial model structure but sheds new light on some of
the formal properties of the model structure, and yield an n-homogeneous model
structure which is Quillen equivalent to the original W -local model structure via
the identity functor. These alternative descriptions are particularly useful when
considering Postnikov sections of orthogonal calculus.

The results obtained for nullifications do not hold for more general localizations
as the techniques employed rely crucially on a right properness condition on the
model categories. We show in Proposition 7.1.2 that the right proper condition is
satisfied if and only if the localization is a nullification. This is an extension of a
remark of Bousfield in [Bou01].

Postnikov Sections. Considering nullifications with respect to the spheres produces
a theory of Postnikov sections in orthogonal calculus. We prove that our Sk+1-local
projective model structure on the category of functors from Euclidean spaces to
based spaces is identical to the model structure of k-types in the category of functors
from Euclidean spaces to based spaces in the sense of k-types in an arbitrary model
category developed by Gutiérrez and Roitzheim [GR17, §4].

Theorem (Proposition 8.2.1). Let k ≥ 0. The model structure of k-types in or-
thogonal functors is identical to the Sk+1-local model structure, that is, there is an
equality of model structures,

PkFun(J0,Top∗) := LWk
Fun(J0,Top∗) = Fun(J0, LSk+1 Top∗).

As an application we produce a tower of model categories

· · · −→ Homogn(J0, Pk Top∗) −→ · · · −→ Homogn(J0, P0 Top∗),

where Pk Top∗ denotes the S
k+1-local model structure on based spaces. By applying

the theory of homotopy limits of model categories, we show that the n-homogeneous
model structure of Barnes and Oman [BO13, Proposition 6.9] is the homotopy limit
of this tower, in the following sense.

Theorem (Corollary 8.7.3). There is a Quillen equivalence

Homogn(J0,Top∗) ≃Q holim
k

Homogn(J0, Pk Top∗).

Relation to other work. This work is intimately related to the rational orthog-
onal calculus developed by Barnes [Bar17], by replacing our generalised homology
theory E∗ with rational homology one recovers Barnes’ theory.

Unstable chromatic homotopy theory can be described algebraically, via Heuts’
[Heu21] algebraic model for vn-periodic spaces via an equivalence (of ∞-categories)
with Lie algebras in T (n)-local spectra. This model indicated that there is likely
a relationship between vn-periodic orthogonal calculus and orthogonal calculus of
Heuts’ Lie algebra models. Such an equivalence at chromatic height zero suggests
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a relationship between rational orthogonal calculus and the algebraic models for
rational homotopy theory of Sullivan and Quillen [Qui69, Sul77]. This together
with Barnes’ [Bar17] model for rational n-homogeneous functors using the classifi-
cation of rational spectra with an O(n)-action as torsion modules over the rational
cohomology ring of BSO(n) of Greenlees and Shipley [GS14] suggests the existence
of algebraic model calculi. We plan to return to this in future work.

This work also forms part of an extensive program to go “beyond orthogonal
calculus” which was initiated in the Ph.D. thesis of the author [Tag20a], together
with a series of articles exploring extensions of the orthogonal calculus and the
relations between these, [Tag22a, Tag21, Tag22b, Tag20b]. This extensive project
hopes to illuminate our understanding of orthogonal calculus which (at least relative
to Goodwillie calculus) remains largely unexplored.

The future applications of the homological localization of orthogonal calculus
are abounding. For example in the recent work of Beaudry, Bobkova, Pham, and
Xu [BBPX22], the authors compute the tmf -homology of RP 2, where tmf denotes
the connective spectrum of topological modular forms. Their computation for RP 2

and the tmf -local Weiss tower for the functor V 7→ RP (V ) should yield a calcula-
tion of the tmf -homology of RP k for all k. Such a connection would, for example,
feed into a chromatic understanding of block structures, see e.g., [Mac07].

Conventions. We work extensively with model categories and refer the reader to
the survey article [DS95] and the textbooks [Hov99, Hir03] for a detailed account of
the theory. We further assume the reader has familiarity with orthogonal calculus,
references for which include [BO13, Wei95].

The category Top∗ will always denote the category of based compactly generated
weak Hausdorff spaces, and we will, for brevity, call the objects of this category
“based spaces”. The category of based spaces will always be equipped with the
Quillen model structure unless specified otherwise. The weak equivalences are the
weak homotopy equivalences and fibrations are Serre fibrations. This is a cellular,
proper and topological model category with sets of generating cofibrations and
acyclic cofibrations denoted by I and J , respectively.

Unless otherwise stated the word “spectra” is synonymous with the phrase “or-
thogonal spectra”, details of which can be found in [MMSS01] in the non-equivariant
case, and [MM02] in the equivariant situation.

We will denote by C either the category of based spaces or of orthogonal spectra.

Acknowledgements. This work has benefited from helpful conversations and
comments from D. Barnes, T. Barthel, G. Heuts, I. Moerdijk and J. Williamson.
We are particularly grateful to S. Balchin for reading an earlier version of this ma-
terial. We extend our thanks to the meticulous referee who has greatly enhanced
this article by taking (in their own words) “a long time” to check the numerous
technical results. We also thank the Max Plank Institute for Mathematics for its
hospitality during part of the writing process.
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Part 1. Local orthogonal calculus

2. Orthogonal functors

Denote by C the category Top∗ of based topological spaces or the category Sp of
(orthogonal) spectra. Define J to be the category with objects finite-dimensional
inner product subspaces of R∞ and with morphisms the linear isometries. Define J0
to be the category with the same objects and J0(U, V ) = J(U, V )+. The morphism
set J(U, V ) may be topologised as the Stiefel manifold of dim(U)-frames in V . As
such, J is a topologically enriched category, and J0 is enriched in based spaces.
Since the functor

Σ∞ : Top∗ −→ Sp,

is symmetric monoidal, see e.g., [MM02, Lemma II.4.8], we may enhance the topo-

logical enrichment of J0 to a spectral enrichment, resulting in a category J
Sp
0 , whose

class of objects agrees with the class of objects in J0, and morphism spectrum

J
Sp
0 (V,W ) = Σ∞J0(V,W ).

We will omit the superscript “Sp” when confusion is unlikely to occur.

The category Fun(J0,C) of C-enriched functors from J0 to C is the category
of input functors for orthogonal calculus. We will refer to such functors as C-
valued orthogonal functors or simply orthogonal functors when confusion is unlikely.
Examples of orthogonal functors are abound in geometry, topology and homotopy
theory, and examples of Top∗-valued orthogonal functors include:

(1) the one-point compactification functor S : V 7→ SV ;
(2) the functor BO(−) : V 7→ BO(V ) which sends an inner product space to the

classifying space of its orthogonal group;
(3) the functor BTOP(−) : V 7→ BTOP(V ), which sends an inner product space

V to BTOP(V ), the classifying space of the space of self-homeomorphisms
of V ;

(4) the functor BDiffb(M ×−) : V 7→ BDiffb(M × V ), which for a fixed smooth
and compact manifold M sends an inner product space V to the classifying
space of the group of bounded diffeomorphisms from M × V to M × V
which are the identity on ∂M × V ; and,

(5) the restriction of an endofunctor on based spaces to evaluation on spheres1.

The category of orthogonal functors may be equipped with a projective model
structure.

Proposition 2.0.1. There is a model category structure on the category of orthog-
onal functors Fun(J0,C) with weak equivalences and fibrations defined objectwise.
This model structure is cellular, proper and topological, and in the case of Sp-valued
orthogonal functors, this model structure is spectral and stable.

1Endofunctors of based spaces are particularly interesting from a homotopy theoretic point of

view when you restrict to the values on spheres, see e.g., [Beh12, AM99, Aro02]. In particular
for F the identity functor, the Weiss tower of F ◦ S = S and the Goodwillie tower for F agree up
to weak equivalence [BE16], hence orthogonal calculus is intimately related to understanding the
(stable) homotopy groups of spheres.
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2.1. Local input functors. The ‘base’ model structure for the S-local orthogonal
calculus will be the S-local model structure on the category of orthogonal functors.

Proposition 2.1.1. Let S be a set of maps in C. There is model structure on the
category of orthogonal functors such that a map is a weak equivalence or fibration if
it is an objectwise S-local equivalence or a objectwise S-local fibration in C, respec-
tively. This model structure is cellular, left proper and topological, and in the case
of Sp-valued orthogonal functors this model structure is spectral. We call this model
structure the S-local projective model structure and denote it by Fun(J0, LSC).

Proof. This model structure is an instance of a projective model structure on a
category of functors, see e.g., [Hir03, Theorem 11.6.1]. �

Example 2.1.2. For E∗ a generalised homology theory, the model structure of
Proposition 2.1.1 has weak equivalences the objectwise E∗-isomorphisms, and fi-
brant objects objectwise E∗-local objects. This follows since the E∗-localization of
spaces and spectra exist by work of Bousfield, see e.g., [Bou75, Bou79].

3. Polynomial functors

3.1. Polynomial functors. Polynomial functors behave in many ways like polyno-
mial functions from classical calculus, e.g., a functor which is polynomial of degree
less than or equal n, is polynomial of degree less than or equal n+1. We give only
the necessary details here and refer the reader to [Wei95] or [BO13] for more details
on polynomial functors in orthogonal calculus.

Definition 3.1.1. An orthogonal functor F is polynomial of degree less than or
equal n if F is objectwise fibrant and for each U ∈ J0, the canonical map

F (U) −→ holim
06=V ⊆Rn+1

F (U ⊕ V ) =: τnF (U),

is a weak homotopy equivalence. Functors which are polynomial of degree less than
or equal n will sometimes be referred to as n–polynomial functors.

Remark 3.1.2. Given an orthogonal functor F and an inner product space U we
can restrict the orthogonal functor F (U ⊕−) to a functor

F (U ⊕−) : P(Rn+1) −→ Top∗,

where P(Rn+1) is the poset of finite-dimensional inner product subspaces of Rn+1.
Such functors are deserving of the name Rn+1-cubes by analogy with cubical homo-
topy theory. The orthogonal functor F being n-polynomial is equivalent to asking
that for each U this restricted functor is homotopy cartesian. Informally speaking,
orthogonal calculus can be thought of a calculus built from Rn-cubical homotopy
theory in a similar way to how Goodwillie calculus is built from cubical homotopy
theory.

There is a functorial assignment of a universal (up to homotopy) n-polynomial
functor to any orthogonal functor F . It is the n-polynomial approximation of F ,
and is defined as

TnF (U) = hocolim(F (U) −→ τnF (U) −→ · · · −→ τknF (U) −→ · · · ).
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In [BO13, Proposition 6.5 & Proposition 6.6], Barnes and Oman construct a
localization of the projective model structure on the category of orthogonal func-
tors which captures the homotopy theory of n-polynomial functors, in particular
the n-polynomial approximation functor is a fibrant replacement. There are two
equivalent ways to consider this model structure; as the Bousfield-Friedlander lo-
calization of Fun(J0,C) at the n-polynomial approximation endofunctor

Tn : Fun(J0,C) −→ Fun(J0,C),

or, as the left Bousfield localization at the set

Sn = {Sγn+1(U, V )+ −→ J0(U, V ) | U, V ∈ J0},

for Top∗-valued orthogonal functors, or the set Σ∞Sn = {Σ∞f | f ∈ Sn} for Sp-
valued orthogonal functors, where Sγn+1(V,W ) is the sphere bundle of the (n+1)-
fold Whitney sum of the orthogonal complement bundle over the space of linear
isometries J(V,W ).

Proposition 3.1.3 ([BO13, Proposition 6.5]). There is a model category structure
on the category of orthogonal functors with weak equivalences the Tn-equivalences

2

and fibrations those objectwise fibrations f : X → Y such the square

X //

��

TnX

��
Y // TnY

is a homotopy pullback in the projective model structure. This model structure is
cellular, proper and topological, and in the case of Sp-valued orthogonal functors
this model structure is spectral. We call this the n-polynomial model structure and
denote it by Poly≤n(J0,C).

3.2. Local polynomial functors. The definition of an S-locally n-polynomial
functor is the analogous definition of an n-polynomial functor when the base model
category is LSC, i.e., a objectwise fibrant functor which satisfies a cartesian Rn+1-
cube condition.

Definition 3.2.1. Let S be a set of maps in C. An orthogonal functor is S-locally
n-polynomial if it is objectwise S-local and n-polynomial.

The S-locally n-polynomial model structure is an iterated left Bousfield local-
ization involving the set Sn and the set

JS = {J0(U,−) ∧ j | U ∈ J, , j ∈ JLSC},

as this iterative localization will necessarily have the S-locally n-polynomial func-
tors as fibrant objects. This model structure was first constructed by Barnes [Bar17]
for the rationalization of Top∗-valued orthogonal functors.

Proposition 3.2.2. Let S be a set of maps in C. There is model category structure
on the category of orthogonal functors with cofibrations the projective cofibrations,
and fibrant objects the S-locally n-polynomial functors. This model structure is
cellular, left proper, topological, and in the case of Sp-valued orthogonal functors this

2A map f : X → Y is a Tn-equivalence if Tn(f) : TnX → TnY is a objectwise weak equivalence.
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model structure is spectral. We call this model structure the S-local n-polynomial
model structure and denote it by Poly≤n(J0, LSC).

Proof. The process of left Bousfield localizations may be iterated and it follows that
the JS-localization of the n-polynomial model structure and the Sn-localization of
the S-local projective model structure are identical, and have as cofibrations the
projective cofibrations.

For the fibrant objects, notice that the model structure is equivalently described
as the left Bousfield localization of the projective model structure with respect to
the set of maps Sn ∪ JS . By definition an object X is Sn ∪ JS-local if and only
if it is both Sn-local and JS-local, and hence the fibrant objects are precise those
S-locally n-polynomial functors. �

The S-local n-polynomial model structure behaves precisely like a left Bousfield
localization of the n-polynomial model structure in the following sense.

Lemma 3.2.3. Let S be a set of maps in C. The adjoint pair

1 : Poly≤n(J0,C)
//
Poly≤n(J0, LSC) : 1oo ,

is a Quillen adjunction.

Proof. The left adjoint preserves cofibrations since the classes of cofibrations are
identical. The right adjoint is right Quillen since it preserves fibrant objects as
every S-locally n-polynomial functor is necessarily n-polynomial. �

The composite TnLS need not be a fibrant replacement functor in the S-local
n-polynomial model structure since the class of S-local objects need not be closed
under filtered homotopy colimits. Imposing a condition on the set S which forces
TnLS to be S-local in turn forces TnLS to be a functorial fibrant replacement.

Proposition 3.2.4. Let S be a set of maps in C. If the class of S-local objects is
closed under sequential homotopy colimits, then the weak equivalences of the S-local
n-polynomial model structure are those maps f : X → Y such that the induced map

TnLSf : TnLSX −→ TnLSY,

is a S-local equivalence. In particular, The composite TnLS is a functorial fibrant
replacement in the S-local n-polynomial model structure.

Proof. We apply [Bar17, Lemma 5.5] which shows that a map f : X → Y is weak
equivalence in the iterated left Bousfield localization if and only if

LSf : LSX −→ LSY

is a Sn-local equivalence. This last is equivalent to LSf : LSX → LSY being a Tn-
equivalence, i.e., TnLSf : TnLSX → TnLSY being a objectwise weak equivalence.
Since both domain and codomain of this map are S-local checking this map is a ob-
jectwise weak equivalence is equivalent to checking that it is an S-local equivalence
by the S-local Whitehead’s Theorem. �
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Remark 3.2.5. Let S be a set of maps in C. To ease notation, we will denote the
composite TnLS by T S

n . In particular, for E a spectrum we denote the composite
functor TnLE by TE

n . In general, T S
n need not be S-local, but will be when the

class of S-local objects is closed under sequential homotopy colimits.

Examples 3.2.6.

(1) For a finite cell complex W , TW
n F is W -local (or W -periodic) for all Top∗-

valued orthogonal functors F .
(2) For localization at the Eilenberg-Maclane spectrum associated to a subring

R of the rationals, THR
n F is HR-local for all orthogonal functors F .

(3) For E a spectrum such that the associated localization of spectra is smash-
ing, TE

n F is E-local for all Sp-valued orthogonal functors F .

4. Differentiation

The analogy between orthogonal calculus and differential calculus (Taylor’s ver-
sion) indicated the existence of an inductive ‘formula’ for the n-polynomial approx-
imation. The building blocks of such a ‘formula’ are the derivatives of the functor
under consideration.

4.1. The derivatives. The orthogonal complement of the pullback of the tauto-
logical bundle to the Stiefel manifold J0(V,W ) is a vector bundle γ1(V,W ) with
fibre over an isometry f given by f(V )⊥. For n ≥ 0, we denote the n-fold Whitney
sum of γ1(V,W ) by γn(V,W ). Define Jn to be the category with the same objects
as J and morphism space Jn(U, V ) given as the Thom space of γn(U, V ). Define JSpn
to be the spectral enriched version of Jn, i.e., the category with the same objects
but morphism spectrum given by JSp(V,W ) = Σ∞Jn(V,W ). The standard action
of O(n) on Rn via the regular representation induces an action on the vector bun-
dles that is compatible with the composition, hence Jn is naturally enriched over
based spaces with an O(n)-action.

Recall that C denotes the category of based spaces or spectra. We denote by
C[O(n)] the category of O(n)-objects in C. For C = Top∗, this recovers the category
of O(n)-spaces, and for C = Sp, this is the category of spectra with an O(n)-action.
Let 0 ≤ m ≤ n. The inclusion inm : Rm → Rn induces a functor inm : Jm → Jn.
Postcomposition with inm induced a topological functor

resnm : Fun(Jn,C) −→ Fun(Jm,C),

which by [Wei95, Proposition 2.1] has a right adjoint

indnm : Fun(Jm,C) −→ Fun(Jn,C),

the right Kan extension along inm, and is given by

indnm F (U) = natm(Jn(U,−), F ),

where natm(−,−) denotes the space of natural transformations in Fun(Jm,C) and
Jn(U,−) is considered as an object of Fun(Jm,C) by restriction. Combining the
restriction and induction functors with change of group adjunctions from [MM02],
we obtain an adjoint pair

resnm /O(n−m) : FunO(n)(Jn,C[O(n)])
//
FunO(m)(Jm,C[O(m)]) : indnmCIoo ,
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see [BO13, §4], where FunO(n)(Jn,C[O(n)]) is the category of C[O(n)]-enriched func-
tors from Jn to C[O(n)]. We refer to this category as the n-th intermediate category
on the point of its role as an intermediate in the classification of n-homogeneous
functors, see Section 5.

Definition 4.1.1. Let F be an orthogonal functor. For n ≥ 0, the n-th derivative
of F is given by indn0 CIF . In which case, we write indn0 ε

∗F or F (n).

Restricted evaluation in the n-th intermediate category induces structure maps
of the form

X(V ) ∧ SRn⊗W −→ X(V ⊕W ),

for X ∈ FunO(n)(Jn,C[O(n)]) and V,W ∈ Jn, see e.g., [BO13, §7]. It is thus
reasonable to think of the objects of the n-th intermediate category as spectra of
multiplicity n, see e.g., [Wei95, §9]. This idea leads to an object Z in the n-th
intermediate category being called an nΩ-spectrum if the adjoint structure maps

Z(V ) −→ ΩRn⊗WZ(V ⊕W ),

are weak equivalences in C, and a map f : X → Y in the n-th intermediate category
being called an n-stable equivalence if the induced map

f∗ : [Y, Z] −→ [X,Z]

on objectwise homotopy classes of maps is an isomorphism for all nΩ-spectra Z.
With these definitions we get an n-stable model structure on the n-th intermediate
category analogous to the stable model structure on spectra, see e.g., [BO13, §7].

Proposition 4.1.2 ([BO13, Proposition 7.14]). There is a model category structure
on the n-th intermediate category with weak equivalences the n-stable equivalences
and fibrations the objectwise fibrations X → Y such that the square

X(U) //

��

ΩRn⊗V X(U ⊕ V )

��
Y (U) // ΩRn⊗V Y (U ⊕ V )

is a homotopy pullback in C for all U, V ∈ Jn. The fibrant objects are the nΩ-
spectra. This model structure is cellular, proper, stable and topological, and in the
case of Sp-valued orthogonal functors, this model structure is spectral. We call this
the n-stable model structure and denote it by FunO(n)(Jn,C[O(n)]).

4.2. The local n-stable model structure. We now equip the n-th intermediate
category with an S-local model structure which will be intermediate in our classi-
fication of S-local n-homogeneous functors as appropriately3 S-local spectra with
an action of O(n). This model structure was first defined by Barnes [Bar17] for the
rationalization of Top∗-valued orthogonal functors.

Proposition 4.2.1. Let S be a set of maps in C. There is a model category
structure on the n-th intermediate category with cofibrations the cofibrations of the
n-stable model structure and fibrant objects the nΩ-spectra which are objectwise S-
local. This model structure is cellular, left proper and topological, and in the case

3Here “appropriately” means levelwise S-local spectra for Top
∗
-valued orthogonal functors and

S-local spectra for Sp-valued orthogonal functors.
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of Sp-valued orthogonal functors, this model structure is spectral. We call this the
S-local n-stable model structure and denote it by LSFunO(n)(Jn,C[O(n)]).

Proof. This model structure is the left Bousfield localization of the n-stable model
structure at the set

Qn = {O(n)+ ∧ Jn(U,−) ∧ j | U ∈ J, j ∈ JLSC}. �

We record the following fact which will prove useful later.

Lemma 4.2.2. Let S be a set of maps in C. If F is an S-local functor, then
F (n) = indn0 F is S-local.

Proof. The objectwise smash product

(−) ∧ (−) : Fun(Jn, LSC)× LSC −→ Fun(Jn, LSC),

is a Quillen bifunctor, and the result follows from the definition of indn0 F . �

4.3. The derivatives as spectra. The n-th derivative (n ≥ 0) is naturally an
object of the n-th intermediate category, i.e., is a spectrum of multiplicity n. This
multiplicity may be reduced to n = 1 through a Quillen equivalence

(αn)! : FunO(n)(Jn, O(n)Top∗)
//
Sp[O(n)] : (αn)

∗
oo ,

in the topological case see e.g., [BO13, §8], and by a series of Quillen equivalences

Fun(Jn, Sp[O(n)])
(αn)! //

Sp(Sp[O(n)])
Ev0

//
(αn)

∗

oo Sp[O(n)]
F0oo

in the spectral case, see e.g., [BO13, §11]. Here Sp(Sp[O(n)]) denotes the category
of spectrum objects in spectra with an O(n)-action or equivalently, orthogonal
bispectra with an O(n)-action, and is Quillen equivalent to orthogonal spectra by
arguments similar to [Hov01, Theorem 5.1] or [SS03, Theorem 3.8.2].

Example 4.3.1. The (spectrum representing the) n-th derivative of the Top∗-
valued orthogonal functor BO(−) have been completely calculated by Arone [Aro02].
Weiss [Wei95] calculated the first few examples by hand, for instance the first de-
rivative is the sphere spectrum with trivial O(1)-action, the second derivative is
the shifted sphere spectrum S−1 with trivial action, and the third derivative is
the 2-fold loops on the mod-3 Moore spectrum Ω2(S/3). Higher derivatives have
a striking resemblance with the Goodwillie derivatives of the identity functors on
based spaces.

We now prove that this result holds S-locally for any set S of maps in our
category C. Since the adjunctions are slightly different, we prove each separately.

Theorem 4.3.2. Let S be a set of maps of based spaces. The adjoint pair

(αn)! : LSFunO(n)(Jn, O(n)Top∗)
//
Sp(LS Top∗)[O(n)] : (αn)

∗
oo ,

is a Quillen equivalence between the S-local model structures.
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Proof. For the Quillen adjunction apply [Hir03, Theorem 3.3.20(1)], noting that
there is an isomorphism

(αn)!(O(n)+ ∧ Jn(U,−) ∧ j) ∼= O(n)+ ∧ J1(R
n ⊗ U,−) ∧ j,

for j a generating acyclic cofibration for the S-local model structure on based spaces.

By [BO13, Proposition 8.3] the adjoint pair

(αn)! : FunO(n)(Jn, O(n)Top∗)
//
Sp[O(n)] : (αn)

∗
oo ,

is a Quillen equivalence. To show that the adjunction between the S-local model
structures is a Quillen equivalence, it suffices by [Hov01, Proposition 2.3] to show
that if Y is fibrant in Sp[O(n)] such that (αn)

∗Y is fibrant in the S-local n-stable
model structure, then Y is fibrant in the S-local model structure on Sp[O(n)]. This
follows readily from the definitions of fibrant objects in both model structures. �

The category of orthogonal bispectra with an O(n)-action, or equivalently the
category of (orthogonal) spectrum objects in spectra with an O(n)-action may be
equipped with an LS-local model structure, similar to Lemma 4.2.1. For S a set of
maps of spectra, the S-local model structure LSSp(Sp[O(n)]) is the left Bousfield
localization of the stable model structure at the set

{J1(V,−) ∧ j | V ∈ J, j ∈ JLSSp[O(n)]},

since the category Sp(Sp[O(n)]) may also be described as the category of O(n)-
objects in Fun(J1, Sp). In particular, the fibrant objects of the S-local model struc-
ture on Sp(Sp[O(n)]) are O(n)-objectsX ∈ Fun(J1, Sp) such thatX(V ) is an S-local
spectrum for each V ∈ J1.

Theorem 4.3.3. Let S be a set of maps of spectra. The adjoint pairs

LSFun(Jn, Sp[O(n)])
(αn)! //

LSSp(Sp[O(n)])
Ev0

//
(αn)

∗

oo LSSp[O(n)]
F0oo

are Quillen equivalences between the S-local model structures.

Proof. Identifying the category of spectrum objects in spectra with an O(n)-action
with the category of O(n)-objects in Fun(J1, Sp), the proof that the adjunction

(αn)! : LSFun(Jn, Sp[O(n)])
//
LSSp(Sp[O(n)]) : (αn)

∗
oo ,

is a Quillen equivalence follows analogously to Theorem 4.3.2.

For the adjunction

F0 : LSSp[O(n)]
//
LSSp(Sp[O(n)]) : Ev0oo ,

note that the composite functor

Sp[O(n)]
F0−−−→ Sp(Sp[O(n)])

1
−−→ LSSp(Sp[O(n)]),

is left Quillen, and to extend to a left Quillen functor from LSSp[O(n)], it suffices by
[Hir03, Proposition 3.3.18(1) & Theorem 3.1.6(1)], to exhibit that the right adjoint
preserves S-local objects, which follows immediately from the definition of S-local
objects in the respective model structures.
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To see that the adjunction is a Quillen equivalence, we apply [Hov01, Proposition
2.3], which reduces the problem to showing that if Y is an Ω-spectrum object in
Sp[O(n)] (i.e., fibrant in Sp(Sp[O(n)])) such that Ev0(Y ) is S-local, then Y is S-
local. This follows from the Ω-spectrum structure and the interaction of homotopy
function complexes with the suspension-loops adjunction. �

5. Homogeneous functors and their classification

5.1. Homogeneous functors. The layers of the Weiss tower associated to an
orthogonal functor F are the homotopy fibres of maps TnF → Tn−1F and have two
interesting properties: firstly, they are polynomial of degree less than or equal to
n and secondly, their (n − 1)-polynomial approximation is trivial. We denote the
n-th layer of the Weiss tower of F by DnF .

Definition 5.1.1. For n ≥ 0, an orthogonal functor F is said to be n-reduced if its
(n− 1)-polynomial approximation is objectwise weakly equivalent to the terminal
object. An orthogonal functor F is said to be homogeneous of degree n if it is both
polynomial of degree less than or equal n and n-reduced. We will sometimes refer
to a functor which is homogeneous of degree n as being n-homogeneous.

There is a model structure on the category of orthogonal functors which contains
the n-homogeneous functors as the bifibrant objects. This model structure is a right
Bousfield localization of the n-polynomial model structure.

Proposition 5.1.2 ([BO13, Proposition 6.9]). There is a model category structure
on the category of orthogonal functors with weak equivalences the Dn-equivalences
and fibrations the fibrations of the n-polynomial model structure. The cofibrant ob-
jects are the n-reduced projectively cofibrant objects and the fibrant objects are the
n-polynomial functors. In particular, cofibrant-fibrant objects of this model struc-
ture are the projectively cofibrant n-homogeneous functors. This model structure
is cellular, proper, stable and topological, and in the case of Sp-valued orthogonal
functors this model structure is spectral. We call this the n-homogeneous model
structure and denote it by Homogn(J0,C).

Remark 5.1.3. The model structure of [BO13, Proposition 6.9] has as weak equiv-
alences those maps which induce objectwise weak equivalences on the n-th deriva-
tives of their n-polynomial approximations. We showed in [Tag22a, Proposition
8.2], that the class of such equivalences is precisely the class of Dn-equivalences.
The proof of [Tag22a, Proposition 8.2] is valid for Sp-valued orthogonal functors
since Sp-valued n-homogeneous functors admit and analogous classification in terms
of spectral with an O(n)-action, see e.g., [BO13, §11].

The n-homogeneous model structure is (zigzag) Quillen equivalent to spectra
with an action of O(n).

Proposition 5.1.4 ([BO13, Proposition 8.3, Theorem 10.1, Theorem 11.3 & Corol-
lary 11.4]). Let n ≥ 0. There is a zigzag of Quillen equivalences

Homogn(J0,C) ≃Q Sp[O(n)].

On the homotopy category level the Barnes-Oman zigzag of Quillen equivalences
recovers Weiss’ characterisation of homogeneous functors of degree n.
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Proposition 5.1.5 ([Wei95, Theorem 7.3],[BO13, Theorem 11.5]). Let n ≥ 1.

(1) An n-homogeneous functor F is determined by and determines a spectrum
∂nF with an O(n)-action.

(2) A Top∗-valued n-homogeneous functor F is objectwise weak homotopy equiv-
alent to the functor

V 7−→ Ω∞[(SRn⊗V ∧ ∂nF )hO(n)],

and any functor of the above form is homogeneous of degree n.
(3) A Sp-valued n-homogeneous functor F is objectwise weak homotopy equiv-

alent to the functor

V 7−→ (SRn⊗V ∧ ∂nF )hO(n),

and any functor of the above form is homogeneous of degree n.

5.2. Local homogeneous functors.

Definition 5.2.1. Let S be a set of maps in C. An orthogonal functor F is S-locally
homogeneous of degree n if it is objectwise S-local and n-homogeneous.

Lemma 5.2.2. Let S be a set of maps of in C, and F and orthogonal functor. For
n ≥ 1, there is a homotopy fibre sequence

DS
nF −→ T S

n F −→ T S
n−1F,

in which DS
n(F ) is

(1) homogeneous of degree n; and,
(2) S-locally n-homogeneous if, in addition, the class of S-local objects is closed

under sequential homotopy colimits.

Proof. By [Wei95, Lemma 5.5] the homotopy fibre of a map between n-polynomial
functors is n-polynomial, hence DS

nF is n-polynomial. Applying Tn−1 to the ho-
motopy fibre sequence, yields that the (n − 1)-polynomial approximation of DS

nF
is objectwise weakly contractible, proving (1).

For (2), observe that the homotopy fibre of a map between S-local objects is
S-local and when the class of S-local objects is closed under sequential homotopy
colimits, TnLSF is S-local for all n. �

Examples 5.2.3.

(1) For homological localization at the Eilenberg-Maclane spectrum associated
to a subring R of the rationals, DHR

n F is HR-locally n-homogeneous for
any orthogonal functor F .

(2) For nullification at a based finite cell complex W , DW
n F is W -locally n-

homogeneous for any Top∗-valued orthogonal functor F .
(3) For a spectrum E whose associated localization of spectra is smashing,

DE
n F is E-locally n-homogeneous for any Sp-valued orthogonal functor.

Proposition 5.2.4. Let S be a set of maps in C. There is model category struc-
ture on the category of orthogonal functors with cofibrations the cofibrations of the
n-homogeneous model structure and fibrant objects the n-polynomial functors whose
n-th derivative is objectwise S-local in the n-th intermediate category. This model
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structure is cellular, left proper and topological, and in the case of Sp-valued orthogo-
nal functors this model structure is spectral. We call this the S-local n-homogeneous
model structure and denote it by Homogn(J0, LSC).

Proof. We left Bousfield localize the n-homogeneous model structure at the set of
maps

Kn = {Jn(U,−) ∧ j | U ∈ J, j ∈ JLSC}.

This left Bousfield localization exists since the n-homogeneous model structure is
cellular and left proper by [Bar17, Lemma 6.1]. The description of the cofibrations
follows immediately.

The fibrant objects are the Kn-local objects which are also fibrant in the n-
homogeneous model structure, i.e., those n-polynomial functors Z for which the
induced map

[Jn(U,−) ∧B,Z] −→ [Jn(U,−) ∧ A,Z],

is an isomorphism for all maps Jn(U,−) ∧A → Jn(U,−) ∧B in Kn. A straightfor-
ward adjunction argument and the definition of the n-th derivative of an orthogonal
functor yield the required characterisation of the fibrant objects. �

Corollary 5.2.5. Let S be a set of maps in C. The cofibrant objects of the S-
local n-homogeneous model structure are the projectively cofibrant functors which
are n-reduced.

Proof. The S-local n-homogeneous model structure is a particular left Bousfield
localization of the n-homogeneous model structure, hence has the same cofibrant
objects. The result follows by the orthogonal calculus version of [Tag22a, Corollary
8.6]. �

The S-local n-homogeneous model structure behaves like a right Bousfield local-
ization of the S-local n-polynomial model structure in the following sense.

Lemma 5.2.6. Let S be a set of maps in C. The adjoint pair

1 : Homogn(J0, LSC)
//
Poly≤n(J0, LSC) : 1oo ,

is a Quillen adjunction.

Proof. The cofibrations of the S-local n-homogeneous model structure are the cofi-
brations of the n-homogeneous model structure, which are contained in the cofi-
brations of the n-polynomial model structure, which in turn are precisely the cofi-
brations of the S-local n-polynomial model structure, hence

1 : Homogn(J0, LSC) −→ Poly≤n(J0, LSC),

preserves cofibrations.

On the other hand, to show that the right adjoint is right Quillen it suffices to
show that the identity functor sends fibrant objects in the S-local n-polynomial
model structure to fibrant objects in the S-local n-homogeneous model struc-
ture. This follows from Lemma 4.2.2 since the fibrant objects in the S-local n-
polynomial model structure are the S-locally n-polynomial functors by Proposition
3.2.2 and the fibrant objects of the S-local n-homogeneous model structure are the
n-polynomial functors with S-local n-th derivative by Proposition 5.2.4. �
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5.3. Characterisations for stable localizations. We obtain a characterisation
of the fibrations of the S-local n-homogeneous model structure when the localizing
set S is stable in the sense of [BR14, Definition 4.2], i.e., when the class of S-local
spaces is closed under suspension. For the statement of the following result recall
the definition of the n-th derivative of an orthogonal functor from Definition 4.1.1.

Proposition 5.3.1. If S is a set of maps in C which is stable, then the fibrations
of the S-local n-homogeneous model structure are those maps f : X → Y which are
fibrations in the n-polynomial model structure such that

X(n) −→ Y (n),

is a objectwise fibration in LSC.

Proof. We first given an explicit characterisation of the acyclic cofibrations since the
fibrations are characterised by the right lifting property against these maps. The
maps in Kn are cofibrations between cofibrant objects since Jn(U,−) is cofibrant in
Homogn(J0,C) and the maps in JLSC are cofibrations of the S-local model structure
on C. Moreover, since the localizing set S is stable, it follows the set of generating
acyclic cofibrations JLSC is stable and in turn that the set Kn is stable. Hence
by [BR14, Theorem 4.11], the generating acyclic cofibrations are given by the set
JHomogn ∪ Λ(Kn), where JHomogn is the set of the generating acyclic cofibrations of
the n-homogeneous model structure and Λ(Kn) the set of horns on Kn in the sense
of [Hir03, Definition 4.2.1]. As horns in topological model categories are given
by pushouts and Kn is a set of cofibrations between cofibrant objects it suffices
to use the set JHomogn ∪ Kn as the generating acyclic cofibrations of the S-local
n-homogeneous model structure.

If f : X → Y is a map with the right lifting property with respect to JHomogn∪Kn,
then f has the right lifting property with respect to JHomogn and the right lifting
property with respect to Kn independently. Having the right lifting property with
respect to JHomogn is equivalent to being a fibration in the n-polynomial model
structure. On the other hand, a map in Kn is of the form Jn(U,−)∧A → Jn(U,−)∧
B for A → B a generating acyclic cofibration of the S-local model structure on C.
A lift in the diagram

Jn(U,−) ∧ A //

��

X

��
Jn(U,−) ∧B //

99
s

s
s

s
s

s

Y

(indicated by the dotted arrow) exists if and only if the lift in the diagram

A //

��

nat0(Jn(U,−), X)

��
B //

88q
q

q
q

q
q

nat0(Jn(U,−), Y )

exists, which is equivalent to the statement that X(n) → Y (n) is a objectwise
fibration of S-local objects in C, see §4.1. �

This specialises to homological localizations.
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Corollary 5.3.2. Let E be a spectrum. The fibrations of the E-local n-homogeneous
model structure are those maps f : X → Y which are fibrations in the n-polynomial
model structure such that

X(n) −→ Y (n),

is a objectwise fibration in LEC.

Proof. Combine Proposition 5.3.1 with [BR14, Example 4.3]. �

Corollary 5.3.3. Let E be a spectrum. An orthogonal functor F is fibrant in the
E-local n-homogeneous model structure if and only if F is n-polynomial and F (n) is
objectwise E-local. In particular, the bifibrant objects are the projectively cofibrant
n-homogeneous functors with E-local n-th derivative.

Proof. Apply Corollary 5.3.2 to the map F → ∗. �

5.4. Differentiation as a Quillen functor. The n-th derivative is a right Quillen
functor as part of a Quillen equivalence between the n-homogeneous model structure
and the n-th intermediate category; the adjunction

resn0 /O(n) : FunO(n)(Jn,C[O(n)])
//
Homogn(J0,C) : ind

n
0 ε

∗
oo ,

is a Quillen equivalence, [BO13, Theorem 10.1]. We now show that this extends to
the S-local situation.

Theorem 5.4.1. Let S be a set of maps in C. The adjoint pair

resn0 /O(n) : LSFunO(n)(Jn,C[O(n)])
//
Homogn(J0, LSC) : ind

n
0 ε

∗
oo ,

is a Quillen equivalence between the S-local model structures.

Proof. The left adjoint applied to the localizing set of the S-local n-stable model
structure is precisely the localization set of the S-local n-homogeneous model struc-
ture, hence the result follows from [Hir03, Theorem 3.3.20(1)]. �

Corollary 5.4.2. Let S be a set of maps of based spaces, and n ≥ 0. There is a
zigzag of Quillen equivalences

Homogn(J0, LS Top∗) ≃Q Sp(LS Top∗)[O(n)].

Example 5.4.3. Let R be a subring of the rationals. Then there is a zigzag of
Quillen equivalences

Homogn(J0, LHR Top∗) ≃Q SpHR[O(n)],

between HR-local n-homogeneous functors and HR-local4 spectra with an action
of O(n).

Corollary 5.4.4. Let S be a set of maps of spectra, and n ≥ 0. There is a zigzag
of Quillen equivalences

Homogn(J0, LSSp) ≃Q LSSp[O(n)].

4In particular, the HR-local model structure on spectra is identical to the levelwise HR-local
model structure since a spectrum is HR-local if and only if it is levelwise HR-local, see e.g.,
[BR11, Lemma 8.6].
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Example 5.4.5. Let E be a spectrum. Then there is a zigzag of Quillen equiva-
lences

Homogn(J0, LESp) ≃Q SpE [O(n)],

between E-local n-homogeneous functors and E-local spectra with an action of
O(n).

5.5. The classification. As in the classical theory, any S-locally n-homogeneous
functor may be expressed concretely in terms of a levelwise S-local spectrum with
an action of O(n). The proof of which follows as in the classical setting, [Wei95,
Theorem 7.3] and can be realised through the derived equivalence of homotopy
categories provided by our zigzag of Quillen equivalences.

Theorem 5.5.1. Let S be a set of maps of in C and n ≥ 1.

(1) An S-local n-homogeneous functor F is determined by and determines an
appropriately S-local spectrum with an O(n)-action, denoted ∂S

nF .
(2) A Top∗-valued S-local n-homogeneous functor F is objectwise weakly equiv-

alent to the functor

V 7−→ Ω∞[(SRn⊗V ∧ ∂S
nF )hO(n)],

and any functor of the above form is objectwise S-local and n-homogeneous.
(3) A Sp-valued S-local n-homogeneous functor F is objectwise weakly equiva-

lent to the functor

V 7−→ (SR
n⊗V ∧ ∂S

nF )hO(n),

and any functor of the above form is objectwise S-local and n-homogeneous.

Part 2. Applications

6. Bousfield classes

6.1. Bousfield classes. For a spectrum E, the Bousfield class of E, denoted 〈E〉,
is the equivalence class of E under the relation: E ∼ E′ if for any spectrum X ,
E ∧ X = 0 if and only if E′ ∧ X = 0. If 〈E〉 = 〈E′〉, then the classes of E∗-
isomorphisms and E′

∗-isomorphisms agree and hence the localization functors (on
spaces or spectra) agree. The collection of all Bousfield classes forms a lattice, with
partial ordering 〈E〉 ≤ 〈E′〉 given by reverse containment, i.e., if and only if the class
of E′-acyclic spectra is contained in the class of E-acyclic spectra, in particular,
the partial ordering induces a natural transformation LE′ → LE. Bousfield classes
have been studied at length, see e.g, [Bou79, Rav84].

A similar story remains true unstably. Given a based space W the unstable
Bousfield class of W , or the nullity class of W , is the equivalence class 〈W 〉 of
all spaces W ′ such that the class of W -periodic5 spaces agrees with the class of
W ′-periodic spaces. There is a partial ordering 〈W 〉 ≤ 〈W ′〉 given by reverse
containment, i.e., if and only if everyW ′-periodic space isW -periodic. In particular,
the relation 〈W 〉 ≤ 〈W ′〉 implies that every W -local equivalence is a W ′-local

5W -periodic spaces are precisely W -local spaces. This change in terminology is classical, see
e.g, [Bou94, Far96].



THE LOCALIZATION OF ORTHOGONAL CALCULUS 21

equivalence and there is a natural transformation PW → PW ′ , which is a W ′-
localization. Nullity classes have also been studied at length, see e.g, [Bou94, Far96].

Remark 6.1.1. It is worth noting that in both cases there is a choice of ordering
of the equivalence classes, and our choices have been made to align with the pre-
dominant references on the subject, which unfortunately means the ”stable” and
“unstable” directions are dual. The choice of ordering used by Bousfield and that
of Farjoun also differ, adding further confusion to the literature on these matters.

Theorem 6.1.2. Let S and S′ be sets of maps in C. The class of S-local objects
agrees with the class of S′ local objects if and only if for every orthogonal functor F ,
the S-local Weiss tower of F is objectwise weakly equivalent to the S′-local Weiss
tower of F .

Proof. If the class of S-local objects agrees with the class of S′-local objects, then
the localization functors LS and LS′ agree on C and hence on the level of orthogonal
functors. In particular, for every orthogonal functor F , the canonical map6

LSF → LS′F,

is a objectwise weak equivalence. Now, consider the commutative diagram

DS
nF //

��

T S
n F //

��

T S
n−1F

��
DS′

n F // T S′

n F // T S′

n−1F

in which the rows are homotopy fibre sequences. For each n ≥ 0, the map

T S
n F −→ T S′

n F,

is a objectwise weak equivalence since polynomial approximation preserves object-
wise weak equivalences. It follows that the left-most vertical arrow is also a ob-
jectwise weak equivalence and that the S-local Weiss tower is objectwise weakly
equivalent to the S′-local Weiss tower.

The converse is immediate from specialising for every object C ∈ C to the con-
stant functor at C. �

Examples 6.1.3.

(1) Let E and E′ be spectra. For every orthogonal functor F the E-local Weiss
tower of F and the E′-local Weiss tower of F agree if and only if E and E′

are Bousfield equivalent.
(2) Let W and W ′ be based spaces. For every Top∗-valued orthogonal functor

F the W -local Weiss tower of F and the W ′-local Weiss tower of F agree
if and only if W and W ′ have the same nullity class.

6This map is induced from the S-local objects being contained in the S′-local objects. We
could also use the canonical LS′F → LSF since the S-local objects also contained the S′-local
objects.
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6.2. Bousfield classes and model categories for orthogonal calculus. On
the model category level, we have the following.

Theorem 6.2.1. Let S and S′ be sets of maps of maps in C. The class of S-local
objets in C agrees with the class of S′-local objects in C if and only if there are
equalities of model structures making the diagram

Fun(J0, LSC)
1 //

Poly≤n(J0, LSC)
1

//
1

oo Homogn(J0, LSC)
1oo

Fun(J0, LS′C)
1 //

Poly≤n(J0, LS′C)
1

//
1

oo Homogn(J0, LS′C)
1oo

commute.

Proof. For one direction assume that the class of S-local objects agrees with the
class of S′-local objects. Then the S-local model structure and the S′-local model
structure on C agree as they have the same cofibrations and fibrant objects. This
equality lifts to the local projective model structures on the category of orthogonal
functors. As left Bousfield localization does not alter the cofibrations, the cofibra-
tions of the S-local n-polynomial model structure agree with the cofibrations of the
S′-local n-polynomial model structure. These model structures also have the same
fibrant objects since a functor is S-locally n-polynomial if and only if it is S′-local
n-polynomial under our assumption.

For the local n-homogeneous model structures, recall that these are certain
left Bousfield localizations of the n-homogeneous model structure (see Proposition
5.2.4), hence have the same cofibrations. As before, these model structures have
the same fibrant objects since our assumption together with Lemma 4.2.2 implies
that the n-th derivative of a functor is S-local if and only if it is S′-local, and the
fibrant objects are the n-polynomial functors with local derivatives, see Proposition
5.2.4.

For the converse note that since the S-local model structure on the category
of orthogonal functors agrees with the S′-local model structure, the objectwise S-
local equivalences are precise the objectwise S-local equivalences. It follows that
the local model structures on C must agree. �

6.3. The partial ordering of Bousfield classes.

Lemma 6.3.1. Let S and S′ be sets of maps in C and F an orthogonal functor. If
the class of S′-local objects of C is contained in the class of S-local objects then,

(1) there is an S′-local equivalence DS
nF → DS′

n F ; and,
(2) if F is reduced, then the S-local Weiss tower of F is S′-locally equivalent

to the S′-local Weiss tower of F .

Proof. For (1), note that the map on derivatives ∂S
nF → ∂S′

n F induced by the nat-
ural transformation LS → LS′ is an S′-local equivalence, hence the n-homogeneous
functors which correspond to these spectra are S′-locally equivalent, i.e., the map
DS

nF → DS′

n F is an S′-local equivalence. For (2), since F is reduced [Wei95,
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Corollary 8.3] implies that there is a commutative diagram

T S
n F //

��

T S
n−1F //

��

RS
nF

��
T S′

n F // T S′

n−1F
// RS′

n F

in which both rows are homotopy fibre sequences. The map RS
nF → RS′

n F is

an S′-local equivalence by part (1), and the map T S
0 F → T S′

0 F is also an S′-local
equivalence since F is reduced. An induction argument on the degree of polynomials
yields the result. �

Examples 6.3.2.

(1) Let E and E′ be spectra and F an orthogonal functor. If 〈E〉 ≤ 〈E′〉, then

(a) there is an E-local equivalence DE′

n F → DE
n F ; and,

(b) if F is reduced, then the E′-local Weiss tower of F is E-locally equiv-
alent to the E-local Weiss tower of F .

(2) Let W and W ′ be based spaces and F a Top∗-valued orthogonal functor.
If 〈W 〉 ≤ 〈W ′〉, then

(a) there is an W ′-local equivalence DW
n F → DW ′

n F ; and,
(b) if F is reduced, then the W -local Weiss tower of F is W ′-locally equiv-

alent to the W ′-local Weiss tower of F .

6.4. The Telescope Conjecture. The height n Telescope Conjecture of Ravenel
[Rav84, Conjecture 10.5] asserts that the T (n)-localization and K(n)-localization
of spectra agree. There are numerous equivalent formalisations of the conjecture
see e.g., [Bar20, Proposition 3.6] and we choose the following as it best suits any
possible interaction with the calculus.

Conjecture 6.4.1 (The height n Telescope Conjecture). Let n ≥ 0. The Bousfield
class of T (n) agrees with the Bousfield class of K(n).

Corollary 6.4.2. Let n ≥ 0. The validity of the height n Telescope Conjecture
implies equality of model structures

Fun(J0, LT (n)C)
1 //

Poly≤n(J0, LT (n)C)
1

//
1

oo Homogn(J0, LT (n)C)
1oo

Fun(J0, LK(n)C)
1 //

Poly≤n(J0, LK(n)C)
1

//
1

oo Homogn(J0, LK(n)C)
1oo

Proof. The Telescope Conjecture implies that the Bousfield class of T (n) and the
Bousfield class of K(n), agree, hence the result follows by Theorem 6.2.1. �

The following is an immediate corollary to Theorem 6.1.2.

Corollary 6.4.3. Let n ≥ 0. The height n Telescope Conjecture holds if and only if
for every orthogonal functor F the K(n)-local Weiss tower of F and the T (n)-local
Weiss tower of F agree.
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This provides new insight into the the height n Telescope Conjecture. For ex-
ample, to find a counterexample it now suffices to find an orthogonal functor such
that one corresponding term in the K(n)-local and T (n)-local Weiss towers dis-
agree. This can also be seen through the spectral sequences associated to the local
Weiss towers. The K(n)-local and T (n)-local Weiss towers of an orthogonal functor
F produce two spectral sequences,

πt−sD
K(n)
s F (V ) ∼= πt−s((S

Rs⊗V ∧ ∂K(n)
s F )hO(n)) ⇒ π∗holim

d
T

K(n)
d F (V ),

and,

πt−sD
T (n)
s F (V ) ∼= πt−s((S

Rs⊗V ∧ ∂T (n)
s F )hO(n)) ⇒ π∗holim

d
T

T (n)
d F (V ),

These are closely related to the Telescope Conjecture as follows.

Lemma 6.4.4. Let F be an orthogonal functor. If the height n Telescope Conjecture
holds, then for all r ≥ 1, the Er-page of the T (n)-local Weiss spectral sequence is
isomorphic to the Er-page of the K(n)-local Weiss spectral sequence.

Proof. It suffices to prove the claim for r = 1. The validity of the height n Telescope
Conjecture implies that there is a natural transformation LK(n) → LT (n). This

natural transformation induces a map D
K(n)
d F → D

T (n)
d F , which by Corollary

6.4.3 is an objectwise weak equivalence. It hence suffices to show that the natural

map D
K(n)
d F → D

T (n)
d F induces a map on the E1-pages of the spectral sequences,

that is, we have to show that the induced diagram

πt−sD
K(n)
s F (V )

d
K(n)
1 //

��

πt−s+1D
K(n)
s+1 F (V )

��

πt−sD
T (n)
s F (V )

d
T(n)
1

// πt−s+1D
T (n)
s+1 F (V )

commutes for all s and t. This follows from the commutativity of the induced dia-
gram of long exact sequences induced by the diagram of homotopy fibre sequences,

D
K(n)
s F (V ) //

��

T
K(n)
s F (V ) //

��

T
K(n)
s−1 F (V )

��

D
T (n)
s F (V ) // T T (n)

s F (V ) // T T (n)
s−1 F (V )

and the construction of the d1-differential in the homotopy spectral sequence asso-
ciated to a tower of fibrations. �

7. The calculus for nullifications

7.1. Nullifications of orthogonal functors. Bousfield, Farjoun and others, see
e.g., [Bou94, Bou96, Far96, Cas94], have extensively studied the nullification of the
category of based spaces at a based space W . This nullification is functorial giving
a functor

PW : Top∗ −→ Top∗,
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and the Bousfield-Friedlander localization of Top∗ at the endofunctor PW defines
a model structure which we call the W -periodic model structure, and denote by
PW Top∗. This model structure is precisely the left Bousfield localization at the set
S = {∗ → W}, i.e., the W -periodic and W -local model structures agree.

The endofunctor PW : Top∗ → Top∗ extends objectwise to a functor

PW : Fun(J0,Top∗) −→ Fun(J0,Top∗),

and the W -periodic model structure on spaces (see, e.g., [Bou01, §§9.8]) extends
in a canonical way to give the Bousfield-Friedlander localization of the category of
orthogonal functors at the functor PW , which we denote by Fun(J0, PW Top∗), and
call the W -periodic model structure. This model structure agrees with the S-local
model structure on orthogonal functors for S = {∗ → W}.

In this section we give an alternative construction of the model structures for W -
local orthogonal calculus. The key to this is that the W -periodic model structure
on based spaces is right proper.

Remark 7.1.1. The process of left Bousfield localization can interfere with other
model categorical properties, for instance left Bousfield localization need not pre-
serve right properness. For example if E = HQ, then the HQ-local model structure
on based spaces is not right proper since there is a pullback square

K(Q/Z, 0) //

��

P

��
K(Z, 1)

≃HQ // K(Q, 1)

in which the right hand vertical map is a fibration, P is contractible and the lower
horizontal map is a HQ-equivalence but the left hand vertical map is not. Another
example is provided by Quillen in [Qui69, Remark 2.9].

The property of being right proper has many advantages including the ability to
right Bousfield localize. As such we investigate when the S-local model structure
is right proper. It suffices to examine when the f -local model structure is right
proper for some map f : X → Y of based spaces.

The following has motivation in [Bou01, Remark 9.11], in which Bousfield re-
marks that the f -local model structure cannot be right proper unless the localization
functor Lf is equivalent to a nullification. We extend Bousfield’s remark by showing
that his nullification condition is both necessary and sufficient in a stronger sense
than originally proposed by Bousfield. This result depends on two constructions
also due to Bousfield; the first is the construction of a based space A(f) associ-
ated to a map f : X → Y of based spaces, see [Bou97, Theorem 4.4], the second
is the nullification functor PW : Top∗ → Top∗ associated to any based space W ,
see [Bou94, Theorem 2.10]. This nullification functor has two key properties which
we would also like to highlight; firstly, when W is connected PW preserves disjoint
unions, e.g., [Bou01, Theorem 9.9], and secondly, PW is contractible when W is
not connected, see e.g., [Bou94, Example 2.3]. For example, if f is the map which
induces localization with respect to integral homology, then PA(f) is Quillen’s plus
construction, see e.g., [Far96, 1.E.5].
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Proposition 7.1.2. Let f : X → Y be a map of based spaces. The f -local model
structure on based spaces is right proper if and only if there exists a based space
A(f) and and equality of model structures

Lf Top∗ = PA(f) Top∗,

where PA(f) Top∗ is the Bousfield-Friedlander localization [Bou01, Theorem 9.3], at
the nullification endofunctor

PA(f) : Top∗ → Top∗ .

Proof. By [Bou97, Theorem 4.4], there exists a based space A(f) such that the
classes of A(f)-acyclic and f -acyclic spaces agree, and every PA(f)-equivalence is
an f -local equivalence.

Assume that the f -local model structure is right proper. For a connected based
space X , the path fibration over LfX is an f -local fibration, hence the homotopy
fibre of the map X → LfX is f -acyclic, and hence A(f)-acyclic. It follows by
[Bou94, Corollary 4.8(i)], the map X → LfX is a PA(f)-equivalence, hence every
f -local equivalences of connected spaces is a PA(f)-equivalence. Since the functor
PA(f) on based spaces comes from a functor on unbased spaces which preserves dis-
joint unions when A(f) is connected and which takes contractible values when A(f)
is not connected, every f -local equivalence must be a PA(f)-equivalence. It follows
that the class of f -local equivalences agrees with the class of PA(f)-equivalences.
The equality of the model structures follows immediately since both model struc-
tures have the same cofibrations inherited from the Quillen model structure on the
category of based spaces.

For the converse, assume that the f -local model structure agrees with the A(f)-
local model structure. The latter model structure is right proper by [Bou01, The-
orem 9.9], and since both model structures have the same weak equivalences and
fibrations, the f -local model structure must also be right proper. �

Remark 7.1.3. The property of being right proper is completely determined by
the weak equivalence class of the model structure; if two model structures have the
the same weak equivalences, then one is right proper if and only if the other is, see
e.g., [Bal21, Remark 2.5.6].

7.2. Nullifications and polynomial functors. Recall from Proposition 3.2.2
that we have minimal control over the W -local n-polynomial model structure, in
particular, unless the localization is well-behaved with respect to sequential ho-
motopy colimits, TnLW is not a fibrant replacement functor. We construct a W -
periodic n-polynomial model structure as the Bousfield-Friedlander localization at
the composite

Tn ◦ PW : Fun(J0,Top∗) −→ Fun(J0,Top∗).

and show that this model structure is precisely the W -local n-polynomial model
structure.

We begin with a lemma which deals with fibrant objects in the Bousfield-
Friedlander localization of orthogonal functors at the endofunctor PW , which we
call the W -periodic projective model structure.
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Lemma 7.2.1. For a finite cell complex W and an orthogonal functor F , the
functor TnPWF is fibrant in the Bousfield-Friedlander localization of the category
of orthogonal functors at the functor PW . In particular, the map

ωTnPWF : TnPWF −→ PWTnPWF,

is a objectwise weak homotopy equivalence.

Proof. The Bousfield-Friedlander localization of based spaces at the endofunctor
PW is identical to the left Bousfield localization of based spaces at the map ∗ → W ,
since both model structures have the same cofibrations and fibrant objects. It fol-
lows that the Bousfield-Friedlander localization of the category of orthogonal func-
tors at the endofunctor PW is identical to the W -local projective model structure.
In particular, we see that PWF is fibrant and hence τnPWF is also fibrant, since
the class of W -local objects is closed under homotopy limits. The result follows
since local objects for a nullification are closed under sequential homotopy colimits
by [Far96, 1.D.6]. �

Proposition 7.2.2. For a finite cell complex W the Bousfield-Friedlander local-
ization of the category of orthogonal functors at the endofunctor

Tn ◦ PW : Fun(J0,Top∗) −→ Fun(J0,Top∗),

exists. This model structure is proper and topological. We call this the W -periodic
n-polynomial model structure and denote it by Poly≤n(J0, PW Top∗).

Proof. We verify the axioms of [Bou01, Theorem 9.3]. First note that since PW

and Tn both preserve objectwise weak equivalences so does their composite, hence
verifying [Bou01, Theorem 9.3(A1)].

The natural transformation from the identity to the composite Tn ◦PW is given
in components as the composite

F
ωF−−→ PWF

ηPW F

−−−−→ TnPWF,

where ω : 1 → PW and η : 1 → Tn, hence at TnPWF , we obtain the composite

TnPWF
ωTnPW F

−−−−−−→ PWTnPWF
ηPW TnPW F

−−−−−−−−→ TnPWTnPWF.

Since the domain is fibrant in the W -periodic projective model structure the first
map in the composite is a objectwise weak equivalence, see Lemma 7.2.1. The
second map is also a weak equivalence. To see this, note that since TnPWF is
polynomial of degree less than or equal n, the functor PWTnPWF is also polynomial
of degree less than or equal n by the commutativity of the diagram

TnPWF //

��

τnTnPWF

��
PWTnPWF // τnPWTnPWF

and the fact that homotopy limits preserve objectwise weak equivalences. It follows
that the natural transformation η : TnPWF → TnPWTnPWF is a objectwise weak
equivalence, as a composite of two objectwise weak equivalences.
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The map TnPW (η) : TnPWF → TnPWTnPWF is also a objectwise weak equiva-
lence. To see this, note that there is a commutative diagram,

F

ωF

��

ωF //

(1)

PWF
ηPW F //

ωPW F

��

(2)

TnPWF

ωTnPW F

��
PWF

PWωF //

ηPW F

��

(3)

PWPWF
PW ηPW F //

ηPW PW F

��

(4)

PWTnPWF

ηPW TnPW F

��
TnPWF

TnPWωF

// TnPWPWF
TnPW ηPW F

// TnPWTnPWF

in which, the required map is given by the lower horizontal composite. Since PW

is a homotopically idempotent functor, PWωF is a objectwise weak equivalence. It
follows that the bottom horizontal map

TnPWωF : TnPWF −→ TnPWPWF,

of (3) is a weak equivalence sine Tn preserves weak equivalences.

Moreover, PW being homotopically idempotent yields that the vertical map

ωPWF : PWF −→ PWPWF

in (2) is a objectwise weak equivalence. The right-hand vertical map in this square
is also an equivalence by Lemma 7.2.1. By [Wei95, Theorem 6.3], the top right
hand horizontal map

ηPWF : PWF −→ TnPWF,

is an approximation of order n in the sense of [Wei95, Definition 5.16]. By commu-
tativity of (2), the lower horizontal map

PW ηPWF : PWPWF −→ PWTnPWF,

is an approximation of order n. The proof of [Wei95, Theorem 6.3] also demon-
strates that the vertical maps in (4) are approximations of order n, and since three
out of the four maps in the lower right square are approximations of order n, so
too is the lower right hand horizontal map

TnPW ηPWF : TnPWPWF −→ TnPWTnPWF.

An application of [Wei95, Theorem 5.15] yields that this map is a objectwise weak
equivalence as both source and target are polynomial of degree less than or equal
n. This concludes the proof that the map

TnPW (η) : TnPWF −→ TnPWTnPWF,

is a objectwise weak equivalence, and verifying [Bou01, Theorem 9.3(A2)].

Finally we verify [Bou01, Theorem 9.3(A3)]. Let

A
k //

g

��

B

f

��
C

h
// D
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be a pullback square with f a objectwise fibration between W -local n-polynomial
functors, and TnPWh : TnPWC → TnPWD a objectwise weak equivalence. By
[Bou01, Theorem 9.9], we see that the fibre of k is PW -acyclic, i.e. PW (fib(k)) is
objectwise weakly contractible. Since Tn preserves objectwise weak equivalences,
we see that TnPW (fib(k)) is objectwise weakly contractible, and hence k is a TnPW -
equivalence.

The fact that the resulting model structure is topological follows from [Bou01,
Theorem 9.1]. �

This Bousfield-Friedlander localization results in an identical model structure to
the W -local n-polynomial model structure of Proposition 3.2.2

Proposition 7.2.3. For a finite cell complex W there is an equality of model
structures

Poly≤n(J0, LW Top∗) = Poly≤n(J0, PW Top∗),

that is, the W -local n-polynomial model structure and the W -periodic n-polynomial
model structure agree. In particular, these model structures are cellular, proper and
topological.

Proof. Both model structures have the same cofibrations, namely the projective
cofibrations. It suffices to show that they share the same fibrant objects. Working
through the definition of a fibrant object in the Bousfield-Friedlander localization
we see that an orthogonal functor F is fibrant if and only if the canonical map
F → TnPWF is a objectwise weak equivalence. It follows that F must be W -
local and n-polynomial, hence fibrant in the W -local n-polynomial model structure.
Conversely, if F is fibrant in the W -local n-polynomial model structure, then the
map F → PWF is a objectwise weak equivalence and there is a commutative
diagram

F //

��

PWF

��
TnF // TnPWF

in which three out of the four arrows are objectwise weak equivalences, hence so
to is the right-hand vertical arrow. It follows that F is fibrant in the Bousfield-
Friedlander localization. �

Remark 7.2.4. The nullification condition here is necessary. The above lemma
does not hold in general. To see this, consider the (smashing) localization at the
spectrum E = HQ. The HQ-local model structure is not right proper, (see Remark
7.1.1) yet if this were expressible as a Bousfield-Friedlander localization it would
necessarily be right proper, [Bou01, Theorem 9.3].

Corollary 7.2.5. For a finite cell complex W a map f : X → Y is a fibration
in the W -local n-polynomial model structure if and only if f is a fibration in the
projective model structure and the square

X //

��

TnPWX

��
Y // TnPWY
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is a homotopy pullback square in the projective model structure on Fun(J0,Top∗).

Remark 7.2.6. It is highly unlikely that this result holds in more general local-
izations than nullifications. Let C be a model category and S a set of maps in C

such that the left Bousfield localization of C at S exists. By [Hir03, Proposition
3.4.8(1)] right properness of C and LSC is sufficient for a map f : X → Y being a
fibration in LSC if and only if f is a fibration in C and the square

X
jX //

f

��

X̂

f̂
��

Y
jY

// Ŷ

is a homotopy pullback square, where f̂ : X̂ → Ŷ is a S-localization of f in the
sense of [Hir03, Definition 3.2.16]. In our situation, Proposition 7.1.2 guarantees
that a homological localization is right proper if and only if it is a nullification.
However, it is not clear in general if right properness of the base model category
and the localized model category is a necessary condition for the above description
of the fibrations in LSC.

7.3. Nullifications and homogeneous functors. In the case of a nullification,
the W -local n-homogeneous model structure of Proposition 5.2.4 is not the only
way of constructing a model structure with the correct homotopy category. Since
the W -local model structure on based spaces is right proper, so too is the W -local
n-polynomial model structure and hence we can also follow the more standard
procedure and preform a right Bousfield localization at the set

K
′
n = {Jn(U,−) | U ∈ J},

to obtain a local n-homogeneous model category structure.

Proposition 7.3.1. For a finite cell complex W there exists a model structure on
the category of orthogonal functors with weak equivalences those maps X → Y such
that

(TnPWX)(n) −→ (TnPWX)(n),

is a objectwise weak equivalence and with fibrations the fibrations of the W -local
n-polynomial model structure. This model structure cellular, proper, stable and
topological. We call this the W -periodic n-homogeneous model structure and denote
it Homogn(J0, PW Top∗).

Proof. This is the right Bousfield localization of the W -local n-polynomial model
structure. The proof of which follows exactly as in [BO13, Proposition 6.9]. Note
that this right Bousfield localization exists since the W -local n-polynomial model
structure in right proper and cellular when the localization is a nullification, see
Proposition 7.2.3. �

This right Bousfield localization behaves like a left Bousfield localization of the
n-homogeneous model structure in the following sense.

Lemma 7.3.2. For a finite cell complex W the adjoint pair

1 : Homogn(J0,Top∗)
//
Homogn(J0, PW Top∗) : 1oo ,
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is a Quillen adjunction.

Proof. Since the acyclic cofibrations of the n-homogeneous model structure are
precisely the acyclic cofibrations of the n-polynomial model structure and similarly,
the acyclic cofibrations of W -periodic n-homogeneous model structure are precisely
the acyclic cofibrations of the W -local n-polynomial model structure, the identity
functor preserves acyclic cofibrations by Lemma 3.2.3.

On the other hand, by [Hir03, Proposition 3.3.16(2)], cofibrations between cofi-
brant objects in a right Bousfield localization are cofibrations in the underlying
model structure, hence Lemma 3.2.3 shows that the identity functor preserves
cofibrations between cofibrant objects. The result follows by [Dug01, Corollary
A.2]. �

An analogous Quillen equivalence is obtained between the W -local intermediate
category and the W -periodic n-homogeneous model structure of Proposition 7.3.1
which recall is obtained as a right Bousfield localization of theW -local n-polynomial
model structure. The proof is all but identical to [BO13, Theorem 10.1].

Theorem 7.3.3. For a finite cell complex W the adjoint pair

resn0 /O(n) : LWFunO(n)(Jn, O(n)Top∗)
//
Homogn(J0, PW Top∗) : ind

n
0 ε

∗
oo ,

is a Quillen equivalence.

Proposition 5.2.4 and Proposition 7.3.1 provide two different model structures
which both capture the homotopy theory of W -locally n-homogeneous functors.
However, these model structures are not identical. For instance, the W -local model
structure of Proposition 5.2.4 has fibrant objects the n-polynomial functors which
have W -local n-th derivative, whereas the fibrant objects of the W -periodic n-
homogeneous model structure (Proposition 7.3.1) are the W -local n-polynomial
functors. However, they are Quillen equivalent via the identity functor.

Corollary 7.3.4. For a finite cell complex W the adjoint pair

1 : Homogn(J0, LW Top∗)
//
Homogn(J0, PW Top∗) : 1oo ,

is a Quillen equivalence.

Proof. Since cofibrations between cofibrant objects in Homogn(J0, LW Top∗) are
projective cofibrations which are Tn-equivalences, and the cofibrations between cofi-
brant objects of Homogn(J0, PW Top∗) are the projective cofibrations, it follows that
the identity functor

1 : Homogn(J0, LW Top∗) −→ Homogn(J0, PW Top∗),

necessarily preserves cofibrations between cofibrant objects. On the other hand,
the identity functor

1 : Homogn(J0, PW Top∗) −→ Homogn(J0, LW Top∗),

preserves fibrant objects since if X is objectwise W -local, indn0 X is objectwise W -
local, by Lemma 4.2.2. It follows that the adjunction is a Quillen adjunction. To
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see that the adjunction is a Quillen equivalence, there is a commutative square

LWFunO(n)(Jn, O(n)Top∗)
resn0 /O(n) //

1

��

Homogn(J0, LW Top∗)
indn0 ε∗
oo

1

��
LWFunO(n)(Jn, O(n)Top∗)

resn0 /O(n) //

1

OO

Homogn(J0, PW Top∗)
indn0 ε∗
oo

1

OO

of Quillen adjunctions, in which three-out-of-four are Quillen equivalences by The-
orem 5.4.1 and Theorem 7.3.3. Hence the remaining Quillen adjunction must also
be a Quillen equivalence. �

It follows that there is a zigzag of Quillen equivalences

Homogn(J0, PW Top∗) ≃Q Sp(LW Top∗)[O(n)],

whenever both model structures exist.

8. Postnikov sections

Given a based space A, the k-th Postnikov section of A is the nullification of A at
Sk+1, i.e., PkA = PSk+1A. Given a diagram of (simplicial, left proper, combinato-
rial) model categories, Barwick [Bar10, Section 5 Application 1] and Bergner [Ber12]
develop a general machinery for producing a model structure which captures the ho-
motopy theory of the homotopy limit of the diagram of model categories. Gutiérrez
and Roitzheim [GR16, Section 4] applied this to the study of Postnikov sections
for model categories, which recovers the classical theory when C is the Kan-Quillen
model structure on simplicial sets. We consider the relationship between Postnikov
sections and orthogonal calculus via our local calculus.

8.1. A combinatorial model for calculus. The current theory of homotopy
limits of model categories requires that the model categories in question be com-
binatorial, i.e., locally presentable and cofibrantly generated. Since the category
of based compactly generated weak Hausdorff spaces is not locally presentable the
Quillen model structure is not combinatorial and hence none of our model cate-
gories for orthogonal functors are either. We invite the reader to take for granted
that all of our cellular model categories may be replaced by combinatorial model
categories by starting with a combinatorial model for the Quillen model structure
on based spaces, and hence skip directly to Subsection 8.2.

We give the details of these combinatorial replacements here. We replace com-
pactly generated weak Hausdorff spaces with ∆-generated spaces ; a particular full
subcategory of the category of topological spaces, which were developed by Vogt
[Vog71] and unpublished work of Smith, and are surveyed by Dugger in [Dug03].
The category of ∆-generated spaces may be equipped with a model structure analo-
gous to the Quillen model structure on compactly generated weak Hausdorff spaces
with weak equivalences the weak homotopy equivalences and fibrations the Serre
fibrations. This model structure is combinatorial, proper and topological. The
existence of the model structure follows from [Dug03, Subsection 1.9]. The locally
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presentable (and hence combinatorial) property follows from [FR08, Corollary 3.7].
The Quillen equivalence may be extracted from [Dug03, Subsection 1.9].

This combinatorial model for spaces transfers to categories of functors and we
obtain a projective model structure on the category of orthogonal functors which
is Quillen equivalent to our original projective model structure but is now combi-
natorial. A left or right Bousfield localization of a combinatorial model category is
again combinatorial, hence the n-polynomial, n-homogeneous and local versions of
these model categories are all combinatorial when we begin with the combinatorial
model for the projective model structure on orthogonal functors.

Hypothesis 8.1.1. For the remainder of this section, we will assume that all
our model structures are combinatorial, since they are all Quillen equivalent to
combinatorial model categories using the combinatorial model for based spaces.

8.2. The model structure of k-types in orthogonal functors. Denote by I
the set of generating cofibrations of the projective model structure of orthogonal
functors, and denote by Wk the set of maps of the form

B ∧ Sk+1
∐

A∧Sk+1

A ∧Dk+2 −→ B ∧Dk+2,

where A → B is a map in I. The model category of k-types in Fun(J0,Top∗) is the
left Bousfield localization of the projective model structure at I�{Sk+1 → Dk+2}
used by Gutiérrez and Roitzheim [GR16] to model Postnikov sections.

Proposition 8.2.1. Let k ≥ 0. Under Hypothesis 8.1.1, the model structure of
k-types in the category of orthogonal functors is identical to the Sk+1-local model
structure, that is, there is an equality of model structures,

PkFun(J0,Top∗) := LWk
Fun(J0,Top∗) = Fun(J0, LSk+1 Top∗).

Proof. It suffices to show that both model structures have the same fibrant objects
since the cofibrations in both model structures are identical. To see this, note that
by examining the pushout product we can rewrite the set Wk as

Wk = {J0(U,−) ∧ Sn+k+1
+ −→ J0(U,−) ∧Dn+k+2

+ | n ≥ 0, U ∈ J0}.

It follows by an adjunction argument that an orthogonal functor Z is Wk-local if
and only if πiZ(U) is trivial for all i ≥ k + 1 and all U ∈ J0. This last condition is
equivalent to being objectwise Sk+1-local. �

8.3. The model structure of k-types in spectra. Taking ISp to be the set of
generating cofibrations of the stable model structure on Sp and denoting again by
Wk the relevant pushout product maps, we obtain a similar characterisation of the
category of k-types in spectra.

Proposition 8.3.1. Let k ≥ 0. Under Hypothesis 8.1.1, there is an equality of
model structures between the model category of k-types in spectra, and the stablisa-
tion of Sk+1-local spaces, that is,

PkSp := LWk
Sp = Sp(LSk+1 Top∗).

Proof. Both model structures can be described as particular left Bousfield localiza-
tions of the stable model structure on spectra, hence have the same cofibrations.
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The proof reduces to the fact that the model structures have the same fibrant
objects. To see this, note that the fibrant objects of PkSp are the k-truncated
Ω-spectra, and the fibrant objects of Sp(LSk+1 Top∗) are the levelwise k-truncated
Ω-spectra. Since both fibrant objects are Ω-spectra a connectivity style argument
yields that an Ω-spectrum is k-truncated if and only if it is levelwise k-truncated,
and hence both model structures have the same fibrant objects. �

Remark 8.3.2. Given a compact Lie group G, a similar procedure shows that
there is an equality of model structures

PkSp[G] := LWk
Sp[G] = Sp(LSk+1 Top∗)[G].

8.4. Postnikov reconstruction of orthogonal functors. The collection of Sk+1-
local model structures on the category of orthogonal functors assembles into a tower
of model categories7

P• : N
op −→ MCat,

k 7−→ Fun(J0, LSk+1 Top∗),

whereMCat denotes the category of model categories and left Quillen functors. The
homotopy limit of this tower of model categories recovers the projective model struc-
ture on orthogonal functors. The existence of a model structure which captures the
homotopy theory of the limit of these model categories follows from [GR16, Propo-
sition 2.2]. In particular, the homotopy limit model structure is a model structure
on the category of sections8 of the diagram P• formed by right Bousfield localizing
the injective model structure in which a map of sections is a weak equivalence or
cofibration if it is a objectwise weak equivalence or cofibration respectively.

Lemma 8.4.1 ([GR16, Theorem 1.3 & Proposition 2.2]). There is a combinatorial
model structure on the category of sections of P• where a map f• : X• → Y• is a
fibration if and only if f0 is a fibration in Fun(J0, LS1 Top∗) and for every k ≥ 1
the induced map

Xk

&&▼
▼

▼
▼

▼
▼

''

%%
Yk ×Yk−1

Xk−1
//

��

Xk−1

��
Yk

// Yk−1

indicated by a dotted arrow in the above diagram is a fibration in Fun(J0, LSk+1 Top∗).
A section X• is cofibrant if and only if Xn is cofibrant in Fun(J0,Top∗) and for ev-
ery k ≥ 0, the map Xk+1 → Xk is a weak equivalence in Fun(J0, LSk+1 Top∗). A
map of cofibrant sections is a weak equivalence if and only if the map is a weak

7A tower of model categories is a special instance of a left Quillen presheaf, that is a diagram
of the form F : Jop → MCat for some small indexing category J.

8A section X• of the tower P• is a sequence

· · · −→ Xk −→ Xk+1 −→ · · · −→ X0,

of orthogonal functors, and a morphism of sections f : X• → Y• is given by maps of orthogonal
functors fk : Xk → Yk for all k ≥ 0 subject to a commutative ladder condition.



THE LOCALIZATION OF ORTHOGONAL CALCULUS 35

equivalence in Fun(J0, LSk+1 Top∗) for each k ≥ 0. We will refer to this model
structure as the homotopy limit model structure and denote it by holimP•.

Proposition 8.4.2. Under Hypothesis 8.1.1 the adjoint pair

const : Fun(J0,Top∗)
//
holimP• : limoo

is a Quillen equivalence.

Proof. The adjoint pair exists, and is a Quillen adjunction by [GR16, Lemma 2.4].

To see that the adjoint pair is a Quillen equivalence let X• be a cofibrant and
fibrant section in the homotopy limit model structure. Showing that

const limX• → X•,

is a weak equivalence is equivalent to showing that the map limX• → Xk is a weak
equivalence in Fun(J0, LSk+1 Top∗) for all k ≥ 0. This is in turn, equivalent to the
map (limX•)(U) → Xk(U) being a weak equivalence in LSk+1 Top∗ for all k ≥ 0.
Since limits in functor categories are computed objectwise, the fact that the unit is
a weak equivalence follows from [GR16, Theorem 2.5]. A similar argument, shows
that the counit is also a weak equivalence. �

8.5. Postnikov reconstruction for spectra with an O(n)-action. The aim is
to show that similar reconstruction theorems may be obtained for the n-homogeneous
model structures. We first start by investigating analogous theorems for spec-
tra and show that such reconstructions are compatible with the zigzag of Quillen
equivalences between spectra with an O(n)-action and the n-homogeneous model
structure. Proposition 8.3.1 and [GR16, Subsection 2.1] imply that the functor

PSp
• : Nop −→ MCat,

k 7−→ Sp(LSk+1 Top∗),

defines a left Quillen presheaf9. This left Quillen presheaf is ‘convergent’ in the
following sense.

Proposition 8.5.1. Under Hypothesis 8.1.1 the adjoint pair

const : Sp
//
holim P

Sp
• : limoo

is a Quillen equivalence.

Proof. The fact that the adjoint pair is a Quillen adjunction follows from [GR16,
Lemma 2.4].

The left adjoint reflects weak equivalences between cofibrant objects. Indeed, if
X → Y is a map between cofibrant spectra X and Y , such that

const(X) −→ const(Y ),

is a weak equivalence in holim P
Sp
• , then

const(X) −→ const(Y ),

9Alternatively, the adjunction 1 : Sp(L
Sk+2 Top

∗
)

//
Sp(L

Sk+1 Top
∗
) : 1oo , is a Quillen

adjunction. This fact follows from the facts that both model structures have the same cofibrations

and a Sk+1-local space is Sk+2-local as 〈ΣW 〉 ≤ 〈W 〉 for all based spaces W , see e.g., [Bou94,

§9.9]. Hence P
Sp
• is a left Quillen presheaf.
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is a weak equivalence in Sect(N,PSp
• ) by the colocal Whitehead’s theorem and the

fact that the left adjoint is left Quillen and thus preserves cofibrant objects. It
follows that for each k ∈ N, the induced map

const(X)k −→ const(Y )k,

is a weak equivalence in Sp(LSk+1 Top∗), that is, X → Y is a weak equivalence
in Sp(LSk+1 Top∗) for all k. Unpacking the definition of a weak equivalence in
Sp(LSk+1 Top∗) and using the fact that the right adjoint is a right Quillen functor
and hence preserves weak equivalences between fibrant objects, we see that the
induced map

lim PkX −→ lim PkY,

is a weak equivalence in Sp, and hence, so is the map X → Y .

It is left to show that the derived counit is an isomorphism. Let Y• be bifibrant

in holim P
Sp
• . The condition that the counit applied to Y• is a weak equivalence is

equivalent to asking for the map

lim
≥k

PkY• −→ Yk,

to be a weak equivalence in Sp(LSk+1 Top∗) for all k ∈ N. The structure maps of
Y• induce a map of towers

· · · // Yj

��

// · · · // Yk+3
//

��

Yk+2
//

��

Yk+1

��
· · · Yk+1

// · · · // Yk+1
// Yk+1

// Yk+1

in which each vertical arrow is a weak equivalence in Sp(LSk+1 Top∗). This map of
towers induces a map

0 // lim1
≥k πi+1(Y•) //

��

πi(lim≥k Y•) //

��

lim≥k πi(Y•) //

��

0

0 // lim1
≥k πi+1(Yk+1) // πi(lim≥k Yk+1) // lim≥k πi(Yk+1) // 0

of short exact sequences. For 0 ≤ i < n the left and right hand side maps are
isomorphisms hence the map

lim
≥k

Y• −→ Yk+1,

is a weak equivalence in Sp(LSk+1 Top∗) for all k, and it follows that the required
map

lim
≥k

Y• −→ Yk+1 −→ Yk,

is a weak equivalence in Sp(LSk+1 Top∗) for all k. �

A similar justification to before provides a left Quillen presheaf

P
Sp[O(n)]
• : Nop −→ MCat,

k 7−→ Sp(LSk+1 Top∗)[O(n)],

where Sp(LSk+1 Top∗)[O(n)] is the category of O(n)-objects in the category of k-
types in spectra. This is equivalent to the category of k-types in spectra with an
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O(n)-action. As a corollary to Proposition 8.5.1, we obtain that the induced left
Quillen presheaf on spectra with an O(n)-action is also suitably convergent.

Corollary 8.5.2. Under Hypothesis 8.1.1 the adjoint pair

const : Sp[O(n)]
//
holim P

Sp[O(n)]
• : limoo

is a Quillen equivalence.

8.6. Postnikov reconstruction for the intermediate categories. The functor

PJn

• : Nop −→ MCat,

k 7−→ LSk+1FunO(n)(Jn, O(n)Top∗),

defines a left Quillen presheaf, since there is an equality of model structures be-
tween the Sk+1-local n-stable model structure and the model structure of k-types
in FunO(n)(Jn, O(n)Top∗). The proof of which is completely analogous to the case

for spectra, see Proposition 8.3.1. Since the Sk+1-local n-stable model structure
agrees with the model structure of k-types, we will denote both model structure by
PkFunO(n)(Jn, O(n)Top∗).

The homotopy limit of this left Quillen presheaf agrees with the homotopy limit
of the left Quillen presheaf on spectra with an O(n)-action in the sense that the
homotopy limit model categories are Quillen equivalent. In detail, the adjunction

(αn)! : FunO(n)(Jn, O(n)Top∗)
//
Sp[O(n)] : (αn)

∗
oo ,

of [BO13, §8] induces an adjunction

(αn)
N
! : Fun(N,FunO(n)(Jn, O(n)Top∗))

//
Fun(N, Sp[O(n)]) : (α∗

n)
N

oo ,

where (α∗
n)

N = (αn)
∗ ◦ (−). This adjunction in turn induces an adjunction

(αn)
N
! : holim PJn

•

//
holim P

Sp[O(n)]
• : (α∗

n)
N

oo .

Proposition 8.6.1. Under Hypothesis 8.1.1 the adjoint pair

(αn)
N
! : holim PJn

•

//
holim P

Sp[O(n)]
• : (α∗

n)
N

oo ,

is a Quillen equivalence.

Proof. Fibrations of the homotopy limit model structure of P
Sp[O(n)]
• are precisely

the fibrations of the injective model structure on the category of sections of P
Sp[O(n)]
•

since the homotopy limit model structure is a right Bousfield localization of the
injective model structure. A similar characterisation holds for the left Quillen
presheaf PJn

• , hence to show that the right adjoint preserves fibrations it suffices
to show that the left adjoint preserves acyclic cofibrations of the injective model
structure on the categories of sections. To see this, note that the adjunction

(αn)! : FunO(n)(Jn, O(n)Top∗)
//
Sp[O(n)] : (αn)

∗
oo ,

is a Quillen adjunction and hence, so too is the induced adjunction on the injective
model structures on the categories of sections.

To show that the left adjoint preserves cofibrations it suffices to show that cofi-
brations between cofibrant objects are preserved. As the homotopy limit model
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structures are right Bousfield localizations [Hir03, Proposition 3.3.16(2)] implies
that cofibrations between cofibrant objects are cofibrations of the injective model
structures on the categories of sections which by the analogous reasoning as above
are preserved by the left adjoint. This yields that the adjunction in question is a
Quillen adjunction.

To show that the adjunction is a Quillen equivalence notice that the right adjoint
reflects weak equivalences between cofibrant objects by the colocal Whitehead’s
Theorem [Hir03, Theorem 3.2.13(2)], and the fact that the induced adjunction on
the injective model structures on the categories of sections is a Quillen equivalence

since for B• ∈ Sect(N,PJn

• ) and X• ∈ Sect(N,P
Sp[O(n)]
• ), a map B• → (α∗

n)
NX• is

a weak equivalence if and only if for each k ∈ N, the map Bk → (α∗
n)

NXk is a
weak equivalence of spectra, which in turn happens if and only if the adjoint map
(αn)!Bk → Xk is an n-stable equivalence, which is precisely the condition that the
adjoint map (αn)

N
! B• → X• is a weak equivalence.

It is left to show that the derived counit is an isomorphism. Let Y• be bifibrant

in the homotopy limit model structure of the left Quillen presheaf P
Sp[O(n)]
• . Then

the derived counit

(αn)
N
! ĉ ((α∗

n)
NY•) −→ Y•,

is a map between cofibrant objects, hence a weak equivalence in the homotopy limit
model structure if and only if a weak equivalence in the injective model structure
on the category of sections i.e., if and only if for each k ∈ N, the induced map

(αn)!(αn)
∗Yk −→ Yk,

is a weak equivalence. This last is always a weak equivalence by [BO13, Proposition
8.3]. �

As a corollary, we see that the left Quillen presheaf PJn

• is convergent.

Corollary 8.6.2. Under hypothesis 8.1.1 the adjoint pair

const : FunO(n)(Jn, O(n)Top∗)
//
holim PJn

• : limoo ,

is a Quillen equivalence.

Proof. Consider the commutative diagram

FunO(n)(Jn, O(n)Top∗)
(αn)! //

const

��

Sp[O(n)]
(αn)

∗

oo

const

��
holim PJn

•

lim

OO

(αn)
N

! //
holim P

(α∗

n
)N

oo

lim

OO

of Quillen adjunctions in which three out of the four adjoint pairs are Quillen
equivalences by [BO13, Proposition 8.3], Corollary 8.5.2 and Proposition 8.6.1. It
follows since Quillen equivalences satisfy the 2-out-of-3 property, that the remaining
Quillen adjunction is a Quillen equivalence. �
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8.7. Postnikov reconstruction for homogeneous functors. The same ap-
proach as we have just employed from moving from spectra with an O(n)-action to
the intermediate categories yields similar results for the homogeneous model struc-
tures. We choose to model Sk+1-local n-homogeneous functors by the Sk+1-periodic
n-homogeneous model structures of Proposition 7.3.1.

Lemma 8.7.1. The functor

PHomogn

• : Nop −→ MCat,

k −→ Homogn(J0, PSk+1 Top∗),

defines a left Quillen presheaf.

Proof. It suffices to show that the adjoint pair

1 : Homogn(J0, PSk+2 Top∗)
//
Homogn(J0, PSk+1 Top∗) : 1oo ,

is a Quillen adjunction. The adjoint pair

1 : Poly≤n(J0, LSk+2 Top∗)
//
Poly≤n(J0, LSk+1 Top∗) : 1oo

is a Quillen adjunction since the composite of Quillen adjunctions is a Quillen
adjunction so the adjunction

1 : Fun(J0, LSk+2 Top∗)
//
Poly≤n(J0, LSk+1 Top∗) : 1oo

is a Quillen adjunction, and by [Hir03, Proposition 3.3.18(1) & Theorem 3.1.6(1)],
this composite Quillen adjunction extends to the Sk+2-local n-polynomial model
structure since Sk+1-local n-polynomial functors are Sk+2-locally n-polynomial.

An application of [Hir03, Theorem 3.3.20(2)(a)] yields the desired result about
the n-homogeneous model structures. �

Similar proofs to Proposition 8.6.1 and Corollary 8.6.2 yield the following results
relating the n-homogeneous model structure to the homotopy limit of the tower of
Sk+1-local n-homogeneous model structures.

Proposition 8.7.2. Under Hypothesis 8.1.1 the adjunction

(resn0 /O(n))N : holim P
Homogn

•

//
holim PJn

• : (indn0 ε
∗)Noo ,

is a Quillen equivalence.

Corollary 8.7.3. Under Hypothesis 8.1.1 the adjunction

const : Homogn(J0,Top∗)
//
holim P

Homogn

• : limoo ,

is a Quillen equivalence.
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[FR08] L. Fajstrup and J. Rosický. A convenient category for directed homotopy. Theory Appl.
Categ., 21:No. 1, 7–20, 2008.

[GR16] J. J. Gutiérrez and C. Roitzheim. Towers and fibered products of model structures.
Mediterr. J. Math., 13(6):3863–3886, 2016.

[GR17] J. J. Gutiérrez and C. Roitzheim. Bousfield localisations along Quillen bifunctors. Appl.
Categ. Structures, 25(6):1113–1136, 2017.

[GS14] J. P. C. Greenlees and B. Shipley. An algebraic model for free rational G-spectra. Bull.
Lond. Math. Soc., 46(1):133–142, 2014.

[Heu21] G. Heuts. Lie algebras and vn-periodic spaces. Ann. of Math. (2), 193(1):223–301, 2021.

https://pages.uoregon.edu/ddugger/delta.html


THE LOCALIZATION OF ORTHOGONAL CALCULUS 41

[Hir03] P. S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.

[Hov99] M. Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. Amer-
ican Mathematical Society, Providence, RI, 1999.

[Hov01] M. Hovey. Spectra and symmetric spectra in general model categories. J. Pure Appl.
Algebra, 165(1):63–127, 2001.

[HS98] M. J. Hopkins and J. H. Smith. Nilpotence and stable homotopy theory. II. Ann. of
Math. (2), 148(1):1–49, 1998.

[KRW21] M. Krannich and O. Randal-Williams. Diffeomorphisms of discs and the second weiss
derivative of btop(-), 2021.

[Kuh04] N. J. Kuhn. Tate cohomology and periodic localization of polynomial functors. Invent.
Math., 157(2):345–370, 2004.
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