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Eleven-dimensional supergravity on S8×S1 is conjectured to be dual to the M-theory matrix

model. We prove that the dynamics of a subset of fluctuations around this background is

consistently described by D = 2 SO(9) gauged maximal supergravity. We provide the full

non-linear uplift formulæ for all bosonic fields. We also present a further truncation to

the SO(3)×SO(6) invariant sector and discuss its relation to the BMN matrix model at

finite temperature. The construction relies on the framework of generalised Scherk–Schwarz

reductions, established for E9 exceptional field theory in a companion paper. As a by-

product, we severely constrain the most general gauge deformations in D = 2 admitting an

uplift to higher dimensions.
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1 Introduction and summary

The SU(N) matrix quantum mechanics, first introduced as a regularisation of the superme-

mbrane [1, 2], has been proposed as a non-perturbative definition of M-theory in the infinite
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momentum frame [3]. A more recent perspective on this conjecture is provided by hologra-

phy [4,5], where the strong coupling limit of the matrix model is described by eleven-dimensional

supergravity on the SO(9)-invariant pp-wave solution [6,7]. The corresponding ten-dimensional

description involves IIA supergravity on the near-horizon geometry of N D0-branes, whose met-

ric is conformal to AdS2 × S8. The above holographic duality has been the subject of several

studies, including numerical evaluations of some correlation functions, see for example [8–12].

In order to apply holographic techniques such as holographic renormalisation [13–15], it is

generally very useful to have a consistent truncation to a lower-dimensional supergravity theory,

capturing a subset of fluctuations in the asymptotically AdS space-time. For the S8 × S1 pp-

wave background, the natural candidate is SO(9) gauged maximal supergravity in D = 2 space-

time dimensions [16], in which the pp-wave is a 1/2-BPS domain wall solution with a running

dilaton. A U(1)4 axion-free subsector has been shown to consistently uplift to ten dimensions

in [17]. Holographic renormalisation was used in this model to derive the two-point functions

of quadratic and cubic operators [11]. In order to further probe the connection between SO(9)

gauged supergravity and the M-theory matrix model, it is necessary to have at one’s disposal a

consistent embedding in eleven dimensions that captures all possible fluctuations. The consistent

uplift of the entire two-dimensional theory, which was announced in [18], is the main result of

this paper.

In a companion paper [19], we have described how generalised Scherk–Schwarz reductions [20–

31] of E9 exceptional field theory [32, 33] can be used to obtain the complete bosonic dynam-

ics of two-dimensional gauged maximal supergravity theories that admit a consistent uplift to

maximal supergravity in D = 10 or D = 11 dimensions. The resulting theory was described

uniformly by a pseudo-Lagrangian whose Euler–Lagrange equations need to be supplemented

by a set of duality equations that reduce the number of propagating bosonic degrees of freedom

to 128 as required by maximal supersymmetry. The pseudo-Lagrangian consists of a potential

and a topological term.

In the present paper, we apply the general results obtained in [19] to the particular case of

SO(9) gauged supergravity in D = 2 dimensions. We recover the SO(9) gauged supergravity

theory that was originally derived by Ortiz and Samtleben [16] using supersymmetry, and pro-

vide moreover concrete formulæ for the uplift of any two-dimensional configuration to D = 11

supergravity. The complete form of the metric and the three-form gauge field in eleven dimen-

sions is necessary to interpret holographically the solutions of SO(9) gauged supergravity. We

then focus on the SO(3)×SO(6) invariant subsector of the theory, including the axion that was

not captured in [17]. This truncation is a priori relevant to the description of the BMN mass

deformation of the BFSS matrix model [34]. We will show that it includes a non-normalisable

mode that triggers the BMN deformation at finite temperature [35].

The generalised Scherk–Schwarz reduction of E9 exceptional field theory rests, as all such

reductions, first and foremost on the identification of a twist matrix taking values in the hidden

symmetry group and depending on the so-called internal coordinates of exceptional field theory.

We recall that in exceptional field theory [36–43,32,33] there are external coordinates (that here

belong to D = 2 space-time dimensions) as well as internal coordinates that transform in a rep-

resentation of the hidden symmetry group, here in the infinite-dimensional basic representation
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of E9.
1 Importantly, the internal coordinates are constrained by the so-called section constraint

that guarantees a consistent diffeomorphism algebra [44,45] and the correct counting of degrees

of freedom. The dependence of the twist matrix on the internal coordinates determines which

subgroup of E9 is gauged along with the resulting dynamics and is constrained by the generalised

Scherk–Schwarz consistency condition as discussed in the companion paper [30].

The SO(9) gauge subgroup related to the S8 sphere reduction sits inside an SL(9) subgroup

of E9 as is usual for sphere reductions [30, 46]. This SL(9) is different from the (geometric)

SL(9) arising in the T 9 torus reduction from D = 11 to two dimensions. One determines the

correct SL(9)⊂E9 through the identification of the fields supporting the one-half BPS pp-wave

solution [7]. Remarkably, this reveals that the SL(9) relevant for SO(9) gauged supergravity

can be obtained by spectral flow from the eleven-dimensional one. The relation between these

two SL(9) subgroups of E9 will be central for deriving the explicit uplift formulæ to D = 11

dimensions in Section 4.

In order to give the reader an impression of the uplift formulæ, we display here the reduction

ansatz for the D = 11 metric

ds211D = ρ−
8
9 e2ς g̃µνdx

µdxν + ρ
2
9GĨ J̃(dy

Ĩ +AĨ)(dyJ̃ +AJ̃) . (1.1)

Its components along the two external dimensions involve the conformal factor e2ς , the uni-

modular metric of the two-dimensional space-time g̃µν , and the internal volume density that

reads

ρ(x, y) = (det̊g)
1
2̺(x) , (1.2)

in terms of the determinant of the round S8 metric g̊ij , as well as the two-dimensional dilaton

̺. The unimodular internal (9× 9)-part of the D = 11 metric further decomposes into

GĨ J̃ dy
ĨdyJ̃ = Gijdy

idyj + (detGij)
−1 (dy9 +Kidy

i)2 (1.3)

with respect to the M-theory fibre. The inverse Gij is expressed, up to the conformal factor, as

e2ςGij = g2̺
2
3 e2σ(det g̊)

5
9 YI g̊

ik∂kYJ YK g̊
jl∂lYL

(
2mK[ImJ ]L + ̺−2/3mPQa

IJPaKLQ
)
, (1.4)

where the right-hand side contains the nine embedding coordinates YJ (in Euclidean R
9) of the

reduction space that is homological to the eight-sphere, and that satisfy g̊ij = ∂iYI∂jYJδ
IJ , as

well as the propagating fields of the two-dimensional SO(9) gauged supergravity (see (3.39)). The

latter are the SL(9) metric mPQ = mQP and the conjugate three-form aIJK = a[IJK]. Further

equations for the remaining bosonic fields of D = 11 supergravity expressed through those of

the SO(9) gauged theory can be found in Section 4. We stress that all uplift expressions are

finite expression although they are constructed at intermediate steps from infinite-dimensional

E9 modules. Their structure is similar to that occurring in lower rank cases, see for instance [47–

49,29,50–52].

1The global symmetry group of ‘extended’ E9 exceptional field theory [33] also contains half of a Virasoro

group related to reparametrisations of the spectral parameter occurring in the loop group description of the affine

E9 symmetry. This is discussed in more detail in [33,19] and in Section 2.
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Another important result of this paper is that we explain in detail how one can obtain a

proper physical Lagrangian from the combined pseudo-Lagrangian and duality equation system.

This hinges on choosing an appropriate parabolic gauge for the scalar fields, tantamount to a

choice of duality frame, and then rewriting the pseudo-Lagrangian in a form of a finite set of

terms plus an infinite set of terms that are all bilinear in components of the duality equation. The

bilinearity implies that these terms can be ignored when varying the pseudo-Lagrangian as their

contribution to the Euler–Lagrange equations will be set to zero by the duality equation that

has to be imposed separately. However, it turns out the duality equations no longer constrain

the finitely many fields occurring in the finitely many terms that were separated out, so that

the latter constitute a proper physical Lagrangian for the propagating fields, potentially with

a finite number of auxiliaries. This mechanism was already encountered in [33, 53] and will be

described in detail in Section 2.4.

The construction described in this paper can be extended to other gauge groups. In fact,

our results include the case of CSO(p, q, r) gaugings with p+q+r=9 [54] in a straight-forward

manner by replacing the embedding tensor ΘIJ ∼ δIJ by the appropriate invariant (degenerate)

metric of CSO(p, q, r). Here, ΘIJ = ΘJI , in the 45 of SL(9), arises from the appropriate choice of

twist matrix. Besides this minimal generalisation, one may also envisage the study of completely

different gaugings in D = 2 using different choices of twist matrix and following the steps of the

present paper.

We also address the question of which embedding tensors admit an uplift to eleven-dimen-

sional or type IIB supergravity. We show that any Lagrangian gauging admitting such an uplift

is only parametrised by finitely many components, which we identify explicitly. This analysis,

presented in Appendix E, relies on choosing the appropriate duality frame and decomposition

of the embedding tensor.

The structure of this article is as follows. We begin with a review of the algebraic un-

derpinnings of the construction, including E9, its representations and spectral flow. We also

explain the transition from the pseudo-Lagrangian to a proper Lagrangian in Section 2. In

Section 3 we present all the relevant steps for obtaining SO(9) gauged supergravity via a gener-

alised Scherk–Schwarz reduction. Section 4 is devoted to deriving explicit uplift expressions for

any configuration in SO(9) gauged supergravity to D = 11 supergravity. We describe in detail

the SO(3)×SO(6) invariant subsector and its relevance for the BMN matrix model. Several

appendices contain additional, more technical, details on some aspects presented here.

2 Spectral flow and duality frames

In this section, we set up the algebraic preliminaries needed for describing the generalised Scherk–

Schwarz reduction of E9 ExFT that leads to SO(9) gauged supergravity as a consistent truncation

of higher-dimensional supergravity. We begin by identifying various SL(9) subgroups of E9 that

have different physical interpretations. This will be illustrated by substituting them into the

pseudo-Lagrangian (of D = 2 supergravity) to generate proper physical Lagrangians in different

duality frames.
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Figure 1: Dynkin diagram of e9 with labelling of nodes. Nodes 1, . . . , 8 make up the diagram of e8.

2.1 SL(9) subgroups of E9

At the level of the Lie algebra, we describe e9 as the loop extension of the split exceptional e8,

together with a central element K and a Virasoro operator L0 that is part of a whole Virasoro

algebra spanned by Lm for m ∈ Z and we follow the conventions of [19] for the commutation re-

lations. The Dynkin diagram of the affine Kac–Moody algebra e9 is shown in Figure 1, including

a numbering of its nodes.

2.1.1 Branching of e8

In order to exhibit the various sl9 subalgebras we first need to decompose e8. The adjoint

representation of e8 decomposes under the gl8 that is embedded along nodes 1, . . . , 7 as

248 = 8
(−1) ⊕ 28(−2/3) ⊕ 56

(−1/3) ⊕ (gl8)
(0) ⊕ 56(1/3) ⊕ 28

(2/3) ⊕ 8(1) , (2.1)

where the superscripts describe the eigenvalue of the gl1 of the reductive gl8
∼= sl8⊕gl1. Writing

the generators of gl8 as T ij with i, j = 1, . . . , 8 and commutation relation

[
T ij , T

k
ℓ

]
= δkj T

i
ℓ − δiℓ T

k
ℓ , (2.2)

the various graded pieces in this decomposition can be given as tensor densities transforming

under this gl8, explicitly

8
(−1)

: Tk
[
T ij , Tk

]
= −δik Tj ,

28(−2/3) : T k1k2 = T [k1k2]
[
T ij , T

k1k2
]
= −2δ

[k1
j T

k2]i − 1

3
δijT

k1k2 ,

56
(−1/3)

: Tk1k2k3 = T[k1k2k3]
[
T ij, Tk1k2k3

]
= −3δi[k1Tk2k3]j +

1

3
δijTk1k2k3 ,

56(1/3) : T k1k2k3 = T [k1k2k3]
[
T ij, T

k1k2k3
]
= 3δ

[k1
j T

k2k3]i − 1

3
δijT

k1k2k3 ,

28
(2/3)

: Tk1k2 = T[k1k2]
[
T ij , Tk1k2

]
= 2δi[k1Tk2]j +

1

3
δijTk1k2 ,

8(1) : T k
[
T ij , T

k
]
= δkj T

i . (2.3)

The absence of density terms in the transformation of T i and Ti is the reason for our choice of

normalisation of the gl8. Some relevant e8 commutation relations in this basis read

[
T i, Tj

]
= T ij + δij T

k
k ,

[
T i1i2i3 , Tj1j2j3

]
= 18 δ

[i1i2
[j1j2

T
i3]
j3]
, (2.4)

and further relations can be found in Appendix A.1.
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One consequence of this is that defining

T i0 := T i and T 0
i := Ti , (2.5)

leads to an sl9 subalgebra of e8 that we write as T
I
J , where now I, J = 0, 1, . . . , 8 are fundamental

indices of sl9 with commutation relations

[
T IJ , T

K
L

]
= δKJ T

I
L − δILT

K
J . (2.6)

This sl9 is a maximal subalgebra of e8. The adjoint 248 of e8 decomposes under this sl9 as2

248 = 84⊕ 80⊕ 84 , (2.7)

where 80 is the adjoint of sl9 and 84 corresponds to a three-form T IJK of sl9 while 84 is a

dual three-form TIJK . The branching under gl8 ⊂ sl9 gives the components shown in (2.3), for

example T IJK → (T ijk, T 0ij ≡ T ij).

The affine extension ê8 of e8 consists of infinitely many copies of the adjoint of e8, labelled by

a mode number m ∈ Z, together with a central element K. The mode number means appending

an index m to all generators in (2.3), leading for example to T im and Tmi. The mode number is

additive in commutators. The central element K occurs as an extension in commutators when

the mode numbers add up to zero and we also make use of Virasoro generators Lm for m ∈ Z

with the standard commutation relations.3 The Virasoro generators act on the loop algebra

elements by [Lm, T
•
n ] = −nT •

m+n, where • can be any of the sl8-representations in (2.3). We will

also make use of a non-degenerate bilinear form η−k αβ over ê8 ⊕〈L−k〉 (for a fixed k) that pairs

loop generators whose mode numbers add up to −k as well as K with L−k. For more details

on the algebraic structures we refer to [19]. Further details on this branching and commutation

relations can be found in Appendix A.1.

2.1.2 Spectrally flowed sl9 algebras

The identification of the sl9 subalgebra can be generalised within e9 by using a version of spectral

flow [55,56]. We define for p ∈ Z the generators

Tij = T i0 j +
p

9
δij K , Ti0 = T ip , T0

i = T−p i , (2.8)

where the generators in the 8 and 8 of gl8 have been shifted by p affine units in opposite

directions. This means that the definition is different for every p ∈ Z, but we are not indicating

by how many units p we have flowed in the notation to avoid cluttering.4 The addition of the

central term for the gl8 is necessary in order to maintain the sl9 commutation relations, viz.

[
Ti0,T

0
j

]
= T i0j + δij T

k
0 k + δijK = Tij + δijT

k
k = Tij − δijT

0
0 , (2.9)

2This is a Z3-graded decomposition although this grading will not play a role in our analysis.
3The value of the Virasoro central charge will drop out of any final formula.
4Only in Appendix A.4, where we make statements about inequivalent values of p, we will need the distinction.

A specific convention for p = 1 and p = 2 which will play a special role will be introduced in Section 2.1.3.
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by the vanishing trace of TIJ . This last relation is still in agreement with the general sl9

structure (2.6). The case p = 0 leads to the maximal sl9 ⊂ e8 and then TIJ = T IJ as defined

in (2.6).

The spectral flow of the sl9 subalgebra extends to all of e9. The generators of the affine

extension of sl9 are defined as

Tin j = T in j +
p

9
δijδn,0 K , Tin 0 = T in+p , T0

n i = Tn−p i , (2.10)

for any mode number n ∈ Z. They satisfy the usual ŝl9 algebra relations

[
TImJ ,T

K
nL

]
= δKJ TIm+nL − δILT

K
m+n J +m

(
δILδ

K
J − 1

9
δIJδ

K
L

)
δm,−nK . (2.11)

We have in particular

[
Tim 0,T

0
n j

]
= T i

m+n j + δijT
k
m+n k +mδm,−nδ

i
j K , (2.12)

that extends (2.9) for any p and any mode numbers m and n. The other flowed generators in e9

are defined according to

T
ijk
n−p/3 = T ijkn , T

ij0
n−p/3 = T ijn−p ,

Tn+p/3 ijk = Tn ijk , Tn+p/3 ij0 = Tn+p ij . (2.13)

Here, we have included in the definition of the level a shift that is related to the way the

generators appear in the gl8 decomposition of e8, see (2.3).

The commutation relations associated with these definitions are

[
TI1I2I3m−p/3,Tn+p/3 J1J2J3

]
= 18 δ

[I1I2
[J1J2

T
I3]
m+n J3]

+ 6 δI1I2I3J1J2J3

(
m− p

3

)
δm,−nK ,

[
TI1I2I3m−p/3,T

I4I5I6
n−p/3

]
= −1

6
εI1...I9Tm+n−2/3 I7I8I9 . (2.14)

In this flowed basis we also define the Virasoro generators Lm

Lm = Lm + p T kmk +
4p2

9
δm,0K , (2.15)

that satisfy the Virasoro algebra for the same central charge as the original Lm. The action of

these redefined Virasoro operators on the flowed e9 basis is

[
Lm,T

I
n J

]
= −nT I

m+nJ ,[
Lm,T

IJK
n−p/3

]
= −

(
n− p

3

)
TIJKm+n−p/3 ,

[
Lm,Tn+p/3 IJK

]
= −

(
n+

p

3

)
Tm+n+p/3 IJK . (2.16)

The redefined Virasoro generators are thus tuned to the mode numbers of the generators given

in (2.10) and (2.13).
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The formulation of E9 ExFT in [32,33] also makes use of shift operators Sm that act on the

original unflowed generators according to

Sm(TAn ) = TAm+n , Sm(Ln) = Lm+n , Sm(K) = 0 . (2.17)

Here, A is an adjoint E8 index and this definition of shift operators is adapted to the e8 basis

of e9.

One can similarly define shift operators that are adapted to the spectrally flowed sl9 basis

of e9 and they appear in the generalised Scherk–Schwarz reduction in this paper. We will write

these shift operators as Sm and they act by

Sm
(
TIn J

)
= T I

m+n J , Sm

(
TI1I2I3n−p/3

)
= TI1I2I3m+n−p/3 , (2.18)

Sm
(
Tn+p/3 I1I2I3

)
= Tm+n+p/3 I1I2I3 , Sm(Ln) = Lm+n , Sm(K) = 0 .

It is important to note that the two shift operators are not identical but differ by central terms

due to the explicit K modifications appearing in (2.10) and (2.15). The relation between the

two shift operators is given, in the flowed basis, by

Sm
(
TInJ

)
= Sm

(
TInJ

)
− p

9
δm,−n

(
δIi δ

i
J − 8δI0δ

0
J

)
K ,

Sm
(
TI1I2I3n−p/3

)
= Sm

(
TI1I2I3n−p/3

)
,

Sm
(
Tn+p/3 I1I2I3

)
= Sm

(
Tn+p/3 I1I2I3

)
,

Sm(Ln) = Sm(Ln)− δm,−n
4p2

9
K . (2.19)

The extra terms in the first and last relation show that the shift operators Sm appearing in the

construction of E9 ExFT are not sl9 covariant. However, the additional central terms can be

reabsorbed in the definition of the constrained fields 〈χ| and χµ such that one may work with

Sm that are sl9 covariant throughout.5

We finally note the following identity involving the shifted bilinear form η−k αβ for the flowed

and unflowed generators

η−k αβT
α ⊗ Tβ = η−k αβT

α ⊗ T β . (2.20)

Following the conventions of [33], the index α in this formula ranges over both ê8 and the

Virasoro generators. We display the expansion of the bilinear form η−k αβ in the flowed sl9 basis

in detail in (A.18).

As we show in Appendix A.4 there are only two different E9 conjugacy classes of spectral

flows, namely those with p ≡ 0 mod 3 and the remaining p ≡ 1, 2 mod 3. The p = 0 flowed

basis corresponds physically to the dimensional reduction of three-dimensional supergravity on

a circle. The E8 subgroup commuting with L0 is the three-dimensional Cremmer–Julia group

of Ehlers type. We will next explain the physical meaning of the other spectrally flowed bases.

In fact, even though p = 1 and p = 2 are conjugate, it is useful to consider them separately. To

5When relating two distinct flowed bases, one has to recall these extra terms.
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distinguish and relate them explicitly, we will use the notation of the generators introduced in

this section for the p = 2 flowed basis only, while we shall write T̃ĨnJ̃ , T̃
Ĩ1Ĩ2Ĩ3
n−1/3

, T̃n+1/3 Ĩ1Ĩ2Ĩ3
for the

generators in the p = 1 flowed basis. Moreover, we also put a tilde on the fundamental index

Ĩ whose decomposition under gl8 we choose as Ĩ = (i, 9) instead of I = (0, i). So unless stated

specifically, the generators TInJ ,T
I1I2I3
n+1/3,Tn−1/3 I1I2I3 will always be in the p = 2 flowed basis.

Relating the supergravity field components then amounts to using the change of basis de-

scribed in (2.10) and (2.13) together with the corresponding choice of coset representative. As

explained in more detail in the sequel, with this convention that eleven-dimensional supergravity

is written in the p = 1 flowed basis, while the consistent truncation on S8 × S1 leads to the

gauging of the SO(9) ⊂ SL(9) in the p = 2 flowed basis. For short, we will therefore use the no-

tation of the generators introduced in this section for the p = 2 flowed basis only, while we shall

write T̃ĨnJ̃ , T̃
Ĩ1Ĩ2Ĩ3
n−1/3, T̃n+1/3 Ĩ1Ĩ2Ĩ3

for the generators in the p = 1 flowed basis. Moreover, we also

put a tilde on the fundamental index Ĩ whose decomposition under gl8 we choose as Ĩ = (i, 9)

instead of I = (0, i). So, unless stated specifically, the generators TInJ ,T
I1I2I3
n+1/3,Tn−1/3 I1I2I3 will

always be in the p = 2 flowed basis.

2.1.3 Spectral flow by p = 1 unit

If one carries out the dimensional reduction from eleven-dimensional supergravity on T 9, the

SL(9) symmetry of Matzner–Misner type of the torus is the one commuting with the derivation

L0 in the p = 1 flowed basis. The degrees of freedom coming from the internal metric are

associated to the generators L0 and T̃Ĩ0J̃ , while those coming from the internal three-form are

associated to T̃Ĩ J̃K̃−1/3. The relation to the Cremmer–Julia E8 group in the p = 0 flowed basis can

be seen from the fact that the gl8 ⊂ e8 that is common to all spectrally flowed sl9 corresponds to

the eight-torus that is used in the reduction from D = 11 to D = 3 space-time dimensions. The

generators T̃i09 in the 8 that are used for p = 1 correspond to the eight Kaluza–Klein vectors

that appear additionally when reducing on T 9 instead of T 8. The generators T̃i09 are equal to

T i−1 in the p = 0 basis, which agrees with the fact that the eight Kaluza–Klein vectors translate

into the first set of dual scalar fields in the E8 formulation [57–59].

Another way of understanding this is by recalling general aspects of the so-called gravity

line of hidden symmetries [60–63]. The D = 11 gravity line of a hidden exceptional symmetry

corresponds to the horizontal line of Cartan type A in Figure 1. This A-type algebra clearly

includes the gl8 that was used in the gl8 decomposition (2.1). In order to extend the algebra to

also include node 0 one must add an 8 that uses the affine node generator exactly once. This

means taking the 8 for m = 1 and this argument confirms that p = 1 unit of spectral flow is

related to D = 11 dimensions.

2.1.4 Spectral flow by p = 2 units

With the convention that eleven-dimensional supergravity is written in the p = 1 flowed basis,

we will now see that the consistent truncation on S8 × S1 leads naturally to the gauging of the

SO(9) ⊂ SL(9) in the p = 2 flowed basis.
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The SO(9) gauge group is associated to the isometries of S8. The rotation group SO(8) ⊂
SO(9) appears as a subgroup of the GL(8) for the GL(8)/SO(8) coset entering the type IIA

metric on S8,6 but the full isometry group SO(9) is not a subgroup of the geometric GL(9) for

the GL(9)/SO(9) coset representing the M-theory metric on S8 × S1 and must instead lie in

another SL(9) in a different spectrally flowed basis.

To identify the relevant spectrally flowed basis for the S8 × S1 compactification, it is useful

to analyse the fields involved in the corresponding AdS2 ×S8 × S1 vacuum solution [7]. The S8

metric is determined by the type IIA GL(8)/SO(8) coset, but the M-theory circle is not fibered

over S8 and the solution does not involve the full GL(9)/SO(9) M-theory coset. The circle is

instead fibered over the AdS2 space through the Kaluza–Klein vector field. The relevant duality

frame is determined by the two-dimensional scalars, so one should instead interpret the Kaluza–

Klein vector field as the dual of the dual graviton field hi1...i79,9 on S8 × S1, i.e. schematically

εi1...i8∂i1hi2...i89,9 ∼ εµν∂µAν9 . (2.21)

In the p = 1 flowed basis this is the component in T̃ 9
−1 i that is T0

0 i in the p = 2 flowed basis.

We find therefore that the scalar fields involved in the S8×S1 compactification parametrise the

SL(9)/SO(9) coset of zero L0 level in the p = 2 flowed basis.

The general framework for reductions of maximal supergravities on Sn to D > 3 external

dimensions was presented in [30]. The resulting gauge group SO(n+1) always lies inside an

SL(n+1) rigid symmetry group and the n coordinates of the Sn are components of the ExFT

generalised coordinates sitting in an antisymmetric rank two tensor of this SL(n+1). As we

show in detail in the next section, the S8 coordinates sit in the 9 = 8 ⊕ 1 of the p = 1 flowed

SL(9) and translate to the vector eight in the 36 = 8 ⊕ 28 of the p = 2 flowed SL(9), thus

confirming that the latter is the correct choice of basis. The argument relies on the study of the

branching of the basic module in which the generalised coordinates are defined.

2.2 Basic module and its decomposition

In E9 exceptional field theory, the derivatives ∂M take values in a lowest weight representation

that was denoted R(Λ0)−1 in [32,33]. This is the conjugate of the basic representation of e9 and

the subscript denotes the conformal weight of the lowest weight vector. Following the notation

of [32,33], we shall write the derivatives as bra vectors 〈∂| that can be expanded over the lowest

weight vector 〈0| in the e8-grading of e9 as

〈∂| = 〈0|
(
∂ψ + TA1 ∂A + . . .

)
(2.22)

and where the lowest weight vector satisfies

〈0|Lm = 0 for m ≤ 1 and 〈0|TAm = 0 for all m ≤ 0. (2.23)

6In the standard level decompositions of hidden symmetries [60–63] the type IIA gl8 corresponds to nodes

0, 1, . . . , 6 of the E9 Dynkin diagram in Figure 1. Upon conjugation under the M-theory SL(9) we can as well

choose the type IIA gl8 as corresponding to the nodes 1, . . . , 7 that is common to all spectrally flowed algebras.

This freedom can be interpreted as choosing a different M-theory circle.
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Since the basic module is a level K = 1 module, we have 〈∂|K = 〈∂| for the action of the central

element on the whole module. In fact, K can be replaced by one in all the formulas.

Under e8 the module decomposes as [64]

R(Λ0)−1 = 10 ⊕ 2481 ⊕ (1⊕ 248⊕ 3875)2 ⊕ (30380 ⊕ 3875⊕ 2×248⊕ 1)3

⊕ (147250 ⊕ 30380⊕ 27000 ⊕ 2×3875⊕ 3×248⊕ 2×1)4 ⊕ . . . . (2.24)

The subscripts denote the eigenvalues under L0 = L†
0.

For us it will be important how the states in R(Λ0)−1 reorganise themselves under the

spectrally flowed sl9 bases discussed in Section 2.1.2. We note that the groundstate of (2.24)

satisfies 〈0|L0 = 4p2

9 〈0| under the L0 generator that has been flowed by p units, see (2.15), and

it is not necessarily the state of lowest L0 eigenvalue in the module.

As we analyse in Appendix A.3 in detail, the branching under sl9 is different for different

units p of spectral flow. Summarising the result from there, we have that for p = 0

R(Λ0)−1 = 10 ⊕
(
84⊕ 80⊕ 84

)
1
⊕
(
240⊕ 1050⊕ 1215⊕ 80⊕ 1050⊕ 240

)
2
⊕ . . . . (2.25)

For p = 1, we have by contrast

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕
(
9⊕ 315

)
13
9
⊕
(
36⊕ 45⊕ 720

)
16
9
⊕ . . . . (2.26)

And finally for p = 2

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕
(
9⊕ 315

)
13
9
⊕ (36⊕ 45⊕ 720) 16

9
⊕ . . . . (2.27)

The subscripts in each case correspond to the L0 eigenvalues for the chosen value of p. We note

that the decompositions for p = 1 and p = 2 differ by conjugating the sl9 representations.

The physical interpretation of this 9 appearing for p = 1 is that the corresponding nine

derivatives are those with respect to the coordinates of the M-theory compact space that com-

pletes the two external coordinates to D = 11 dimensions.

For p = 2 and the decomposition (2.27), we introduce the notation

〈0|I , 〈1/3|IJ = −〈1/3|JI , 〈2/3|IJKL = 〈2/3|[IJKL] , 〈1|IJK = −〈1|IKJ (2.28)

for the first few levels, where the number in the bra vector denotes the difference of the eigenvalue

with respect to L0 − 4
9 . The precise definition of these states and their relations are given in

Appendix A.3. Of particular interest to us will also be the 45 with L0 =
16
9 appearing in (2.27).

This symmetric tensor will be written as

〈4/3|IJ = 〈4/3|JI (2.29)

and its components define a basis for the embedding tensor of CSO(p, q, r) gaugings with p+q+

r = 9. These can be obtained by consistent truncations of type IIA and the type IIA coordinates

are appearing inside the 367/9 in (2.27).

11



Similarly to (2.28) one can define a basis of R(Λ0)−1 adapted to the p = 1 decomposi-

tion (2.26). The corresponding generators are written with tildes for distinction and denoted

by

〈̃0|Ĩ , 〈̃1/3|Ĩ J̃ = −〈̃1/3|J̃ Ĩ , 〈̃2/3|Ĩ J̃K̃L̃ = 〈̃2/3|[Ĩ J̃K̃L̃] , 〈̃1|J̃K̃
Ĩ

= −〈̃1|K̃J̃
Ĩ

. (2.30)

In Appendix A.3.3, we study the relation between the two bases (2.28) and (2.30). By construc-

tion this relation cannot be sl9 covariant. For example, the lowest 9 in (2.26) is expressed in

terms of vectors of (2.28) as

〈̃0|9 = 〈4/3|00 , 〈̃0|i = 〈1/3|0i . (2.31)

In the above equation, we have broken the two sl9 algebras to their common gl8 and denoted

the extra (vector) index by 9 for the p = 1 flow and by 0 for the p = 0 to distinguish them.

Further relations are given in (A.34).

Throughout this paper, we will also encounter ket vectors that belong to the representation

R(Λ0)−1, such as the vector field |Aµ〉. All branchings and algebraic relations described above

apply to R(Λ0)−1, with conjugated SL(9) representations and opposite signs for the L0 grading.

We close this section with a comment on a subtle technical point. On the representation

R(Λ0)s (or another conformal weight) we can define a K(e9) invariant pairing that we will write

using a bra-ket notation, such as I |0〉 = (〈0|I)†, and that will feature prominently for instance

in the potential (3.40). The ‘kets’ in such expressions are still elements of R(Λ0)s and can be

distinguished from ‘proper’ kets from context or by the position of SL(9) indices.

2.3 Interpretation of spectral flow as change of duality frame

Let us now give an interpretation of spectral flow in terms of the supergravity theory. For

simplicity, we first focus on the case of D = 2 ungauged supergravity, in the language used

in [19,33].

The theory can be formulated in terms of infinitely many scalar fields parametrising

Ê8 ⋊Vir−

K(E9)
, (2.32)

with coset representative V , Hermitian currents Pµ and anti-Hermitian composite connection

Qµ, defined from the Maurer–Cartan form Ω:

dV V −1 = Ω = P +Q . (2.33)

On shell, the currents obey the twisted self-duality constraint (in form notation, so that P =

Pµdx
µ)

⋆P = S1(P ) + χ̆1K ≡ P (1) , (2.34)

where the shift operator is defined in (2.17) and the auxiliary one-form χ̆1 is introduced to

restore K(E9) covariance. For later convenience, we shall indeed define the K(E9) covariant

combinations

P (k) = Sk(P ) + χ̆kK , (2.35)
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with χ̆k = χ̆−k are independent auxiliary one-forms, except for χ̆0 = PK. These new one-forms

will be necessary in writing a pseudo-Lagrangian later on. They are related by iterating (2.34)

and writing

P (k) = ⋆|k|P , (2.36)

in which only the K component is independent of the original twisted self-duality. Equation

(2.34) determines the duality relations between physical and dual scalars, but the distinction

between the two is only determined by fixing a parametrisation of the coset representative V .

Different parametrisations provide dual description of the same physical system. A first example

is the E8 covariant parametrisation based on the grading with respect to the L0 generator

V = ̺−L0e−ϕ1L−1e−ϕ2L−2 · · · V̊ eY1ATA−1eY2AT
A
−2 · · · e−σK , (2.37)

where V̊ is a coset representative for E8/(Spin(16)/Z2) and the central factor is identified with

the determinant of the metric: e2σ =
√−g. This parametrisation is naturally obtained when

constructing D = 2 maximal supergravity as Kaluza–Klein reduction of D = 3 maximal su-

pergravity. The Lagrangian obtained from such a dimensional reduction only involves the E8

scalars, the D = 2 metric and the dilaton ̺, corresponding to the size of the Kaluza–Klein circle:

Lsugra =
√−g

(
̺R− ̺ ηABP 0

µAP
µ 0
B

)
, (2.38)

with P 0
µA the Hermitian projection of the Maurer–Cartan form of E8/(Spin(16)/Z2), constructed

from V̊ and also corresponding to the degree 0 loop component of Pµ. Twisted self-duality

provides duality relations between these currents and the infinite series of dual potentials Y A
m ,

which do not appear in the physical Lagrangian.7 In fact, once one establishes that the theory

(2.38) admits the duality relations (2.34), its dynamics are entirely encoded in the integrability

conditions of the latter. One may then investigate whether other Lagrangians lead to the same

twisted self-duality relations and are hence (classicaly) equivalent to (2.38).

Theories equivalent to (2.38) must involve a different subset of the fields parametrising (2.32)

and can be obtained by a procedure analogous to (non-)Abelian T-duality [65]. It amounts to

gauging part of the symmetries of (2.38) and introducing Lagrange multipliers (corresponding to

some combination of the Y A
m fields) to impose flatness of the gauge connection. Integrating out

the latter produces a new Lagrangian based on a different non-linear sigma model. We refer to

this procedure as a change of duality frame, in analogy with the choice of a symplectic frame for

vector fields inD = 4 theories (see e.g. [66,67]). We can reinterpret such changes of duality frame

in terms of different parametrisations of V , associated with inequivalent choices of parabolic

subalgebras of e9. Spectral flows such as the one described in the previous sections indeed

determine a choice of parabolic subalgebra associated to the grading of the flowed derivation L0.

We can for instance look at the duality frame associated with the p = 2 spectrally flowed SL(9)

and introduce the new parametrisation

V = ̺−L0e−ϕ1L−1e−ϕ2L−2 · · · v e−
1
6
aIJKT−1/3 IJKe

− 1
6
bIJKTIJK

−2/3e−h
I
JT

J
−1I · · · e−σK , (2.39)

7Relations bewteen ̺ and all ϕm are also obtained from (2.34), but the only nontrivial relation is dϕ1 = 2⋆d̺,

while all others are algebraically solved in terms of ̺ and ϕ1.
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where v is a coset representative for SL(9)/SO(9)K , where from now on the subscript K is used

to distinguish the local reparametrisation invariance of the coset space from the SO(9) gauge

group that will appear in later sections. The map between this expression and (2.37) involves

a change of K(E9) gauge and field redefinitions of the loop scalars, mixing in particular some

of the original E8 scalars with the dual potentials, thus reflecting the spectral flow relations

(2.10), (2.13). We also stress that while the dilaton and other Virasoro scalars are not affected

by the redefinitions, the conformal factor e2σ =
√−g is. We nevertheless keep the same symbol.

The physical field content consists of the D = 2 metric gµν , the dilaton ̺, the scalar fields

parametrising SL(9)/SO(9)K and the axions aIJK transforming as a three-form under SL(9).

All together, these scalars parametrise the coset space

GL+(9) ⋉R
84

SO(9)K
(2.40)

where the R
84 factor is parametrised by aIJK .8 The physical Lagrangian reads

Lsugra =
√−g

(
̺R+

1

4
̺ gµν∂µm

IJ∂νmIJ − 1

12
ρ1/3gµν∂µa

I1I2I3∂νa
J1J2J3mI1J1mI2J2mI3J3

)

+
1

64
εµνεI1...I9a

I1I2I3∂µa
I4I5I6∂νa

I7I8I9 . (2.41)

where we have introduced the matrix mIJ = m(IJ) and its inverse mIJ to parametrise the

SL(9)/SO(9)K scalar fields. It is mapped to the basic representation as the hermitian element

m = v†v . (2.42)

The relation between the operator m and matrix mIJ is such that m−1dm = −mIKdmJKT
J
0 I .

In line with the comment at the end of Section 2.2, we can indeed write 〈0|Im−1
J |0〉 = mIJ .

It is instructive to look at the first few duality relations descending from (2.34) in this duality

frame

̺
1
3mILmJPmKQ ⋆ da

LPQ = dbIJK − 1

72
εIJKP1P2P3Q1Q2Q3a

P1P2P3daQ1Q2Q3 , (2.43)

̺ ⋆mIKdmKJ = dhIJ +
1

2
aIKL

(
dbJKL − 1

216
εJKLP1P2P3Q1Q2Q3a

P1P2P3daQ1Q2Q3

)

− 1

18
δIJa

KLPdbKLP .

8Notice that GL+(9)⋉R
84 is not a subgroup of E9, since the generators T−1/3 IJK do not commute but rather

produce lower-degree generators. The correct way to interpret the numerator of (2.40) is as a quotient of the

parabolic subgroup of E9 parametrised by (2.39) by its further subgroup generated by algebra elements of degree

smaller than −1/3. In more physical terms, the non-commutativity of the aIJK axion shifts is hidden in the

physical spectrum since it only affects dual potentials absent from the physical Lagrangian.
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Eliminating bIJK in the second equation one finds that hIJ is dual to the SL(9) Noether current

for the Lagrangian (2.41)

dhIJ = ̺ ⋆mIKdmKJ −
1

2
̺

1
3mJP1mKP2mLP3a

IKL ⋆ daP1P2P3

+
1

18
̺

1
3 δIJmQ1P1mQ2P2mQ3P3a

Q1Q2Q3 ⋆ daP1P2P3

− 1

216
εJKLP1P2P3Q1Q2Q3a

IKLaP1P2P3daQ1Q2Q3 . (2.44)

Recall that the p = 2 spectral flowed basis is conjugate under E9 to the p = 1 one, up to

conjugation of all SL(9) representations. Therefore one obtains in the p = 1 basis the same

Lagrangian as (2.41), except that the position of the indices on the axions is interchanged, i.e.

aIJK → aIJK . This p = 1 Lagrangian can be obtained by dimensional reduction of eleven-

dimensional supergravity, after integrating out the non-dynamical fields. The axions aIJK (with

lower indices) are then the components of the eleven-dimensional three-form along the torus

and ̺2/9mIJ is the internal components of the metric.9 The construction of the SO(9) gauged

theory proceeds via the p = 2 flowed basis and a central theme in Section 4 will be how to relate

this to the p = 1 flow and D = 11 supergravity.10

2.4 From pseudo-Lagrangians to physical Lagrangians

The relation between physical Lagrangians in specific duality frames on the one hand, and

parametrisations of (2.32) in specific parabolic subgroups of E9 on the other hand, is made

systematic by rephrasing ungauged D = 2 maximal supergravity in terms of a duality invariant

pseudo-Lagrangian. We will now describe this approach and demonstrate how physical La-

grangians can be extracted from the pseudo-Lagrangians. It should be noted that for ungauged

supergravity this pseudo-Lagrangian is entirely redundant, since one must anyway impose af-

ter variation the twisted self-duality constraint, whose integrability already encodes the full

dynamics of the theory. The advantage of the pseudo-Lagrangian formulation is that it straight-

forwardly generalises to gauged supergravity (and in fact, to E9 ExFT as well), as we will show

in Section 3.3. Throughout this section we will use for convenience the conformal gauge for the

external metric

gµν = e2σηµν , (2.45)

such that ⋆ denotes Hodge duality with respect to the flat metric.

The pseudo-Lagrangian for ungauged supergravity is topological and can be written in terms

of the currents Pµ, their shifted versions (2.35) as well as the associated composite connection

9As noted in [16], the p = 1 Lagrangian obtained from the reduction of D = 11 supergravity contains a

Chern–Simons-type term unlike its E8 version (2.38).
10In the rest of this paper we will deal with certain truncations on non-toroidal manifolds, such that the

structure group of the internal space is indeed associated to a p = 1 flowed SL(9), but the resulting D = 2 gauged

supergravity is naturally written in terms of the p = 2 parametrisation and associated duality frame. For this

reason we work with p = 2 in all sections related to D = 2 (gauged) supergravity.
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Qµ. The pseudo-Lagrangian Lpseudo
sugra is defined by [33]11

1

2̺
Lpseudo
sugra dx0 ∧ dx1 K = dP (1) +

[
Q , P (1)

]
+

∞∑

k=1

Pk
(
P (k+1) − P (k−1)

)

+
cvir
12

∞∑

k=2

(k3 − k)Pk
(
Pk+1 + Pk−1

)
K , (2.46)

where the term in the second line is invariant by itself.12 The Maurer–Cartan equation for P

guarantees that the right-hand side of (2.46) is indeed entirely proportional to K. We shall

explain below how to obtain well-defined equations of motion from this infinite sum of terms.

2.4.1 E8 duality frame

As (2.46) is written in terms of the ê8 hvir-valued currents, the expression is independent of the

choice of basis of ê8 in which expand the currents (for instance, Tα rather than Tα as defined in

the previous sections). We stress in particular that the forms Pk are the Virasoro components

of the current and are independent of whether or not we choose an expansion in terms of Lk
or the flowed Lk. Writing ê8 h vir in the e8 decomposition and using (2.35) to identify the K

component of the shifted currents, we obtain

Lpseudo
sugra dx0 ∧ dx1 = 2̺ dχ̆1 − 2̺ ηAB

∑

n

nQnA ∧ P−n−1
B + 2̺

∞∑

k=1

Pk ∧ (χ̆k+1 − χ̆k−1) . (2.47)

The second term is the central component of the commutator in (2.46) in the p = 0 flowed

basis, in which the loop components of P and Q are expanded in terms of the generators TAn ,

for instance

P =
∑

m∈Z

PmA T
A
m +

∑

m∈Z

PmLm + PK . (2.48)

The expansion (2.47) is the most convenient one when working in the E8 duality frame, as

we shall see shortly. Nonetheless, (2.47) is valid regardless of the choice of parabolic gauge.

Expanding Lpseudo
sugra in terms of other bases is more convenient (albeit not strictly necessary) in

order to perform computations in other duality frames. Different expansions amount to a field

redefinition of the auxiliary one-forms, as we shall see below.

Let us first show how we can recover the physical Lagrangian (2.38) from (2.47). The

idea [33,53] is that, once a parabolic parametrisation of the coset representative V is made, we

can manipulate and reorganise the terms in (2.47) to write it as the sum of a finite set of terms,

11Wedge products are understood on the right-hand side and the Lie algebra commutator is understood to be

graded such that [Q , P (1)] = Q ∧ P (1) + P (1) ∧Q.
12The second line is proportional to cvir, the Virasoro central charge associated to the representation in which

V and the currents have been defined. It is introduced to make the pseudo-Lagrangian independent of such choice

by cancelling a similar term coming from the commutator in the first line. As a result, the topological term

Lpseudo
sugra , as a whole, does not depend on cvir. This will become apparent in the explicit expressions (2.47) and

(2.58), in which cvir indeed cancels out.

16



involving only the fields of lowest degree in the parabolic expansion, and an infinite series of

squares of the twisted-selfduality constraint (2.34). Since (2.34) must be imposed after variation

of the pseudo-Lagrangian, one is then allowed to drop the squares of twisted self-duality and

recovers a true Lagrangian for a finite set of ‘physical’ fields.

To see this in practice, we begin with the sector involving Virasoro and central charge one-

forms. Integrating by parts the first term in (2.47) and dropping for brevity the overall factor of

2̺ we have that the first and last term in (2.47) can be manipulated into the following expressions

(recall that wedge products are understood)

P0χ̆1 +
∑

n≥1

Pn(χ̆n+1 − χ̆n−1) (2.49)

= −P1PK +
∑

n≥1

(Pn−1 − Pn+1)χ̆n

= P0 ⋆ PK + (⋆P0 − P1)PK +
∑

n≥1

[(Pn−1 − ⋆Pn)− (Pn+1 − ⋆Pn)]χ̆n ,

where we isolated each χ̆n, n ≥ 0 and in the second line we just added and subtracted ⋆Pn.

Then, we separate the two pieces in the series and combine the last one with (⋆P0 − P1)PK to

write

P0χ̆1 +
∑

n≥1

Pn(χ̆n+1 − χ̆n−1) = P0 ⋆ PK +

+∞∑

n=0

(⋆Pn − Pn+1)(χ̆n − ⋆χ̆n+1) . (2.50)

We see that the infinite series is a sum of bilinears of components of the duality relations (2.36).

Thus, only the first term contributes to the physical Lagrangian. Indeed, using P0 = −̺−1d̺

and PK = −dσ, it expands to (reinstating the overall 2̺ factor)

2̺P0 ⋆ PK = 2d̺ ⋆ dσ =
√−g̺R dx0 ∧ dx1 , (2.51)

where the last identity holds up to a total derivative in the conformal gauge.

Let us now focus on the cocycle term in (2.47). Using the parametrisation (2.37) for V , we

find the relation QnA = −sgn(n)PnA for n 6= 0, so that

−2̺ ηAB
∑

n∈Z

nQnAP
−n−1
B = 2̺ ηAB

∑

n∈Z

|n|PnAP−n−1
B , (2.52)

We need to perform several manipulations analogous to the ones above in order to isolate a term

depending only on the E8 currents P 0
A. Details are given in Appendix A.5. We arrive at the

expression

2̺ ηAB
∑

n∈Z

|n|PnAP−n−1
B = − ̺ ηABP 0

A ⋆ P
0
B (2.53)

+ ̺ ηAB
∑

n≥0

(P 2n+1
A − ⋆P−2n

A )(P−2n
B − ⋆P 2n+1

B )

− ̺ ηAB
∑

n≥0

(P 2n+1
A − ⋆P−2n−2

A )(P−2n−2
B − ⋆P 2n+1

B ) ,
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so that the first term gives the physical kinetic term for the E8/(Spin(16)/Z2) non-linear sigma

model, completing the physical Lagrangian (2.38) as anticipated. We have proved that, schemat-

ically,

Lpseudo
sugra = 2∂µ̺ ∂

µσ − ̺ ηABP 0
µAP

µ 0
B + “self-duality square terms” . (2.54)

Because we defined the topological term in the conformal gauge, we must also ensure that the

Virasoro constraint, coming from the variation of the uni-modular component g̃µν of the metric

in the physical Lagrangian, is correctly reproduced. In the E8 duality frame, this is written as

δg̃µν
(
2PµKPν 0 − Pµ 0Pν 0 + ∂µPν 0 − ηABPµ

0
APν

0
B

)
= 0 (2.55)

with δg̃µν symmetric traceless with respect to ηµν . This equation can be obtained from the

Einstein equations of (2.38). Alternatively, we can define Lpseudo
sugra without imposing conformal

gauge by following the same procedure as what was done for the minimal formulation of E9 ExFT

in [53]. The current PµK is shifted by a term g̃νσ∂ν g̃µσ and the topological term is complemented

by the single extra term 1
4̺ε

µνεσρg̃κλ∂µg̃σκ∂ν g̃ρλ. Following the exact same steps as above to

recover a physical action, these modifications combine to reproduce the term ̺R in (2.38).

We therefore conclude that the dynamics captured by the pseudo-Lagrangian combined with

twisted self-duality and the Virasoro constraint are the same as those of the physical Lagrangian

(2.38). The advantage of the pseudo-Lagrangian formulation is that it generalises to gauged

supergravity (and ExFT) and guarantees that the resulting equations of motion are invariant

under gauge transformations (generalised diffeomorphisms for ExFT) as well as local K(E9)

reparametrisations.13

2.4.2 SL(9) duality frame

We now perform a similar computation to recover the physical Lagrangian in the p = 2 flowed

SL(9) frame given in (2.41). The computation for p = 1 is completely analogous. Some inter-

mediate steps are displayed in Appendix A.5. The starting point is to notice that the definition

(2.35) of the shifted currents relied on the definition of the shift operators (2.17). We can equiv-

alently use the shift operators Sm defined in (2.18), absorbing the difference between the two

into a redefinition of the auxiliary one-form:

P (m) = Sm(P ) + χ̆m K = Sm(P ) + χ̆m K . (2.56)

Furthermore, we will expand the currents in the spectrally flowed basis of generators Tα defined

in Section 2.1.2,

P =
∑

m∈Z

PmB
ATm

B
A +

∑

m∈Z

PmLm + PKK

13To see this, one uses that Lpseudo
sugra is invariant by construction and that the gauge and K(e9) variations of

squares of twisted self-duality are again proportional to squares of twisted self-duality equations. It follows that

the gauge and K(e9) variations of the corresponding Euler–Lagrange equations are by construction proportional

to the twisted self-duality equation and the Euler–Lagrange equations themselves.

18



+
1

6

∑

n∈Z

Pm−1/3ABCTm−1/3ABC +
1

6

∑

n∈Z

P
m−2/3
ABC

TABC

m−2/3 , (2.57)

and analogously for Q. Notice that we have changed symbol for the central charge component

(PK instead of PK) to reflect that it is redefined compared to (2.48). We are using A, B, C for

the indices transforming under local SO(9)K of SL(9)/SO(9)K , whereas we use I, J,K for the

SL(9) indices. The SO(9)K vector indices A, B, C should hopefully not be confused with the E8

adjoint indices A, B, C used in the preceding section in the E8 duality frame.

Extracting Ltop from (2.46) in these variables, we find

1

2̺
Lpseudo
sugra dx0 ∧ dx1 = dχ̆1 +

∞∑

k=1

Pk ∧ (χ̆k+1 − χ̆k−1)−
∑

n∈Z

nQnAB ∧ P−n−1B
A (2.58)

−
∑

n∈Z

1

6

[(
n− 2

3

)
Q
n−2/3
ABC

P−n−1/3ABC +
(
n+ 2

3

)
Qn+2/3 ABCP

−n−5/3
ABC

]
.

The terms in the first line correspond to the dilaton/central sector plus the loop cocycle for

the ŝl9 currents. The second line is the cocycle term for the axion sector. Using the coset

parametrisation (2.39), we can rewrite the twisted self-duality relations for the loop currents as

follows:

PmA
B = ⋆|m|P0A

B , (2.59a)

P−1/3−m ABC = ⋆mP−1/3 ABC , m ≥ 0 , (2.59b)

P
−2/3−m
ABC

= ⋆mP
−2/3
ABC

, m ≥ 0 , (2.59c)

P
−2/3
ABC

= ⋆P
−1/3
ABC

. (2.59d)

In the last line we have used the SO(9)K -invariant metric δAB for lowering the indices on the

right-hand side.

We now want to manipulate (2.58) into a physical Lagrangian plus bilinears of the relations

(2.59). The manipulations of the first line are identical to the E8 case above, so we focus on the

axion sector. After some steps displayed in Appendix A.5, we find the identity

Lpseudo
sugra dx0 ∧ dx1

∣∣∣
axions

=
2

9
̺P−1/3 ABC P

−2/3
ABC

− 1

3
̺P−1/3 ABC ⋆ P

−1/3
ABC

+ . . . (2.60)

where the dots correspond to squares of twisted self-duality equations. Expanding the Maurer–

Cartan form we then find

Lpseudo
sugra dx0 ∧ dx1

∣∣∣
axions

= − 1

12
ρ1/3daI1I2I3 ⋆ daJ1J2J3mI1J1mI2J2mI3J3

+
1

64
εI1I2I3J1J2J3K1K2K3da

I1I2I3daJ1J2J3aK1K2K3

+
1

18
daIJKdbIJK + . . . , (2.61)

We see that bIJK only appears in a total derivative and can therefore be dropped. Adding back

the dilaton/central sector as well as the SL(9) kinetic term, the physical Lagrangian (2.41) is

reproduced.14

14It is useful to note the identity −̺ gµνP0
µ
A
BP

0
ν
B
A = 1

4
̺ gµν∂µm

IJ∂νmIJ .
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One computes an equation analogous to (2.55) from the SL(9) frame Lagrangian (2.41):

δg̃µν
(
2PµKPν 0 − Pµ 0Pν 0 + ∂µPν 0 − P0

µ
A
BP

0
ν
B
A − 1

3
P−1/3
µ

ABCP−1/3
ν ABC

)
= 0 . (2.62)

One checks that the same equation is obtained from the Virasoro constraint (2.55) in the E8

basis simply by relating the coefficients in the expansions (2.48) and (2.57) of the current P and

using twisted self-duality to write the result exclusively in terms of the physical fields.

3 Consistent truncation on S8
× S1

In this section, we apply the general procedure of gSS reduction of E9 ExFT [19] to obtain

SO(9) gauged supergravity in D = 2 space-time dimensions. SO(9) gauged supergravity has

been constructed directly in D = 2 using supersymmetry in [16] as we shall review in Section 3.1.

Our gSS construction, presented in Section 3.2, produces the same bosonic theory and moreover

proves that the theory is obtained by consistent truncation from D = 11. In Section 4, we shall

use this to present general uplift formulæ for D = 2 solutions to D = 11 dimensions, where the

differently flowed SL(9) subgroups play an important role.

3.1 Review of SO(9) gauged supergravity

SO(9) maximal gauged supergravity was constructed in [16] using supersymmetry starting from

ungauged supergravity written in an SL(9) duality frame. In this section, we briefly review some

aspects of the construction of the reference translated into our conventions.

The bosonic field content and Lagrangian of ungauged maximal supergravity in the p = 2

flowed SL(9) duality frame was reviewed in Section 2.3. The fermionic fields of the theory are

given by a gravitino, transforming as a spinor under the local SO(9)K , as well as matter fermions

transforming as a vector-spinor under SO(9)K . We will not use supersymmetry in this paper

and therefore do not display fermions. Details on fermions can be found in [16].

The construction of [16] starts from an ungauged Lagrangian density whose bosonic part, in

our conventions, is given by (2.41). The gauging of SO(9) ⊂ SL(9) requires introducing vector

fields AIJµ = A
[IJ ]
µ in the adjoint representation. These vector fields occur in the gauged covariant

derivative

Dµ = ∂µ −AIJµ ΘJK δ
K
I (3.1)

where δKI is the rigid sl(9) variation of the field on which the derivative is acting. For instance,

δIJ(mKL) = 2δI(KmL)J − 2
9δ
I
JmKL. The constant symmetric tensor ΘIJ = ΘJI is the embedding

tensor describing the embedding of SO(9) in SL(9). We have written a more general symmetric

tensor ΘIJ in order to accommodate gaugings of the type CSO(p,q,r), with p + q + r = 9, in

analogy with [54,68]. The SO(9) gauging corresponds to a positive-definite or negative-definite

ΘIJ which, up to a rigid SL(9) transformation, can always be cast to the form ΘIJ = gδIJ .

In (3.1) we have written the generators TI0J that correspond to the p = 2 flowed sl9. The vector

fields AIJµ are not propagating in D = 2.
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The gauged theory is then given by covariantising all derivatives in (2.41) and introducing a

topological term for the non-abelian field strength and a scalar potential in the form

Lgsugra = Lsugra,cov +
1

2
εµνF IJµν ΘJKh

K
I − Vgsugra , (3.2)

where the vector field strength reads

F IJµν = 2 ∂[µA
IJ
ν] + 2ΘKLA

IK
[µ A

JL
ν] , (3.3)

and the scalar fields hIJ are identified with those introduced on-shell in the duality rela-

tion (2.44). The potential term Vgsugra was obtained from supersymmetry in [16, Eq. (5.5)].

We shall derive it from the gSS reduction of E9 ExFT in Section 3.3 and therefore do not

display it here. It is however important to stress that only the anti-symmetric combination

hK [IΘJ ]K appears in Vgsugra as well as in (3.2).

Both fields hIJ and AIJµ are auxiliary in SO(9) gauged supergravity. Their equations of

motion are consistent with the gauge-covariantised version of the duality equation (2.44) when

varying AIJµ , while varying hIJ fixes the curvature F IJµν of the non-propagating vector fields in

terms of the remaining fields of the theory. Integrating out the auxiliary field hI J that occurs

only algebraically in the Lagrangian leads to a Yang–Mills kinetic term for the vector fields.

In order to covariantise the duality relations (2.34) properly, we need to identify which part

of the infinite-dimensional rigid on-shell symmetry of ungauged D = 2 supergravity is gauged.

Both from the general structure of the gSS reduction of E9 ExFT [19] and the analysis of

supergravity directly in D = 2 dimensions [59], one knows that Lagrangian gaugings utilise an

embedding tensor that takes values in the basic representation R(Λ0)−1 that was discussed in

Section 2.2. The general coupling of vector fields |Aµ〉 in R(Λ0)−1 to the embedding tensor is

given through the pairing

Dµ = ∂µ + η−1αβ〈θ|Tα|Aµ〉δβ , (3.4)

where the covariant derivative acts through the rigid e9 h 〈L−1〉 variation δα on the various

fields.15 The decomposition under the p = 2 spectrally flowed sl9 was given in (2.27). The

restriction to 〈θ| in the 4516/9 , with

〈θ| = −ΘIJ〈4/3|IJ , (3.5)

reproduces the gauged covariant derivative (3.1) when acting on the physical fields. The expres-

sion (3.4) also determines the gauging of shift symmetries of the dual potentials. The first few

terms in its expansion are determined as follows

η−1αβ〈θ|Tα|Aµ〉Tβ = −ΘIKA
JK
µ T0

I
J − 1

2
ΘKI1〈1|KI2I3 |Aµ〉T

I1I2I3
−2/3

+ 2ΘIJ〈4/3|KI |Aµ〉T J
−1K +ΘIJ〈4/3|IJ |Aµ〉L−1 + . . . , (3.6)

15See [19]. For instance, δ
αV = V T

α − kαV with kα a compensating K(e9) transformation. Notice that the

choice of Tα rather than, for example, Tα, is linked to the choice of such basis in (3.4).
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where the dots stand for generators of lower L0 degree, and we identified AIJµ = 〈1/3|IJ |Aµ〉.
Notice in particular that, based on the coset parametrisation (2.39), the shift symmetries of

the dual axions bIJK are entirely gauged, while only the shifts of the symmetric combination

ΘK(Ih
K
J), which does not enter the Lagrangian, are gauged.

We also provide the general expression for the field strengths, which is, in form notation

|F 〉 = |dA〉 − 1

2
η−1αβ〈θ|Tα|A〉 ∧ Tβ|A〉 − η−1αβ〈θ|Tα ⊗ Tβ||C〉〉 (3.7)

where ||C〉〉 denotes the two-form, sitting in the symmetric tensor product of two R(Λ0) repre-

sentations, with the R(2Λ0) representation subtracted.16 Using (3.5), the first few entries in |F 〉
are found to be

〈1/3|IJ |F 〉 = 〈1/3|IJ |dA〉+ΘKL〈1/3|IK |A〉 ∧ 〈1/3|JL|A〉 , (3.8)

〈4/3|IJ |F 〉 = 〈4/3|IJ |dA〉+ 2ΘKL〈1/3|K(I |A〉 ∧ 〈4/3|J)L|A〉 ,
〈0|I |F 〉 = 〈0|I |dA〉 −ΘIJ〈1/3|JK |A〉 ∧ 〈0|K |A〉+ΘIJ〈1/3|JK ⊗ 〈0|K ||C〉〉 ,
〈1|KIJ |F 〉 = 〈1|KIJ |dA〉 −ΘPQ〈1/3|KP |A〉 ∧ 〈1|QIJ |A〉+ 2ΘP [I〈1/3|PQ|A〉 ∧ 〈1|KJ ]Q|A〉

+4ΘP [I

(
〈1/3|Q(K ⊗ 〈1|P )

J ]Q + 〈0|J ] ⊗ 〈4/3|KP
)
||C〉〉 + 2δK[IXJ ] ,

where the definition of ||C〉〉 has been modified compared to (3.7) in order to reabsorb some

|A〉∧ |A〉 terms. The gauge field 〈0|I |A〉 is therefore pure gauge, as well as all but the completely

antisymmetric component ΘL[I〈1|LJK]|A〉 of the weight 13
9 gauge field. The trace component of

〈1|KIJ |F 〉 has a piece δK[IXJ ] which we do not display explicitly since it is projected out from all

physically relevant quantities. From (3.8) we see that the restriction to the 36−16/9 component

F IJ = 〈1/3|IJ |F 〉 reproduces (3.3).

3.2 The generalised Scherk–Schwarz ansatz on S8
× S1

The generalised Scherk–Schwarz ansatz for the SO(9) gauging follows the general procedure

for E9 ExFT presented in [19]. We recall from there that a complete gSS ansatz consists in

identifying a twist matrix U(y) ∈ E9, along with an additional y-dependent 〈w+| ∈ R(Λ0)−2,

that together induce the constant embedding tensor of the SO(9) gauged theory and that factor

out of the pseudo-Lagrangian. The twist matrix U comprises a scalar component r(y) along L0

and the bra vector 〈w+| satisfies the ‘flat version’ the section constraint, namely the bra vector

〈w+|U must be on section.

The structure of the gSS ansatz for the exceptional field theory fields is [19]

V(x, y) = V (x)U(y) ,
ρ(x, y) = r(y) ̺(x) , (3.9)

|A(x, y)〉 = r−1(y)U−1(y)|A(x)〉 .

In these expression the ExFT fields are on the left-hand side and the twist matrix U(y) and

the scalar r(y) must be chosen such that the dependence on the internal ExFT coordinates y

16In the companion paper [19], we denote ||C〉〉 = |C(1〉 ⊗ |C2)〉.
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factorises from all equations. The bra vector 〈w+| appears in the expression for the embedding

tensor below. The ansatz (3.9) will be central for the derivation of the uplift formulæ in Sec-

tion 4.17 Besides the ansatz for the fields we also record the ansatz for the parameter |Λ〉 of

generalised diffeomorphisms in E9 ExFT:

|Λ(x, y)〉 = r−1(y)U−1(y)|λ(x)〉 . (3.10)

The generalised diffeomorphism action on the ExFT fields reduces to the gauge symmetries of

the gauged supergravity theory in two dimensions. Consistency of the resulting gauge algebra

places constraints on U(y) and r(y) that we review next.

The twist matrix U gives rise to the Weitzenböck connection 〈Wα| through its first internal

derivative according to

〈∂| ⊗ U = r〈Wα|U ⊗ TαU . (3.11)

Notice that we expand the Weitzenböck connection in terms of the p = 2 flowed basis, as this

will be the natural choice for the case of the SO(9) reduction ansatz. Then, the embedding

tensor resulting from a gSS reduction is made of two components 〈ϑ| and 〈θ| [64, 19]18

〈ϑ| = 〈Wα|Tα , 〈θ| = −〈Wα|S+1(T
α)− 〈w+| . (3.12)

The component 〈ϑ| corresponds to non-Lagrangian gaugings of the L0 symmetry. We will only

consider situations in which 〈ϑ| = 0. The components of the embedding tensor must be constant

and integrability of its definition also enforces the quadratic constraint [59,19]

η−1αβ〈θ|Tα ⊗ 〈θ|T β = 0 , (3.13)

where we have already set 〈ϑ| = 0.

We have argued for the relevance of the p = 2 spectrally flowed sl9 ⊂ e9 in the previous

section. From the general analysis that we review in Appendix E, we know that the twist

matrix must decompose as in equation (E.3). This implies that U belongs to the parabolic

subgroup obtained from the generators of non-positive L0 degree. Because we are looking for

a consistent truncation contaning a purely gravitational pp-wave, it is also natural to restrict

the ansatz to a parabolic element in the affine extension of SL(9). This is the relevant structure

for eleven-dimensional gravity without three-form. One can moreover use gauge invariance to

restrict the ansatz to the SL(9) subgroup. Using the notation TImJ etc. for the flowed generators

as in Section 2.1.2, we therefore make the following ansatz for the inverse of the twist matrix

U−1 = rL0esK u−1 , (3.14)

where u belongs to the p = 2 flowed SL(9). Recall from (2.15) that L0 = L0 + 2T k0 k +
16
9 K.

Except for the occurrence of 〈w+| whose form will be determined below, the twist matrix and

choice of section are analogous to what happens for other sphere reductions [30].

17E9 ExFT contains additional constrained fields and two-forms that have to be considered in the general

construction but will not play a role in this paper.
18Notice that writing 〈θ| in terms of S+1 rather than S+1 only amounts to a redefinition of 〈w+|.
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We also have to specify a solution to the section constraint corresponding to the coordinates

on S8 × S1. As argued in Section 2.1.4, the S8 coordinates are expected to sit within the 36

of the p = 2 flowed SL(9) and we indeed find such a representation at L0-degree 7/9 in the

decomposition (2.27). The solution to the section constraint for the derivatives 〈∂| ∈ R(Λ0)−1

is naturally written in the branching (2.30) with respect to the p = 1 flowed SL(9). It can be

expressed in the branching (2.28) with respect to the p = 2 flowed SL(9) relevant for the SO(9)

gauging, by splitting the index Ĩ in (2.30) into Ĩ = (i, 9) and the index I in (2.28) into I = (0, i)

and using (2.31):

〈∂| = 〈̃0|Ĩ∂Ĩ = 〈1/3|0i∂i + 〈4/3|00∂9 . (3.15)

In terms of the 367/9 derivatives ∂IJ the solution (3.15) implies in particular that only ∂i ≡
∂0i 6= 0 among the ∂IJ . That this corresponds to a solution of the section constraint can be

verified in a straight-forward manner. The gSS ansatz for the physical fields will only involve

the eight coordinates along 〈1/3|0i, corresponding to S8, while the component 〈4/3|00 associated

to the S1 coordinate y9 will only feature in the constrained fields.19 This kind of interplay of

the p = 1 flowed branching and p = 2 flowed branching of the R(Λ0)−1 representation will be

central in Section 4 when we determine the explicit uplift formulæ.

Equipped with the choice of Section (3.15) and ansatz (3.14) for the twist matrix, we can

evaluate the Weitzenböck connection (3.11). Some details of this calculation are given in Ap-

pendix B. From this we deduce the following expressions for the trombone embedding tensor

〈ϑ| ∈ R(Λ0)−1 and the standard embedding tensor 〈θ| ∈ R(Λ0)0 given by

〈ϑ| = 〈Wα|Tα = −r−1∂i

(
r

7
9 esu−1 0

Iu
−1 i

J

)
〈1/3|IJ , (3.16)

and

〈θ| = −〈Wα|S+1(T
α)− 〈w+|

= r−
2
9 esu−1 0

Ku
−1 i

L

(
∂iu

S
0u

−1 0
R + ∂iu

S
ju

−1 j
R

)(
〈1/3|[KLTR]1S − 2

7
〈1/3|Q[K

T
L
1Qδ

R]
S

)

+
1

8
r−

2
9 es
(
u−1 0

K∂iu
−1 i

L − u−1 i
K∂iu

−1 0
L −W+

00 u
−1 0

Ku
−1 0

L

)
〈1/3|P (K

T
L)
1P

+
9

14
r−16/9es∂i

(
r14/9u−1 0

Ku−1 i
L

)
〈1/3|KLL1 , (3.17)

where we have simplified the constrained 〈w+| = W+
00〈4/3|00 = W+

00〈̃0|9 as a specialisation of

the solution (3.15) to the section constraint.

In order to obtain a Lagrangian gauging corresponding to a sphere reduction of type IIA

supergravity we now consider an ansatz for the SL(9) twist matrix that is inspired by [30,46]. We

denote embedding coordinates or the sphere S8 by YI where I = 0, 1, . . . 8 are Euclidean ambient

space coordinates with
∑8

I=0 Y
2
I = 1 and we raise and lower these indices with the Euclidean

ambient space metric δIJ , invariant under SO(9). The SL(9) twist matrix components then are

19In terms of the expansion (2.22), the nine non-vanishing components of the derivatives 〈∂| ∈ R(Λ0)−1 are

rewritten as 〈0|T i1∂i 6= 0 , 〈0|∂ψ 6= 0 , where the generators T i1 refer to the gl8 basis (2.3).
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taken to be

u−1 i
I = (det g̊)1/9

(
g̊ij∂jYI + ciYI

)
,

u−1 0
I = (det g̊)−8/9+1/2YI , (3.18)

where g̊ij = ∂iYI∂jYJδ
IJ is the induced metric on the (round) sphere, g̊ij its inverse and det g̊ its

determinant. The field ci is akin to a Kaluza–Klein vector and related to the flux of the sphere

compactification. The embedding coordinates satisfy the completeness relation and eigenvalue

equation

g̊ij∂iYI∂jYJ = δIJ − YIYJ and (det g̊)−1/2∂i

(
(det g̊)1/2g̊ij∂jYI

)
= −8YI , (3.19)

as can be checked easily by going to stereographic coordinates. The components of the inverse

SL(9) matrix are then

uI i = (det g̊)−1/9∂iY
I ,

uI0 = (det g̊)−1/9+1/2
(
Y I − ci∂iY

I
)
. (3.20)

We next determine the conditions on the remaining components of the twist matrix (3.14).

The requirement that the gauging be Lagrangian means that the trombone embedding tensor

〈ϑ| in (3.16) has to vanish. Using (3.19) and [KL] anti-symmetry we find that this is tantamount

to

0
!
= ∂i

(
r

7
9 es(det g̊)−7/9+1/2g̊ij∂jYKYL

)
〈1/3|KL

= ∂i

(
r

7
9 es(det g̊)−7/9

)
(det g̊)1/2g̊ij∂jYKYL〈1/3|KL , (3.21)

so that we deduce

r
7
9 es = g(det g̊)7/9 , (3.22)

for the vanishing of 〈ϑ|. In the above relation we have introduced a convenient integration

constant.

In order to represent a consistent gSS reduction, the embedding tensor 〈θ| must be constant

and we need it to be solely along the 45 component according to the discussion in Section 3.1.

Substituting the sphere ansatz into (3.17), we find that the component along the 720 vanishes

automatically and for the vanishing of the 36 component along 〈1/3|KLL1 we get

0
!
= ∂i

(
r14/9(det g̊)−5/18YK g̊

ij∂jYL

)
〈1/3|KLL1 , (3.23)

whose vanishing according to (3.19) requires

r = (det g̊)1/2 ⇒ es = g(det g̊)7/18 . (3.24)

Here we fixed the integration constant for r using the ExFT L0 scaling symmetry.
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Substituting this back into (3.17), we are left with

〈θ| = g
[
−δIJ +

(
(det g̊)−1/2∂i

(
(det g̊)1/2ci

)
− (det g̊)1/2W+

00 − 7
)
YIYJ

]
〈4/3|IJ . (3.25)

For this to be a constant multiple of the SO(9) metric δIJ we need to make the anisotropic

components vanish. Due to the presence of the component W+
00 of 〈w+|, the first condition

(det g̊)−1/2∂i
(
(det g̊)1/2ci

)
− (det g̊)1/2W+

00 = 7 is trivially satisfied. From the perspective of

type IIA supergravity it is natural to set W+
00 = 0, in which case this condition fixes the field

ci corresponding to the seven-form type IIA potential in the ansatz. One then identifies the

expected 8-form flux on S8. From the perspective of eleven-dimensional supergravity, the field

ci is a component of the dual graviton and it is natural to absorb the flux in the constrained

field component W+
00.

The summary of the analysis above is that we have achieved the form

〈ϑ| = 0 and 〈θ| = −g δIJ〈4/3|IJ , (3.26)

for the embedding tensor, which agrees with the identification ΘIJ = g δIJ in Section 3.1.

This construction can be easily adapted to accommodate also CSO(p, q, 9−p−q)-type gaug-

ings [54, 68] where the signature (p, q, 9−p−q) describes the number of positive, negative and

vanishing eigenvalues of the symmetric tensor ΘIJ in (3.5). The internal space in these cases is

Hp,q × T 9−p−q × S1 with Hp,q the (p+q−1)-dimensional sphere or hyperboloid defined by the

equation Y aηabY
b = 1 with ηab of signature (p, q) in p+q dimensions and Θab = g ηab. We then

write accordingly i = 1, . . . , p+q−1 for the coordinate indices of Hp,q and ı̂ = p+q, . . . , 8 for the

indices of the coordinates on T 9−p−q. The twist matrix takes the form

uai = |det g̊|−1/9∂iY
a ,

ua0 = |det g̊|−1/9+1/2
(
Y a − ci∂iY

a
)

uâı̂ = δâı̂ , (3.27)

where g̊ij is the pseudo-Riemannian induced metric ηab∂iY
a∂jY

b and ci and W+
00 satisfy

|det g̊|−1/2∂i
(
|det g̊|1/2ci

)
− |det g̊|1/2W+

00 = p+ q − 2 . (3.28)

3.3 From pseudo-Lagrangian to physical Lagrangian

As described in the companion paper [19], for any embedding tensor 〈θ| admitting a consistent

uplift, the gSS reduction of the ExFT pseudo-Lagrangian leads to a pseudo-Lagrangian for

gauged supergravity that decomposes into

Lpseudo
gsugra = Ltop

gsugra − Vgsugra . (3.29)

The general expression of the scalar potential Vgsugra in terms of 〈θ| will be recalled later on.

We stress that we include the measure factor in its definition. The topological term Ltop
gsugra
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corresponds the gauged version of the (topological) pseudo-Lagrangian Lpseudo
sugra for ungauged

supergravity defined in (2.46). It can be written schematically as the sum of two terms

Ltop
gsugra dx0 ∧ dx1 = 2̺Dχ̆1 + ̺ 〈θ|O(M)|F 〉 . (3.30)

The first term corresponds to (2.58) with partial derivatives traded for gauge covariant ones. The

second term, linear in the field strengths, is new and descends from the proper covariantisation

of the Maurer–Cartan equation used in (2.46) to define Lpseudo
sugra . See equation (B.4) of the

companion paper [19] for the gauged supergravity version of the relation (2.46). Here we are

already considering an expansion in terms of the p = 2 spectrally flowed SL(9) basis. Explicitly,

we have

̺ 〈θ|O(M)|F 〉 = ̺ 〈θ|
(
S

γ̆

+1(L−1) + S
γ̆

−1(L−1)
)
|F 〉 (3.31)

− ̺ω
α(V )

[
S

γ̆

+1(T
β) + S

γ̆

−1(T
β)
]
α
η−1βγ〈θ|Tγ |F 〉 ,

where we have introduced the group cocycle

ω
α(g)K = S0(T

α)− g−1S0(gT
αg−1)g , g ∈ Ê8 ⋊Vir− , (3.32)

as well as a field-dependent version of the shift operators

Sγ̆

m(X) = S0
(
V −1Sm(V X V −1)V

)
(3.33)

= ̺−m
(
Sm(X)−mϕ1Sm−1(X) + . . .

)
, X ∈ ê8 h vir .

The second line displays how these field-dependent shift operators are expanded in terms of the

standard ones Sk, with k ≤ m, a fact that we will use shortly. Details on this construction are

found in [33,19].

We will now present how to obtain a physical Lagrangian for gauged supergravity from

the pseudo-Lagrangian (3.29). Apart from the scalar potential, the other terms in the physical

Lagrangian are obtained from (3.30) by first repeating the same steps that we used in Section 2.4

to reproduce (2.41) from (2.58), with covariant differentials instead of partial ones, and then

adding 〈θ|O(M)|F 〉 to the final result. Let us now show this for the SO(9), or more generally

for CSO(p, q, r) gaugings of which the SO(9) gauging is a special case.

The first term in (3.30) corresponds to (2.58) with covariant differentials. All steps carried

out in Section 2.4 are still valid, until one arrives at the expression (2.61). Since the differentials

are now covariantised, the last term there is no longer a total derivative but instead contributes

with

− 1

18
aIJKD2bIJK = −1

6
aL1L2L3ΘL1KF

IKbL2L3I −
1

6
aL1L2L3ΘL1KF

K
L2L3

, (3.34)

where we have defined the 36−16/9 component F IJ = 〈1/3|IJ |F 〉 and the (9 ⊕ 315)−13/9 com-

ponents FKIJ = 〈1|KIJ |F 〉 of the field strength |F 〉 so that

η−1αβ〈θ|Tα|F 〉Tβ = −ΘIKF
JKT0

I
J − 1

2
ΘKI1F

K
I2I3T

I1I2I3
−2/3 + . . . . (3.35)
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Looking now at the first line of (3.31) and using the expansion in (3.33), we see that acting

on 〈θ| is a series of Virasoro generators L−k with k ≥ 0. One immediately finds that

〈4/3|(IJ)L−k = 0 ∀k ≥ 1 , (3.36)

hence for CSO(p, q, r) gaugings, only the term proportional to 〈θ|L0|F 〉 survives. But then we

find

̺ 〈θ|
(
S

γ̆

+1(L−1) + S
γ̆

−1(L−1)
)
|F 〉 = ΘIJ〈4/3|IJL0|F 〉 =

16

9
ΘIJ〈4/3|IJ |dA〉 , (3.37)

which is a total derivative. We used the quadratic constraint to remove the A∧A term coming

from the field strength, since it is proportional to η−1αβ〈θ|Tα|A〉〈θ|T β |A〉 = 0.

We are left with computing the second line of (3.31). Given the triangular gauge (2.39) for

V and the fact that the CSO(p, q, r) embedding tensor does not gauge positive level generators

in this decomposition, we conclude that within the square bracket, only the positive shift con-

tributes, with terms proportional to the gauging of T0
I
J and TIJK−2/3, on which acts the constant

shift operator S+1. Then, computing the loop cocycle is just a matter of dressing such terms

with V and extracting the K component. We thus find

̺ 〈θ|O(M)|F 〉 = ΘJKF
IK V T I

1 J V
−1
∣∣
K
+

1

2
ΘKI1F

K
I2I3V TI1I2I3

−2/3
V −1

∣∣
K

(3.38)

= ΘJKF
IK hIJ +

1

6
aL1L2L3ΘL1KF

IKbL2L3I +
1

6
aL1L2L3ΘL1KF

K
L2L3

,

up to the total derivative in (3.37). Here, |K denotes a projection on the central charge, defined

as in (3.32). We see that the last two terms cancel out the contribution obtained from (3.34).

This means that the non-potential terms in the physical Lagrangian are given by the näıve

covariantisation of (2.41), plus the only extra term ΘJKF
IK hIJ . The physical Lagrangian for

CSO(p, q, r) gauged supergravity therefore reads,

Lgsugra =
√−g

(
̺R+ ̺

1

4
gµνDµm

IJDνmIJ − 1

12
ρ1/3gµνDµa

I1I2I3Dνa
J1J2J3mI1J1mI2J2mI3J3

)

+
1

64
εµνεI1...I9a

I1I2I3Dµa
I4I5I6Dνa

I7I8I9 +
1

2
εµνF IJµν h

K
IΘKJ − Vgsugra . (3.39)

For the determination of the scalar potential we start from the general formula [18,19]

Vgsugra =
1

2̺3
〈θ|M−1|θ〉+ 1

2̺
η−2αβ〈θ|TαM−1Tβ†|θ〉

=
1

2̺3
〈θ|V −1V −1†|θ〉+ 1

2̺3
η−2αβ〈θ|V −1TαTβ†V −1†|θ〉 . (3.40)

Notice that Vgsugra includes the measure factor in its definition because the K component of

M = V †V contains e2σ . As discussed at the end of Section 2.2, we use the notation for Hermitian

conjugation of bra-ket vectors |θ〉 = (〈θ|)† to simplify the contractions appearing in the potential.

The second line shows a rewriting where the coset representatives V were moved through the

generators Tα, Tβ in the second term. This is allowed as all terms that might be generated
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by such a manipulation turn out to vanish, see equation (3.71) of [19]. For both terms in the

potential the basic ingredient to compute is then 〈θ|V −1.

We plug the ansatz (2.39) for the supergravity scalar fields as well as the embedding ten-

sor (3.5) into this expression. As shown in more detail in Appendix A.3.3 we have

〈θ|V −1 = ΘIJe
σ̺16/9

(
− v−1 I

Av
−1 J

B〈4/3|AB + ̺−1hIKv
−1 J

Av
−1K

B〈1/3|AB

− 1

2
̺−1/3aIKLv−1 J

Av
B
KvCL〈1|ABC − ̺−4/3aIKLhJLv

A
K〈0|A

+
1

8
̺−2/3aIKLaJPQvAKv

B
Lv

C
P v

D
Q〈2/3|ABCD

+
1

288
̺−1aIK1K2aJK3K4aK5K6K7εK1...K7RSv

−1R
Av

−1S
B〈1/3|AB

+
1

1152
̺−4/3aIK1K2aJK3K4aK5K6K7aK8K9LεK1...K9v

A
L〈0|A

)
, (3.41)

where (A.32) was used and the generators and states of the basic module were written with

local SO(9)K indices using the action by v. Notice that the Virasoro scalar fields ϕn, n ≥ 1

do not contribute. This is easy to check using (3.36) and that the contribution proportional to

〈1|A
BC

L−1 = 2δA[B〈0|C] vanishes because ΘIJa
IJK = 0. We also note that the term in bIJKT

IJK
−2/3

in the ansatz for V −1 disappears as would any term with a field multiplying T−4/3 IJK (by

incompatible index symmetries) or more negative degrees (by grading).

From this we can determine the various terms in Vgsugra. Collecting all the terms leads to

the following potential

Vgsugra =
e2σ̺5/9

2
ΘIJΘKL

(
(
2mIKmJL −mIJmKL

)

+
1

2
̺−2/3

(
aIPQaKRSmJLmPRmQS − 2aIKPaJLQmPQ

)

+ 2̺−2hIPh
K
Qm

Q[PmJ ]L + ̺−8/3aIPRhJPa
KQShLQmRS

+
̺−2

72
hJPa

KQ1Q2aLQ3Q4aQ5Q6Q7εQ1...Q9m
IQ8mPQ9 (3.42)

+
3

8
̺−4/3aI[M1M2aM3M4]JaK[N1N2aN3N4]LmM1N1mM2N2mM3N3mM4N4

+
̺−2

2 · 1442 a
IN1N2aJN3N4aN5N6N7εN1...N9a

KP1P2aLP3P4aP5P6P7εP1...P9m
N8P8mN9P9

+
̺−8/3

576
aIRPhJRa

KN1N2aLN3N4aN5N6N7aN8N9QεN1...N9mPQ

+
̺−8/3

11522
aIN1N2aJN3N4aN5N6N7aN8N9QεN1...N9a

KP1P2aLP3P4aP5P6P7aP8P9SεP1...P9mQS

)
.

For the SO(9) gauging we choose ΘIJ = gδIJ .

To conclude this section, we compare our Lagrangian for SO(9) gauged supergravity to that

presented in [16], whose scalar potential can be computed by expanding the Yukawa couplings

in their eq. (4.22). We performed this computation and find perfect agreement with (3.42) upon
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identifying their YIJ = Y[IJ ] = ΘK[Ih
K
J ] and also taking into account the typo mentioned in

footnote 1 of [17].20

3.4 Duality equation for the gauge field strength

In order to determine completely the uplift ansatz in eleven dimensions, it is also useful to derive

the expressions of fields that do not appear in the physical two-dimensional Lagrangian. The

field strength duality equation

|F 〉+ 1

̺3
⋆
(
M−1|θ〉+ η−2αβV

−1TαT β†V −†|θ〉
)
= 0 , (3.43)

determines all the gauge fields that appear in the uplift ansatz [19, Sec. 6]. The relevant field

strength equations are

〈1/3|IJ |F 〉 = −̺−3 ⋆ 〈1/3|IJM−1|θ〉 , (3.44a)

〈4/3|IJ |F 〉 = − ⋆
∂Vgsugra
∂ΘIJ

, (3.44b)

〈0|I |F 〉 = −̺−3 ⋆ 〈0|IM−1|θ〉 , (3.44c)

〈1|KIJ |F 〉 = −̺−3 ⋆ 〈1|KIJM−1|θ〉 − ̺−1η−2αβ ⋆ 〈1|KIJTαM−1T β†|θ〉 . (3.44d)

The right-hand side of (3.44a) gives

̺−3〈1/3|IJM−1|θ〉 = e2σ̺−
13
9 ΘKL

((
2mK[ImJ ]P + ̺−

2
3mRSa

IJRaKPS
)
hLP (3.45)

+
1

144
εP1...P9

(
mP1[ImJ ]P2 + 1

8̺
− 2

3mRSa
IJRaP1P2S

)
aP3P4KaLP5P6aP7P8P9

)
,

and can be checked to be compatible with the equation of motion of hIJ using

∂Vgsugra
∂hI J

= −ΘIK̺
−3〈1/3|JKM−1|θ〉 . (3.46)

This duality equation is identical to the equation of motion of hIJ for the SO(9) gauging ΘIJ =

gδIJ , but includes more components if ΘIJ is degenerate.

Similarly one computes the right-hand side of (3.44c)

̺−3〈0|IM−1|θ〉 = −e2σ̺− 19
9 ΘKLmIJ

(
aJPKhLP − 1

1152
εP1...P9a

P1P2KaLP3P4aP5P6P7aP8P9J
)
,

(3.47)

20Note that the second term in the second line of (3.42) above was overlooked in eq. (5.5) of [16].
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and of (3.44d)

̺−3〈1|KIJM−1|θ〉+ ̺−1η−2αβ〈1|KIJTαM−1T β†|θ〉

= −e2σ̺− 1
9ΘPQ

(
mIRmJSa

RSPmQK + 2δP[ImJ ]La
QKL

+
1

2
̺−

2
3mIL1mJL2mRL3mSL4a

KRSaL1L2PaQL3L4

+
1

48× 144
̺−

4
3 εIJL1...L7εR1...R9a

KL1L2aL3L4L5mL6R1mL7R2aR3R4PaQr5R6aR7R8R9

+
1

24
̺−

4
3 εIJL1...L7h

P
Rm

QL1mRL2aKL3L4aL5L6L7

−̺−2
(
2hK [ImJ ]L +

1

144
mLT εIJR1...R7a

KR1R2aR3R4R5aR6R7T
)

×
(
aLSPhQS − 1

1152
εS1...S9a

S1S2PaQS3S4aS5S6S7aS8S9L
)
+ δK[I Z

PQ
J ]

)

+bIJL̺
−3〈1/3|KLM−1|θ〉 , (3.48)

where the tensor ZPQJ is not spelt out because it does not contribute to the eleven-dimensional

fields.

4 Uplift formulæ

In this section we will present the uplift formulæ for the eleven-dimensional metric and the

three-form potential. We use the standard Kaluza–Klein ansatz for the metric

ds211D = ρ−
8
9 e2ς g̃µνdx

µdxν + ρ
2
9GĨ J̃(dy

Ĩ +AĨ)(dyJ̃ +AJ̃) , (4.1)

and the three-form

A11D= 1
6αĨ J̃K̃(dyĨ+AĨ)∧(dyJ̃+AJ̃)∧(dyK̃+AK̃)+1

2AĨ J̃∧(dyĨ+AĨ)∧(dyJ̃+AJ̃)+BĨ∧(dyĨ+AĨ) ,

(4.2)

such that e2ς g̃µν is the two-dimensional metric, AĨ ,AĨ J̃ are one-forms and BĨ is a two-form

in two dimensions. The coordinates yĨ decompose into the eight coordinates yi on the space

homological to S8 and the circle coordinate y9, with the internal metric splitting accordingly as

GĨ J̃dy
ĨdyJ̃ = Gijdy

idyj + detG−1 (dy9 +Kidy
i)2 . (4.3)

The external coordinates xµ can be fixed in the conformal gauge g̃µν = ηµν to x
0 = t and x1 = z.

The components can be identified with the E9 ExFT fields using the basis of generators in the

p = 1 spectral flowed basis (2.30). As explained in Section 2.2, we write T̃α the generators in the

p = 1 basis and Tα the generators in the p = 2 spectral flowed basis (2.28) associated to SO(9)

gauged supergravity. It is convenient to gauge-fix the additional Virasoro fields to zero to write

the uplift ansatz. The exceptional field theory scalar fields then parametrise the E9/K(E9) coset

representative

V−1 = . . . e
− 1

6
βĨJ̃K̃T̃

−2/3Ĩ J̃K̃e
− 1

6
αĨ J̃K̃T̃Ĩ J̃K̃

−1/3eKiT̃
i
0 0 υ̃−1ρL̃0eς , (4.4)
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where the components of υ̃−1 ∈ GL(8) in the basis T̃
j
0 i are the vielbeins for the metric Gij .

21

The normalisations of the fields in this ansatz are determined in Appendix C. Note that ρ is

independent of the parabolic decomposition of the coset and is therefore the same in all bases.

One identifies similarly the one-forms in the ansatz (4.2) with the following components of the

exceptional field theory gauge field |A〉

AĨ = 〈̃0|Ĩ |A〉 , AĨJ̃ = 〈̃1/3|Ĩ J̃ |A〉 , (4.5)

while the two-form in (4.2) is the first component of the exceptional field theory two-form. Recall

that the unconstrained ExFT two-form belongs to the symmetric tensor product of two copies

of R(Λ0) with the representation R(2Λ0) removed [33]. We therefore use the notation ||C〉〉 to

express that it belongs to the tensor product. This representation decomposes as

R(Λ0)∨R(Λ0)⊖R(2Λ0) ⊃ R(Λ7) = 9 11
9
⊕ 126 14

9
⊕ . . . (4.6)

where the first component 911/9 comes from the eleven-dimensional supergravity 3-form, the

second 12614/9 from the supergravity 6-form, etc. In components we have

BĨ = 2〈̃0|J̃ ⊗ 〈̃1/3|Ĩ J̃ ||C′〉〉 = 2〈̃0|J̃ ⊗ 〈̃1/3|Ĩ J̃ ||C〉〉 + 1
2 〈̃0|J̃ |A〉〈̃1/3|Ĩ J̃ |A〉 , (4.7)

where we have redefined for convenience the two-form ||C′〉〉 from

||C〉〉 = |C(1〉 ⊗ |C2)〉 , (4.8)

in [33], see Appendix C for details. Following [30], one identifies the uplift ansatz in terms of

the relevant exceptional field theory matrix elements

ρ−1〈̃0|ĨM−1J̃ |̃0〉 = e2ςρ−
1
9GĨ J̃ , ρ−1〈̃1/3|Ĩ J̃M−1K̃ |̃0〉 = −e2ςρ− 1

9αĨ J̃ L̃G
L̃K̃ . (4.9)

In this equation and the ones below, we use the notation

〈h1|Ah1M−1Bh2 |h2〉 = 〈eAh1h1
|M−1|eBh2h2

〉 , (4.10)

for the matrix elements of the E9 group element M−1 between the basis elements 〈h1|Ah1 and

〈h2|Bh2 , as defined in (2.30).

Before exposing the computations, we shall display the result in terms of the gauged super-

gravity fields through the matrix components of the supergravity E9 group element M ,

ρ(x, y) = (det̊g)
1
2̺(x) , (4.11)

while the other metric components are determined by the conditions

ρ−
8
9 e2ςGij = g2̺−

16
9 (det g̊)

1
9YI g̊

ik∂kYJYK g̊
jl∂lYL〈1/3|IJM−1 KL|1/3〉 ,

ρ−
8
9 e2ςGijKj = −g2̺−

16
9 (det g̊)

1
9YIYJYK g̊

ij∂jYL〈4/3|IJM−1 KL|1/3〉 ,
ρ−

8
9 e2ς

(
detG +GijKiKj

)
= g2̺−

16
9 (det g̊)

1
9YIYJYKYL〈4/3|IJM−1 KL|4/3〉 . (4.12)

21For example, in the symmetric gauge ṽ
−1† = exp(h̃i

j
T̃
i
0 j), one would have Gij = exp(h̃)i

kδkl exp(h̃)j
l.
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These matrix elements without tilde are evaluated in the p = 2 flowed basis of the module (2.28)

and the conversion between the two bases is given in Appendix A.3.3.

One can in particular obtain the expression of the external metric’s conformal factor from

the determinant22

(ρ−
8
9 e2ς/g2)9 (4.13)

= ̺−16 det

(
YI g̊

ik∂kYJYK∂jYL〈1/3|IJM−1 KL|1/3〉 YI g̊
ik∂kYJYKYL〈1/3|IJM−1 KL|4/3〉

YIYJYK∂jYL〈4/3|IJM−1 KL|1/3〉 YIYJYKYL〈4/3|IJM−1 KL|4/3〉

)
.

We will show below that one can rewrite the components of αĨ J̃K̃ in terms of SL(9) tensors

αIJ(Y ) and αIJK(Y ) as follows

α9ij = ∂iY
I∂jY

J
αIJ(Y ) , αijk = ∂iY

I∂jY
J∂kY

K
αIJK(Y ) . (4.14)

These only depend on the sphere coordinates through the harmonic variables YI and are deter-

mined by

αIJ(Y )YP∂iY
IYK〈1/3|PJM−1 KL|1/3〉 = ∂iY

IYK〈0|IM−1 KL|1/3〉 ,
αIJ(Y )YP∂iY

IYKYL〈1/3|PJM−1 KL|4/3〉 = ∂iY
IYKYL〈0|IM−1 KL|4/3〉 , (4.15)

and

αIJQ(Y )∂iY
I∂jY

JYPYK〈1/3|PQM−1 KL|1/3〉 (4.16)

= −∂iY I∂jY
JYPYK〈1|PIJM−1 KL|1/3〉 − αIJ(Y )YQ∂iY

I∂jY
JYPYK〈4/3|PQM−1 KL|1/3〉 ,

αIJQ(Y )∂iY
I∂jY

JYPYKYL〈1/3|PQM−1 KL|4/3〉
= −∂iY I∂jY

JYPYKYL〈1|PIJM−1 KL|4/3〉 − αIJ(Y )YQ∂iY
I∂jY

JYPYKYL〈4/3|PQM−1 KL|4/3〉 .

Relevant matrix elements for the two-dimensional scalar fields can be determined from the

expressions given in Appendix A.3.3 and take the form

〈0|IM−1KL|1/3〉 = e2σ̺
8
9 aKLJmIJ , (4.17a)

〈1/3|IJM−1KL|1/3〉 = e2σ̺
14
9
(
2mK[ImJ ]L + ̺−2/3mPQa

IJPaKLQ
)
, (4.17b)

〈1|PIJM−1KL|1/3〉 = e2σ̺
14
9

(
δPRbSIJ + δP[IbJ ]RS

)(
2mR[KmL]S + ̺−

2
3mTUa

RST aKLU
)

+ 2e2σ̺
8
9

(
δP[Ih

R
J ]a

KLQmRQ − hP [ImJ ]Qa
KLQ

)
(4.17c)

− e2σ

48
̺

14
9 εIJQRSTUVW a

PQRaSTU
(
mV [KmL]W+1

3̺
− 2

3mXY a
VWXaKLY

)
,

and

〈4/3|IJM−1 KL|1/3〉 = e2σ̺
14
9

(
2mP [KmL]Q + ̺−2/3mRSa

PQRaKLS
)

×
(
δ
(I
Qh

J)
P − 1

288
εPQT1...T7a

T1T2(IaJ)T3T4aT5T6T7
)

+
1

384
e2σ̺

8
9 εP1...P9a

P1P2(IaJ)P3P4aP5P6P7aP8P9QaKLRmQR . (4.17d)

22Where we write the 9 by 9 matrix as

(
Aij B

i
9

C9
j D

9
9

)
.
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One also needs other components such as 〈4/3|IJM−1KL|4/3〉, which can straightforwardly be

computed from (A.37).

The one-forms (4.5) are determined similarly in terms of the gauged supergravity one-

form |A〉

Ai = 〈̃0|i|A〉 = gYI g̊
ij∂jYJ〈1/3|IJ |A〉 , (4.18a)

A9 = 〈̃0|9|A〉 = gYIYJ〈4/3|IJ |A〉 , (4.18b)

A9i = 〈̃1/3|9i|A〉 = −g ∂iY
I〈0|I |A〉 , (4.18c)

Aij = 〈̃1/3|ij |A〉 = gYK∂iY
I∂jY

J〈1|KIJ |A〉 . (4.18d)

As usual the SO(9) Yang–Mills fields AIJ = 〈1/3|IJ |A〉 appear in the Kaluza–Klein one-forms

contracted with the sphere Killing vectors. The other components of |A〉 do not appear in the

gauged supergravity Lagrangian, they are determined by the first order equation (3.43). The

two-forms (4.7) are given in terms of the gauged supergravity two-form ||C〉〉 as

B9 = 2〈̃0|J̃ ⊗ 〈̃1/3|9J̃ ||C′〉〉 = −g2YI 〈1/3|IJ ⊗ 〈0|J
(
||C〉〉 + 2|A〉 ∧ |A〉

)
(4.19)

Bi = 2〈̃0|J̃ ⊗ 〈̃1/3|iJ̃ ||C′〉〉 = −g2YIYJ∂iY
K
(
〈4/3|IJ ⊗ 〈0|K + 〈1/3|LI ⊗ 〈1|JKL

)
||C〉〉 .

Note that the Kaluza–Klein ansätze for the eleven-dimensional three-form and metric depend

on the fields bIJK and δK(Ih
K
J) that do not appear in the gauged supergravity Lagrangian and

moreover turn out to be pure gauge. Consistently, we show in Appendix D that bIJK can

be eliminated in eleven-dimensional supergravity using a three-form gauge transformation of

two-form parameter

Λ11D(x, y) =
g

2
λ(x)KIJYK∂iY

I∂jY
J(dyi +Ai) ∧ (dyj +Aj) , (4.20)

while δK(Ih
K
J) can be gauged away using the diffeomorphism

y9 = y9′ − gYIYJξ
IJ(x) . (4.21)

One may therefore set them to zero.

4.1 Derivation of the uplift formulas

To derive the metric ansatz one uses the relations between the two spectral flowed basis (A.34)

and substitutes the generalised Scherk–Schwarz ansatz (3.14) to get

〈1/3|0iM−1 0j |1/3〉 = e2sr
14
9 u−10

Iu
−1i

Ju
−10

Ku
−1j

L〈1/3|IJM−1KL|1/3〉 , (4.22a)

〈4/3|00M−1 0i|1/3〉 = e2sr
23
9 u−10

Iu
−10

Ju
−10

Ku−1i
L〈4/3|IJM−1KL|1/3〉 , (4.22b)

〈4/3|00M−1 00|4/3〉 = e2sr
32
9 u−10

Iu
−10

Ju
−10

Ku−10
L〈4/3|IJM−1KL|4/3〉 . (4.22c)

Comparison with (4.9) and using the explicit form (3.20) of the twist matrix (uI0, u
I
j) gives

immediately (4.12). To understand the dependence in the embedding coordinates Y I it is useful

to combine these matrix elements into the nine by nine matrix
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G̃IJ = YKYL〈1/3|KIM−1 LJ |1/3〉 − Y IYPYQYL〈4/3|PQM−1 LJ |1/3〉
− Y JYPYQYK〈1/3|KIM−1 PQ|4/3〉 + Y IY JYKYLYPYQ〈4/3|PQM−1 KL|4/3〉 , (4.23)

that satisfies
(
YI g̊

ik∂kYJYK∂jYL〈1/3|IJM−1 KL|1/3〉 −YI g̊ik∂kYJYKYL〈1/3|IJM−1 KL|4/3〉
−YIYJYK∂jYL〈4/3|IJM−1 KL|1/3〉 YIYJYKYL〈4/3|IJM−1 KL|4/3〉

)

=

(
g̊ik∂kYI
YI

)
G̃IJ

(
∂jYJ , YJ

)
. (4.24)

In this form it is manifest that G̃IJ only depends on the sphere coordinates through the embed-

ding coordinates Y I , and therefore admits an expansion in spherical harmonics. The expression

of e2ς takes the form

e2ς = g2 det̊g
4
9 ̺−

8
9 detG̃− 1

9 , (4.25)

and the metric GĨ J̃
(

Gij Gi9
G9j G99

)
= det̊g−

1
9 detG̃− 1

9

(
∂iY

I

Y I

)
G̃IJ

(
∂jY

J , Y J
)
. (4.26)

It is useful to introduce this inverse matrix G̃IJ to exhibit the dependence of the uplift ansatz

in the embedding coordinates and their derivatives, but it may not be the best way to obtain

the explicit uplift for a given solution. We will also use it to prove that the three-form scalar

components satisfy (4.15) and (4.16).

For the three-form, (3.14), (4.9) and (A.34) give us

〈0|iM−10j |1/3〉 = e2sr
11
9 uKiu

−10
Iu

−1j
J〈0|KM−1IJ |1/3〉 , (4.27a)

〈0|iM−100|4/3〉 = e2sr
20
9 uKiu

−10
Iu

−10
J〈0|KM−1IJ |4/3〉 , (4.27b)

〈1|0ijM−10k|1/3〉 = e2sr
20
9 uI iu

J
ju

−10
P u

−10
Ku

−1k
L〈1|PIJM−1KL|1/3〉 , (4.27c)

〈1|0ijM−100|4/3〉 = e2sr
29
9 uI iu

J
ju

−10
P u

−10
Ku

−10
L〈1|PIJM−1KL|4/3〉 . (4.27d)

One combines these equations into the matrix equation

−e2ςρ 8
9

(
αijL̃G

L̃k αijL̃G
L̃9

α9jL̃G
L̃k α9jL̃G

L̃9

)
(4.28)

= g2 det̊g

(
∂iY

I∂jY
JYPYQ

(
〈1|PIJM−1QL|1/3〉 + Y LYR〈1|PIJM−1QR|4/3〉

)

−∂jY JYP
(
〈0|JM−1PL|1/3〉 + Y LYQ〈0|JM−1PQ|4/3〉

)
)(

g̊kl∂lYL, YL

)
,

such that one can give the solution for αijk and α9ij in terms of the inverse matrix G̃IJ as

(
αijk α9ij

α9jk 0

)
(4.29)
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= −
(
∂iY

I∂jY
JYPYQ

(
〈1|PIJM−1QL|1/3〉 + Y LYR〈1|PIJM−1QR|4/3〉

)

−∂jY JYP
(
〈0|JM−1PL|1/3〉 + Y LYQ〈0|JM−1PQ|4/3〉

)
)
G̃LK

(
∂kY

K , Y K
)
.

Computing the inverse matrix G̃IJ is straightforward, but would be rather cumbersome, and

might not be the easiest way to get the explicit uplift ansatz. We will rather use this formula

to prove equation (4.15) and (4.16) that are a priori easier to use in practice. Note first that

(4.29) is compatible with the ansatz (4.14). Putting back this ansatz in (4.9) one obtains

αĨ J̃ L̃〈̃0|L̃M−1K̃ |̃0〉 = −〈̃1/3|Ĩ J̃M−1K̃ |̃0〉 . (4.30)

We note that the right ket on both sides of this equation reads

U−1K̃ |̃0〉 =
(
U−1k |̃0〉 , U−19|̃0〉

)
= g det̊g

1
2
(
g̊kl∂lYLYQ

QL|1/3〉 , YQYS QS|4/3〉
)
. (4.31)

Using this expression one rewrites (4.30) as23

(
∂iY

I∂jY
J∂lY

L
αIJL ∂iY

I∂jY
J

αIJ

∂jY
J∂lY

L
αJL 0

)(
g̊lp∂pYRYP 〈13 |PRM−1

YPYR〈43 |PRM−1

)
⊗
(
QK |13〉YQ,

QS|43〉YQYS
)

=

(
∂iY

I∂jY
J
(

αIJLYP 〈13 |PLM−1 + αIJYLYP 〈43 |PLM−1
)

∂jY
J

αJLYP 〈13 |PLM−1

)
⊗
(
QK |13 〉YQ,

QS |43〉YQYS
)

=

(
−∂iY I∂jY

JYL〈1|LIJM−1

∂jY
J〈0|JM−1

)
⊗
(
QK |13 〉YQ,

QS|43 〉YQYS
)
, (4.32)

where one used the identity

∂jY
[J∂lY

L]g̊lk∂kYK = ∂jY
[J
δ
L]
K , (4.33)

to factor out the tensor product with the vector
(
QK |1/3〉YQ,QS |4/3〉YQYS

)
. (4.34)

Recombining these equations into the four components of a matrix gives precisely (4.15) and

(4.16). These equations are equivalent to (4.29), and therefore completely determine αijk and

α9ij .

For the one-forms one computes from (A.34) and (3.9) that

〈̃0|i|A〉 = r−
2
9 esu−10

Iu
−1i

J〈1/3|IJ |A〉 = g YI g̊
ij∂jYJ〈1/3|IJ |A〉 ,

〈̃0|9|A〉 = r
7
9 esu−10

Iu
−10

J〈4/3|IJ |A〉 = gYIYJ〈4/3|IJ |A〉 ,
〈̃1/3|9i|A〉 = −r− 5

9 esuI i〈0|I |A〉 = −g ∂iY
I〈0|I |A〉 ,

〈̃1/3|ij |A〉 = r
4
9 esu−10

KuI iu
J
j〈1|KIJ |A〉 = g YK∂iY

I∂jY
J〈1|KIJ |A〉 . (4.35)

23This equation should be read such that

(
〈ψ1|

〈ψ2|

)
⊗
(
|ψ3〉, |ψ4〉

)
=

(
〈ψ1|ψ3〉 〈ψ1|ψ4〉

〈ψ2|ψ3〉 〈ψ2|ψ4〉

)
.Note that one cannot

eliminate the multiplication by the right vector on both sides of the equation because of the Hilbert space scalar

product.
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Note that this does not involve the degree 2/3 component of the gauge supergravity one-form

that contribute instead to the six-form potential in eleven-dimensional supergravity, with

1

24
εijklpqrs〈̃2/3|pqrs|A〉 = −r 1

9 esuI iu
J
ju
K
ku
L
l〈2/3|IJKL|A〉

= −g ∂iY
I∂jY

J∂kY
K∂lY

L〈2/3|IJKL|A〉 . (4.36)

For the two-form one computes that

〈̃0|J̃ ⊗ 〈̃1/3|9J̃ ||C′〉〉 = −1

2
r−

7
9 e2su−10

I 〈1/3|IJ ⊗ 〈0|J
(
||C〉〉+ 2|A〉 ∧ |A〉

)
, (4.37)

〈̃0|J̃ ⊗ 〈̃1/3|iJ̃ ||C′〉〉 = −1

2
r

2
9 e2su−10

Iu
−10

Ju
K
i

(
〈4/3|IJ ⊗ 〈0|K + 〈1/3|LI ⊗ 〈1|JKL

)
||C〉〉 ,

which gives (4.19).

4.2 Truncation to the SO(3)× SO(6) invariant sector

The solutions of SO(9) gauged supergravity are expected to be relevant to the study of the

holographic dual of the D0-brane matrix quantum mechanics [3]. It is natural to wonder if its

massive supersymmetric deformation known as the BMN matrix model [34] can also be analysed

in gauged supergravity. The latter deformation breaks SO(9) to SO(3)×SO(6). There is a large

set of vacua in the BMN matrix model that are holographically dual to one-half BPS solutions

in eleven-dimensional supergravity with a non-vanishing four-form field strength [69,70]. These

solutions are generally too complicated to be uplifts of solutions of SO(9) gauged supergravity,

because they involve arbitrary combinations of the SO(3)×SO(6) invariant harmonics on S8.

Moreover, one can check from the supersymmetry transformations given in [16] that the one-

half BPS solutions within the SO(3)×SO(6) invariant truncation of SO(9) gauged supergravity

necessarily have a vanishing axion, and therefore uplift in eleven dimensions to solutions with

vanishing four-form field strength.24 It is therefore very unlikely that SO(9) gauged supergravity

reproduces any BMN vacuum solutions. Nevertheless, we will argue that this truncation is

relevant for describing the BMN matrix models at finite temperature.

The general SO(3)×SO(6) invariant ansatz for the fields of SO(9) gauged supergravity can

be written as follows

m = e−2φ
13 ⊕ eφ16 ⇒ mab = e2φδab , mâb̂ = e−φδâb̂ , aabc = εabca , (4.38)

where a = 1, 2, 3 and â = 4 to 9. We set to zero the pure gauge fields babc, h
a
b and hâb̂. One

parametrises the S8 embedding coordinates Y I as

Y a = ζ Y a
2 , Y â =

√
1− ζ2Y â

5 , (4.39)

in terms of the S2 and S5 embedding coordinates Y a
2 and Y â

5 and ζ ∈ [0, 1]. One defines

accordingly the round metrics

g̊2αβ = δab∂αY
a
2 ∂βY

b
2 , g̊5 α̂β̂ = δâb̂∂α̂Y

â
5 ∂β̂Y

b̂
5 . (4.40)

24In principle the eleven-dimensional solution could involve sixteen Killing spinors that are not all contained

within the truncation to D = 2 supergravity.
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Within this truncation, the internal metric is determined by the matrix elements

〈1/3|abM−1cd|1/3〉 = e2σ̺
14
9
(
e4φ + ̺−

2
3 e−2φa2)2δc[aδb]d ,

〈1/3|ab̂M−1cd̂|1/3〉 = e2σ̺
14
9 eφδacδb̂d̂ ,

〈1/3|âb̂M−1 ĉd̂|1/3〉 = e2σ̺
14
9 e−2φ2δĉ[âδb̂]d̂ ,

〈4/3|abM−1cd|4/3〉 = e2σ̺
32
9
(
e4φ + ̺−

2
3 e−2φa2)δc(aδb)d ,

〈4/3|ab̂M−1cd̂|4/3〉 =
1

2
e2σ̺

32
9
(
eφ + 1

2̺
− 2

3 e−5φa2
)
δacδb̂d̂ ,

〈4/3|âb̂M−1 ĉd̂|4/3〉 = e2σ̺
32
9 e−2φδĉ(âδb̂)d̂ , (4.41)

while the other components appearing in (4.12) vanish. One obtains the inverse matrix G−1 as

a block diagonal matrix

e2ςρ
8
9GĨ J̃∂Ĩ∂J̃ = g2ζ4(1− ζ2)4 det̊g2 det̊g5e

2σ̺
14
9

(e2φ∆(1 + f)

ζ2
g̊αβ2 ∂α∂β +

e−φ∆

1− ζ2
g̊α̂β̂5 ∂α̂∂β̂

+ eφ(1− ζ2)∂ 2
ζ + ̺2∆2(1 + f)∂ 2

ψ

)
, (4.42)

where

∆ = ζ2e2φ + (1− ζ2)e−φ > 0 , f =
ζ2e−4φ̺−

2
3 a2

∆
≥ 0 . (4.43)

We write ψ = y9 the coordinate of the M-theory fibre, and t, z the two-dimensional coordinates.

Altogether, we obtain the eleven-dimensional metric is 25

ds211D = g2e2σ∆(1+f)
1
3
(
−dt2+dz2

)
+̺

4
9 (1+f)

1
3

(
e−φ∆

dζ2

1− ζ2
+

e−2φ

(1 + f)
ζ2ds̊22+e

φ(1−ζ2)ds̊25
)

+ ̺−
14
9

1

∆(1 + f)
2
3

(
dψ + ζ2ω3 + (1− ζ2)ω6

)2
, (4.44)

where the Kaluza–Klein one-form (4.18b) is given in terms of the two gauge supergravity one-

forms

ω3 δ
ab = g〈4/3|ab|A〉 , ω6 δ

âb̂ = g〈4/3|âb̂|A〉 , (4.45)

that satisfy

dω3 = −g2e2σ̺
5
9
(
e4φ + 6eφ + e−2φ̺−

2
3a2
)
dt ∧ dz ,

dω6 = −g2e2σ̺
5
9
(
4e−2φ + 3eφ

)
dt ∧ dz . (4.46)

This uplift ansatz was already written in [17,11] for a vanishing axion a = 0.

For a 6= 0, one also gets a non-zero three-form in eleven dimensions. It is determined by the

matrix elements

〈0|cM−1ab|1/3〉 = εabce
2σ̺

8
9 e−2φa ,

〈1|eabM−1cd|4/3〉 = εab
(cδd)ee2σ̺

26
9 e−2φa+ δe[aZ

cd
b] ,

〈1|êabM−1cd̂|4/3〉 =
1

2
εab

cδd̂êe2σ̺
26
9 e−5φa , (4.47)

25Here d̊s22 = g̊αβdy
αdyβ denotes the sphere round metric and d̊s25 the round metric on S5.
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where the unspecified tensor Zcdb does not contribute to the three-form ansatz, while the other

components of (4.28) vanish. One obtains

α9ij = εabcY
a
2 ∂iY

b
2 ∂jY

c
2 ̺

− 2
3 ζ3

e−4φ

∆(1 + f)
a , αijk = 0 , (4.48)

and

d〈1|cab|A〉 = −ge2σ̺−
1
9 e−2φa εab

cdt ∧ dz . (4.49)

The three-form expression (4.2) then reduces to

A11D =
(
̺−

2
3

e−4φ

∆(1 + f)
a
(
dψ + ζ2ω3 + (1− ζ2)ω6

)
+A3

)
∧ ζ3dΩS2 , (4.50)

with the one-form A3 defined by A3εab
c = g〈1|cab|A〉 and satisfying

dA3 = −g2e2σ̺−
1
9 e−2φadt ∧ dz . (4.51)

Let us now describe a few properties of the corresponding solutions. The topology of the

sphere S8 is not modified by the deformation. The coordinate singularities at ζ → 0

e−φ∆
dζ2

1− ζ2
+

e−2φ

(1 + f)
ζ2ds̊22 + eφ(1− ζ2)ds̊25 ∼ e−2φ

(
dζ2 + ζ2ds̊22

)
+ eφds̊25 , (4.52)

and ζ → 1

e−φ∆
dζ2

1− ζ2
+

e−2φ

(1 + f)
ζ2ds̊22 + eφ(1− ζ2)ds̊25 ∼ eφ

(
(d
√
1− ζ2)2 + (1− ζ2)ds̊25

)

+
e−2φ

(1 + e−6φ̺−
2
3a2)

ds̊22 , (4.53)

can indeed be removed by a change of variables for all finite values of the fields φ and a. In

particular the internal space parametrised by the segment ζ ∈ [0, 1] and the two spheres is a

squashed S8.

The Killing vector field ∂t is light-like in the one-half BPS purely gravitational pp-waves in

eleven dimensions [11], however, it is never light-like for a non-trivial axion profile. The norm

squared of ∂t is indeed proportional to

g2e2σ∆2(1 + f)− ̺−
14
9 (ζ2ω3 t + (1 − ζ2)ω6 t)

2 , (4.54)

which never vanishes for a 6= 0.

Let us now compare the SO(3)×SO(6) truncation ansatz derived in this section to the

SO(3)×SO(6) invariant ansatz in eleven dimensions considered in [35]. To do so we introduce

the inverse radius holographic coordinate x(z), that is related to the conformal gauge coordinate

z as
∂x(z)

∂z
=

1− x(z)7

x(z)
3
2

. (4.55)
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The coordinates we use here are related to the one used by CGPS in [35] as follows

t = ηCGPS , ζ = xCGPS

√
2− (xCGPS)2 , ψ = −ζCGPS − ηCGPS , x = yCGPS . (4.56)

For simplicity we set g = 1. Following the ansatz considered in [35], one writes

e2σ =
1− x7

x7
h1(x) , ̺ = x−

9
2h2(x) , (4.57)

for the functions h1(x), h2(x), a(x) and φ(x) that are analytic at x = 0. For a = φ = 0 and

h1 = h2 = 1, one gets back the black hole solution [71,72], which was shown to be a solution of

SO(9) gauged supergravity in [17]. This solution interpolates between the one-half BPS pp-wave

solution [7] at x = 0 and the near horizon of a ten-dimensional Schwarzschild black hole solution

times a circle at x = 1. It is therefore interpreted as the holographic dual of the BFSS matrix

quantum mechanics at finite temperature [4, 72, 35]. Here we use dimensionless coordinates as

in [35], such that the radius of the M-theory circle and the mass of the black hole are reabsorbed

in the rescalings e2σ(x) → ℓ2e2σ(r0x), ̺(x) → ℓ
9
2 ̺(r0x).

According to [35], one can consider the high temperature limit of the BMN matrix model by

including a perturbation associated to the non-normalisable mode of the three-form potential.

Within gauged supergravity, one can consider the linearised solutions for the axion and the

dilaton expressed in terms of hypergeometric functions 2F1

a(x) = −3

4

(
µ̂x 2F1(

1
7 ,

4
7 ;

5
7 ;x

7) + αx3 2F1(
3
7 ,

6
7 ;

9
7 ;x

7)
)
+O(x5) ,

φ(x) = βx2 2F1(
2
7 ,

2
7 ;

4
7 ;x

7) + γx5 2F1(
5
7 ,

5
7 ;

10
7 ;x

7) +O(x4) , (4.58)

where the neglected orders are needed to solve the non-linear equations and are indicated in

the limit x → 0. They can be solved perturbatively in x near the asymptotic boundary at

x = 0, and perturbatively in (1− x) log(1− x) and 1 − x near the black hole horizon at x = 1.

Here the parameters µ̂ and β are associated to the non-normalisable modes, while α and γ are

associated to normalisable modes (in D = 2) that must be determined by the regularity of the

solution at the horizon. It is the parameter µ̂ = 7
12π

µ
T that triggers the BMN deformation,

where µ is the BMN mass parameter and T the temperature [35]. The corresponding system we

obtain from SO(9) gauged supergravity is a truncation of the ansatz considered in [35] to the

lowest harmonics on the sphere S8, and on which one imposes the gauge g11D(∂ζ , ∂x) = 0 using

a reparametrisation x = x(x′, ζ).

Solving this system perturbatively in small x one obtains the expansion

e2σ=
1− x7

x7

(
1− 14β2

13
x4 − 11µ̂2

1200
x5 +O(x6)

)
, ̺ = x−

9
2

(
1− 9β2

13
x4 − 3µ̂2

100
x5 +O(x6)

)
,

a=−3

4

(
µ̂x+ αx3 +

(
3αβ − 24β2µ̂

13

)
x5 +O(x6)

)
, φ = βx2 +

β2

2
x4 + γx5 +O(x6) , (4.59)

such that

A11D =
1

x3

(
µ̂+

3(α − 3βµ̂)

2
x2 +O(x4)

)
dt ∧ ζ3dΩS2 − 3

4
µ̂x4(1 +O(x2))dψ ∧ ζ3dΩS2 . (4.60)
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The leading term of A11D proportional to µ̂ reproduces the asymptotic expansion of the non-

normalisable mode that triggers the BMN deformation. However, one can check that the uplifted

solution does not include all the harmonics in ζ that appear in the numerical solution [35] and

therefore, we cannot reproduce the latter from SO(9) gauged supergravity. It would be very

interesting to investigate whether a regular solution exists within the consistent truncation.

SO(9) gauged maximal supergravity captures important features of the BFSS matrix model

both at zero and finite temperature [17, 11] and we have argued that it can also be relevant in

describing the BMN model at finite temperature. An interesting application in this direction

would be to study axionic perturbations of the so-called rotating D0 brane solutions [71, 17],

along the lines of the discussion above. More generally, having access to the full SO(9) theory

and its uplift opens up the possibility of studying many other deformations of the BFSS model

with different symmetry breaking patterns.
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during the early stages of this paper. Part of this work was carried out at the workshop on Higher

Structures, Gravity and Fields at the Mainz Institute for Theoretical Physics of the DFG Cluster

of Excellence PRISMA+ (Project ID 39083149). We would like to thank the institute for its

hospitality. This work has received funding from the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation programme (grant agreement No

740209).

A Algebras and decompositions

In this appendix, we collect more details on several decompositions of e8, e9 and their represen-

tations that are used in the main body of the paper.

A.1 The gl
8
branching of e8 and e9

The graded decomposition of e8 under its gl8 subalgebra associated with nodes 1, . . . , 7 of Figure 1

was given in (2.1) along with a convention of the generators and their transformation under gl8
in (2.3).

In order to complete this description to e8, we begin by giving the normalisations of all the

generators

〈
T ij

∣∣∣T kℓ
〉
= δiℓδ

k
j −

1

9
δijδ

k
ℓ ,

〈
T i1i2i3

∣∣Tj1j2j3
〉
= 3! δi1i2i3j1j2j3

,
〈
T ij
∣∣Tkℓ

〉
= 2 δijkℓ ,〈

T i
∣∣Tj
〉
= δij . (A.1)
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The induced bilinear form is the Cartan–Killing form on e8 and invariant under the commu-

tation relations (2.4) and26

[
T i1i2i3 , T i4i5i6

]
=

1

2
εi1...i6kℓTkℓ ,

[
T i1i2i3 , T j1j2

]
= −1

6
εi1i2i3j1j2k1k2k3Tk1k2k3 ,

[
T i1i2i3 , Tj1j2

]
= 6 δ

[i1i2
j1j2

T
i3] ,

[
Ti1i2i3 , T

j
]
= 3 δj[i1Ti2i3] ,[

T i, Tj
]
= T ij + δij T

k
k ,

[
T ij, Tkℓ

]
= 4 δ

[i
[k T

j]
ℓ] − 2 δijkℓT

p
p ,

[Tij , Tk] = Tijk (A.2)

In particular, we note T i = 1
42

[
T ij1j2 , Tj1j2

]
.

As explained in Section 2.1, the generators T ij , T
i and T−i form an sl9 algebra whose

generators are denoted by T IJ and commutation relation given in (2.6). The e8 Killing form

restricted to this sl9 is

〈T IJ |TKL〉 = δILδ
K
J − 1

9
δIJδ

K
L . (A.3)

The branching of e8 under sl9 is (see (2.7))

248 = 84⊕ 80⊕ 84 (A.4)

where the 84 generators T IJK = T [IJK] are made out of T ijk and T ij and similarly for the

downstairs indices and the induced normalisation is

〈T IJK |TLMN 〉 = 3! δIJKLMN , (A.5)

while the e8 commutation relations become

[
T IJ , T

K1K2K3
]
= 3δ

[K1

J T
K2K3]I − 1

3
δIJT

K1K2K3 ,

[
T IJ , TK1K2K3

]
= −3δI[K1

TK2K3]J
+

1

3
δIJTK1K2K3 ,

[
T I1I2I3 , TJ1J2J3

]
= 18 δ

[I1I2
[J1J2

T
I3]
J3]
, (A.6)

[
T I1I2I3 , T I4I5I6

]
= −1

6
εI1...I9TI7I8I9 ,

[TI1I2I3 , TI4I5I6 ] =
1

6
εI1...I9T

I7I8I9 .

Note that (2.7) is not a graded decomposition of e8 as exemplified by the last two commutators

above.

The gl8 basis of e8 can be extended to the loop algebra ê8 of e8 as

Tn i , T ijn , Tn ijk , T in j , T ijkn , Tn ij , T in (A.7)

with n ∈ Z corresponding to the loop number.

26The numerical εi1...i8 ∈ {−1, 0, 1} commutes with T ij .
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The central element K occurs in the central extension of the loop commutators:

[
TAm , T

B
n

]
= fABC T

C
m+n +mηABδm,−nK , (A.8)

where fABC are the e8 structure constants and ηAB the Killing form. For example, we have

[
T i1, T−1 j

]
= T ij + δijT

k
k + δijK . (A.9)

A.2 Basic representation

The dual of the basic representation R(Λ0)−1, in which derivatives take their values, is written

in terms of bra vectors as in (2.22) with e8 decomposition given in (2.24). Using the gl8 ⊂ e8

subalgebra defined in (2.3), this can be further decomposed under gl8 according to the following

doubly graded decomposition

R(Λ0)−1 = 1(0)

0 ⊕
(
8

(−1) ⊕ 28(−2/3) ⊕ 56
(−1/3) ⊕ (gl8)

(0) ⊕ 56(1/3) ⊕ 28
(2/3) ⊕ 8(1)

)
1
⊕ . . . (A.10)

The superscripts denote the gl1 ⊂ gl8 weights whereas the subscripts are the affine levels (in

e9) with respect to L0. For example, the 8(1)

1 corresponds to the state 〈0|T1 i. We also note the

decomposition

3875 = 8(−5/3) ⊕ 70(−4/3) ⊕
(
28⊗ 8

)(−1) ⊕
(
56⊗ 8⊕ 36

)(−2/3) ⊕
(
70⊗ 8⊕ 168

)(−1/3)

⊕ (720⊕ 2×63⊕ 1)(0) ⊕
(
70⊗ 8⊕ 168

)(1/3)
. . . (A.11)

of the next e8 representation under gl8 which enters at affine level two in (2.24). Some of the

representations were written reducibly as tensor products for conciseness. The following mixed

tensors appear: 168 = R(λ1+λ2) and 720 = R(λ2+λ6), where the weights refer to sl8 and

8 = R(λ7) in these conventions.

The module R(Λ0)−1 is irreducible and therefore there are null vectors that are generated

when acting with the loop generators on the groundstate 〈0|, i.e., not all states

〈0|
∏

i

TAini (A.12)

are non-vanishing, where ni > 0 since the groundstate is e8 invariant, and Ai denotes an adjoint

e8 index. As we shall make use of some them, we work out a few examples of such null states in

the further gl8 decomposition.

At L0-level two, we could write the vector

〈0|T (i
1 T

j)
1 . (A.13)

By construction this would have to be part of the 27000 in the symmetric tensor product of

two e8 adjoints. However, by inspecting (2.24), we know the generic symmetric 27000 of e8 is

absent at level two. Therefore, the above vector has to be a null vector in the Verma module,

i.e., it vanishes in the irreducible module R(Λ0)−1.
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This can be checked by direct computation by using (2.12) and the gl8 invariance of the

ground state:

〈0|T (i
1 T

j)
1 T−1 k = 〈0|

(
δ
(i
k T

j)
1 + T

(i
1 T

j)
0 k + δ

(i
k T

j)
1 T

ℓ
0 ℓ + δ

(i
k T

j)
1

)

= 〈0|
(
δ
(i
k T

j)
1 − δ

(i
k T

j)
1 − δ

(i
k T

j)
1 + δ

(i
k T

j)
1

)

= 0 . (A.14)

Since the generic anti-symmetric 30380 is also absent (and since [T im, T
j
n] = 0 by gl8 grading),

one actually has the null vector

〈0|T i1T j1 = 0 (A.15)

without any specific symmetry assumptions.

This null state has as a descendant

〈0|T (i
1 T

j)
2 =

1

2
〈0|T (i

1 T
j)
1 L1 (A.16)

since again [T i1, T
j
2 ] = 0. Therefore in the module R(Λ0)−1 the following relation holds

〈0|T i1T j2 = 〈0|T [i
1 T

j]
2 , (A.17)

which thus automatically projects to the anti-symmetric rank-two representation of gl8 at L0

eigenvalue three.

A.3 Branching of the basic module under spectrally flowed sl9

In Section 2.1.2 we have introduced spectrally flowed sl9 subalgebras of e9 for any p ∈ Z. The

case p = 0 corresponds to the sl9 ⊂ e8 with generators T IJ that appear in (2.6). For any p ∈ Z,

we have defined the flowed sl9 in (2.8). We also record here that the shifted bilinear form η−k αβ
introduced in (2.20) takes the following form in the basis where the sl9 was flowed by p ∈ Z

units

η−k αβT
α ⊗ Tβ =

∑

m∈Z

(
T I
m−k J ⊗ TJ−mI +

1

6
TIJKm−k−p/3 ⊗ T−m+p/3 IJK

+
1

6
T−m+p/3 IJK ⊗ TIJKm−k−p/3

)
− L−k ⊗ K− K⊗ L−k . (A.18)

In the following we work out some details of the decomposition of the basic module R(Λ0)−1

under the various flowed sl9 subalgebras of e9. A summary of the results was given in Section 2.2.

A.3.1 Spectral flow by p = 1 unit

The case p = 1 corresponds to the D = 11 gravity line and we recall from Section 2.1.3 that

we use the convention to denote generators in the p = 1 with a tilde. The corresponding
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fundamental indices are written as Ĩ = (i, 9), where, contrary to the p = 2 flow, we denote the

index extending the gl8 by 9 rather than 0.

The lowest eigenvalue of L̃0 = L0 + T ℓ0 ℓ +
4
9K is L̃0 =

4
9 and it is realised by the states

〈0| = 1

8
〈0|T k1 T−1 k =

1

8
〈0|T̃k0 9T̃9

0 k and 〈0|T i1 = 〈0|T̃i0 9 . (A.19)

in the module R(Λ0)−1. We have written the states in several forms to emphasise that we can

identity among these lowest L̃0 states an sl9 representation 9 of the p = 1 flowed sl9 that we

write as

〈̃0|Ĩ with 〈̃0|9 = 〈0| , 〈̃0|i = −〈0|T i1 . (A.20)

Under the p = 1 flowed sl9 this transforms as

〈̃0|Ĩ T̃J̃
0 K̃

= −δĨ
K̃
〈̃0|J̃ +

1

9
δJ̃
K̃
〈̃0|Ĩ , (A.21)

where the extra term is required by the tracelessness of sl9 and the minus sign in (A.20) is

related to the minus sign in the sl9 action.

The physical interpretation of this 9 is that the corresponding nine derivatives are those

of the coordinates of the M-theory solution of the section constraint that completes the two

external coordinates to D = 11 dimensions.

The next possible L̃0 eigenvalue is 7
9 and is obtained by the action with T̃1/3 Ĩ J̃K̃ on the 9:

〈̃1/3|Ĩ J̃ =
1

7
〈̃0|K̃ T̃1/3 Ĩ J̃K̃ . (A.22)

Plugging in the definition of T̃1/3 Ĩ J̃K̃ from (2.13) we find for example explicitly

〈̃1/3|ij =
1

7
〈0|T1ij −

1

7
〈0|T k1 T0ijk ,

〈̃1/3|i9 =
1

7
〈0|T k1 T1ik . (A.23)

One can continue the construction of the module R(Λ0)−1 along these lines and ends up with

the following decomposition

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕
(
9⊕ 315

)
13
9
⊕
(
36⊕ 45⊕ 720

)
16
9
⊕ . . . . (A.24)

Some specific basis elements of this decomposition are defined as

〈̃1/3|Ĩ J̃ =
1

7
〈̃0|K̃T̃1/3 ĨJ̃K̃ , 〈̃2/3|Ĩ J̃K̃L̃ = 〈̃0|Ĩ T̃J̃K̃L̃2/3 ,

〈̃1|Ĩ J̃
K̃

= 〈̃0|Ĩ T̃J̃1 K̃ − 1
10δ

J̃
K̃
〈̃0|L̃T̃Ĩ1L̃ , 〈̃4/3|Ĩ J̃ =

1

8
〈̃1/3|K̃(Ĩ T̃

K̃
1 J̃) , (A.25)

where we have labelled the state by the L̃0 weight relative to that of the lowest 9. Note that,

due to the irreducibility of the module, some symmetries are implied for the left-hand sides that
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are not manifest on the corresponding right-hand sides. For instance, the state 〈̃2/3|Ĩ J̃K̃L̃ is

completely anti-symmetric in its four indices and belongs to the 126 representation. The näıve

(3, 1) mixed symmetry term on the right-hand side of its definition is a null state. Similarly, the

state 〈̃1|Ĩ J̃
K̃

is anti-symmetric in Ĩ J̃ and contains a trace and thus represents reducibly the two

components 9 ⊕ 315 at L̃0 level 13
9 . For L̃0 level 16

9 we have only written out the definition of

the component in the 45 since this is the only one that appears in our analysis.

A.3.2 Spectral flow by p = 2 units

The generators and indices for the spectral flow by p = 2 are the prevalent ones in the paper

and therefore written without tilde. The lowest L0 = L0 + 2T ℓ0 ℓ +
16
9 K eigenvalue that can be

obtained is again L0 =
4
9 and arises for the states

〈0|T j1T1 ij = 〈0|Tj−1 0T−1/3 ij0 and 〈0|T j1T1 ijT
j
2 = 〈0|Tj−1 0T−1/3 ij0T

i
0 0 (A.26)

that together form a 9 under the p = 2 flowed sl9. We have written the states both in the

standard gl8 basis of e9 and in terms of the flowed affine generators from Section 2.1.2. We will

write the corresponding ground state as

〈0|I with 〈0|i = 〈0|T j1T1 ij , 〈0|0 =
1

8
〈0|T j1T1 ijT i2 (A.27)

that transforms under the flowed sl9 as

〈0|ITJ0K = δJI 〈0|K − 1

9
δJK〈0|I , (A.28)

where the extra term is due to the tracelessness of TJ0K .

The next L0 eigenvalue that arises is L0 =
7
9 which occurs for the states

〈0|T i1 = 〈0|Ti−1 0 and 〈0|T i1T j2 = 〈0|Ti−1 0T
j
0 0 . (A.29)

Due to the structure of the module R(Λ0)−1 we know (see (A.17)) that the second state is

automatically anti-symmetric in [ij] and therefore these two states together form a 36 of the

flowed sl9. We write it and subsequent states as

〈1/3|IJ =
1

7
〈0|KTIJK1/3 , 〈2/3|IJKL = 〈0|IT2/3 JKL ,

〈1|KIJ = 〈0|ITK1 J − 1
10δ

K
J 〈0|LTL1 I , 〈4/3|IJ =

1

8
〈1/3|K(IT

J)
1 K . (A.30)

Note that 〈1|KIJ is anti-symmetric in IJ even though this is not manifest on the right-hand side

of its definition. This formula is similar to (A.25) and corresponds to the branching

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕
(
9⊕ 315

)
13
9
⊕ (36⊕ 45⊕ 720) 16

9
⊕ . . . (A.31)

It is also useful to write out some consequences of the irreducibility of the module in this

basis, i.e., the structure of the null vectors. We have

〈0|LTIJK1/3 = 3 δ
[I
L 〈1/3|JK] ,
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〈0|IT2/3 JKL = 〈0|[IT2/3 JKL] , (A.32)

〈0|KTIKL1/3 T2/3L[J1J2 ΘJ3]I = −42〈0|[J1TI1 J2 ΘJ3]I ,

where in the last relation ΘIJ = Θ(IJ) is any symmetric sl9 tensor (in the 45).

Moreover, since the 3616/9 in (A.31) is multiplicity-free, one can show that

〈1/3|P [I
T
J ]
1P = 5〈1/3|IJL1 (A.33)

by relating the two ways of reaching this representation.

A.3.3 Relation between the two bases and matrix elements

The basis elements in the two decompositions (A.25) and (A.30) are related by

〈̃0|9 = 〈4/3|00 , 〈̃0|i = 〈1/3|0i ,

〈̃1/3|i9 = 〈0|i , 〈̃1/3|ij = 〈1|0ij ,

〈̃2/3|ijkl = − 1

24
εijklpqrs〈2/3|pqrs , 〈̃1|ij9 = 〈1/3|ij ,

〈̃1|i99 = 2〈4/3|i0 . (A.34)

This can be verified by following through the definitions of all objects.

For the uplift formulæ we also require the dressing by V of the basis states (A.30) in the

p = 2 flowed basis of the basic representation. Here, V is the E9 element given in (2.39) and the

dressing results in

〈0|IV −1 = eσ̺
4
9 vAI〈0|A

〈1/3|IJV −1 = eσ̺
7
9
(
v−1I

Av
−1J

B〈1/3|AB + ̺−
1
3 aIJKvAK〈0|A

)
, (A.35)

as well as

〈1|KIJV −1 = eσ̺
13
9

(
vAIv

B
Jv

−1K
C〈1|CAB − 1

2
̺−

1
3aKPQvAIv

B
Jv

C
P v

D
Q〈2/3|ABCD (A.36)

+ ̺−
2
3
(
δKP bIJQ + δK[I bJ ]PQ

)(
v−1P

Av
−1Q

B〈1/3|AB + ̺−
1
3aPQRvAR〈0|A

)

− 1

48
̺−

2
3 εIJL1...L7a

KL1L2aL3L4L5v−1L6
Av

−1L7
B〈1/3|AB

+ ̺−1
(
2δK[I h

L
J ] − 2hK [Iδ

L
J ] −

1

144
εIJP1...P7a

KP1P2aP3P4P5aP6P7L
)
vAL〈0|A

)

and

〈4/3|IJV −1 = eσ̺
16
9

(
v−1 I

Av
−1 J

B〈4/3|AB − ̺−1h(IKv−1 J)
Av

−1K
B〈1/3|AB

+
1

2
̺−1/3aKL(Iv−1 J)

Av
B
KvCL〈1|ABC + ̺−4/3aKL(IhJ)Lv

A
K〈0|A

− 1

8
̺−2/3aKL(IaJ)PQvAKv

B
Lv

C
P v

D
Q〈2/3|ABCD
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− 1

288
̺−1aK1K2(IaJ)K3K4aK5K6K7εK1...K7RSv

−1R
Av

−1S
B〈1/3|AB

− 1

1152
̺−4/3aK1K2(IaJ)K3K4aK5K6K7aK8K9LεK1...K9v

A
L〈0|A

)
, (A.37)

where use of (A.32) was made repeatedly. The (flattened) basis vectors are normalised such

that

〈0|AB|0〉 = δBA , 〈1/3|ABCD|1/3〉 = 2δABCD ,

〈2/3|ABCDEFGH|2/3〉 = 24 δEFGHABCD , 〈1|CAB EF

G |1〉 = 2δEFABδ
C

G + 4δ
C[F
AB
δ
E]
G
,

〈4/3|ABCD|4/3〉 = δ
(A
(Cδ

B)
D) . (A.38)

A.4 Inequivalent flows

Using the decomposition of the basic representation, we can discuss conjugacy of the various

flowed algebras that were defined in Section 2.1.2. As one of the main points will be comparing

different units of flow p, we decorate the Virasoro generator by a label that keeps track of this

and so write L
(p)

0 and similarly for the other flowed generators T in this section only.

In the case p = 0 mod 3, the algebra that commutes with L
(p)

0 is again gl1⊕gl1⊕e8, composed

of

K , L
(p)

0 , T
(p)I
0 J , T

(p)IJK
0 , T

(p)

0 IJK . (A.39)

Starting from the original vacuum of the basic module 〈0|, one can built a state of eigenvalue 0

with respect to L
(3)

0 for p = 3 as

〈0|′ = 〈0|T i1T j2T1 ij . (A.40)

This state is in the highest weight representation of the 1472504 of E8 in (2.24), and is therefore

annihilated by all generators

T−n−3i , T ij−n−2 , T−n−1ijk , T i
−nj +

1

3
δn,0δ

i
jK , T ijk1−n , T2−nij , T i3−n . (A.41)

for n ≥ 0 and defines a vacuum state vector for the L(3)

0 decomposition of the basic module. One

can construct the vacuum states of all L(p)

0 for p = 0 mod 3 using the same procedure, because

L
(p+3)

0 = L
(p)

0 + 3T(p)

0
i
i + 4K , (A.42)

for any p and one can therefore obtain the spectral flowed subalgebra at p + 3 from the one at

p. Writing the vacuum 〈0|(q) of the basic module of eigenvalue 0 with respect to L
(p)

0 for p = 3q,

one obtains by construction that

ηαβ〈0|(q)Tα ⊗ 〈0|(q)Tβ = 0 , (A.43)

and therefore that 〈0|(q) is in the E9 orbit of 〈0|(0) for an element g of the small Kac–Moody

group [73]. The stabiliser of 〈0|(q) determines the parabolic subgroup of Levi component GL(1)×
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GL(1)×E8 and all the spectrally flowed e8 subalgebras for p = 0 mod 3 are therefore conjugate

to each other in E9.

The same argument can be applied to case p = 1, 2 mod 3 using the level 3 module of weight

Λ8 in the labelling of Figure 1. Then one can further check that the cases p = 1 and p = −1 are

conjugate using that T(p)

0
i
i is conjugate to −T

(p)

0
i
i in E8.

Therefore there are only two conjugacy classes, for p = 0 mod 3 and p = ±1 mod 3. The

cases p = 1 and p = 2 play a prominent role in our paper and they are related by an E9

transformation (from the small Kac–Moody group).

A.5 Reproducing physical Lagrangians

We give some details on the manipulations of (2.52) that lead to the kinetic term for the

E8/(Spin(16)/Z2) nonlinear sigma model. We begin by noticing that we can rewrite (2.52) by

isolating Pm for even or odd values of m (also taking into account hermiticity). We do so but

then add up half of each such rewriting, thus finding (we hide an overall factor of 2̺)
∑

n∈Z

|n|PnP−n−1 = (A.44)

=
1

2
P 1P 0 +

1

2

∑

n≥1

(P 2n+1 − P 2n−1)P−2n − 1

2

∑

n≥0

(P−2n − P−2n−2)P 2n+1

= −1

2
P 0 ⋆ P 0 +

1

2
(P 1 − ⋆P 0)P 0 +

1

2

∑

n≥1

(P 2n+1 − P 2n−1)P−2n − 1

2

∑

n≥0

(P−2n − P−2n−2)P 2n+1

In these and the following expressions we have hidden ηAB as well as the E8 indices on the

currents, as they do not play any role in the computation. We remind the reader that these

currents are spacetime one-forms and a wedge product is understood. We now use twice a trick

similar to what we did in the dilaton/central sector. In the first series, we add and subtract

⋆P−2n inside the parenthesis. In the second series, we add and subtract ⋆P 2n+1 to find

= −1

2
P 0 ⋆ P 0 +

1

2

∑

n≥0

(P 2n+1 − ⋆P−2n)P−2n − 1

2

∑

n≥1

(P 2n−1 − ⋆P−2n)P−2n (A.45)

− 1

2

∑

n≥0

(P−2n − ⋆P 2n+1)P 2n+1 +
1

2

∑

n≥0

(P−2n−2 − ⋆P 2n+1)P 2n+1

In the second line, we add Hodge duals as done in the dilaton/central sector:

= −1

2
P 0 ⋆ P 0 +

1

2

∑

n≥0

(P 2n+1 − ⋆P−2n)P−2n − 1

2

∑

n≥1

(P 2n−1 − ⋆P−2n)P−2n

− 1

2

∑

n≥0

(P 2n+1 − ⋆P−2n) ⋆ P 2n+1 +
1

2

∑

n≥0

(P 2n+1 − ⋆P−2n−2) ⋆ P 2n+1

= −1

2
P 0 ⋆ P 0 (A.46)

+
1

2

∑

n≥0

(P 2n+1 − ⋆P−2n)(P−2n − ⋆P 2n+1)− 1

2

∑

n≥0

(P 2n+1 − ⋆P−2n−2)(P−2n−2 − ⋆P 2n+1) ,
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so that the first term gives the physical kinetic term as in (2.53).

Let us now look at the axion sector in the SL(9) duality frame and reproduce (2.60). We

start with the cocycle

− 2̺
∑

n∈Z

[(
n− 2

3

)1
6
Qn−2/3 ABCP

−n−1/3
ABC

+
(
n+

2

3

)1
6
Q
n+2/3
ABC

P−n−5/3 ABC

]
(A.47)

and in what follows, for brevity, we will hide the ABC indices of the local SO(9)K . From each

term we extract the only term where both coefficients are along the negative modes and write

the rest in terms of n ≥ 1:

(A.47) =
1

9
̺Q−1/3P−2/3 − 1

3
̺

∞∑

n=1

(
n− 1

3

)
Qn−1/3P−n−2/3 +

1

3
̺

∞∑

n=1

(
n+

1

3

)
Q−n−1/3Pn−2/3

+
2

9
̺Q−2/3P−1/3 − 1

3
̺

∞∑

n=1

(
n− 2

3

)
Qn−2/3P−n−1/3 +

1

3
̺

∞∑

n=1

(
n+

2

3

)
Q−n−2/3Pn−1/3

= − 1

36
̺Ω−1/3Ω−2/3 − 1

12
̺

∞∑

n=0

(
Ω−1/3−nΩ−4/3−n +Ω−2/3−n Ω−5/3−n

)
(A.48)

Now we want to reproduce squares of (2.59b) and (2.59c) in the series above. To do so we follow

the same procedure as for the E8 case, but separately for the parts with weights shifted by −1/3

and −2/3, respectively. To do so, let us define Xn to correspond to either Ω−1/3+n or Ω−2/3+n.

Then, in both cases the relevant term in the series above becomes

∞∑

n=0

X−nX−n−1 (A.49)

= −1

2
X−1X0 +

1

2

∞∑

n=1

(X−2n+1 −X−2n−1)X−2n +
1

2

∞∑

n=0

(X−2n −X−2n−2)X−2n−1 .

This is identical to (minus) the second line of (A.44) if we rewrite that expression in terms of

Ω (and rename Ω to X). Of course, the objects we are dealing with here sit in the 84 and 84

of SL(9) rather than the 248 of E8, but this plays no role in the manipulations we are carrying

out. Twisted self-duality applies to X here as it does to Ω there. We thus reuse the end result:

=
1

2
X0 ⋆ X0 (A.50)

− 1

2

∑

n≥0

(X−2n−1 − ⋆X−2n)(X−2n − ⋆X−2n−1)

+
1

2

∑

n≥0

(X−2n−1 − ⋆X−2n−2)(X−2n−2 − ⋆X−2n−1) .

Mapping back Xn to Ω−1/3+n or Ω−2/3+n and hiding the squares of self-duality for brevity, we

have

(A.47) = − 1

18
̺Ω−1/3Ω−2/3 − 1

24
̺Ω−1/3 ⋆Ω−1/3 − 1

24
̺Ω−2/3 ⋆Ω−2/3 + . . .
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=
1

18
̺Ω−1/3Ω−2/3 − 1

12
̺Ω−1/3 ⋆ Ω−1/3 +

1

24
̺(Ω−1/3 − ⋆Ω−2/3)(⋆Ω−1/3 − Ω−2/3) + . . .

=
1

18
̺Ω−1/3Ω−2/3 − 1

12
̺Ω−1/3 ⋆ Ω−1/3 + . . . (A.51)

reproducing the physical Lagrangian (2.60) once the indices are reinstated.

B Details on the Weitzenböck connection

In order to work out the Weitzenböck connection (3.11) and the embedding tensor components

for the ansatz

U−1 = rL0esKu−1 (B.1)

we first note that the SL(9) matrix u acts on tensor generators written in components as

uTIJu
−1 = u−1 I

Ku
L
JT

K
L (B.2)

and similarly for other tensors.

With the ansatz (B.1) and the solution (3.15) to the section constraint, we then get the

trombone component of the embedding tensor to be of the simple form

〈ϑ| = −r−1〈∂|U−1 = −r−1∂i

(
r

7
9 esu−1 I

Ku
−1 J

L

)
〈1/3|0i . (B.3)

For the standard embedding tensor we work out the Maurer–Cartan derivative

∂iUU−1 = −∂iuIKu−1K
JT

J
0 I − ∂isK− r−1∂ir L0 . (B.4)

The expression (3.17) in the body of the paper is then computed as follows

〈θ| = r−
2
9 esu−1 0

Ku
−1 i

L∂iu
S
Pu

−1P
R〈1/3|KLTR1S

+ r−
11
9 esu−1 0

Ku−1 i
L∂ir〈1/3|KLL1 − 〈W+|

= r−
2
9 esu−1 0

Ku
−1 i

L∂iu
S
Pu

−1P
R

(
〈1/3|[KLTR]1S − 2

7
〈1/3|Q[K

T
L
1Qδ

R]
S

)

+
1

8
r−

2
9 es
(
u−1 0

K∂iu
−1 i

R − u−1 i
K∂iu

−1 0
R

)
〈1/3|P (K

T
R)
1P

+
9

7
r−

2
9 esu−1 [0

K∂iu
−1 i]

R〈1/3|KRL1 + r−
11
9 esu−1 0

Ku−1 i
L∂ir〈1/3|KLL1 − 〈W+|

= r−
2
9 esu−1 0

Ku
−1 i

L∂iu
S
Pu

−1P
R

(
〈1/3|[KLTR]1S − 2

7
〈1/3|Q[K

T
L
1Qδ

R]
S

)

+
1

8
r−

2
9 es
(
u−1 0

K∂iu
−1 i

L − u−1 i
K∂iu

−1 0
L −W+

00 u
−1 0

Ku
−1 0

L

)
〈1/3|P (K

T
L)
1P

+
9

14
r−16/9es∂i

(
r14/9u−1 0

Ku
−1 i

L

)
〈1/3|KLL1 , (B.5)

where we used (2.19) and the transformation

〈1/3|IJTK0L = 2δ
[I
L 〈1/3|J ]K +

2

9
δKL 〈1/3|IJ . (B.6)
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We have also specialised 〈w+| = W+
00〈4/3|00 and the terms in TR1S were rewritten using the

decomposition into irreducible SL(9) representations

〈1/3|KLTR1S

=

[
〈13 |

KLTR1S − 〈13 |
[KL

T
R]
1S +

1

4
δ
[K
S 〈13 |

L]P
T
R
1P − 1

40
δRS 〈

1

3
|P [K

T
L]
1P +

11

40
〈13 |

P [K
T
L
1P δ

R]
S

]

2079

+

[
〈13 |

[KL
T
R]
1S − 2

7
〈13 |

P [K
T
L
1P δ

R]
S

]

720

+
1

8

[
δKS 〈13 |

P (L
T
R)
1P − δLS 〈13 |

P (K
T
R)
1P

]
45

+
9

70

[
δKS 〈13 |

P [L
T
R]
1P − δLS 〈13 |

P [K
T
R]
1P +

2

9
δRS 〈13 |

P [K
T
L]
1P

]

36

, (B.7)

where the subscripts are written to highlight the irreducible representations associated to each

projection. The module 2079 = R(λ1+λ2+λ8) is absent in the basic module due to

45⊕ 36⊕ 720 = 45⊕ 9⊗ 84 , (B.8)

and (2.27), and therefore does not appear in (B.5). For the 36 we have used (A.33) when

simplifying 〈θ|, together with the fact that det u = 1.

C Exceptional field theory conventions in eleven dimensions

In order to fix the sign conventions for the exceptional field theory formulation of eleven dimen-

sional supergravity, it is useful to compute the four-form field strength. Using the Kaluza–Klein

ansatz (4.2) for the three-form potential, one obtains for the four-form field strength

F 11D =
1

24
fĨJ̃K̃L̃(dy

Ĩ + 〈̃0|Ĩ |A〉) ∧ (dyJ̃ + 〈̃0|J̃ |A〉) ∧ (dyK̃ + 〈̃0|K̃ |A〉) ∧ (dyL̃ + 〈̃0|L̃|A〉)

+
1

6
DαĨ J̃K̃ ∧ (dyĨ + 〈̃0|Ĩ |A〉) ∧ (dyJ̃ + 〈̃0|J̃ |A〉) ∧ (dyK̃ + 〈̃0|K̃ |A〉)

+
1

2

(
FĨ J̃ + αĨ J̃K̃FK̃) ∧ (dyĨ + 〈̃0|Ĩ |A〉) ∧ (dyJ̃ + 〈̃0|J̃ |A〉) , (C.1)

where

fĨJ̃K̃L̃ = 4∂[ĨαJ̃K̃L̃]

DαĨ J̃K̃ = dαĨ J̃K̃ − 4〈̃0|L̃|A〉∂[L̃αĨ J̃K̃] − 3∂[Ĩ
(
〈̃0|L̃|A〉αJ̃K̃]L̃

)
− 3∂[Ĩ 〈̃1/3|J̃K̃]|A〉

FĨ J̃ = d〈̃1/3|ĨJ̃ |A〉 − 3〈̃0|K̃ |A〉 ∧ ∂[Ĩ 〈̃1/3|J̃K̃]|A〉+ 2∂[Ĩ
(
〈̃0|K̃ |A〉 ∧ 〈̃1/3|J̃ ]K̃ |A〉

)

+4∂[Ĩ 〈̃0|K̃ |C〉〈̃1/3|J̃]K̃ |C〉

F Ĩ = d〈̃0|Ĩ |A〉 − 〈̃0|J̃ |A〉∂J̃ 〈̃0|Ĩ |A〉 . (C.2)

The matching of the Kaluza–Klein ansatz with the exceptional field theory parametrisation is

fixed such that the covariant derivative and the field strengths are compatible. One computes
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using (4.4) that the covariant derivative in exceptional field theory gives 27

DαĨ J̃K̃ = dαĨ J̃K̃−〈̃0|L̃|A〉∂L̃αĨ J̃K̃+3∂P̃ 〈̃0|P̃T L̃
0 [Ĩ |A〉αJ̃K̃]L̃−

1

3
∂L̃〈̃0|L̃|A〉αĨ J̃K̃−∂L̃〈̃0|L̃T 1

3
ĨJ̃K̃ |A〉
(C.3)

Note in particular that this determines the sign of αĨ J̃K̃ in (4.4) for a fixed sign of 〈̃1/3|Ĩ J̃ |A〉.
The two-form ansatz is justified by checking that it matches the exceptional contribution in the

field strength

FĨ J̃ = 〈̃1/3|ĨJ̃
(
d|A〉 − 1

2 〈̃0|K̃ |A〉∂K̃ |A〉+ 1
2ηαβ 〈̃0|K̃Tα∂K̃ |A〉T β|A〉+ 1

2 〈̃0|K̃∂K̃ |A〉|A〉

ηαβ∂K̃ 〈̃0|K̃Tα|C〉T β |C〉+ ηαβ 〈̃0|K̃Tα|C[1〉T β|C2]K̃〉+ 2〈̃0|K̃ |C[1〉|C2]K̃〉

+η−1αβ 〈̃0|K̃Tα|C+
1 〉T β |C+

2K̃
〉
)

= d〈̃1/3|Ĩ J̃ |A〉 − 3〈̃0|K̃ |A〉 ∧ ∂[Ĩ 〈̃1/3|J̃K̃]|A〉+ 2∂[Ĩ 〈̃0|K̃ |A〉 ∧ 〈̃1/3|J̃ ]K̃ |A〉

+∂[Ĩ

(
4〈̃0|K̃ |C〉〈̃1/3|J̃ ]K̃ |C〉+ 〈̃0|K̃ |A〉〈̃1/3|J̃]K̃ |A〉

)
, (C.4)

and

F Ĩ = 〈̃0|Ĩ
(
d|A〉 − 1

2 〈̃0|
K̃ |A〉∂K̃ |A〉+ 1

2ηαβ 〈̃0|
K̃Tα∂K̃ |A〉T β|A〉+ 1

2 〈̃0|
K̃∂K̃ |A〉|A〉

ηαβ∂K̃ 〈̃0|K̃Tα|C〉T β|C〉+ ηαβ 〈̃0|K̃Tα|C[1〉T β|C2]K̃〉+ 2〈̃0|K̃ |C[1〉|C2]K̃〉

+η−1αβ 〈̃0|K̃Tα|C+
1 〉T β |C+

2K̃
〉
)

= d〈̃0|Ĩ |A〉 − 〈̃0|J̃ |A〉∂J̃ 〈̃0|Ĩ |A〉 . (C.5)

Note that there is here a redefinition of the 2-form.

D Gauge invariance and uplift formulæ

In order to understand the dependence of the uplift ansatz on the pure gauge fields bIJK and

δK(Ih
K
J), it is useful to consider the corresponding gauge transformations in eleven-dimensional

supergravity and gauged supergravity. For this purpose let us recall the gauge transformation

in gauged supergravity

δ|A〉 = d|λ〉+ η−1αβ〈θ|Tα|λ〉Tβ |A〉+ η−1αβ〈θ|Tα ⊗ T β||Σ〉〉 , (D.1)

δ||C〉〉 = η−1αβ〈θ|Tα|λ〉
(
1⊗ Tβ + Tβ ⊗ 1

)
||C〉〉 + 1

2
d|λ〉 ⊗ ∧|A〉 − 1

2
|A〉 ⊗ ∧d|λ〉

+d||Σ〉〉 − 1

2
η−1αβ |A〉 ⊗ ∧〈θ|Tα ⊗ T β||Σ〉〉+ 1

2
η−1αβ〈θ|Tα ⊗ T β||Σ〉〉 ⊗ ∧|A〉 ,

where both the two-form ||C〉〉 and one-form gauge parameter ||Σ〉〉 are in the symmetric tensor

product of two copies of the basic module. One can redefine ||Σ〉〉 such that the gauge transfor-

mation of the gauge field becomes a covariant derivative, but both forms will be useful in this

section.

27Using DV = dV − 〈̃0|Ĩ |A〉∂ĨV − ηαβ 〈̃0|
ĨTα∂Ĩ |A〉VT β + hV, where h is the local K(e9) compensating trans-

formation.
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The following gauge transformation of the three-form in eleven dimensions

δA11D = d
(g
2
λKIJYK∂iY

I∂jY
J(dyi +Ai) ∧ (dyj +Aj)

)

=
g

2
δL[Kλ

L
IJ ]∂iY

I∂jY
J∂kY

K(dyi +Ai) ∧ (dyj +Aj) ∧ (dyk +Ak)

+
g

2
Y K∂iY

I∂jY
JDλKIJ ∧ (dyi +Ai) ∧ (dyj +Aj)

−g2λKIJ〈1/3|IL|F 〉YKYL∂iY J ∧ (dyi +Ai) (D.2)

with

DλKIJ = dλKIJ − gδPQ〈1/3|KP |A〉λQIJ + 2gδP [I〈1/3|PQ|A〉λKJ ]Q ,
〈1/3|IJ |F 〉 = 〈1/3|IJ |dA〉+ gδKL〈1/3|IK |A〉 ∧ 〈1/3|JL|A〉 , (D.3)

is equivalent to the gauged supergravity gauge transformation defined as a covariant derivative

δbIJK = −3ΘL[Iλ
L
JK]

δ〈1|KIJ |A〉 = dλKIJ −ΘPQ〈1/3|KP |A〉λQIJ + 2ΘP [I〈1/3|PQ|A〉λKJ ]Q (D.4)

of parameter

λKIJ = 〈1|KIJ |λ〉 . (D.5)

Note moreover that the four-form field strength in eleven dimensions only depends on the field

bIJK through its covariant derivative and the linear combination

〈1|KIJ |F 〉 − bIJL〈1/3|KL|F 〉 (D.6)

for which the right-hand side of (3.44d) and (3.44a) does not depend on the field bIJK , as one

sees in (3.48).

We find therefore that bIJK can consistently be gauged away both in eleven-dimensional

supergravity and gauged supergravity.

One similarly exhibits that hIJ only appears non-trivially in the gauged supergravity La-

grangian through it antisymmetric component ΘK[Ih
K
J ], while its symmetric component is pure

gauge. To see this, note that one can use a diffeomorphism along the circle coordinate

ζ9 → y9 − gYIYJξ
IJ(x) (D.7)

for a symmetric tensor ξIJ function of the external coordinates. This diffeomorphism only affects

the fibre one-form as

dy9 +A9 +Ki(dy
i +Ai) = dy9 + gYIYJ〈4/3|IJ |A〉+Ki

(
dyi + gYI g̊

ij∂jYJ〈1/3|IJ |A〉
)

→ dy9 + gYIYJ
(
〈4/3|IJ |A〉 − dξIJ − 2gδKL〈1/3|K(I |A〉ξJ)L

)

+
(
Ki − 2gYI∂iYJξ

IJ
)(
dyi + gYK g̊

ij∂jYL〈1/3|KL|A〉
)
. (D.8)

Using the metric ansatz one obtains

ρ−
8
9 e2ςGij

(
Kj − 2gYI∂jYJξ

IJ
)
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= −g2̺−
16
9 (det g̊)

1
9YIYJYK g̊

ij∂jYL
(
〈4/3|IJM−1 KL|1/3〉 + 2gδPQξ

P (I〈1/3|J)QM−1 KL|1/3〉
)

such that this diffeomorphism is equivalent to the gauge transformation

δ〈4/3|IJ |A〉 = dξIJ + 2gδKL〈1/3|K(I |A〉ξJ)L ,

δhI J = 2gδJKξ
IK − 2

9
gδIJ δKLξ

KL . (D.9)

In gauge supergravity one can identify

ξIJ = 〈4/3|IJ |λ〉 . (D.10)

The trace component is not relevant to this discussion, therefore we assume ΘIJξ
IJ = 0 to

simplify expressions. One then obtains from (D.1) the gauge transformation of the following

fields as

δhI J = 2ΘJKξ
IK ,

δ〈4/3|IJ |A〉 = dξIJ + 2ΘKL〈1/3|K(I |A〉ξJ)L ,
δ〈1|KIJ |A〉 = −4ΘL[I〈0|J ]|A〉ξKL + 4δK[I ΘJ ]P 〈0|Q|A〉ξPQ . (D.11)

With this transformation of hIJ , one checks that

δ〈4/3|IJM−1 KL|1/3〉 = −2ΘPQξ
P (I〈1/3|J)QM−1 KL|1/3〉 (D.12)

δ〈1|PIJM−1 KL|1/3〉 = −4ξPQΘQ[I〈0|J ]M−1 KL|1/3〉 + 4δP[IΘJ ]Qξ
QR〈0|RM−1 KL|1/3〉

such that the three-form component transforms under the associated diffeomorphism

δAij = 4gξIJYI∂[iYJA9j] , δαijk = 6gξIJYI∂[iYJα9jk] , (D.13)

using (4.15) and (4.16).

Let us finally note that this gauge transformation acts on the field strength

δ〈4/3|IJ |F 〉 = 2ΘKL〈1/3|K(I |F 〉ξJ)L (D.14)

consistently with the property that the derivative of the potential in the right-hand side of

(3.44b) is not gauge invariant, but transforms as

δ
∂Vgsugra
∂ΘIJ

= 2ΘKL〈1/3|K(IM−1|θ〉ξJ)L (D.15)

so that (3.44b) transforms into the Yang–Mills equation (3.44a).

This completes the proof of equivalence between the diffeomorphism (D.7) and the gauged

supergravity gauged transformation of parameter ξIJ . One can therefore gauge fix ΘK(Ih
K
J)

to any convenient value in the equations of motion to determine the eleven-dimensional fields.
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E Embedding tensors with uplift

It would be highly desirable to be able to classify the most general consistent truncations of

ten- and eleven-dimensional maximal supergravity to gauged maximal supergravity in two di-

mensions. We may assume that all such truncations are necessarily generalised Scherk–Schwarz

reductions, as seems plausible from the requirement that maximal supersymmetry must be pre-

served, see for instance [29,74]. Then, the problem can be roughly divided into two objectives:

to classify all inequivalent embedding tensors of the two-dimensional theory admitting a gSS

uplift and to explicitly identify the internal space and twist matrix for each case.

These are however extremely difficult tasks in general, that have not yet been completed for

truncations to D ≥ 3 maximal supergravities. Significant progress has been made in recent years

for En ExFTs with n ≤ 7 [75,46,76–78]. Necessary and sufficient constraints for an embedding

tensor to admit an uplift have been identified [46,76–78], and a general construction procedure

for the twist matrix – assuming such constraints are satisfied – was determined [46]. The

classification of solutions of such constraints, up to duality orbits, is at the time of this writing

an unsolved problem. Duality covariant, necessary conditions for the existence of an uplift of a

D = 3 gauged maximal supergravity have recently been presented in [79] and analogous set of

necessary conditions for D = 2 is presented in the companion paper [19] (see equations (3.71),

(3.72) there).

In this appendix we take a complementary point of view. We impose that the embedding

tensor must originate from a twist matrix satisfying the section constraint. By fixing a solution

of the section constraint, we then find which entries within the embedding tensor can actually

be generated by projecting a putative Weitzenböck connection through (3.12). A similar ap-

proach was recently taken in [80] for D ≥ 4 supergravities. We will show that any Lagrangian

embedding tensor 〈θ| admitting an uplift is only parametrised by finitely many components,

which we identify in equations (E.18) and (E.39) below for uplifts to eleven-dimensional and IIB

supergravities, respectively. Notice that the conditions found in this way break the exceptional

group to a parabolic subgroup (the one preserving the fixed choice of section) and therefore an

embedding tensor with uplift is only required to match the ones identified with this procedure

up to the action of a rigid E9 element. We do not prove whether a twist matrix actually exists

for the embedding tensors parametrised by (E.18) and (E.39). We only consider reductions from

either eleven-dimensional or type IIB supergravity, excluding for example the case of massive

type IIA, since a Romans mass deformation of E9 ExFT analogous to [81] is not yet available.

We will use a basis appropriate to the chosen solution of the section constraint. For instance,

for eleven-dimensional supergravity we use the basis (2.30) and internal derivatives take the form

(3.15). For short, only in this appendix we drop all the tildes introduced in (2.30) to distinguish

the p = 1 flowed basis from the p = 2 one in (2.28). We do the same for the generators Tα,

which we always assume to be set in a basis adapted to the choice of section constraint (i.e.

the p = 1 flowed SL(9) basis for the eleven-dimensional supergravity section). Therefore in this

section we shall write

〈∂| = 〈0|I∂I (E.1)
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where I = 1 to 9 for eleven-dimensional supergravity, and I = 1 to 8 for type IIB supergravity.

We assume that the appropriate basis is used also for type IIB supergravity, such that

〈0|IL−n = 0 , ∀n ≥ 1 . (E.2)

The IIB basis will be further described below.

The approach followed in this appendix is made possible by an observation on the general

form of the twist matrix. One first notices that the internal space must be a homogeneous space

G/H where G is the gauged supergravity gauge group and H some subgroup [20]. Notice that

in D = 2 both G and H are infinite-dimensional. Following the analysis of [46], the internal

vectors 〈0|Ir−1U−1 = 〈kI | generate the transitive action of G. The ancillary gauge parameters

appearing in E8 and E9 generalised diffeomorphisms do not affect this observation, hence we

can carry over any conclusions from [46] which only rely on this observation. In particular, it

implies that the twist matrix always decomposes as

U = LE−1 (E.3)

where L(y) ∈ G is the coset representative of G/H, while E belongs to the parabolic subgroup

preserving the choice of solution of the section constraints, i.e. only includes generators of non-

positive mode number with respect to the Virasoro generator L0 satisfying (E.2). Explicitly,

〈0|IE = gI J〈0|J , (E.4)

with gI J a GL(d) element. Because the embedding tensor 〈θ| is gauge invariant, one then has

〈θ|U = 〈θ|E−1 . (E.5)

This is important because it will be easier to constrain the components that can be non-vanishing

in 〈θ|U and the action of E preserves the highest possible L0 degree.

It will be convenient to define the conjugate Weitzenböck connection

〈W̃α| ⊗ Tα = 〈Wα|rU ⊗ U−1TαU = 〈eM | ⊗ U−1∂MU . (E.6)

We shall assume that U ∈ E9. The most general case can be analysed similarly, but requires

slightly heavier notation, so we shall refrain from writing it. With this definition

〈ϑ| = 〈W̃α|Tαr−1U−1 , 〈θ| = −〈W̃α|S1(Tα)r−2U−1 − 〈W̃+|r−2U−1 , (E.7)

where

〈W̃+| = r−1〈W+| − ωα−1(U)〈W̃α| . (E.8)

Because r−1U−1 is invertible, the condition 〈ϑ| = 0 implies

〈W̃α|Tα = 0 (E.9)

pointwise. As we shall see, this equation severely constrains the possible non-zero components

of 〈θ|r2U and in turn 〈θ|.
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E.1 Eleven-dimensional supergravity

Let us start with eleven-dimensional supergravity. One uses therefore the GL(9) decomposition,

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕ (36⊗ 9) 13

9
⊕
(
9⊗ 84⊕ 45

)
16
9

⊕ (9⊗ 84⊕ 1008) 19
9
⊕ . . . , (E.10)

and we recall that we drop for short all tildes in (2.30) in this appendix. The conjugate

Weitzenböck connection then takes the form

〈W̃α| ⊗ Tα = 〈0|I ⊗
∑

n

(
W̃ (n)

I
J
KTKn J + 1

6W̃
(n+1

3 )

I
JKLTn+ 1

3
JKL + 1

6W̃
(n+2

3 )

I;JKLT
JKL
n+ 2

3

)

+ W̃ 0
I 〈0|I ⊗ L0 + W̃K

I 〈0|I ⊗ K , (E.11)

where the index I labels the derivative along the eleven coordinates, while the adjoint indices

are labeled with the indices JKL. The condition that there is no trombone gives therefore

0
!
= 〈W̃α|Tα

= 〈0|I
(
4
9W̃

0
I + W̃K

I − W̃ (n)

J
J
I

)
+

1

2
〈1/3|IJW̃ ( 13 )

K
IJK +

1

6
〈2/3|IJKLW̃ ( 23 )

I;JKL + 〈1|IJK W̃ (1)

I
K
JT

K
n J

+
∑

n≥1

〈0|I
(
1
6W̃

(n+1
3 )

I
JKLTn+ 1

3
JKL + 1

6W̃
(n+2

3 )

I;JKLT
JKL
n+ 2

3

+ W̃ (n+1)

I
J
KT

K
n J

)
. (E.12)

This equation must be true for each basis element separately, and one finds that it sets to zero

all the components of W̃α with n ≥ 4/3. To prove this we compute the relations

〈0|IT 1
3
+nJKLT

PQR

− 1
3
−n

= 18δ
I[PQ
JKL 〈0|R] + 6nδPQRJKL 〈0|I

〈0|ITJKL2
3
+n

T− 2
3
−nPQR = −24δ

[IJK
PQR〈0|L] + 6nδJKLPQR〈0|I

〈0|IT J
1+nKT P

−1−nQ = −2δPKδ
[I
Q〈0|J ] + δIKδ

J
Q〈0|P + nδPKδ

J
Q〈0|I −

n+ 1

9
δJKδ

P
Q〈0|I .(E.13)

One finds from these formulas that none of the components of 〈0|IT 1
3
+n JKL, 〈0|ITJKL2

3
+n

and

〈0|IT J
1+nK vanish for n ≥ 1, because their norm square is strictly positive. We conclude therefore

that

W̃
(n+1

3 )

I
JKL = 0 , W̃

(n+2
3 )

I;JKL , W̃ (n+1)

I
J
K = 0 , ∀n ≥ 1 (E.14)

and

W̃
( 13 )

K
IJK = 0 , W̃

( 23 )

[I;JKL] = 0 , W̃ (1)

[I K]
J = 0 , W̃K

I = W̃ (0)

J
J
I − 4

9W̃
0
I . (E.15)

From these constraints one gets immediately that 〈W̃α|S−n(Tα) = 0 for n ≥ 1 and that the

embedding tensor can be written as

〈θ|r2U = 〈0|IΘ̃( 49 )

I +
1

2
〈1/3|IJ Θ̃( 79 )IJ +

1

24
〈2/3|IJKLΘ̃( 109 )

IJKL +
1

2
〈1|IJK Θ̃

( 139 )K
IJ

− 1

6
〈4/3|LIJKW̃

( 13 )

L
IJK − 1

6
〈5/3|I,JKLW̃ ( 23 )

I;JKL − 〈2|IJK W̃ (1)K
I J (E.16)
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where the first four components are a priori generic while one defines 〈4/3|LIJK , 〈5/3|I,JKL and

〈2|IJK in the corresponding irreducible SL(9) representations 720, 630 and 396, i.e.

〈2|IJK = 〈2|JIK , 〈2|IJJ = 0 , 〈5/3|[I,JKL] = 0 , 〈4/3|KIJK = 0 . (E.17)

One checks that this structure is preserved by the action of the parabolic subgroup of negative

L0 degree. Indeed the two other irreducible representations 126 and 1008 of degree 19
9 cannot

be obtained from the degree 22
9 element in the 396, and the two other irreducible representations

45 and 36 of degree 16
9 cannot be obtained from the degree 19

9 element in the 630 or the degree
22
9 element in the 396. We conclude therefore from (E.5) that the embedding tensor admits the

same expansion

〈θ| = 〈0|IΘ( 49 )

I +
1

2
〈1/3|IJΘ( 79 )IJ +

1

24
〈2/3|IJKLΘ( 109 )

IJKL +
1

2
〈1|IJK Θ

( 139 )K
IJ

+
1

6
〈4/3|LIJKΘ

( 169 )

L
IJK +

1

6
〈5/3|I,JKLΘ( 199 )

I,JKL + 〈2|IJK Θ
( 229 )K
IJ (E.18)

where the last three components are in the corresponding SL(9) irreducible representations.

To further constrain the components of the embedding tensor, we can use the quadratic

constraint (3.13). For short we introduce the notation

ΘK
IJ ≡ Θ

( 229 )K
IJ , (E.19)

for the component of main interest for us. The first components of the quadratic constraint

give28

ΘP
IJΘ

Q
KL

(
2〈1|IKP ⊗ 〈2|LJQ − δIQ〈1|JRP ⊗ 〈2|KLR

)
= 0 , (E.20)

and

ΘP
IJΘ

Q
KL

(
2〈4/3|IPQR ⊗ 〈5/3|K,LJR − δIQ〈4/3|JPRS ⊗ 〈5/3|K,LRS

)
= 0 , (E.21)

which imply the two equations

Θ
[P
IJΘ

Q]
KL = 0 , ΘP

IJΘ
Q
KP = 0 . (E.22)

The first equation gives that ΘP
IJ factorises in uPΘIJ and one gets

ΘP
IJ = uPΘIJ , uJΘIJ = 0 , (E.23)

such that uI defines a specific direction in SL(9) and ΘIJ is a symmetric tensor in the orthogonal

subspace. Without loss of generality we can always choose coordinates such that i = 1 to 8 and

Θk
IJ = 0 , ΘK

9J = 0 , (E.24)

and the only non-vanishing components are Θ9
ij , which defines a symmetric matrix of rank

8− r ≤ 8.

28Where we use 〈2|IJK T
P
−1Q = δ

(I
Q 〈1|

J)P
K − 1

10
δ
(I
K 〈1|

J)P
Q + 1

10
δ
(I
K δ

J)
Q 〈1|PLL .

59



The next constraint we get from (3.13) is

Θ
( 199 )

K,L1L2L3
ΘP
IJ

(
2〈2/3|L1L2L3I ⊗ 〈2|JK − δKP 〈2/3|L1L2L3Q ⊗ 〈2|IJQ

)
= 0 (E.25)

which implies the two equations

Θ
( 199 )

K),[L1L2L3
ΘP
I](J = 0 , Θ

( 199 )

P,L1L2L3
ΘP
IJ = 0 . (E.26)

One finds therefore that Θ
( 199 )

I,JKL is orthogonal to the vector uI on its first index. One can write

the general solution as the sum of two terms

Θ
( 199 )

I,JKL = ΘP
I[JΛKL]P +ΘI,JKL (E.27)

where ΛIJK is an arbitrary antisymmetric tensor and ΘI,JKL satisfies

uIΘI,JKL = 0 , ΘK,[L1L2L3
ΘP
L4]J

= 0 . (E.28)

The term in ΛIJK can be absorbed in a E9 transformation and can therefore be disregarded.

There is a non-trivial solution ΘI,JKL to this equation if and only if Θ9
ij has rank at most three,

i.e. r ≥ 5. To describe the solution it is convenient to split the indices i = 1 to 8, to a = 1

to 8 − r and â = 8 − r + 1 to 8, such that Θ9
ab is non-degenerate and the other components

Θ9
ab̂

= Θ9
âb̂

= 0.

• r = 5 : The solution has Θi,123 arbitrary and the other components vanish.

• r = 6 : The solution has Θi,12L arbitrary and the other components vanish.

• r = 7 : The solution has Θi,1KL arbitrary and the other components vanish.

• r = 8 : ΘK
IJ = 0 and there is no constraint in these components.

At the next orders, the constraints become more and more complicated and we will not give

the full solution. If one assumes that Θij is maximal rank, one finds the unique solution

〈θ| = 〈0|9Θ00 + 〈1|i99 Θ0i + 〈2|ij9 Θij , (E.29)

corresponding to the CSO(p, q, r) gaugings discussed in this paper.

E.2 Type IIB supergravity

The basis appropriate to make the type IIB section constraint manifest corresponds to the

grading

e9 =
⊕

n

(
(sl2 ⊕ sl8)n ⊕ (2,28) 1

4
+n ⊕ (1,70) 1

2
+n ⊕ (2,28) 3

4
+n

)
⊕ 〈K, L0〉 . (E.30)

This decomposition can be obtained by spectral flow. Starting from the associated Z4 graded

decomposition of e8, one further decomposes sl8 into gl7 with the sl8 generators T IJ splitting

into

T ij , T 0
j , T i0 , T 0

0 = −T kk , (E.31)
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for I = 0 to 7 and i = 1 to 7. The spectrally flowed Virasoro generators are then

L(p)
n = Ln + pT kn k +

7p2

16
δn,0K , (E.32)

and the corresponding ê8 generators are

Tinj = T inj +
p2

8
δijK , Tin0 = T in+p0 , T0

nj = T 0
n−pj . (E.33)

One finds that the Virasoro generator L0 defines the grading (E.30) for p = 1 mod 4. For p = 3

mod 4 one gets the same graded decomposition with the conjugate representations. We shall

use the p = 1 basis for the uplift to ten dimensions.

One finds then the corresponding decomposition of the basic module

R(Λ0)−1 = (1,8) 7
16

⊕ (2,8) 11
16

⊕ (1,56) 15
16

⊕ (2,56) 19
16

⊕
(
(1,8⊗ 28)⊕ (3,8)

)
23
16

⊕
(
(2,8 ⊗ 28)⊕ (2,8)

)
27
16

⊕
(
(3,56)⊕ (1,8⊗ 70)⊕ (1,168)

)
31
16

⊕
(
(2,8 ⊗ 70)⊕ (2,56)⊕ (2,168)

)
35
16

+ . . . (E.34)

where the (1,8)7/16 corresponds to the derivatives in the eight internal coordinates.

As in the preceding section, one writes the conjugate Weitzenböck connection in the appro-

priate basis as

〈W̃α| ⊗ Tα = 〈0|I ⊗
∑

n

(
W̃ (n)

I
J
KTKn J + W̃ (n)

I
α
βT

β
nα + 1

2W̃
(n+1

4 )

I
JK
α T α

n+ 1
2
JK

+
1

24
W̃

(n+1
2 )

I;JKLPT
JKLP
n+ 1

2
+ 1

2W̃
(n+3

4 ) α
I;JK TJK

n+ 1
4
α

)
+ W̃ 0

I 〈0|I ⊗ L0 + W̃K
I 〈0|I ⊗ K (E.35)

where I, J,K are the SL(8) indices and α, β (on the right-hand side) are the SL(2) indices. There

should not be any confusion with the index α of e9 on the left-hand side.

The decomposition of the basic module includes

R(Λ0)−1 ⊃ (1,8) 7
16

⊕ (2,8) 11
16

⊕ (1,56) 15
16

⊕ (2,56) 19
16

⊕
(
(1,8⊗ 28)⊕ (3,8)

)
23
16

(E.36)

⊕
∞⊕

n=0

[(
(1,8) ⊗ (2,28)

)
27
16

+n
⊕
(
(1,8) ⊗ (1,70)

)
31
16

+n
⊕
(
(1,8) ⊗ (2,28)

)
35
16

+n

⊕
(
(1,8 ⊗ 63)⊕ (3,8)

)
39
16

+n

]
.

From this decomposition and the condition that 〈ϑ| = 0 one then concludes that all the com-

ponents of the Weitzenböck connection of L0 degree greater or equal to 5
4 vanish, because the

projection to the basic module does not project these components to smaller representations.

One moreover gets that

W̃
( 14 )

J
IJ
α = 0 , W̃

( 12 )

[I;JKLP ] = 0 , W̃
( 34 ) α

[I;JK] = 0 , W̃ (1)

[I K]
J = 0 , W̃ (1)

I
α
β = 0 , (E.37)

and W̃K
I is determined. From these constraints one gets immediately that 〈W̃α|S−n(Tα) = 0 for

n ≥ 1 and that the embedding tensor can be written as
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〈θ|r2U = 〈0|IΘ̃( 7
16 )

I + 〈1/4|αI Θ̃
( 1116 )I

α +
1

6
〈1/2|IJKΘ̃( 1516 )IJK +

1

6
〈3/4|IJKα Θ̃

( 1916 ) α

IJK

+
1

2
〈1|IJK Θ̃

( 2316 )K
IJ + 〈1|IαβΘ̃

( 2316 )αβ
I − 1

2
〈5/4|K α

IJ W̃
( 14 )

K
IJ
α

− 1

24
〈3/2|I,JKLP W̃ ( 12 )

I;JKLP − 1

2
〈7/4|I,JKα W̃

( 34 ) α
I;JK − 〈2|IJK W̃ (1)K

I J . (E.38)

where the basis elements 〈5/4|K α
IJ , 〈3/2|I,JKLP , 〈7/4|I,JKα and 〈2|IJK are in the corresponding

irreducible representations.

One can now use (E.5) and check that all the generators of negative L0 degree preserve this

form such that the embedding tensor decomposes as well as

〈θ| = 〈0|IΘ( 7
16 )

I + 〈1/4|αIΘ
( 1116 )I

α +
1

6
〈1/2|IJKΘ̃( 1516 )IJK +

1

6
〈3/4|IJKα Θ̃

( 1916 ) α
IJK

+
1

2
〈1|IJK Θ

( 2316 )K

IJ + 〈1|IαβΘ
( 2316 )αβ

I +
1

2
〈5/4|K α

IJ Θ
( 2716 )

K
IJ
α

+
1

24
〈3/2|I,JKLPΘ( 3116 )

I,JKLP +
1

2
〈7/4|I,JKα Θ

( 3516 )α
I,JK + 〈2|IJK Θ

( 3916 )K
IJ . (E.39)

As for the eleven-dimensional case, the highest degree component is a vector valued sym-

metric tensor Θ
( 3916 )K
IJ , and one expects the same constraint (E.22) to follow from the quadratic

constraint (3.13). There is again a solution

〈θ| = 〈0|8Θ00 + 〈1|i88 Θ0i + 〈2|ij8 Θij , (E.40)

to the quadratic constraint that corresponds to CSO(p, q, r) gaugings obtained by reduction of

type IIB supergravity on a circle times S7 or other hyperboloids and contractions thereof.

To understand this particular example it is useful to consider the p = 2 spectral flowed basis

in which

e9 =
⊕

n

(
(sl2 ⊕ e7)n ⊕ (2,56) 1

2
+n

)
⊕ 〈K, L0〉 (E.41)

and the basic module decomposes as

R(Λ0)−1 = (2,1) 1
4
⊕ (1,56) 3

4
⊕
(
(2,133)⊕ (2,1))

)
5
4
⊕
(
(1,56⊕ 912)⊕ (3,56)

)
7
4
⊕ . . . (E.42)

One finds therefore that the symmetric tensor (E.40) of SL(8) sits inside the 9127/4 and is a

solution to the quadratic constraint by embedding in e7. This consistent truncation is T-dual

to the reduction of eleven-dimensional supergravity on S7 further reduced over a torus T 2, and

is therefore already known to be a consistent truncation [47,82,48].
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holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96

[hep-th/9903214].

[72] T. Wiseman, On black hole thermodynamics from super Yang-Mills, JHEP 07 (2013) 101

[1304.3938].

[73] D.H. Peterson and V.G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat.

Acad. Sci. U.S.A. 80 (1983) 1778.

[74] D. Cassani, G. Josse, M. Petrini and D. Waldram, Systematics of consistent truncations

from generalised geometry, JHEP 11 (2019) 017 [1907.06730].
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