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1 Introduction and summary

The SU(N) matrix quantum mechanics, first introduced as a regularisation of the super-
membrane [1, 2], has been proposed as a non-perturbative definition of M-theory in the
infinite momentum frame [3]. A more recent perspective on this conjecture is provided
by holography [4, 5], where the strong coupling limit of the matrix model is described by
eleven-dimensional supergravity on the SO(9)-invariant pp-wave solution [6, 7]. The corre-
sponding ten-dimensional description involves IIA supergravity on the near-horizon geometry
of N D0-branes, whose metric is conformal to AdS2 × S8. The above holographic duality
has been the subject of several studies, including numerical evaluations of some correlation
functions, see for example [8–12].

In order to apply holographic techniques such as holographic renormalisation [13–15], it
is generally very useful to have a consistent truncation to a lower-dimensional supergravity
theory, capturing a subset of fluctuations in the asymptotically AdS space-time. For the
S8 ×S1 pp-wave background, the natural candidate is SO(9) gauged maximal supergravity in
D = 2 space-time dimensions [16], in which the pp-wave is a 1/2-BPS domain wall solution
with a running dilaton. A U(1)4 axion-free subsector has been shown to consistently uplift
to ten dimensions in [17]. Holographic renormalisation was used in this model to derive
the two-point functions of quadratic and cubic operators [11]. In order to further probe
the connection between SO(9) gauged supergravity and the M-theory matrix model, it is
necessary to have at one’s disposal a consistent embedding in eleven dimensions that captures
all possible fluctuations. The consistent uplift of the entire two-dimensional theory, which
was announced in [18], is the main result of this paper.

In a companion paper [19], we have described how generalised Scherk-Schwarz reduc-
tions [20–31] of E9 exceptional field theory [32, 33] can be used to obtain the complete bosonic
dynamics of two-dimensional gauged maximal supergravity theories that admit a consistent
uplift to maximal supergravity in D = 10 or D = 11 dimensions. The resulting theory was
described uniformly by a pseudo-Lagrangian whose Euler-Lagrange equations need to be
supplemented by a set of duality equations that reduce the number of propagating bosonic
degrees of freedom to 128 as required by maximal supersymmetry. The pseudo-Lagrangian
consists of a potential and a topological term.

In the present paper, we apply the general results obtained in [19] to the particular case of
SO(9) gauged supergravity in D = 2 dimensions. We recover the SO(9) gauged supergravity
theory that was originally derived by Ortiz and Samtleben [16] using supersymmetry, and
provide moreover concrete formulæ for the uplift of any two-dimensional configuration to
D = 11 supergravity. The complete form of the metric and the three-form gauge field in
eleven dimensions is necessary to interpret holographically the solutions of SO(9) gauged
supergravity. We then focus on the SO(3)×SO(6) invariant subsector of the theory, including
the axion that was not captured in [17]. This truncation is a priori relevant to the description
of the BMN mass deformation of the BFSS matrix model [34]. We will show that it includes
a non-normalisable mode that triggers the BMN deformation at finite temperature [35].

The generalised Scherk-Schwarz reduction of E9 exceptional field theory rests, as all such
reductions, first and foremost on the identification of a twist matrix taking values in the
hidden symmetry group and depending on the so-called internal coordinates of exceptional
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field theory. We recall that in exceptional field theory [32, 33, 36–43] there are external
coordinates (that here belong to D = 2 space-time dimensions) as well as internal coordinates
that transform in a representation of the hidden symmetry group, here in the infinite-
dimensional basic representation of E9.1 Importantly, the internal coordinates are constrained
by the so-called section constraint that guarantees a consistent diffeomorphism algebra [44, 45]
and the correct counting of degrees of freedom. The dependence of the twist matrix on the
internal coordinates determines which subgroup of E9 is gauged along with the resulting
dynamics and is constrained by the generalised Scherk-Schwarz consistency condition as
discussed in the companion paper [30].

The SO(9) gauge subgroup related to the S8 sphere reduction sits inside an SL(9)
subgroup of E9 as is usual for sphere reductions [30, 46]. This SL(9) is different from the
(geometric) SL(9) arising in the T 9 torus reduction from D = 11 to two dimensions. One
determines the correct SL(9)⊂E9 through the identification of the fields supporting the
one-half BPS pp-wave solution [7]. Remarkably, this reveals that the SL(9) relevant for SO(9)
gauged supergravity can be obtained by spectral flow from the eleven-dimensional one. The
relation between these two SL(9) subgroups of E9 will be central for deriving the explicit
uplift formulæ to D = 11 dimensions in section 4.

In order to give the reader an impression of the uplift formulæ, we display here the
reduction ansatz for the D = 11 metric

ds2
11D = ρ−

8
9 e2ς g̃µνdxµdxν + ρ

2
9GĨ J̃(dyĨ + AĨ)(dyJ̃ + AJ̃) . (1.1)

Its components along the two external dimensions involve the conformal factor e2ς , the
uni-modular metric of the two-dimensional space-time g̃µν , and the internal volume density
that reads

ρ(x, y) = (det̊g)
1
2 ϱ(x) , (1.2)

in terms of the determinant of the round S8 metric g̊ij , as well as the two-dimensional dilaton
ϱ. The unimodular internal (9 × 9)-part of the D = 11 metric further decomposes into

GĨ J̃ dyĨdyJ̃ = Gijdyidyj + (detGij)−1 (dy9 +Kidyi)2 (1.3)

with respect to the M-theory fibre. The inverse Gij is expressed, up to the conformal factor, as

e2ςGij = g2ϱ
2
3 e2σ(det g̊)

5
9 YI g̊

ik∂kYJ YK g̊
jl∂lYL

(
2mK[ImJ ]L + ϱ−2/3mPQa

IJPaKLQ
)
, (1.4)

where the right-hand side contains the nine embedding coordinates YJ (in Euclidean R9) of the
reduction space that is homological to the eight-sphere, and that satisfy g̊ij = ∂iYI∂jYJδ

IJ , as
well as the propagating fields of the two-dimensional SO(9) gauged supergravity (see (3.39)).
The latter are the SL(9) metric mPQ = mQP and the conjugate three-form aIJK = a[IJK].
Further equations for the remaining bosonic fields of D = 11 supergravity expressed through
those of the SO(9) gauged theory can be found in section 4. We stress that all uplift

1The global symmetry group of ‘extended’ E9 exceptional field theory [33] also contains half of a Virasoro
group related to reparametrisations of the spectral parameter occurring in the loop group description of the
affine E9 symmetry. This is discussed in more detail in [19, 33] and in section 2.
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expressions are finite expression although they are constructed at intermediate steps from
infinite-dimensional E9 modules. Their structure is similar to that occurring in lower rank
cases, see for instance [29, 47–52].

Another important result of this paper is that we explain in detail how one can obtain a
proper physical Lagrangian from the combined pseudo-Lagrangian and duality equation system.
This hinges on choosing an appropriate parabolic gauge for the scalar fields, tantamount to a
choice of duality frame, and then rewriting the pseudo-Lagrangian in a form of a finite set of
terms plus an infinite set of terms that are all bilinear in components of the duality equation.
The bilinearity implies that these terms can be ignored when varying the pseudo-Lagrangian
as their contribution to the Euler-Lagrange equations will be set to zero by the duality
equation that has to be imposed separately. However, it turns out the duality equations
no longer constrain the finitely many fields occurring in the finitely many terms that were
separated out, so that the latter constitute a proper physical Lagrangian for the propagating
fields, potentially with a finite number of auxiliaries. This mechanism was already encountered
in [33, 53] and will be described in detail in section 2.4.

The construction described in this paper can be extended to other gauge groups. In
fact, our results include the case of CSO(p, q, r) gaugings with p+q+r=9 [54] in a straight-
forward manner by replacing the embedding tensor ΘIJ ∼ δIJ by the appropriate invariant
(degenerate) metric of CSO(p, q, r). Here, ΘIJ = ΘJI , in the 45 of SL(9), arises from the
appropriate choice of twist matrix. Besides this minimal generalisation, one may also envisage
the study of completely different gaugings in D = 2 using different choices of twist matrix
and following the steps of the present paper.

We also address the question of which embedding tensors admit an uplift to eleven-
dimensional or type IIB supergravity. We show that any Lagrangian gauging admitting such
an uplift is only parametrised by finitely many components, which we identify explicitly.
This analysis, presented in appendix E, relies on choosing the appropriate duality frame
and decomposition of the embedding tensor.

The structure of this article is as follows. We begin with a review of the algebraic
underpinnings of the construction, including E9, its representations and spectral flow. We
also explain the transition from the pseudo-Lagrangian to a proper Lagrangian in section 2.
In section 3 we present all the relevant steps for obtaining SO(9) gauged supergravity via
a generalised Scherk-Schwarz reduction. Section 4 is devoted to deriving explicit uplift
expressions for any configuration in SO(9) gauged supergravity to D = 11 supergravity.
We describe in detail the SO(3)×SO(6) invariant subsector and its relevance for the BMN
matrix model. Several appendices contain additional, more technical, details on some aspects
presented here.

2 Spectral flow and duality frames

In this section, we set up the algebraic preliminaries needed for describing the generalised
Scherk-Schwarz reduction of E9 ExFT that leads to SO(9) gauged supergravity as a consis-
tent truncation of higher-dimensional supergravity. We begin by identifying various SL(9)
subgroups of E9 that have different physical interpretations. This will be illustrated by
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Figure 1. Dynkin diagram of e9 with labelling of nodes. Nodes 1, . . . , 8 make up the diagram of e8.

substituting them into the pseudo-Lagrangian (of D = 2 supergravity) to generate proper
physical Lagrangians in different duality frames.

2.1 SL(9) subgroups of E9

At the level of the Lie algebra, we describe e9 as the loop extension of the split exceptional
e8, together with a central element K and a Virasoro operator L0 that is part of a whole
Virasoro algebra spanned by Lm for m ∈ Z and we follow the conventions of [19] for the
commutation relations. The Dynkin diagram of the affine Kac-Moody algebra e9 is shown
in figure 1, including a numbering of its nodes.

2.1.1 Branching of e8

In order to exhibit the various sl9 subalgebras we first need to decompose e8. The adjoint
representation of e8 decomposes under the gl8 that is embedded along nodes 1, . . . , 7 as

248 = 8(−1) ⊕ 28(−2/3) ⊕ 56(−1/3) ⊕ (gl8)(0) ⊕ 56(1/3) ⊕ 28(2/3) ⊕ 8(1) , (2.1)

where the superscripts describe the eigenvalue of the gl1 of the reductive gl8
∼= sl8 ⊕ gl1.

Writing the generators of gl8 as T ij with i, j = 1, . . . , 8 and commutation relation[
T ij , T

k
ℓ

]
= δkj T

i
ℓ − δiℓ T

k
ℓ , (2.2)

the various graded pieces in this decomposition can be given as tensor densities transforming
under this gl8, explicitly

8(−1) : Tk
[
T ij , Tk

]
= −δik Tj ,

28(−2/3) : T k1k2 = T [k1k2]
[
T ij , T

k1k2
]

= −2δ[k1
j T

k2]i − 1
3δ

i
jT

k1k2 ,

56(−1/3) : Tk1k2k3 = T[k1k2k3]
[
T ij , Tk1k2k3

]
= −3δi[k1

Tk2k3]j + 1
3δ

i
jTk1k2k3 ,

56(1/3) : T k1k2k3 = T [k1k2k3]
[
T ij , T

k1k2k3
]

= 3δ[k1
j T

k2k3]i − 1
3δ

i
jT

k1k2k3 ,

28(2/3) : Tk1k2 = T[k1k2]
[
T ij , Tk1k2

]
= 2δi[k1

Tk2]j + 1
3δ

i
jTk1k2 ,

8(1) : T k
[
T ij , T

k
]

= δkj T
i . (2.3)

The absence of density terms in the transformation of T i and Ti is the reason for our choice
of normalisation of the gl8. Some relevant e8 commutation relations in this basis read[

T i, Tj
]

= T ij + δij T
k
k ,

[
T i1i2i3 , Tj1j2j3

]
= 18 δ[i1i2

[j1j2T
i3]
j3] , (2.4)

and further relations can be found in appendix A.1.
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One consequence of this is that defining

T i0 := T i and T 0
i := Ti , (2.5)

leads to an sl9 subalgebra of e8 that we write as T IJ , where now I, J = 0, 1, . . . , 8 are
fundamental indices of sl9 with commutation relations[

T IJ , T
K
L

]
= δKJ T

I
L − δILT

K
J . (2.6)

This sl9 is a maximal subalgebra of e8. The adjoint 248 of e8 decomposes under this sl9 as2

248 = 84 ⊕ 80 ⊕ 84 , (2.7)

where 80 is the adjoint of sl9 and 84 corresponds to a three-form T IJK of sl9 while 84 is a
dual three-form TIJK . The branching under gl8 ⊂ sl9 gives the components shown in (2.3),
for example T IJK → (T ijk, T 0ij ≡ T ij).

The affine extension ê8 of e8 consists of infinitely many copies of the adjoint of e8, labelled
by a mode number m ∈ Z, together with a central element K. The mode number means
appending an index m to all generators in (2.3), leading for example to T im and Tmi. The
mode number is additive in commutators. The central element K occurs as an extension
in commutators when the mode numbers add up to zero and we also make use of Virasoro
generators Lm for m ∈ Z with the standard commutation relations.3 The Virasoro generators
act on the loop algebra elements by [Lm, T •

n ] = −nT •
m+n, where • can be any of the sl8-

representations in (2.3). We will also make use of a non-degenerate bilinear form η−k αβ over
ê8 ⊕ ⟨L−k⟩ (for a fixed k) that pairs loop generators whose mode numbers add up to −k as
well as K with L−k. For more details on the algebraic structures we refer to [19]. Further
details on this branching and commutation relations can be found in appendix A.1.

2.1.2 Spectrally flowed sl9 algebras

The identification of the sl9 subalgebra can be generalised within e9 by using a version of
spectral flow [55, 56]. We define for p ∈ Z the generators

Tij = T i0 j + p

9δ
i
j K , Ti0 = T ip , T0

i = T−p i , (2.8)

where the generators in the 8 and 8 of gl8 have been shifted by p affine units in opposite
directions. This means that the definition is different for every p ∈ Z, but we are not indicating
by how many units p we have flowed in the notation to avoid cluttering.4 The addition of the
central term for the gl8 is necessary in order to maintain the sl9 commutation relations, viz.[

Ti0,T0
j

]
= T i0j + δij T

k
0 k + δijK = Tij + δijTkk = Tij − δijT0

0 , (2.9)

2This is a Z3-graded decomposition although this grading will not play a role in our analysis.
3The value of the Virasoro central charge will drop out of any final formula.
4Only in appendix A.4, where we make statements about inequivalent values of p, we will need the

distinction. A specific convention for p = 1 and p = 2 which will play a special role will be introduced in
section 2.1.3.
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by the vanishing trace of TIJ . This last relation is still in agreement with the general sl9
structure (2.6). The case p = 0 leads to the maximal sl9 ⊂ e8 and then TIJ = T IJ as
defined in (2.6).

The spectral flow of the sl9 subalgebra extends to all of e9. The generators of the affine
extension of sl9 are defined as

Tin j = T in j + p

9δ
i
jδn,0 K , Tin 0 = T in+p , T0

n i = Tn−p i , (2.10)

for any mode number n ∈ Z. They satisfy the usual ŝl9 algebra relations
[
TImJ ,TKnL

]
= δKJ TIm+nL − δILTKm+nJ +m

(
δILδ

K
J − 1

9δ
I
Jδ

K
L

)
δm,−nK . (2.11)

We have in particular[
Tim 0,T0

n j

]
= T i

m+n j + δijT k
m+nk +mδm,−nδ

i
j K , (2.12)

that extends (2.9) for any p and any mode numbers m and n. The other flowed generators
in e9 are defined according to

Tijkn−p/3 = T ijkn , Tij0n−p/3 = T ijn−p ,

Tn+p/3 ijk = Tn ijk , Tn+p/3 ij0 = Tn+p ij . (2.13)

Here, we have included in the definition of the level a shift that is related to the way the
generators appear in the gl8 decomposition of e8, see (2.3).

The commutation relations associated with these definitions are[
TI1I2I3
m−p/3,Tn+p/3 J1J2J3

]
= 18 δ[I1I2

[J1J2
TI3]
m+nJ3] + 6 δI1I2I3

J1J2J3

(
m− p

3

)
δm,−nK ,[

TI1I2I3
m−p/3,T

I4I5I6
n−p/3

]
= −1

6ε
I1...I9Tm+n−2/3 I7I8I9 . (2.14)

In this flowed basis we also define the Virasoro generators Lm

Lm = Lm + p T kmk + 4p2

9 δm,0K , (2.15)

that satisfy the Virasoro algebra for the same central charge as the original Lm. The action
of these redefined Virasoro operators on the flowed e9 basis is[

Lm,TIn J
]

= −nT I
m+nJ ,[

Lm,TIJKn−p/3

]
= −

(
n− p

3

)
TIJKm+n−p/3 ,[

Lm,Tn+p/3 IJK
]

= −
(
n+ p

3

)
Tm+n+p/3 IJK . (2.16)

The redefined Virasoro generators are thus tuned to the mode numbers of the generators
given in (2.10) and (2.13).
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The formulation of E9 ExFT in [32, 33] also makes use of shift operators Sm that act
on the original unflowed generators according to

Sm(TAn ) = TAm+n , Sm(Ln) = Lm+n , Sm(K) = 0 . (2.17)

Here, A is an adjoint E8 index and this definition of shift operators is adapted to the e8
basis of e9.

One can similarly define shift operators that are adapted to the spectrally flowed sl9
basis of e9 and they appear in the generalised Scherk-Schwarz reduction in this paper. We
will write these shift operators as Sm and they act by

Sm
(
TIn J

)
= T I

m+nJ , Sm
(
TI1I2I3
n−p/3

)
= TI1I2I3

m+n−p/3 , (2.18)

Sm
(
Tn+p/3 I1I2I3

)
= Tm+n+p/3 I1I2I3 , Sm(Ln) = Lm+n , Sm(K) = 0 .

It is important to note that the two shift operators are not identical but differ by central terms
due to the explicit K modifications appearing in (2.10) and (2.15). The relation between
the two shift operators is given, in the flowed basis, by

Sm
(
TIn J

)
= Sm

(
TIn J

)
− p

9δm,−n
(
δIi δ

i
J − 8δI0δ0

J

)
K ,

Sm
(
TI1I2I3
n−p/3

)
= Sm

(
TI1I2I3
n−p/3

)
,

Sm
(
Tn+p/3 I1I2I3

)
= Sm

(
Tn+p/3 I1I2I3

)
,

Sm(Ln) = Sm(Ln) − δm,−n
4p2

9 K . (2.19)

The extra terms in the first and last relation show that the shift operators Sm appearing in
the construction of E9 ExFT are not sl9 covariant. However, the additional central terms
can be reabsorbed in the definition of the constrained fields ⟨χ| and χµ such that one may
work with Sm that are sl9 covariant throughout.5

We finally note the following identity involving the shifted bilinear form η−k αβ for the
flowed and unflowed generators

η−k αβTα ⊗ Tβ = η−k αβT
α ⊗ T β . (2.20)

Following the conventions of [33], the index α in this formula ranges over both ê8 and the
Virasoro generators. We display the expansion of the bilinear form η−k αβ in the flowed
sl9 basis in detail in (A.18).

As we show in appendix A.4 there are only two different E9 conjugacy classes of spectral
flows, namely those with p ≡ 0 mod 3 and the remaining p ≡ 1, 2 mod 3. The p = 0 flowed
basis corresponds physically to the dimensional reduction of three-dimensional supergravity
on a circle. The E8 subgroup commuting with L0 is the three-dimensional Cremmer-Julia
group of Ehlers type. We will next explain the physical meaning of the other spectrally
flowed bases. In fact, even though p = 1 and p = 2 are conjugate, it is useful to consider
them separately. To distinguish and relate them explicitly, we will use the notation of the

5When relating two distinct flowed bases, one has to recall these extra terms.
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generators introduced in this section for the p = 2 flowed basis only, while we shall write
T̃ĨnJ̃ , T̃

Ĩ1Ĩ2Ĩ3
n−1/3, T̃n+1/3 Ĩ1Ĩ2Ĩ3

for the generators in the p = 1 flowed basis. Moreover, we also put
a tilde on the fundamental index Ĩ whose decomposition under gl8 we choose as Ĩ = (i, 9)
instead of I = (0, i). So unless stated specifically, the generators TInJ ,TI1I2I3

n+1/3,Tn−1/3 I1I2I3

will always be in the p = 2 flowed basis.
Relating the supergravity field components then amounts to using the change of basis

described in (2.10) and (2.13) together with the corresponding choice of coset representative.
As explained in more detail in the sequel, with this convention that eleven-dimensional
supergravity is written in the p = 1 flowed basis, while the consistent truncation on S8 × S1

leads to the gauging of the SO(9) ⊂ SL(9) in the p = 2 flowed basis. For short, we will
therefore use the notation of the generators introduced in this section for the p = 2 flowed
basis only, while we shall write T̃ĨnJ̃ , T̃

Ĩ1Ĩ2Ĩ3
n−1/3, T̃n+1/3 Ĩ1Ĩ2Ĩ3

for the generators in the p = 1
flowed basis. Moreover, we also put a tilde on the fundamental index Ĩ whose decomposition
under gl8 we choose as Ĩ = (i, 9) instead of I = (0, i). So, unless stated specifically, the
generators TInJ ,TI1I2I3

n+1/3,Tn−1/3 I1I2I3 will always be in the p = 2 flowed basis.

2.1.3 Spectral flow by p = 1 unit

If one carries out the dimensional reduction from eleven-dimensional supergravity on T 9, the
SL(9) symmetry of Matzner-Misner type of the torus is the one commuting with the derivation
L0 in the p = 1 flowed basis. The degrees of freedom coming from the internal metric are
associated to the generators L0 and T̃Ĩ0J̃ , while those coming from the internal three-form are
associated to T̃Ĩ J̃K̃−1/3. The relation to the Cremmer-Julia E8 group in the p = 0 flowed basis can
be seen from the fact that the gl8 ⊂ e8 that is common to all spectrally flowed sl9 corresponds
to the eight-torus that is used in the reduction from D = 11 to D = 3 space-time dimensions.
The generators T̃i09 in the 8 that are used for p = 1 correspond to the eight Kaluza-Klein
vectors that appear additionally when reducing on T 9 instead of T 8. The generators T̃i09
are equal to T i−1 in the p = 0 basis, which agrees with the fact that the eight Kaluza-Klein
vectors translate into the first set of dual scalar fields in the E8 formulation [57–59].

Another way of understanding this is by recalling general aspects of the so-called gravity
line of hidden symmetries [60–63]. The D = 11 gravity line of a hidden exceptional symmetry
corresponds to the horizontal line of Cartan type A in figure 1. This A-type algebra clearly
includes the gl8 that was used in the gl8 decomposition (2.1). In order to extend the algebra
to also include node 0 one must add an 8 that uses the affine node generator exactly once.
This means taking the 8 for m = 1 and this argument confirms that p = 1 unit of spectral
flow is related to D = 11 dimensions.

2.1.4 Spectral flow by p = 2 units

With the convention that eleven-dimensional supergravity is written in the p = 1 flowed basis,
we will now see that the consistent truncation on S8 × S1 leads naturally to the gauging
of the SO(9) ⊂ SL(9) in the p = 2 flowed basis.

The SO(9) gauge group is associated to the isometries of S8. The rotation group SO(8)
⊂ SO(9) appears as a subgroup of the GL(8) for the GL(8)/SO(8) coset entering the type
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IIA metric on S8,6 but the full isometry group SO(9) is not a subgroup of the geometric
GL(9) for the GL(9)/SO(9) coset representing the M-theory metric on S8 × S1 and must
instead lie in another SL(9) in a different spectrally flowed basis.

To identify the relevant spectrally flowed basis for the S8 × S1 compactification, it is
useful to analyse the fields involved in the corresponding AdS2 × S8 × S1 vacuum solution [7].
The S8 metric is determined by the type IIA GL(8)/SO(8) coset, but the M-theory circle
is not fibered over S8 and the solution does not involve the full GL(9)/SO(9) M-theory
coset. The circle is instead fibered over the AdS2 space through the Kaluza-Klein vector
field. The relevant duality frame is determined by the two-dimensional scalars, so one should
instead interpret the Kaluza-Klein vector field as the dual of the dual graviton field hi1...i79,9
on S8 × S1, i.e. schematically

εi1...i8∂i1hi2...i89,9 ∼ εµν∂µAν9 . (2.21)

In the p = 1 flowed basis this is the component in T̃ 9
−1 i that is T0

0 i in the p = 2 flowed basis.
We find therefore that the scalar fields involved in the S8 × S1 compactification parametrise
the SL(9)/SO(9) coset of zero L0 level in the p = 2 flowed basis.

The general framework for reductions of maximal supergravities on Sn to D > 3 external
dimensions was presented in [30]. The resulting gauge group SO(n+1) always lies inside an
SL(n+1) rigid symmetry group and the n coordinates of the Sn are components of the ExFT
generalised coordinates sitting in an antisymmetric rank two tensor of this SL(n+1). As we
show in detail in the next section, the S8 coordinates sit in the 9 = 8 ⊕ 1 of the p = 1 flowed
SL(9) and translate to the vector eight in the 36 = 8 ⊕ 28 of the p = 2 flowed SL(9), thus
confirming that the latter is the correct choice of basis. The argument relies on the study of
the branching of the basic module in which the generalised coordinates are defined.

2.2 Basic module and its decomposition

In E9 exceptional field theory, the derivatives ∂M take values in a lowest weight representation
that was denoted R(Λ0)−1 in [32, 33]. This is the conjugate of the basic representation of e9
and the subscript denotes the conformal weight of the lowest weight vector. Following the
notation of [32, 33], we shall write the derivatives as bra vectors ⟨∂| that can be expanded
over the lowest weight vector ⟨0| in the e8-grading of e9 as

⟨∂| = ⟨0|
(
∂ψ + TA1 ∂A + . . .

)
(2.22)

and where the lowest weight vector satisfies

⟨0|Lm = 0 for m ≤ 1 and ⟨0|TAm = 0 for all m ≤ 0. (2.23)

Since the basic module is a level K = 1 module, we have ⟨∂|K = ⟨∂| for the action of the
central element on the whole module. In fact, K can be replaced by one in all the formulas.

6In the standard level decompositions of hidden symmetries [60–63] the type IIA gl8 corresponds to nodes
0, 1, . . . , 6 of the E9 Dynkin diagram in figure 1. Upon conjugation under the M-theory SL(9) we can as well
choose the type IIA gl8 as corresponding to the nodes 1, . . . , 7 that is common to all spectrally flowed algebras.
This freedom can be interpreted as choosing a different M-theory circle.
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Under e8 the module decomposes as [64]

R(Λ0)−1 = 10 ⊕ 2481 ⊕ (1 ⊕ 248 ⊕ 3875)2 ⊕ (30380 ⊕ 3875 ⊕ 2×248 ⊕ 1)3

⊕ (147250 ⊕ 30380 ⊕ 27000 ⊕ 2×3875 ⊕ 3×248 ⊕ 2×1)4 ⊕ . . . . (2.24)

The subscripts denote the eigenvalues under L0 = L†
0.

For us it will be important how the states in R(Λ0)−1 reorganise themselves under the
spectrally flowed sl9 bases discussed in section 2.1.2. We note that the groundstate of (2.24)
satisfies ⟨0|L0 = 4p2

9 ⟨0| under the L0 generator that has been flowed by p units, see (2.15),
and it is not necessarily the state of lowest L0 eigenvalue in the module.

As we analyse in appendix A.3 in detail, the branching under sl9 is different for different
units p of spectral flow. Summarising the result from there, we have that for p = 0

R(Λ0)−1 = 10 ⊕
(
84 ⊕ 80 ⊕ 84

)
1 ⊕

(
240 ⊕ 1050 ⊕ 1215 ⊕ 80 ⊕ 1050 ⊕ 240

)
2 ⊕ . . . .

(2.25)

For p = 1, we have by contrast

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕
(
9 ⊕ 315

)
13
9
⊕
(
36 ⊕ 45 ⊕ 720

)
16
9
⊕ . . . . (2.26)

And finally for p = 2

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕
(
9 ⊕ 315

)
13
9
⊕ (36 ⊕ 45 ⊕ 720) 16

9
⊕ . . . . (2.27)

The subscripts in each case correspond to the L0 eigenvalues for the chosen value of p. We
note that the decompositions for p = 1 and p = 2 differ by conjugating the sl9 representations.

The physical interpretation of this 9 appearing for p = 1 is that the corresponding nine
derivatives are those with respect to the coordinates of the M-theory compact space that
completes the two external coordinates to D = 11 dimensions.

For p = 2 and the decomposition (2.27), we introduce the notation

⟨0|I , ⟨1/3|IJ = −⟨1/3|JI , ⟨2/3|IJKL = ⟨2/3|[IJKL] , ⟨1|IJK = −⟨1|IKJ (2.28)

for the first few levels, where the number in the bra vector denotes the difference of the
eigenvalue with respect to L0 − 4

9 . The precise definition of these states and their relations
are given in appendix A.3. Of particular interest to us will also be the 45 with L0 = 16

9
appearing in (2.27). This symmetric tensor will be written as

⟨4/3|IJ = ⟨4/3|JI (2.29)

and its components define a basis for the embedding tensor of CSO(p, q, r) gaugings with
p + q + r = 9. These can be obtained by consistent truncations of type IIA and the type
IIA coordinates are appearing inside the 367/9 in (2.27).

Similarly to (2.28) one can define a basis of R(Λ0)−1 adapted to the p = 1 decom-
position (2.26). The corresponding generators are written with tildes for distinction and
denoted by

⟨̃0|Ĩ , ⟨̃1/3|Ĩ J̃ = −⟨̃1/3|J̃ Ĩ , ⟨̃2/3|Ĩ J̃K̃L̃ = ⟨̃2/3|[Ĩ J̃K̃L̃] , ⟨̃1|J̃K̃
Ĩ

= −⟨̃1|K̃J̃
Ĩ

. (2.30)
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In appendix A.3.3, we study the relation between the two bases (2.28) and (2.30). By
construction this relation cannot be sl9 covariant. For example, the lowest 9 in (2.26) is
expressed in terms of vectors of (2.28) as

⟨̃0|9 = ⟨4/3|00 , ⟨̃0|i = ⟨1/3|0i . (2.31)

In the above equation, we have broken the two sl9 algebras to their common gl8 and denoted
the extra (vector) index by 9 for the p = 1 flow and by 0 for the p = 0 to distinguish them.
Further relations are given in (A.34).

Throughout this paper, we will also encounter ket vectors that belong to the representation
R(Λ0)−1, such as the vector field |Aµ⟩. All branchings and algebraic relations described above
apply to R(Λ0)−1, with conjugated SL(9) representations and opposite signs for the L0 grading.

We close this section with a comment on a subtle technical point. On the representation
R(Λ0)s (or another conformal weight) we can define a K(e9) invariant pairing that we will
write using a bra-ket notation, such as I |0⟩ = (⟨0|I)†, and that will feature prominently for
instance in the potential (3.40). The ‘kets’ in such expressions are still elements of R(Λ0)s
and can be distinguished from ‘proper’ kets from context or by the position of SL(9) indices.

2.3 Interpretation of spectral flow as change of duality frame

Let us now give an interpretation of spectral flow in terms of the supergravity theory. For
simplicity, we first focus on the case of D = 2 ungauged supergravity, in the language
used in [19, 33].

The theory can be formulated in terms of infinitely many scalar fields parametrising

Ê8 ⋊ Vir−

K(E9) , (2.32)

with coset representative V , Hermitian currents Pµ and anti-Hermitian composite connection
Qµ, defined from the Maurer-Cartan form Ω:

dV V −1 = Ω = P +Q . (2.33)

On shell, the currents obey the twisted self-duality constraint (in form notation, so that
P = Pµdxµ)

⋆P = S1(P ) + χ̆1K ≡ P (1) , (2.34)

where the shift operator is defined in (2.17) and the auxiliary one-form χ̆1 is introduced to
restore K(E9) covariance. For later convenience, we shall indeed define the K(E9) covariant
combinations

P (k) = Sk(P ) + χ̆kK , (2.35)

with χ̆k = χ̆−k are independent auxiliary one-forms, except for χ̆0 = PK. These new
one-forms will be necessary in writing a pseudo-Lagrangian later on. They are related by
iterating (2.34) and writing

P (k) = ⋆|k|P , (2.36)
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in which only the K component is independent of the original twisted self-duality. Equa-
tion (2.34) determines the duality relations between physical and dual scalars, but the
distinction between the two is only determined by fixing a parametrisation of the coset
representative V . Different parametrisations provide dual description of the same physical
system. A first example is the E8 covariant parametrisation based on the grading with
respect to the L0 generator

V = ϱ−L0e−φ1L−1e−φ2L−2 · · · V̊ eY1AT
A
−1eY2AT

A
−2 · · · e−σK , (2.37)

where V̊ is a coset representative for E8/(Spin(16)/Z2) and the central factor is identified
with the determinant of the metric: e2σ =

√
−g. This parametrisation is naturally obtained

when constructing D = 2 maximal supergravity as Kaluza-Klein reduction of D = 3 maximal
supergravity. The Lagrangian obtained from such a dimensional reduction only involves the E8
scalars, the D = 2 metric and the dilaton ϱ, corresponding to the size of the Kaluza-Klein circle:

Lsugra =
√
−g

(
ϱR− ϱ ηABP 0

µAP
µ 0
B

)
, (2.38)

with P 0
µA the Hermitian projection of the Maurer-Cartan form of E8/(Spin(16)/Z2), con-

structed from V̊ and also corresponding to the degree 0 loop component of Pµ. Twisted
self-duality provides duality relations between these currents and the infinite series of dual
potentials Y A

m , which do not appear in the physical Lagrangian.7 In fact, once one establishes
that the theory (2.38) admits the duality relations (2.34), its dynamics are entirely encoded in
the integrability conditions of the latter. One may then investigate whether other Lagrangians
lead to the same twisted self-duality relations and are hence (classicaly) equivalent to (2.38).

Theories equivalent to (2.38) must involve a different subset of the fields parametris-
ing (2.32) and can be obtained by a procedure analogous to (non-)Abelian T-duality [65]. It
amounts to gauging part of the symmetries of (2.38) and introducing Lagrange multipliers
(corresponding to some combination of the Y A

m fields) to impose flatness of the gauge connec-
tion. Integrating out the latter produces a new Lagrangian based on a different non-linear
sigma model. We refer to this procedure as a change of duality frame, in analogy with
the choice of a symplectic frame for vector fields in D = 4 theories (see e.g. [66, 67]). We
can reinterpret such changes of duality frame in terms of different parametrisations of V ,
associated with inequivalent choices of parabolic subalgebras of e9. Spectral flows such as
the one described in the previous sections indeed determine a choice of parabolic subalgebra
associated to the grading of the flowed derivation L0. We can for instance look at the duality
frame associated with the p = 2 spectrally flowed SL(9) and introduce the new parametrisation

V = ϱ−L0e−φ1L−1e−φ2L−2 · · · v e−
1
6a
IJKT−1/3 IJKe

− 1
6 bIJKTIJK−2/3e−h

I
JT J

−1I · · · e−σK , (2.39)

where v is a coset representative for SL(9)/SO(9)K , where from now on the subscript K is used
to distinguish the local reparametrisation invariance of the coset space from the SO(9) gauge
group that will appear in later sections. The map between this expression and (2.37) involves
a change of K(E9) gauge and field redefinitions of the loop scalars, mixing in particular

7Relations bewteen ϱ and all φm are also obtained from (2.34), but the only nontrivial relation is dφ1 = 2⋆dϱ,
while all others are algebraically solved in terms of ϱ and φ1.
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some of the original E8 scalars with the dual potentials, thus reflecting the spectral flow
relations (2.10), (2.13). We also stress that while the dilaton and other Virasoro scalars are
not affected by the redefinitions, the conformal factor e2σ =

√
−g is. We nevertheless keep the

same symbol. The physical field content consists of the D = 2 metric gµν , the dilaton ϱ, the
scalar fields parametrising SL(9)/SO(9)K and the axions aIJK transforming as a three-form
under SL(9). All together, these scalars parametrise the coset space

GL+(9) ⋉R84

SO(9)K
(2.40)

where the R84 factor is parametrised by aIJK .8 The physical Lagrangian reads

Lsugra =
√
−g

(
ϱR+ 1

4ϱ g
µν∂µmIJ∂νmIJ − 1

12ρ
1/3gµν∂µa

I1I2I3∂νa
J1J2J3mI1J1mI2J2mI3J3

)
+ 1

64 ε
µνεI1...I9a

I1I2I3∂µa
I4I5I6∂νa

I7I8I9 , (2.41)

where we have introduced the matrix mIJ = m(IJ) and its inverse mIJ to parametrise the
SL(9)/SO(9)K scalar fields. It is mapped to the basic representation as the hermitian element

m = v†v . (2.42)

The relation between the operator m and matrix mIJ is such that m−1dm = −mIKdmJKTJ0 I .
In line with the comment at the end of section 2.2, we can indeed write ⟨0|Im−1

J |0⟩ = mIJ .
It is instructive to look at the first few duality relations descending from (2.34) in this

duality frame

ϱ
1
3 mILmJP mKQ⋆daLP Q = dbIJK− 1

72εIJKP1P2P3Q1Q2Q3a
P1P2P3daQ1Q2Q3 ,

ϱ⋆mIKdmKJ = dhI
J + 1

2a
IKL

(
dbJKL−

1
216εJKLP1P2P3Q1Q2Q3a

P1P2P3daQ1Q2Q3

)
− 1

18δ
I
Ja

KLP dbKLP .

Eliminating bIJK in the second equation one finds that hIJ is dual to the SL(9) Noether
current for the Lagrangian (2.41)

dhIJ = ϱ ⋆mIKdmKJ − 1
2ϱ

1
3 mJP1mKP2mLP3a

IKL ⋆ daP1P2P3

+ 1
18ϱ

1
3 δIJmQ1P1mQ2P2mQ3P3a

Q1Q2Q3 ⋆ daP1P2P3

− 1
216εJKLP1P2P3Q1Q2Q3a

IKLaP1P2P3daQ1Q2Q3 . (2.43)

Recall that the p = 2 spectral flowed basis is conjugate under E9 to the p = 1 one, up to
conjugation of all SL(9) representations. Therefore one obtains in the p = 1 basis the same

8Notice that GL+(9) ⋉R84 is not a subgroup of E9, since the generators T−1/3 IJK do not commute but
rather produce lower-degree generators. The correct way to interpret the numerator of (2.40) is as a quotient
of the parabolic subgroup of E9 parametrised by (2.39) by its further subgroup generated by algebra elements
of degree smaller than −1/3. In more physical terms, the non-commutativity of the aIJK axion shifts is hidden
in the physical spectrum since it only affects dual potentials absent from the physical Lagrangian.

– 13 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

Lagrangian as (2.41), except that the position of the indices on the axions is interchanged,
i.e. aIJK → aIJK . This p = 1 Lagrangian can be obtained by dimensional reduction of
eleven-dimensional supergravity, after integrating out the non-dynamical fields. The axions
aIJK (with lower indices) are then the components of the eleven-dimensional three-form along
the torus and ϱ2/9mIJ is the internal components of the metric.9 The construction of the
SO(9) gauged theory proceeds via the p = 2 flowed basis and a central theme in section 4
will be how to relate this to the p = 1 flow and D = 11 supergravity.10

2.4 From pseudo-Lagrangians to physical Lagrangians

The relation between physical Lagrangians in specific duality frames on the one hand, and
parametrisations of (2.32) in specific parabolic subgroups of E9 on the other hand, is made
systematic by rephrasing ungauged D = 2 maximal supergravity in terms of a duality
invariant pseudo-Lagrangian. We will now describe this approach and demonstrate how
physical Lagrangians can be extracted from the pseudo-Lagrangians. It should be noted
that for ungauged supergravity this pseudo-Lagrangian is entirely redundant, since one must
anyway impose after variation the twisted self-duality constraint, whose integrability already
encodes the full dynamics of the theory. The advantage of the pseudo-Lagrangian formulation
is that it straightforwardly generalises to gauged supergravity (and in fact, to E9 ExFT as
well), as we will show in section 3.3. Throughout this section we will use for convenience
the conformal gauge for the external metric

gµν = e2σηµν , (2.44)

such that ⋆ denotes Hodge duality with respect to the flat metric.
The pseudo-Lagrangian for ungauged supergravity is topological and can be written in

terms of the currents Pµ, their shifted versions (2.35) as well as the associated composite
connection Qµ. The pseudo-Lagrangian Lpseudo

sugra is defined by [33]11

1
2ϱL

pseudo
sugra dx0 ∧ dx1 K = dP (1) +

[
Q , P (1)]+

∞∑
k=1

Pk
(
P (k+1) − P (k−1))

+ cvir
12

∞∑
k=2

(k3 − k)Pk
(
Pk+1 + Pk−1

)
K , (2.45)

where the term in the second line is invariant by itself.12 The Maurer-Cartan equation for P
guarantees that the right-hand side of (2.45) is indeed entirely proportional to K. We shall
explain below how to obtain well-defined equations of motion from this infinite sum of terms.

9As noted in [16], the p = 1 Lagrangian obtained from the reduction of D = 11 supergravity contains a
Chern-Simons-type term unlike its E8 version (2.38).

10In the rest of this paper we will deal with certain truncations on non-toroidal manifolds, such that the
structure group of the internal space is indeed associated to a p = 1 flowed SL(9), but the resulting D = 2
gauged supergravity is naturally written in terms of the p = 2 parametrisation and associated duality frame.
For this reason we work with p = 2 in all sections related to D = 2 (gauged) supergravity.

11Wedge products are understood on the right-hand side and the Lie algebra commutator is understood to
be graded such that [Q , P (1)] = Q ∧ P (1) + P (1) ∧Q.

12The second line is proportional to cvir, the Virasoro central charge associated to the representation in
which V and the currents have been defined. It is introduced to make the pseudo-Lagrangian independent
of such choice by cancelling a similar term coming from the commutator in the first line. As a result, the
topological term Lpseudo

sugra , as a whole, does not depend on cvir. This will become apparent in the explicit
expressions (2.46) and (2.57), in which cvir indeed cancels out.
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2.4.1 E8 duality frame

As (2.45) is written in terms of the ê8 h vir-valued currents, the expression is independent of
the choice of basis of ê8 in which expand the currents (for instance, Tα rather than Tα as
defined in the previous sections). We stress in particular that the forms Pk are the Virasoro
components of the current and are independent of whether or not we choose an expansion
in terms of Lk or the flowed Lk. Writing ê8 h vir in the e8 decomposition and using (2.35)
to identify the K component of the shifted currents, we obtain

Lpseudo
sugra dx0 ∧ dx1 = 2ϱ dχ̆1 − 2ϱ ηAB

∑
n

nQnA ∧ P−n−1
B + 2ϱ

∞∑
k=1

Pk ∧ (χ̆k+1 − χ̆k−1) .

(2.46)

The second term is the central component of the commutator in (2.45) in the p = 0 flowed
basis, in which the loop components of P and Q are expanded in terms of the generators
TAn , for instance

P =
∑
m∈Z

PmA T
A
m +

∑
m∈Z

PmLm + PK . (2.47)

The expansion (2.46) is the most convenient one when working in the E8 duality frame, as
we shall see shortly. Nonetheless, (2.46) is valid regardless of the choice of parabolic gauge.
Expanding Lpseudo

sugra in terms of other bases is more convenient (albeit not strictly necessary)
in order to perform computations in other duality frames. Different expansions amount to a
field redefinition of the auxiliary one-forms, as we shall see below.

Let us first show how we can recover the physical Lagrangian (2.38) from (2.46). The
idea [33, 53] is that, once a parabolic parametrisation of the coset representative V is made,
we can manipulate and reorganise the terms in (2.46) to write it as the sum of a finite set of
terms, involving only the fields of lowest degree in the parabolic expansion, and an infinite
series of squares of the twisted-selfduality constraint (2.34). Since (2.34) must be imposed
after variation of the pseudo-Lagrangian, one is then allowed to drop the squares of twisted
self-duality and recovers a true Lagrangian for a finite set of ‘physical’ fields.

To see this in practice, we begin with the sector involving Virasoro and central charge
one-forms. Integrating by parts the first term in (2.46) and dropping for brevity the overall
factor of 2ϱ we have that the first and last term in (2.46) can be manipulated into the
following expressions (recall that wedge products are understood)

P0χ̆1 +
∑
n≥1

Pn(χ̆n+1 − χ̆n−1) (2.48)

= −P1PK +
∑
n≥1

(Pn−1 − Pn+1)χ̆n

= P0 ⋆ PK + (⋆P0 − P1)PK +
∑
n≥1

[(Pn−1 − ⋆Pn) − (Pn+1 − ⋆Pn)]χ̆n ,

where we isolated each χ̆n, n ≥ 0 and in the second line we just added and subtracted ⋆Pn.
Then, we separate the two pieces in the series and combine the last one with (⋆P0 − P1)PK
to write

P0χ̆1 +
∑
n≥1

Pn(χ̆n+1 − χ̆n−1) = P0 ⋆ PK +
+∞∑
n=0

(⋆Pn − Pn+1)(χ̆n − ⋆χ̆n+1) . (2.49)
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We see that the infinite series is a sum of bilinears of components of the duality relations (2.36).
Thus, only the first term contributes to the physical Lagrangian. Indeed, using P0 = −ϱ−1dϱ
and PK = −dσ, it expands to (reinstating the overall 2ϱ factor)

2ϱP0 ⋆ PK = 2dϱ ⋆ dσ =
√
−gϱR dx0 ∧ dx1 , (2.50)

where the last identity holds up to a total derivative in the conformal gauge.
Let us now focus on the cocycle term in (2.46). Using the parametrisation (2.37) for

V , we find the relation QnA = −sgn(n)PnA for n ̸= 0, so that

−2ϱ ηAB
∑
n∈Z

nQnAP
−n−1
B = 2ϱ ηAB

∑
n∈Z

|n|PnAP−n−1
B . (2.51)

We need to perform several manipulations analogous to the ones above in order to isolate
a term depending only on the E8 currents P 0

A. Details are given in appendix A.5. We
arrive at the expression

2ϱ ηAB
∑
n∈Z

|n|PnAP−n−1
B = − ϱ ηABP 0

A ⋆ P
0
B (2.52)

+ ϱ ηAB
∑
n≥0

(P 2n+1
A − ⋆P−2n

A )(P−2n
B − ⋆P 2n+1

B )

− ϱ ηAB
∑
n≥0

(P 2n+1
A − ⋆P−2n−2

A )(P−2n−2
B − ⋆P 2n+1

B ) ,

so that the first term gives the physical kinetic term for the E8/(Spin(16)/Z2) non-linear
sigma model, completing the physical Lagrangian (2.38) as anticipated. We have proved
that, schematically,

Lpseudo
sugra = 2∂µϱ ∂µσ − ϱ ηABP 0

µAP
µ 0
B + “self-duality square terms” . (2.53)

Because we defined the topological term in the conformal gauge, we must also ensure
that the Virasoro constraint, coming from the variation of the uni-modular component g̃µν
of the metric in the physical Lagrangian, is correctly reproduced. In the E8 duality frame,
this is written as

δg̃µν
(
2PµKPν 0 − Pµ 0Pν 0 + ∂µPν 0 − ηABPµ

0
APν

0
B

)
= 0 (2.54)

with δg̃µν symmetric traceless with respect to ηµν . This equation can be obtained from the
Einstein equations of (2.38). Alternatively, we can define Lpseudo

sugra without imposing conformal
gauge by following the same procedure as what was done for the minimal formulation of E9
ExFT in [53]. The current PµK is shifted by a term g̃νσ∂ν g̃µσ and the topological term is
complemented by the single extra term 1

4ϱε
µνεσρg̃κλ∂µg̃σκ∂ν g̃ρλ. Following the exact same

steps as above to recover a physical action, these modifications combine to reproduce the
term ϱR in (2.38).

We therefore conclude that the dynamics captured by the pseudo-Lagrangian combined
with twisted self-duality and the Virasoro constraint are the same as those of the physical
Lagrangian (2.38). The advantage of the pseudo-Lagrangian formulation is that it generalises
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to gauged supergravity (and ExFT) and guarantees that the resulting equations of motion
are invariant under gauge transformations (generalised diffeomorphisms for ExFT) as well
as local K(E9) reparametrisations.13

2.4.2 SL(9) duality frame

We now perform a similar computation to recover the physical Lagrangian in the p = 2 flowed
SL(9) frame given in (2.41). The computation for p = 1 is completely analogous. Some
intermediate steps are displayed in appendix A.5. The starting point is to notice that the
definition (2.35) of the shifted currents relied on the definition of the shift operators (2.17).
We can equivalently use the shift operators Sm defined in (2.18), absorbing the difference
between the two into a redefinition of the auxiliary one-form:

P (m) = Sm(P ) + χ̆m K = Sm(P ) + χ̆m K . (2.55)

Furthermore, we will expand the currents in the spectrally flowed basis of generators Tα
defined in section 2.1.2,

P =
∑
m∈Z

PmB
ATmB

A +
∑
m∈Z

PmLm + PKK

+ 1
6
∑
n∈Z

Pm−1/3 ABCTm−1/3 ABC + 1
6
∑
n∈Z

Pm−2/3
ABC T ABC

m−2/3 , (2.56)

and analogously for Q. Notice that we have changed symbol for the central charge component
(PK instead of PK) to reflect that it is redefined compared to (2.47). We are using A, B, C for
the indices transforming under local SO(9)K of SL(9)/SO(9)K , whereas we use I, J,K for
the SL(9) indices. The SO(9)K vector indices A, B, C should hopefully not be confused with
the E8 adjoint indices A, B, C used in the preceding section in the E8 duality frame.

Extracting Ltop from (2.45) in these variables, we find

1
2ϱ L

pseudo
sugra dx0∧dx1 = dχ̆1+

∞∑
k=1

Pk∧(χ̆k+1−χ̆k−1)−
∑
n∈Z

nQnA
B∧P−n−1B

A (2.57)

−
∑
n∈Z

1
6
[(
n− 2

3
)
Qn−2/3

ABC P−n−1/3ABC+
(
n+ 2

3
)
Qn+2/3 ABCP−n−5/3

ABC

]
.

The terms in the first line correspond to the dilaton/central sector plus the loop cocycle
for the ŝl9 currents. The second line is the cocycle term for the axion sector. Using the
coset parametrisation (2.39), we can rewrite the twisted self-duality relations for the loop
currents as follows:

PmA
B = ⋆|m|P0A

B , (2.58a)

P−1/3−m ABC = ⋆mP−1/3 ABC , m ≥ 0 , (2.58b)

P
−2/3−m
ABC = ⋆mP

−2/3
ABC , m ≥ 0 , (2.58c)

P
−2/3
ABC = ⋆P

−1/3
ABC . (2.58d)

13To see this, one uses that Lpseudo
sugra is invariant by construction and that the gauge and K(e9) variations of

squares of twisted self-duality are again proportional to squares of twisted self-duality equations. It follows
that the gauge and K(e9) variations of the corresponding Euler-Lagrange equations are by construction
proportional to the twisted self-duality equation and the Euler-Lagrange equations themselves.
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In the last line we have used the SO(9)K-invariant metric δAB for lowering the indices on
the right-hand side.

We now want to manipulate (2.57) into a physical Lagrangian plus bilinears of the
relations (2.58). The manipulations of the first line are identical to the E8 case above, so we
focus on the axion sector. After some steps displayed in appendix A.5, we find the identity

Lpseudo
sugra dx0 ∧ dx1

∣∣∣
axions

= 2
9ϱP

−1/3 ABC P
−2/3
ABC − 1

3ϱP
−1/3 ABC ⋆ P

−1/3
ABC + . . . (2.59)

where the dots correspond to squares of twisted self-duality equations. Expanding the
Maurer-Cartan form we then find

Lpseudo
sugra dx0 ∧ dx1

∣∣∣
axions

= − 1
12ρ

1/3daI1I2I3 ⋆ daJ1J2J3mI1J1mI2J2mI3J3

+ 1
64 εI1I2I3J1J2J3K1K2K3daI1I2I3daJ1J2J3aK1K2K3

+ 1
18daIJKdbIJK + . . . . (2.60)

We see that bIJK only appears in a total derivative and can therefore be dropped. Adding back
the dilaton/central sector as well as the SL(9) kinetic term, the physical Lagrangian (2.41)
is reproduced.14

One computes an equation analogous to (2.54) from the SL(9) frame Lagrangian (2.41):

δg̃µν
(

2PµKPν 0−Pµ0Pν 0+∂µPν 0−P0
µ

A
BP0

ν
B

A−
1
3P−1/3

µ
ABCP−1/3

ν ABC

)
= 0 . (2.61)

One checks that the same equation is obtained from the Virasoro constraint (2.54) in the E8
basis simply by relating the coefficients in the expansions (2.47) and (2.56) of the current P
and using twisted self-duality to write the result exclusively in terms of the physical fields.

3 Consistent truncation on S8 × S1

In this section, we apply the general procedure of gSS reduction of E9 ExFT [19] to obtain
SO(9) gauged supergravity in D = 2 space-time dimensions. SO(9) gauged supergravity
has been constructed directly in D = 2 using supersymmetry in [16] as we shall review in
section 3.1. Our gSS construction, presented in section 3.2, produces the same bosonic theory
and moreover proves that the theory is obtained by consistent truncation from D = 11. In
section 4, we shall use this to present general uplift formulæ for D = 2 solutions to D = 11
dimensions, where the differently flowed SL(9) subgroups play an important role.

3.1 Review of SO(9) gauged supergravity

SO(9) maximal gauged supergravity was constructed in [16] using supersymmetry starting
from ungauged supergravity written in an SL(9) duality frame. In this section, we briefly
review some aspects of the construction of the reference translated into our conventions.

The bosonic field content and Lagrangian of ungauged maximal supergravity in the p = 2
flowed SL(9) duality frame was reviewed in section 2.3. The fermionic fields of the theory
are given by a gravitino, transforming as a spinor under the local SO(9)K , as well as matter

14It is useful to note the identity −ϱ gµνP0
µ

A
BP0

ν
B

A = 1
4ϱ g

µν∂µmIJ∂νmIJ .
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fermions transforming as a vector-spinor under SO(9)K . We will not use supersymmetry in
this paper and therefore do not display fermions. Details on fermions can be found in [16].

The construction of [16] starts from an ungauged Lagrangian density whose bosonic part,
in our conventions, is given by (2.41). The gauging of SO(9) ⊂ SL(9) requires introducing
vector fields AIJµ = A

[IJ ]
µ in the adjoint representation. These vector fields occur in the

gauged covariant derivative

Dµ = ∂µ −AIJµ ΘJK δKI (3.1)

where δKI is the rigid sl(9) variation of the field on which the derivative is acting. For
instance, δIJ(mKL) = 2δI(KmL)J − 2

9δ
I
JmKL. The constant symmetric tensor ΘIJ = ΘJI is

the embedding tensor describing the embedding of SO(9) in SL(9). We have written a more
general symmetric tensor ΘIJ in order to accommodate gaugings of the type CSO(p,q,r), with
p+ q + r = 9, in analogy with [54, 68]. The SO(9) gauging corresponds to a positive-definite
or negative-definite ΘIJ which, up to a rigid SL(9) transformation, can always be cast to
the form ΘIJ = gδIJ . In (3.1) we have written the generators TI0J that correspond to the
p = 2 flowed sl9. The vector fields AIJµ are not propagating in D = 2.

The gauged theory is then given by covariantising all derivatives in (2.41) and introducing
a topological term for the non-abelian field strength and a scalar potential in the form

Lgsugra = Lsugra,cov + 1
2ε

µνF IJµν ΘJKh
K
I − Vgsugra , (3.2)

where the vector field strength reads

F IJµν = 2 ∂[µA
IJ
ν] + 2 ΘKLA

IK
[µ A

JL
ν] , (3.3)

and the scalar fields hIJ are identified with those introduced on-shell in the duality rela-
tion (2.43). The potential term Vgsugra was obtained from supersymmetry in [16, eq. (5.5)].
We shall derive it from the gSS reduction of E9 ExFT in section 3.3 and therefore do not
display it here. It is however important to stress that only the anti-symmetric combination
hK [IΘJ ]K appears in Vgsugra as well as in (3.2).

Both fields hIJ and AIJµ are auxiliary in SO(9) gauged supergravity. Their equations of
motion are consistent with the gauge-covariantised version of the duality equation (2.43) when
varying AIJµ , while varying hIJ fixes the curvature F IJµν of the non-propagating vector fields in
terms of the remaining fields of the theory. Integrating out the auxiliary field hIJ that occurs
only algebraically in the Lagrangian leads to a Yang-Mills kinetic term for the vector fields.

In order to covariantise the duality relations (2.34) properly, we need to identify which
part of the infinite-dimensional rigid on-shell symmetry of ungauged D = 2 supergravity
is gauged. Both from the general structure of the gSS reduction of E9 ExFT [19] and the
analysis of supergravity directly in D = 2 dimensions [59], one knows that Lagrangian
gaugings utilise an embedding tensor that takes values in the basic representation R(Λ0)−1
that was discussed in section 2.2. The general coupling of vector fields |Aµ⟩ in R(Λ0)−1 to
the embedding tensor is given through the pairing

Dµ = ∂µ + η−1αβ⟨θ|Tα|Aµ⟩δβ , (3.4)

– 19 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

where the covariant derivative acts through the rigid e9 h ⟨L−1⟩ variation δα on the various
fields.15 The decomposition under the p = 2 spectrally flowed sl9 was given in (2.27). The
restriction to ⟨θ| in the 4516/9, with

⟨θ| = −ΘIJ⟨4/3|IJ , (3.5)

reproduces the gauged covariant derivative (3.1) when acting on the physical fields. The
expression (3.4) also determines the gauging of shift symmetries of the dual potentials. The
first few terms in its expansion are determined as follows

η−1αβ⟨θ|Tα|Aµ⟩Tβ = − ΘIKA
JK
µ T0

I
J − 1

2ΘKI1⟨1|KI2I3 |Aµ⟩T
I1I2I3
−2/3

+ 2 ΘIJ⟨4/3|KI |Aµ⟩T J
−1K + ΘIJ⟨4/3|IJ |Aµ⟩L−1 + . . . , (3.6)

where the dots stand for generators of lower L0 degree, and we identified AIJµ = ⟨1/3|IJ |Aµ⟩.
Notice in particular that, based on the coset parametrisation (2.39), the shift symmetries of
the dual axions bIJK are entirely gauged, while only the shifts of the symmetric combination
ΘK(Ih

K
J), which does not enter the Lagrangian, are gauged.

We also provide the general expression for the field strengths, which is, in form notation

|F ⟩ = |dA⟩ − 1
2η−1αβ⟨θ|Tα|A⟩ ∧ Tβ |A⟩ − η−1αβ⟨θ|Tα ⊗ Tβ ||C⟩⟩ (3.7)

where ||C⟩⟩ denotes the two-form, sitting in the symmetric tensor product of two R(Λ0)
representations, with the R(2Λ0) representation subtracted.16 Using (3.5), the first few
entries in |F ⟩ are found to be

⟨1/3|IJ |F ⟩ = ⟨1/3|IJ |dA⟩ + ΘKL⟨1/3|IK |A⟩ ∧ ⟨1/3|JL|A⟩ , (3.8)

⟨4/3|IJ |F ⟩ = ⟨4/3|IJ |dA⟩ + 2ΘKL⟨1/3|K(I |A⟩ ∧ ⟨4/3|J)L|A⟩ ,

⟨0|I |F ⟩ = ⟨0|I |dA⟩ − ΘIJ⟨1/3|JK |A⟩ ∧ ⟨0|K |A⟩ + ΘIJ⟨1/3|JK ⊗ ⟨0|K ||C⟩⟩ ,

⟨1|KIJ |F ⟩ = ⟨1|KIJ |dA⟩ − ΘPQ⟨1/3|KP |A⟩ ∧ ⟨1|QIJ |A⟩ + 2ΘP [I⟨1/3|PQ|A⟩ ∧ ⟨1|KJ ]Q|A⟩

+ 4ΘP [I
(
⟨1/3|Q(K ⊗ ⟨1|P )

J ]Q + ⟨0|J ] ⊗ ⟨4/3|KP
)
||C⟩⟩ + 2δK[IXJ ] ,

where the definition of ||C⟩⟩ has been modified compared to (3.7) in order to reabsorb some
|A⟩ ∧ |A⟩ terms. The gauge field ⟨0|I |A⟩ is therefore pure gauge, as well as all but the
completely antisymmetric component ΘL[I⟨1|

L
JK]|A⟩ of the weight 13

9 gauge field. The trace
component of ⟨1|KIJ |F ⟩ has a piece δK[IXJ ] which we do not display explicitly since it is
projected out from all physically relevant quantities. From (3.8) we see that the restriction
to the 36−16/9 component F IJ = ⟨1/3|IJ |F ⟩ reproduces (3.3).

3.2 The generalised Scherk-Schwarz ansatz on S8 × S1

The generalised Scherk-Schwarz ansatz for the SO(9) gauging follows the general procedure
for E9 ExFT presented in [19]. We recall from there that a complete gSS ansatz consists in

15See [19]. For instance, δαV = V Tα − kαV with kα a compensating K(e9) transformation. Notice that the
choice of Tα rather than, for example, Tα, is linked to the choice of such basis in (3.4).

16In the companion paper [19], we denote ||C⟩⟩ = |C(1⟩ ⊗ |C2)⟩.
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identifying a twist matrix U(y) ∈ E9, along with an additional y-dependent ⟨w+| ∈ R(Λ0)−2,
that together induce the constant embedding tensor of the SO(9) gauged theory and that
factor out of the pseudo-Lagrangian. The twist matrix U comprises a scalar component r(y)
along L0 and the bra vector ⟨w+| satisfies the ‘flat version’ the section constraint, namely
the bra vector ⟨w+|U must be on section.

The structure of the gSS ansatz for the exceptional field theory fields is [19]

V(x, y) = V (x)U(y) ,

ρ(x, y) = r(y) ϱ(x) , (3.9)

|A(x, y)⟩ = r−1(y)U−1(y)|A(x)⟩ .

In these expression the ExFT fields are on the left-hand side and the twist matrix U(y) and
the scalar r(y) must be chosen such that the dependence on the internal ExFT coordinates y
factorises from all equations. The bra vector ⟨w+| appears in the expression for the embedding
tensor below. The ansatz (3.9) will be central for the derivation of the uplift formulæ in
section 4.17 Besides the ansatz for the fields we also record the ansatz for the parameter
|Λ⟩ of generalised diffeomorphisms in E9 ExFT:

|Λ(x, y)⟩ = r−1(y)U−1(y)|λ(x)⟩ . (3.10)

The generalised diffeomorphism action on the ExFT fields reduces to the gauge symmetries
of the gauged supergravity theory in two dimensions. Consistency of the resulting gauge
algebra places constraints on U(y) and r(y) that we review next.

The twist matrix U gives rise to the Weitzenböck connection ⟨Wα| through its first
internal derivative according to

⟨∂| ⊗ U = r⟨Wα|U ⊗ TαU . (3.11)

Notice that we expand the Weitzenböck connection in terms of the p = 2 flowed basis, as this
will be the natural choice for the case of the SO(9) reduction ansatz. Then, the embedding
tensor resulting from a gSS reduction is made of two components ⟨ϑ| and ⟨θ| [19, 64]18

⟨ϑ| = ⟨Wα|Tα , ⟨θ| = −⟨Wα|S+1(Tα) − ⟨w+| . (3.12)

The component ⟨ϑ| corresponds to non-Lagrangian gaugings of the L0 symmetry. We will
only consider situations in which ⟨ϑ| = 0. The components of the embedding tensor must be
constant and integrability of its definition also enforces the quadratic constraint [19, 59]

η−1αβ⟨θ|Tα ⊗ ⟨θ|T β = 0 , (3.13)

where we have already set ⟨ϑ| = 0.
We have argued for the relevance of the p = 2 spectrally flowed sl9 ⊂ e9 in the previous

section. From the general analysis that we review in appendix E, we know that the twist
17E9 ExFT contains additional constrained fields and two-forms that have to be considered in the general

construction but will not play a role in this paper.
18Notice that writing ⟨θ| in terms of S+1 rather than S+1 only amounts to a redefinition of ⟨w+|.
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matrix must decompose as in equation (E.3). This implies that U belongs to the parabolic
subgroup obtained from the generators of non-positive L0 degree. Because we are looking
for a consistent truncation contaning a purely gravitational pp-wave, it is also natural to
restrict the ansatz to a parabolic element in the affine extension of SL(9). This is the relevant
structure for eleven-dimensional gravity without three-form. One can moreover use gauge
invariance to restrict the ansatz to the SL(9) subgroup. Using the notation TImJ etc. for
the flowed generators as in section 2.1.2, we therefore make the following ansatz for the
inverse of the twist matrix

U−1 = rL0esK u−1 , (3.14)

where u belongs to the p = 2 flowed SL(9). Recall from (2.15) that L0 = L0 + 2T k0 k + 16
9 K.

Except for the occurrence of ⟨w+| whose form will be determined below, the twist matrix
and choice of section are analogous to what happens for other sphere reductions [30].

We also have to specify a solution to the section constraint corresponding to the coordi-
nates on S8 × S1. As argued in section 2.1.4, the S8 coordinates are expected to sit within
the 36 of the p = 2 flowed SL(9) and we indeed find such a representation at L0-degree
7/9 in the decomposition (2.27). The solution to the section constraint for the derivatives
⟨∂| ∈ R(Λ0)−1 is naturally written in the branching (2.30) with respect to the p = 1 flowed
SL(9). It can be expressed in the branching (2.28) with respect to the p = 2 flowed SL(9)
relevant for the SO(9) gauging, by splitting the index Ĩ in (2.30) into Ĩ = (i, 9) and the
index I in (2.28) into I = (0, i) and using (2.31):

⟨∂| = ⟨̃0|Ĩ∂Ĩ = ⟨1/3|0i∂i + ⟨4/3|00∂9 . (3.15)

In terms of the 367/9 derivatives ∂IJ the solution (3.15) implies in particular that only
∂i ≡ ∂0i ̸= 0 among the ∂IJ . That this corresponds to a solution of the section constraint
can be verified in a straight-forward manner. The gSS ansatz for the physical fields will
only involve the eight coordinates along ⟨1/3|0i, corresponding to S8, while the component
⟨4/3|00 associated to the S1 coordinate y9 will only feature in the constrained fields.19 This
kind of interplay of the p = 1 flowed branching and p = 2 flowed branching of the R(Λ0)−1
representation will be central in section 4 when we determine the explicit uplift formulæ.

Equipped with the choice of section (3.15) and ansatz (3.14) for the twist matrix, we
can evaluate the Weitzenböck connection (3.11). Some details of this calculation are given
in appendix B. From this we deduce the following expressions for the trombone embedding
tensor ⟨ϑ| ∈ R(Λ0)−1 and the standard embedding tensor ⟨θ| ∈ R(Λ0)0 given by

⟨ϑ| = ⟨Wα|Tα = −r−1∂i
(
r

7
9 esu−1 0

Iu−1 i
J

)
⟨1/3|IJ , (3.16)

and

⟨θ| = −⟨Wα|S+1(Tα) − ⟨w+|

= r−
2
9 esu−1 0

Ku−1 i
L

(
∂iuS0u−1 0

R + ∂iuSju−1 j
R

)(
⟨1/3|[KLTR]

1S − 2
7⟨1/3|

Q[KTL1Qδ
R]
S

)
+ 1

8r
− 2

9 es
(
u−1 0

K∂iu−1 i
L − u−1 i

K∂iu−1 0
L −W+

00 u−1 0
Ku−1 0

L

)
⟨1/3|P (KTL)

1P

+ 9
14r

−16/9es∂i
(
r14/9u−1 0

Ku−1 i
L

)
⟨1/3|KLL1 , (3.17)

19In terms of the expansion (2.22), the nine non-vanishing components of the derivatives ⟨∂| ∈ R(Λ0)−1 are
rewritten as ⟨0|T i1∂i ̸= 0 , ⟨0|∂ψ ̸= 0 , where the generators T i1 refer to the gl8 basis (2.3).
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where we have simplified the constrained ⟨w+| = W+
00⟨4/3|00 = W+

00⟨̃0|9 as a specialisation
of the solution (3.15) to the section constraint.

In order to obtain a Lagrangian gauging corresponding to a sphere reduction of type
IIA supergravity we now consider an ansatz for the SL(9) twist matrix that is inspired
by [30, 46]. We denote embedding coordinates or the sphere S8 by YI where I = 0, 1, . . . 8
are Euclidean ambient space coordinates with

∑8
I=0 Y

2
I = 1 and we raise and lower these

indices with the Euclidean ambient space metric δIJ , invariant under SO(9). The SL(9)
twist matrix components then are taken to be

u−1 i
I = (det g̊)1/9

(̊
gij∂jYI + ciYI

)
,

u−1 0
I = (det g̊)−8/9+1/2YI , (3.18)

where g̊ij = ∂iYI∂jYJδ
IJ is the induced metric on the (round) sphere, g̊ij its inverse and

det g̊ its determinant. The field ci is akin to a Kaluza-Klein vector and related to the flux of
the sphere compactification. The embedding coordinates satisfy the completeness relation
and eigenvalue equation

g̊ij∂iYI∂jYJ = δIJ − YIYJ and (det g̊)−1/2∂i
(
(det g̊)1/2g̊ij∂jYI

)
= −8YI , (3.19)

as can be checked easily by going to stereographic coordinates. The components of the
inverse SL(9) matrix are then

uI i = (det g̊)−1/9∂iY
I ,

uI0 = (det g̊)−1/9+1/2
(
Y I − ci∂iY

I
)
. (3.20)

We next determine the conditions on the remaining components of the twist matrix (3.14).
The requirement that the gauging be Lagrangian means that the trombone embedding tensor
⟨ϑ| in (3.16) has to vanish. Using (3.19) and [KL] anti-symmetry we find that this is
tantamount to

0 != ∂i
(
r

7
9 es(det g̊)−7/9+1/2g̊ij∂jYKYL

)
⟨1/3|KL

= ∂i
(
r

7
9 es(det g̊)−7/9

)
(det g̊)1/2g̊ij∂jYKYL⟨1/3|KL , (3.21)

so that we deduce

r
7
9 es = g(det g̊)7/9 , (3.22)

for the vanishing of ⟨ϑ|. In the above relation we have introduced a convenient integra-
tion constant.

In order to represent a consistent gSS reduction, the embedding tensor ⟨θ| must be
constant and we need it to be solely along the 45 component according to the discussion in
section 3.1. Substituting the sphere ansatz into (3.17), we find that the component along the
720 vanishes automatically and for the vanishing of the 36 component along ⟨1/3|KLL1 we get

0 != ∂i
(
r14/9(det g̊)−5/18YK g̊

ij∂jYL
)
⟨1/3|KLL1 , (3.23)
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whose vanishing according to (3.19) requires

r = (det g̊)1/2 ⇒ es = g(det g̊)7/18 . (3.24)

Here we fixed the integration constant for r using the ExFT L0 scaling symmetry.
Substituting this back into (3.17), we are left with

⟨θ|= g
[
−δIJ+

(
(det g̊)−1/2∂i

(
(det g̊)1/2ci

)
−(det g̊)1/2W+

00−7
)
YIYJ

]
⟨4/3|IJ . (3.25)

For this to be a constant multiple of the SO(9) metric δIJ we need to make the anisotropic
components vanish. Due to the presence of the component W+

00 of ⟨w+|, the first condition
(det g̊)−1/2∂i

(
(det g̊)1/2ci

)
− (det g̊)1/2W+

00 = 7 is trivially satisfied. From the perspective of
type IIA supergravity it is natural to set W+

00 = 0, in which case this condition fixes the
field ci corresponding to the seven-form type IIA potential in the ansatz. One then identifies
the expected 8-form flux on S8. From the perspective of eleven-dimensional supergravity,
the field ci is a component of the dual graviton and it is natural to absorb the flux in the
constrained field component W+

00.
The summary of the analysis above is that we have achieved the form

⟨ϑ| = 0 and ⟨θ| = −g δIJ⟨4/3|IJ , (3.26)

for the embedding tensor, which agrees with the identification ΘIJ = g δIJ in section 3.1.
This construction can be easily adapted to accommodate also CSO(p, q, 9−p−q)-type

gaugings [54, 68] where the signature (p, q, 9−p−q) describes the number of positive, negative
and vanishing eigenvalues of the symmetric tensor ΘIJ in (3.5). The internal space in
these cases is Hp,q × T 9−p−q × S1 with Hp,q the (p+q−1)-dimensional sphere or hyperboloid
defined by the equation Y aηabY

b = 1 with ηab of signature (p, q) in p+q dimensions and
Θab = g ηab. We then write accordingly i = 1, . . . , p+q−1 for the coordinate indices of Hp,q and
ı̂ = p+q, . . . , 8 for the indices of the coordinates on T 9−p−q. The twist matrix takes the form

uai = | det g̊|−1/9∂iY
a ,

ua0 = | det g̊|−1/9+1/2
(
Y a − ci∂iY

a
)

uâı̂ = δâı̂ , (3.27)

where g̊ij is the pseudo-Riemannian induced metric ηab∂iY a∂jY
b and ci and W+

00 satisfy

| det g̊|−1/2∂i
(
| det g̊|1/2ci

)
− | det g̊|1/2W+

00 = p+ q − 2 . (3.28)

3.3 From pseudo-Lagrangian to physical Lagrangian

As described in the companion paper [19], for any embedding tensor ⟨θ| admitting a consistent
uplift, the gSS reduction of the ExFT pseudo-Lagrangian leads to a pseudo-Lagrangian for
gauged supergravity that decomposes into

Lpseudo
gsugra = Ltop

gsugra − Vgsugra . (3.29)

The general expression of the scalar potential Vgsugra in terms of ⟨θ| will be recalled later on.
We stress that we include the measure factor in its definition. The topological term Ltop

gsugra
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corresponds the gauged version of the (topological) pseudo-Lagrangian Lpseudo
sugra for ungauged

supergravity defined in (2.45). It can be written schematically as the sum of two terms

Ltop
gsugra dx0 ∧ dx1 = 2ϱDχ̆1 + ϱ ⟨θ|O(M)|F ⟩ . (3.30)

The first term corresponds to (2.57) with partial derivatives traded for gauge covariant
ones. The second term, linear in the field strengths, is new and descends from the proper
covariantisation of the Maurer-Cartan equation used in (2.45) to define Lpseudo

sugra . See equation
(B.4) of the companion paper [19] for the gauged supergravity version of the relation (2.45).
Here we are already considering an expansion in terms of the p = 2 spectrally flowed SL(9)
basis. Explicitly, we have

ϱ ⟨θ|O(M)|F ⟩ = ϱ ⟨θ|
(
Sγ̆

+1(L−1) + Sγ̆

−1(L−1)
)
|F ⟩ (3.31)

− ϱω
α(V )

[
Sγ̆

+1(Tβ) + Sγ̆

−1(Tβ)
]
α
η−1βγ⟨θ|Tγ |F ⟩ ,

where we have introduced the group cocycle

ω
α(g)K = S0(Tα) − g−1S0(gTαg−1)g , g ∈ Ê8 ⋊ Vir− , (3.32)

as well as a field-dependent version of the shift operators

Sγ̆

m(X) = S0
(
V −1Sm(V X V −1)V

)
(3.33)

= ϱ−m
(
Sm(X) −mφ1Sm−1(X) + . . .

)
, X ∈ ê8 h vir .

The second line displays how these field-dependent shift operators are expanded in terms
of the standard ones Sk, with k ≤ m, a fact that we will use shortly. Details on this
construction are found in [19, 33].

We will now present how to obtain a physical Lagrangian for gauged supergravity from
the pseudo-Lagrangian (3.29). Apart from the scalar potential, the other terms in the
physical Lagrangian are obtained from (3.30) by first repeating the same steps that we used
in section 2.4 to reproduce (2.41) from (2.57), with covariant differentials instead of partial
ones, and then adding ⟨θ|O(M)|F ⟩ to the final result. Let us now show this for the SO(9), or
more generally for CSO(p, q, r) gaugings of which the SO(9) gauging is a special case.

The first term in (3.30) corresponds to (2.57) with covariant differentials. All steps
carried out in section 2.4 are still valid, until one arrives at the expression (2.60). Since
the differentials are now covariantised, the last term there is no longer a total derivative
but instead contributes with

− 1
18a

IJKD2bIJK = −1
6a

L1L2L3ΘL1KF
IKbL2L3I −

1
6a

L1L2L3ΘL1KF
K
L2L3 , (3.34)

where we have defined the 36−16/9 component F IJ = ⟨1/3|IJ |F ⟩ and the (9 ⊕ 315)−13/9
components FKIJ = ⟨1|KIJ |F ⟩ of the field strength |F ⟩ so that

η−1αβ⟨θ|Tα|F ⟩Tβ = −ΘIKF
JKT0

I
J − 1

2ΘKI1F
K
I2I3TI1I2I3

−2/3 + . . . . (3.35)
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Looking now at the first line of (3.31) and using the expansion in (3.33), we see that
acting on ⟨θ| is a series of Virasoro generators L−k with k ≥ 0. One immediately finds that

⟨4/3|(IJ)L−k = 0 ∀k ≥ 1 , (3.36)

hence for CSO(p, q, r) gaugings, only the term proportional to ⟨θ|L0|F ⟩ survives. But
then we find

ϱ ⟨θ|
(
Sγ̆

+1(L−1) + Sγ̆

−1(L−1)
)
|F ⟩ = ΘIJ⟨4/3|IJL0|F ⟩ = 16

9 ΘIJ⟨4/3|IJ |dA⟩ , (3.37)

which is a total derivative. We used the quadratic constraint to remove the A ∧ A term
coming from the field strength, since it is proportional to η−1αβ⟨θ|Tα|A⟩⟨θ|T β |A⟩ = 0.

We are left with computing the second line of (3.31). Given the triangular gauge (2.39)
for V and the fact that the CSO(p, q, r) embedding tensor does not gauge positive level
generators in this decomposition, we conclude that within the square bracket, only the positive
shift contributes, with terms proportional to the gauging of T0

I
J and TIJK−2/3, on which acts

the constant shift operator S+1. Then, computing the loop cocycle is just a matter of dressing
such terms with V and extracting the K component. We thus find

ϱ ⟨θ|O(M)|F ⟩ = ΘJKF
IK V T I

1 J V
−1∣∣

K + 1
2ΘKI1F

K
I2I3V TI1I2I3

−2/3 V −1∣∣
K (3.38)

= ΘJKF
IK hIJ + 1

6a
L1L2L3ΘL1KF

IKbL2L3I + 1
6a

L1L2L3ΘL1KF
K
L2L3 ,

up to the total derivative in (3.37). Here, |K denotes a projection on the central charge,
defined as in (3.32). We see that the last two terms cancel out the contribution obtained
from (3.34). This means that the non-potential terms in the physical Lagrangian are given
by the naïve covariantisation of (2.41), plus the only extra term ΘJKF

IK hIJ . The physical
Lagrangian for CSO(p, q, r) gauged supergravity therefore reads,

Lgsugra =
√
−g
(
ϱR+ϱ1

4g
µνDµmIJDνmIJ−

1
12ρ

1/3gµνDµa
I1I2I3Dνa

J1J2J3mI1J1mI2J2mI3J3

)
+ 1

64 ε
µνεI1...I9a

I1I2I3Dµa
I4I5I6Dνa

I7I8I9 + 1
2ε

µνF IJ
µν h

K
IΘKJ−Vgsugra . (3.39)

For the determination of the scalar potential we start from the general formula [18, 19]

Vgsugra = 1
2ϱ3 ⟨θ|M

−1|θ⟩ + 1
2ϱη−2αβ⟨θ|TαM−1Tβ†|θ⟩

= 1
2ϱ3 ⟨θ|V

−1V −1†|θ⟩ + 1
2ϱ3 η−2αβ⟨θ|V −1TαTβ†V −1†|θ⟩ . (3.40)

Notice that Vgsugra includes the measure factor in its definition because the K component
of M = V †V contains e2σ. As discussed at the end of section 2.2, we use the notation for
Hermitian conjugation of bra-ket vectors |θ⟩ = (⟨θ|)† to simplify the contractions appearing
in the potential. The second line shows a rewriting where the coset representatives V were
moved through the generators Tα, Tβ in the second term. This is allowed as all terms that
might be generated by such a manipulation turn out to vanish, see equation (3.71) of [19].
For both terms in the potential the basic ingredient to compute is then ⟨θ|V −1.
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We plug the ansatz (2.39) for the supergravity scalar fields as well as the embedding
tensor (3.5) into this expression. As shown in more detail in appendix A.3.3 we have

⟨θ|V −1 = ΘIJe
σϱ16/9

(
− v−1 I

Av−1 J
B⟨4/3|AB + ϱ−1hIKv−1 J

Av−1K
B⟨1/3|AB

− 1
2ϱ

−1/3aIKLv−1 J
AvB

KvC
L⟨1|ABC − ϱ−4/3aIKLhJLvA

K⟨0|A

+ 1
8ϱ

−2/3aIKLaJPQvA
KvB

LvC
P vD

Q⟨2/3|ABCD

+ 1
288ϱ

−1aIK1K2aJK3K4aK5K6K7εK1...K7RSv−1R
Av−1S

B⟨1/3|AB

+ 1
1152ϱ

−4/3aIK1K2aJK3K4aK5K6K7aK8K9LεK1...K9vA
L⟨0|A

)
, (3.41)

where (A.32) was used and the generators and states of the basic module were written with
local SO(9)K indices using the action by v. Notice that the Virasoro scalar fields φn, n ≥ 1 do
not contribute. This is easy to check using (3.36) and that the contribution proportional to
⟨1|ABCL−1 = 2δA

[B⟨0|C] vanishes because ΘIJa
IJK = 0. We also note that the term in bIJKTIJK−2/3

in the ansatz for V −1 disappears as would any term with a field multiplying T−4/3 IJK (by
incompatible index symmetries) or more negative degrees (by grading).

From this we can determine the various terms in Vgsugra. Collecting all the terms leads
to the following potential

Vgsugra = e2σϱ5/9

2 ΘIJΘKL

((
2mIKmJL−mIJmKL

)
+ 1

2ϱ
−2/3

(
aIP QaKRSmJLmP RmQS−2aIKPaJLQmP Q

)
+2ϱ−2hI

Ph
K

QmQ[P mJ]L+ϱ−8/3aIP RhJ
Pa

KQShL
QmRS

+ ϱ−2

72 hJ
Pa

KQ1Q2aLQ3Q4aQ5Q6Q7εQ1...Q9mIQ8mP Q9 (3.42)

+ 3
8ϱ

−4/3aI[M1M2aM3M4]JaK[N1N2aN3N4]LmM1N1mM2N2mM3N3mM4N4

+ ϱ−2

2·1442 a
IN1N2aJN3N4aN5N6N7εN1...N9a

KP1P2aLP3P4aP5P6P7εP1...P9mN8P8mN9P9

+ ϱ−8/3

576 aIRPhJ
Ra

KN1N2aLN3N4aN5N6N7aN8N9QεN1...N9mP Q

+ ϱ−8/3

11522 a
IN1N2aJN3N4aN5N6N7aN8N9QεN1...N9a

KP1P2aLP3P4aP5P6P7aP8P9SεP1...P9mQS

)
.

For the SO(9) gauging we choose ΘIJ = gδIJ .
To conclude this section, we compare our Lagrangian for SO(9) gauged supergravity to

that presented in [16], whose scalar potential can be computed by expanding the Yukawa
couplings in their eq. (4.22). We performed this computation and find perfect agreement
with (3.42) upon identifying their YIJ = Y[IJ ] = ΘK[Ih

K
J ] and also taking into account the

typo mentioned in footnote 1 of [17].20

3.4 Duality equation for the gauge field strength

In order to determine completely the uplift ansatz in eleven dimensions, it is also useful to
derive the expressions of fields that do not appear in the physical two-dimensional Lagrangian.

20Note that the second term in the second line of (3.42) above was overlooked in eq. (5.5) of [16].
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The field strength duality equation

|F ⟩ + 1
ϱ3 ⋆

(
M−1|θ⟩ + η−2αβV

−1TαT β†V −†|θ⟩
)

= 0 , (3.43)

determines all the gauge fields that appear in the uplift ansatz [19, section 6]. The relevant
field strength equations are

⟨1/3|IJ |F ⟩ = −ϱ−3 ⋆ ⟨1/3|IJM−1|θ⟩ , (3.44a)

⟨4/3|IJ |F ⟩ = − ⋆
∂Vgsugra
∂ΘIJ

, (3.44b)

⟨0|I |F ⟩ = −ϱ−3 ⋆ ⟨0|IM−1|θ⟩ , (3.44c)

⟨1|KIJ |F ⟩ = −ϱ−3 ⋆ ⟨1|KIJM−1|θ⟩ − ϱ−1η−2αβ ⋆ ⟨1|KIJTαM−1T β†|θ⟩ . (3.44d)

The right-hand side of (3.44a) gives

ϱ−3⟨1/3|IJM−1|θ⟩= e2σϱ− 13
9 ΘKL

((
2mK[ImJ]P +ϱ− 2

3 mRSa
IJRaKP S

)
hL

P (3.45)

+ 1
144εP1...P9

(
mP1[ImJ]P2 + 1

8ϱ
− 2

3 mRSa
IJRaP1P2S

)
aP3P4KaLP5P6aP7P8P9

)
,

and can be checked to be compatible with the equation of motion of hIJ using
∂Vgsugra
∂hIJ

= −ΘIKϱ
−3⟨1/3|JKM−1|θ⟩ . (3.46)

This duality equation is identical to the equation of motion of hIJ for the SO(9) gauging
ΘIJ = gδIJ , but includes more components if ΘIJ is degenerate.

Similarly one computes the right-hand side of (3.44c)

ϱ−3⟨0|IM−1|θ⟩=−e2σϱ− 19
9 ΘKLmIJ

(
aJP KhL

P − 1
1152εP1...P9a

P1P2KaLP3P4aP5P6P7aP8P9J

)
,

(3.47)
and of (3.44d)

ϱ−3⟨1|KIJM−1|θ⟩ + ϱ−1η−2αβ⟨1|KIJTαM−1T β†|θ⟩

= −e2σϱ−
1
9 ΘPQ

(
mIRmJSa

RSPmQK + 2δP[ImJ ]La
QKL

+ 1
2ϱ

− 2
3 mIL1mJL2mRL3mSL4a

KRSaL1L2PaQL3L4

+ 1
48 × 144ϱ

− 4
3 εIJL1...L7εR1...R9a

KL1L2aL3L4L5mL6R1mL7R2aR3R4PaQr5R6aR7R8R9

+ 1
24ϱ

− 4
3 εIJL1...L7h

P
RmQL1mRL2aKL3L4aL5L6L7

− ϱ−2
(

2hK [ImJ ]L + 1
144mLT εIJR1...R7a

KR1R2aR3R4R5aR6R7T
)

×
(
aLSPhQS − 1

1152εS1...S9a
S1S2PaQS3S4aS5S6S7aS8S9L

)
+ δK[I Z

PQ
J ]

)
+ bIJLϱ

−3⟨1/3|KLM−1|θ⟩ , (3.48)

where the tensor ZPQJ is not spelt out because it does not contribute to the eleven-dimensional fields.
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4 Uplift formulæ

In this section we will present the uplift formulæ for the eleven-dimensional metric and the
three-form potential. We use the standard Kaluza-Klein ansatz for the metric

ds2
11D = ρ−

8
9 e2ς g̃µνdxµdxν + ρ

2
9GĨ J̃(dyĨ + AĨ)(dyJ̃ + AJ̃) , (4.1)

and the three-form

A11D= 1
6αĨJ̃K̃(dyĨ +AĨ)∧(dyJ̃ +AJ̃)∧(dyK̃ +AK̃)+ 1

2AĨJ̃∧(dyĨ +AĨ)∧(dyJ̃ +AJ̃)+BĨ∧(dyĨ +AĨ) ,
(4.2)

such that e2ς g̃µν is the two-dimensional metric, AĨ ,AĨ J̃ are one-forms and BĨ is a two-form
in two dimensions. The coordinates yĨ decompose into the eight coordinates yi on the space
homological to S8 and the circle coordinate y9, with the internal metric splitting accordingly as

GĨ J̃dyĨdyJ̃ = Gijdyidyj + detG−1 (dy9 +Kidyi)2 . (4.3)

The external coordinates xµ can be fixed in the conformal gauge g̃µν = ηµν to x0 = t

and x1 = z. The components can be identified with the E9 ExFT fields using the basis
of generators in the p = 1 spectral flowed basis (2.30). As explained in section 2.2, we
write T̃α the generators in the p = 1 basis and Tα the generators in the p = 2 spectral
flowed basis (2.28) associated to SO(9) gauged supergravity. It is convenient to gauge-fix
the additional Virasoro fields to zero to write the uplift ansatz. The exceptional field theory
scalar fields then parametrise the E9/K(E9) coset representative

V−1 = . . . e−
1
6β

ĨJ̃K̃ T̃−2/3ĨJ̃K̃e
− 1

6αĨJ̃K̃ T̃ĨJ̃K̃−1/3eKiT̃
i

0 0 υ̃−1ρL̃0eς , (4.4)

where the components of υ̃−1 ∈ GL(8) in the basis T̃ j
0 i are the vielbeins for the metric Gij .21

The normalisations of the fields in this ansatz are determined in appendix C. Note that ρ is
independent of the parabolic decomposition of the coset and is therefore the same in all bases.
One identifies similarly the one-forms in the ansatz (4.2) with the following components of
the exceptional field theory gauge field |A⟩

AĨ = ⟨̃0|Ĩ |A⟩ , AĨ J̃ = ⟨̃1/3|Ĩ J̃ |A⟩ , (4.5)

while the two-form in (4.2) is the first component of the exceptional field theory two-form.
Recall that the unconstrained ExFT two-form belongs to the symmetric tensor product of two
copies of R(Λ0) with the representation R(2Λ0) removed [33]. We therefore use the notation
||C⟩⟩ to express that it belongs to the tensor product. This representation decomposes as

R(Λ0)∨R(Λ0) ⊖R(2Λ0) ⊃ R(Λ7) = 9 11
9
⊕ 126 14

9
⊕ . . . (4.6)

where the first component 911/9 comes from the eleven-dimensional supergravity 3-form, the
second 12614/9 from the supergravity 6-form, etc. In components we have

BĨ = 2⟨̃0|J̃ ⊗ ⟨̃1/3|Ĩ J̃ ||C
′⟩⟩ = 2⟨̃0|J̃ ⊗ ⟨̃1/3|Ĩ J̃ ||C⟩⟩ + 1

2 ⟨̃0|
J̃ |A⟩⟨̃1/3|Ĩ J̃ |A⟩ , (4.7)

21For example, in the symmetric gauge ṽ−1† = exp(h̃ijT̃ i
0 j), one would have Gij = exp(h̃)ikδkl exp(h̃)j l.
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where we have redefined for convenience the two-form ||C′⟩⟩ from

||C⟩⟩ = |C(1⟩ ⊗ |C2)⟩ , (4.8)

in [33], see appendix C for details. Following [30], one identifies the uplift ansatz in terms
of the relevant exceptional field theory matrix elements

ρ−1⟨̃0|ĨM−1J̃ |̃0⟩= e2ςρ−
1
9GĨ J̃ , ρ−1⟨̃1/3|Ĩ J̃M

−1K̃ |̃0⟩=−e2ςρ−
1
9αĨ J̃ L̃G

L̃K̃ . (4.9)

In this equation and the ones below, we use the notation

⟨h1|Ah1M−1Bh2 |h2⟩ = ⟨eAh1
h1

|M−1|eBh2
h2

⟩ , (4.10)

for the matrix elements of the E9 group element M−1 between the basis elements ⟨h1|Ah1

and ⟨h2|Bh2 , as defined in (2.30).
Before exposing the computations, we shall display the result in terms of the gauged

supergravity fields through the matrix components of the supergravity E9 group element M ,

ρ(x, y) = (det̊g)
1
2 ϱ(x) , (4.11)

while the other metric components are determined by the conditions

ρ−
8
9 e2ςGij = g2ϱ−

16
9 (det g̊)

1
9YI g̊

ik∂kYJYK g̊
jl∂lYL⟨1/3|IJM−1 KL|1/3⟩ ,

ρ−
8
9 e2ςGijKj = −g2ϱ−

16
9 (det g̊)

1
9YIYJYK g̊

ij∂jYL⟨4/3|IJM−1 KL|1/3⟩ ,

ρ−
8
9 e2ς(detG +GijKiKj

)
= g2ϱ−

16
9 (det g̊)

1
9YIYJYKYL⟨4/3|IJM−1 KL|4/3⟩ . (4.12)

These matrix elements without tilde are evaluated in the p = 2 flowed basis of the module (2.28)
and the conversion between the two bases is given in appendix A.3.3.

One can in particular obtain the expression of the external metric’s conformal factor
from the determinant22(

ρ− 8
9 e2ς/g2

)9
(4.13)

= ϱ−16 det
(
YI g̊

ik∂kYJYK∂jYL⟨1/3|IJM−1 KL|1/3⟩ YI g̊
ik∂kYJYKYL⟨1/3|IJM−1 KL|4/3⟩

YIYJYK∂jYL⟨4/3|IJM−1 KL|1/3⟩ YIYJYKYL⟨4/3|IJM−1 KL|4/3⟩

)
.

We will show below that one can rewrite the components of αĨ J̃K̃ in terms of SL(9) tensors
αIJ(Y ) and αIJK(Y ) as follows

α9ij = ∂iY
I∂jY

J
αIJ(Y ) , αijk = ∂iY

I∂jY
J∂kY

K
αIJK(Y ) . (4.14)

These only depend on the sphere coordinates through the harmonic variables YI and are
determined by

αIJ(Y )YP∂iY IYK⟨1/3|PJM−1 KL|1/3⟩ = ∂iY
IYK⟨0|IM−1 KL|1/3⟩ ,

αIJ(Y )YP∂iY IYKYL⟨1/3|PJM−1 KL|4/3⟩ = ∂iY
IYKYL⟨0|IM−1 KL|4/3⟩ , (4.15)

22Where we write the 9 by 9 matrix as
(
AijB

i
9

C9
jD

9
9

)
.
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and

αIJQ(Y )∂iY
I∂jY

JYPYK⟨1/3|P QM−1 KL|1/3⟩ (4.16)
=−∂iY

I∂jY
JYPYK⟨1|PIJM

−1 KL|1/3⟩−αIJ(Y )YQ∂iY
I∂jY

JYPYK⟨4/3|P QM−1 KL|1/3⟩ ,

αIJQ(Y )∂iY
I∂jY

JYPYKYL⟨1/3|P QM−1 KL|4/3⟩

=−∂iY
I∂jY

JYPYKYL⟨1|PIJM
−1 KL|4/3⟩−αIJ(Y )YQ∂iY

I∂jY
JYPYKYL⟨4/3|P QM−1 KL|4/3⟩ .

Relevant matrix elements for the two-dimensional scalar fields can be determined from the
expressions given in appendix A.3.3 and take the form

⟨0|IM−1KL|1/3⟩= e2σϱ
8
9 aKLJmIJ , (4.17a)

⟨1/3|IJM−1KL|1/3⟩= e2σϱ
14
9
(
2mK[ImJ]L+ϱ−2/3mP Qa

IJPaKLQ
)
, (4.17b)

⟨1|PIJM
−1KL|1/3⟩= e2σϱ

14
9

(
δP

RbSIJ +δP
[IbJ]RS

)(
2mR[KmL]S +ϱ− 2

3 mT Ua
RSTaKLU

)
+2e2σϱ

8
9

(
δP

[Ih
R

J]a
KLQmRQ−hP

[ImJ]Qa
KLQ

)
(4.17c)

− e2σ

48 ϱ
14
9 εIJQRST UV W aP QRaST U

(
mV [KmL]W +1

3ϱ
− 2

3 mXY a
V W XaKLY

)
,

and

⟨4/3|IJM−1 KL|1/3⟩ = e2σϱ
14
9
(
2mP [KmL]Q + ϱ−2/3mRSa

PQRaKLS
)

×
(
δ

(I
Qh

J)
P − 1

288εPQT1...T7a
T1T2(IaJ)T3T4aT5T6T7

)
+ 1

384e
2σϱ

8
9 εP1...P9a

P1P2(IaJ)P3P4aP5P6P7aP8P9QaKLRmQR . (4.17d)

One also needs other components such as ⟨4/3|IJM−1KL|4/3⟩, which can straightforwardly
be computed from (A.37).

The one-forms (4.5) are determined similarly in terms of the gauged supergravity one-
form |A⟩

Ai = ⟨̃0|i|A⟩ = g YI g̊ij∂jYJ⟨1/3|IJ |A⟩ , (4.18a)

A9 = ⟨̃0|9|A⟩ = g YIYJ⟨4/3|IJ |A⟩ , (4.18b)

A9i = ⟨̃1/3|9i|A⟩ = −g ∂iY I⟨0|I |A⟩ , (4.18c)

Aij = ⟨̃1/3|ij |A⟩ = g YK∂iY I∂jY
J⟨1|KIJ |A⟩ . (4.18d)

As usual the SO(9) Yang-Mills fields AIJ = ⟨1/3|IJ |A⟩ appear in the Kaluza-Klein one-forms
contracted with the sphere Killing vectors. The other components of |A⟩ do not appear in
the gauged supergravity Lagrangian, they are determined by the first order equation (3.43).
The two-forms (4.7) are given in terms of the gauged supergravity two-form ||C⟩⟩ as

B9 = 2⟨̃0|J̃ ⊗ ⟨̃1/3|9J̃ ||C
′⟩⟩ = −g2YI ⟨1/3|IJ ⊗ ⟨0|J

(
||C⟩⟩ + 2|A⟩ ∧ |A⟩

)
(4.19)

Bi = 2⟨̃0|J̃ ⊗ ⟨̃1/3|iJ̃ ||C
′⟩⟩ = −g2YIYJ∂iY

K(⟨4/3|IJ ⊗ ⟨0|K + ⟨1/3|LI ⊗ ⟨1|JKL
)
||C⟩⟩ .
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Note that the Kaluza-Klein ansätze for the eleven-dimensional three-form and metric
depend on the fields bIJK and δK(Ih

K
J) that do not appear in the gauged supergravity

Lagrangian and moreover turn out to be pure gauge. Consistently, we show in appendix D
that bIJK can be eliminated in eleven-dimensional supergravity using a three-form gauge
transformation of two-form parameter

Λ11D(x, y) = g
2λ(x)KIJYK∂iY I∂jY

J(dyi + Ai) ∧ (dyj + Aj) , (4.20)

while δK(Ih
K
J) can be gauged away using the diffeomorphism

y9 = y9′ − gYIYJξIJ(x) . (4.21)

One may therefore set them to zero.

4.1 Derivation of the uplift formulas

To derive the metric ansatz one uses the relations between the two spectral flowed basis (A.34)
and substitutes the generalised Scherk-Schwarz ansatz (3.14) to get

⟨1/3|0iM−1 0j |1/3⟩ = e2sr
14
9 u−10

Iu−1i
Ju−10

Ku−1j
L⟨1/3|IJM−1KL|1/3⟩ , (4.22a)

⟨4/3|00M−1 0i|1/3⟩ = e2sr
23
9 u−10

Iu−10
Ju−10

Ku−1i
L⟨4/3|IJM−1KL|1/3⟩ , (4.22b)

⟨4/3|00M−1 00|4/3⟩ = e2sr
32
9 u−10

Iu−10
Ju−10

Ku−10
L⟨4/3|IJM−1KL|4/3⟩ . (4.22c)

Comparison with (4.9) and using the explicit form (3.20) of the twist matrix (uI0, uI j) gives
immediately (4.12). To understand the dependence in the embedding coordinates Y I it is
useful to combine these matrix elements into the nine by nine matrix

G̃IJ = YKYL⟨1/3|KIM−1 LJ |1/3⟩ − Y IYPYQYL⟨4/3|PQM−1 LJ |1/3⟩
− Y JYPYQYK⟨1/3|KIM−1 PQ|4/3⟩ + Y IY JYKYLYPYQ⟨4/3|PQM−1 KL|4/3⟩ , (4.23)

that satisfies(
YI g̊

ik∂kYJYK∂jYL⟨1/3|IJM−1 KL|1/3⟩ −YI g̊ik∂kYJYKYL⟨1/3|IJM−1 KL|4/3⟩
−YIYJYK∂jYL⟨4/3|IJM−1 KL|1/3⟩ YIYJYKYL⟨4/3|IJM−1 KL|4/3⟩

)

=
(
g̊ik∂kYI
YI

)
G̃IJ

(
∂jYJ , YJ

)
. (4.24)

In this form it is manifest that G̃IJ only depends on the sphere coordinates through the
embedding coordinates Y I , and therefore admits an expansion in spherical harmonics. The
expression of e2ς takes the form

e2ς = g2 det̊g
4
9 ϱ−

8
9 detG̃− 1

9 , (4.25)

and the metric GĨ J̃(
Gij Gi9
G9j G99

)
= det̊g−

1
9 detG̃− 1

9

(
∂iY

I

Y I

)
G̃IJ

(
∂jY

J , Y J
)
. (4.26)
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It is useful to introduce this inverse matrix G̃IJ to exhibit the dependence of the uplift ansatz
in the embedding coordinates and their derivatives, but it may not be the best way to obtain
the explicit uplift for a given solution. We will also use it to prove that the three-form
scalar components satisfy (4.15) and (4.16).

For the three-form, (3.14), (4.9) and (A.34) give us

⟨0|iM−10j |1/3⟩ = e2sr
11
9 uKiu−10

Iu−1j
J⟨0|KM−1IJ |1/3⟩ , (4.27a)

⟨0|iM−100|4/3⟩ = e2sr
20
9 uKiu−10

Iu−10
J⟨0|KM−1IJ |4/3⟩ , (4.27b)

⟨1|0ijM−10k|1/3⟩ = e2sr
20
9 uI iuJ ju−10

Pu−10
Ku−1k

L⟨1|PIJM−1KL|1/3⟩ , (4.27c)

⟨1|0ijM−100|4/3⟩ = e2sr
29
9 uI iuJ ju−10

Pu−10
Ku−10

L⟨1|PIJM−1KL|4/3⟩ . (4.27d)

One combines these equations into the matrix equation

−e2ςρ
8
9

(
αijL̃G

L̃k αijL̃G
L̃9

α9jL̃G
L̃k α9jL̃G

L̃9

)
(4.28)

= g2 det̊g
(
∂iY

I∂jY
JYPYQ

(
⟨1|PIJM−1QL|1/3⟩+Y LYR⟨1|PIJM−1QR|4/3⟩

)
−∂jY JYP

(
⟨0|JM−1PL|1/3⟩+Y LYQ⟨0|JM−1PQ|4/3⟩

) )(
g̊kl∂lYL,YL

)
,

such that one can give the solution for αijk and α9ij in terms of the inverse matrix G̃IJ as(
αijk α9ij
α9jk 0

)
(4.29)

=−
(
∂iY

I∂jY
JYPYQ

(
⟨1|PIJM−1QL|1/3⟩+Y LYR⟨1|PIJM−1QR|4/3⟩

)
−∂jY JYP

(
⟨0|JM−1PL|1/3⟩+Y LYQ⟨0|JM−1PQ|4/3⟩

) )
G̃LK

(
∂kY

K ,Y K
)
.

Computing the inverse matrix G̃IJ is straightforward, but would be rather cumbersome, and
might not be the easiest way to get the explicit uplift ansatz. We will rather use this formula
to prove equation (4.15) and (4.16) that are a priori easier to use in practice. Note first
that (4.29) is compatible with the ansatz (4.14). Putting back this ansatz in (4.9) one obtains

αĨ J̃ L̃⟨̃0|
L̃M−1K̃ |̃0⟩ = −⟨̃1/3|Ĩ J̃M

−1K̃ |̃0⟩ . (4.30)

We note that the right ket on both sides of this equation reads

U−1K̃ |̃0⟩ =
(
U−1k |̃0⟩ , U−19 |̃0⟩

)
= g det̊g

1
2
(̊
gkl∂lYLYQ

QL|1/3⟩ , YQYS QS |4/3⟩
)
. (4.31)

Using this expression one rewrites (4.30) as23(
∂iY

I∂jY
J∂lY

L
αIJL∂iY

I∂jY
J

αIJ

∂jY
J∂lY

L
αJL 0

)(
g̊lp∂pYRYP ⟨1

3 |
PRM−1

YPYR⟨4
3 |
PRM−1

)
⊗
(
QK |1

3⟩YQ,
QS |4

3⟩YQYS
)

=

 ∂iY I∂jY
J
(

αIJLYP ⟨1
3 |
PLM−1 + αIJYLYP ⟨4

3 |
PLM−1

)
∂jY

J
αJLYP ⟨1

3 |
PLM−1

⊗
(
QK |1

3⟩YQ,
QS |4

3⟩YQYS
)

=
(
−∂iY I∂jY

JYL⟨1|LIJM−1

∂jY
J⟨0|JM−1

)
⊗
(
QK |1

3⟩YQ,
QS |4

3⟩YQYS
)
, (4.32)

23This equation should be read such that
(
⟨ψ1|
⟨ψ2|

)
⊗
(
|ψ3⟩, |ψ4⟩

)
=
(

⟨ψ1|ψ3⟩ ⟨ψ1|ψ4⟩
⟨ψ2|ψ3⟩ ⟨ψ2|ψ4⟩

)
.Note that one cannot

eliminate the multiplication by the right vector on both sides of the equation because of the Hilbert space
scalar product.
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where one used the identity

∂jY
[J∂lY

L]̊glk∂kYK = ∂jY
[J
δ
L]
K , (4.33)

to factor out the tensor product with the vector(
QK |1/3⟩YQ,QS |4/3⟩YQYS

)
. (4.34)

Recombining these equations into the four components of a matrix gives precisely (4.15)
and (4.16). These equations are equivalent to (4.29), and therefore completely determine
αijk and α9ij .

For the one-forms one computes from (A.34) and (3.9) that

⟨̃0|i|A⟩ = r−
2
9 esu−10

Iu−1i
J⟨1/3|IJ |A⟩ = g YI g̊ij∂jYJ⟨1/3|IJ |A⟩ ,

⟨̃0|9|A⟩ = r
7
9 esu−10

Iu−10
J⟨4/3|IJ |A⟩ = g YIYJ⟨4/3|IJ |A⟩ ,

⟨̃1/3|9i|A⟩ = −r−
5
9 esuI i⟨0|I |A⟩ = −g ∂iY I⟨0|I |A⟩ ,

⟨̃1/3|ij |A⟩ = r
4
9 esu−10

KuI iuJ j⟨1|KIJ |A⟩ = g YK∂iY I∂jY
J⟨1|KIJ |A⟩ . (4.35)

Note that this does not involve the degree 2/3 component of the gauge supergravity one-form
that contribute instead to the six-form potential in eleven-dimensional supergravity, with

1
24εijklpqrs⟨̃2/3|

pqrs|A⟩ = −r
1
9 esuI iuJ juKkuLl⟨2/3|IJKL|A⟩

= −g ∂iY I∂jY
J∂kY

K∂lY
L⟨2/3|IJKL|A⟩ . (4.36)

For the two-form one computes that

⟨̃0|J̃ ⊗ ⟨̃1/3|9J̃ ||C
′⟩⟩ = −1

2r
− 7

9 e2su−10
I ⟨1/3|IJ ⊗ ⟨0|J

(
||C⟩⟩ + 2|A⟩ ∧ |A⟩

)
, (4.37)

⟨̃0|J̃ ⊗ ⟨̃1/3|iJ̃ ||C
′⟩⟩ = −1

2r
2
9 e2su−10

Iu−10
JuKi

(
⟨4/3|IJ ⊗ ⟨0|K + ⟨1/3|LI ⊗ ⟨1|JKL

)
||C⟩⟩ ,

which gives (4.19).

4.2 Truncation to the SO(3) × SO(6) invariant sector

The solutions of SO(9) gauged supergravity are expected to be relevant to the study of the
holographic dual of the D0-brane matrix quantum mechanics [3]. It is natural to wonder
if its massive supersymmetric deformation known as the BMN matrix model [34] can also
be analysed in gauged supergravity. The latter deformation breaks SO(9) to SO(3)×SO(6).
There is a large set of vacua in the BMN matrix model that are holographically dual to
one-half BPS solutions in eleven-dimensional supergravity with a non-vanishing four-form field
strength [69, 70]. These solutions are generally too complicated to be uplifts of solutions of
SO(9) gauged supergravity, because they involve arbitrary combinations of the SO(3)×SO(6)
invariant harmonics on S8. Moreover, one can check from the supersymmetry transformations
given in [16] that the one-half BPS solutions within the SO(3)×SO(6) invariant truncation of
SO(9) gauged supergravity necessarily have a vanishing axion, and therefore uplift in eleven
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dimensions to solutions with vanishing four-form field strength.24 It is therefore very unlikely
that SO(9) gauged supergravity reproduces any BMN vacuum solutions. Nevertheless,
we will argue that this truncation is relevant for describing the BMN matrix models at
finite temperature.

The general SO(3)×SO(6) invariant ansatz for the fields of SO(9) gauged supergravity
can be written as follows

m = e−2ϕ13 ⊕ eϕ16 ⇒ mab = e2ϕδab , mâb̂ = e−ϕδâb̂ , aabc = εabca , (4.38)

where a = 1, 2, 3 and â = 4 to 9. We set to zero the pure gauge fields babc, hab and hâb̂.
One parametrises the S8 embedding coordinates Y I as

Y a = ζ Y a
2 , Y â =

√
1 − ζ2Y â

5 , (4.39)

in terms of the S2 and S5 embedding coordinates Y a
2 and Y â

5 and ζ ∈ [0, 1]. One defines
accordingly the round metrics

g̊2αβ = δab∂αY
a

2 ∂βY
b

2 , g̊5 α̂β̂ = δâb̂∂α̂Y
â

5 ∂β̂Y
b̂

5 . (4.40)

Within this truncation, the internal metric is determined by the matrix elements

⟨1/3|abM−1cd|1/3⟩ = e2σϱ
14
9
(
e4ϕ + ϱ−

2
3 e−2ϕa2)2δc[aδb]d ,

⟨1/3|ab̂M−1cd̂|1/3⟩ = e2σϱ
14
9 eϕδacδb̂d̂ ,

⟨1/3|âb̂M−1ĉd̂|1/3⟩ = e2σϱ
14
9 e−2ϕ2δĉ[âδb̂]d̂ ,

⟨4/3|abM−1cd|4/3⟩ = e2σϱ
32
9
(
e4ϕ + ϱ−

2
3 e−2ϕa2)δc(aδb)d ,

⟨4/3|ab̂M−1cd̂|4/3⟩ = 1
2e

2σϱ
32
9
(
eϕ + 1

2ϱ
− 2

3 e−5ϕa2)δacδb̂d̂ ,
⟨4/3|âb̂M−1ĉd̂|4/3⟩ = e2σϱ

32
9 e−2ϕδĉ(âδb̂)d̂ , (4.41)

while the other components appearing in (4.12) vanish. One obtains the inverse matrix
G−1 as a block diagonal matrix

e2ςρ
8
9GĨ J̃∂Ĩ∂J̃ = g2ζ4(1 − ζ2)4 det̊g2 det̊g5e

2σϱ
14
9

(
e2ϕ∆(1 + f)

ζ2 g̊αβ2 ∂α∂β + e−ϕ∆
1 − ζ2 g̊

α̂β̂
5 ∂α̂∂β̂

+ eϕ(1 − ζ2)∂ 2
ζ + ϱ2∆2(1 + f)∂ 2

ψ

)
,

(4.42)

where

∆ = ζ2e2ϕ + (1 − ζ2)e−ϕ > 0 , f = ζ2e−4ϕϱ−
2
3a2

∆ ≥ 0 . (4.43)

24In principle the eleven-dimensional solution could involve sixteen Killing spinors that are not all contained
within the truncation to D = 2 supergravity.
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We write ψ = y9 the coordinate of the M-theory fibre, and t, z the two-dimensional coordinates.
Altogether, we obtain the eleven-dimensional metric is25

ds2
11D = g2e2σ∆(1+f) 1

3
(
−dt2+dz2)+ϱ 4

9 (1+f) 1
3

(
e−ϕ∆ dζ2

1−ζ2 + e−2ϕ

(1+f)ζ
2d̊s2

2+eϕ(1−ζ2)d̊s2
5

)

+ϱ− 14
9

1
∆(1+f) 2

3

(
dψ+ζ2ω3+(1−ζ2)ω6

)2
, (4.44)

where the Kaluza-Klein one-form (4.18b) is given in terms of the two gauge supergravity
one-forms

ω3 δ
ab = g⟨4/3|ab|A⟩ , ω6 δ

âb̂ = g⟨4/3|âb̂|A⟩ , (4.45)

that satisfy

dω3 = −g2e2σϱ
5
9
(
e4ϕ + 6eϕ + e−2ϕϱ−

2
3a2)dt ∧ dz ,

dω6 = −g2e2σϱ
5
9
(
4e−2ϕ + 3eϕ

)
dt ∧ dz . (4.46)

This uplift ansatz was already written in [11, 17] for a vanishing axion a = 0.
For a ̸= 0, one also gets a non-zero three-form in eleven dimensions. It is determined

by the matrix elements

⟨0|cM−1ab|1/3⟩ = εabce
2σϱ

8
9 e−2ϕa ,

⟨1|eabM−1cd|4/3⟩ = εab
(cδd)ee2σϱ

26
9 e−2ϕa+ δe[aZ

cd
b] ,

⟨1|êabM−1cd̂|4/3⟩ = 1
2εab

cδd̂êe2σϱ
26
9 e−5ϕa , (4.47)

where the unspecified tensor Zcdb does not contribute to the three-form ansatz, while the
other components of (4.28) vanish. One obtains

α9ij = εabcY
a

2 ∂iY
b

2 ∂jY
c

2 ϱ
− 2

3 ζ3 e−4ϕ

∆(1 + f)a , αijk = 0 , (4.48)

and
d⟨1|cab|A⟩ = −ge2σϱ−

1
9 e−2ϕa εab

cdt ∧ dz . (4.49)

The three-form expression (4.2) then reduces to

A11D =
(
ϱ−

2
3

e−4ϕ

∆(1 + f)a
(
dψ + ζ2ω3 + (1 − ζ2)ω6

)
+A3

)
∧ ζ3dΩS2 , (4.50)

with the one-form A3 defined by A3εab
c = g⟨1|cab|A⟩ and satisfying

dA3 = −g2e2σϱ−
1
9 e−2ϕa dt ∧ dz . (4.51)

Let us now describe a few properties of the corresponding solutions. The topology of the
sphere S8 is not modified by the deformation. The coordinate singularities at ζ → 0

e−ϕ∆ dζ2

1 − ζ2 + e−2ϕ

(1 + f)ζ
2d̊s2

2 + eϕ(1 − ζ2)d̊s2
5 ∼ e−2ϕ(dζ2 + ζ2d̊s2

2
)

+ eϕd̊s2
5 , (4.52)

25Here d̊s2
2 = g̊αβdyαdyβ denotes the sphere round metric and d̊s2

5 the round metric on S5.
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and ζ → 1

e−ϕ∆ dζ2

1 − ζ2 + e−2ϕ

(1 + f)ζ
2d̊s2

2 + eϕ(1 − ζ2)d̊s2
5 ∼ eϕ

((
d
√

1 − ζ2
)2

+ (1 − ζ2)d̊s2
5

)

+ e−2ϕ(
1 + e−6ϕϱ−

2
3a2

) d̊s2
2 , (4.53)

can indeed be removed by a change of variables for all finite values of the fields ϕ and
a. In particular the internal space parametrised by the segment ζ ∈ [0, 1] and the two
spheres is a squashed S8.

The Killing vector field ∂t is light-like in the one-half BPS purely gravitational pp-waves
in eleven dimensions [11], however, it is never light-like for a non-trivial axion profile. The
norm squared of ∂t is indeed proportional to

g2e2σ∆2(1 + f) − ϱ−
14
9 (ζ2ω3 t + (1 − ζ2)ω6 t)2 , (4.54)

which never vanishes for a ̸= 0.
Let us now compare the SO(3)×SO(6) truncation ansatz derived in this section to

the SO(3)×SO(6) invariant ansatz in eleven dimensions considered in [35]. To do so we
introduce the inverse radius holographic coordinate x(z), that is related to the conformal
gauge coordinate z as

∂x(z)
∂z

= 1 − x(z)7

x(z)
3
2

. (4.55)

The coordinates we use here are related to the one used by CGPS in [35] as follows

t = ηCGPS , ζ = xCGPS

√
2 − (xCGPS)2 , ψ = −ζCGPS − ηCGPS , x = yCGPS . (4.56)

For simplicity we set g = 1. Following the ansatz considered in [35], one writes

e2σ = 1 − x7

x7 h1(x) , ϱ = x−
9
2h2(x) , (4.57)

for the functions h1(x), h2(x), a(x) and ϕ(x) that are analytic at x = 0. For a = ϕ = 0 and
h1 = h2 = 1, one gets back the black hole solution [71, 72], which was shown to be a solution
of SO(9) gauged supergravity in [17]. This solution interpolates between the one-half BPS
pp-wave solution [7] at x = 0 and the near horizon of a ten-dimensional Schwarzschild black
hole solution times a circle at x = 1. It is therefore interpreted as the holographic dual of the
BFSS matrix quantum mechanics at finite temperature [4, 35, 72]. Here we use dimensionless
coordinates as in [35], such that the radius of the M-theory circle and the mass of the black
hole are reabsorbed in the rescalings e2σ(x) → ℓ2e2σ(r0x), ϱ(x) → ℓ

9
2 ϱ(r0x).

According to [35], one can consider the high temperature limit of the BMN matrix
model by including a perturbation associated to the non-normalisable mode of the three-form
potential. Within gauged supergravity, one can consider the linearised solutions for the axion
and the dilaton expressed in terms of hypergeometric functions 2F1

a(x) = −3
4
(
µ̂x 2F1(1

7 ,
4
7 ; 5

7 ;x7) + αx3
2F1(3

7 ,
6
7 ; 9

7 ;x7)
)

+ O(x5) ,

ϕ(x) = βx2
2F1(2

7 ,
2
7 ; 4

7 ;x7) + γx5
2F1(5

7 ,
5
7 ; 10

7 ;x7) + O(x4) , (4.58)
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where the neglected orders are needed to solve the non-linear equations and are indicated
in the limit x → 0. They can be solved perturbatively in x near the asymptotic boundary
at x = 0, and perturbatively in (1 − x) log(1 − x) and 1 − x near the black hole horizon at
x = 1. Here the parameters µ̂ and β are associated to the non-normalisable modes, while
α and γ are associated to normalisable modes (in D = 2) that must be determined by the
regularity of the solution at the horizon. It is the parameter µ̂ = 7

12π
µ
T that triggers the

BMN deformation, where µ is the BMN mass parameter and T the temperature [35]. The
corresponding system we obtain from SO(9) gauged supergravity is a truncation of the ansatz
considered in [35] to the lowest harmonics on the sphere S8, and on which one imposes the
gauge g11D(∂ζ , ∂x) = 0 using a reparametrisation x = x(x′, ζ).

Solving this system perturbatively in small x one obtains the expansion

2e2σ = 1−x7

x7

(
1− 14β2

13 x4− 11µ̂2

1200x
5+O(x6)

)
, ϱ=x−

9
2

(
1− 9β2

13 x4− 3µ̂2

100x
5+O(x6)

)
,

a=−3
4

(
µ̂x+αx3+

(
3αβ− 24β2µ̂

13

)
x5+O(x6)

)
, ϕ=βx2+β2

2 x4+γx5+O(x6) ,

(4.59)

such that

A11D = 1
x3

(
µ̂+ 3(α− 3βµ̂)

2 x2 + O(x4)
)

dt∧ζ3dΩS2 −
3
4 µ̂x

4(1+O(x2))dψ∧ζ3dΩS2 . (4.60)

The leading term of A11D proportional to µ̂ reproduces the asymptotic expansion of the
non-normalisable mode that triggers the BMN deformation. However, one can check that
the uplifted solution does not include all the harmonics in ζ that appear in the numerical
solution [35] and therefore, we cannot reproduce the latter from SO(9) gauged supergravity.
It would be very interesting to investigate whether a regular solution exists within the
consistent truncation.

SO(9) gauged maximal supergravity captures important features of the BFSS matrix
model both at zero and finite temperature [11, 17] and we have argued that it can also be
relevant in describing the BMN model at finite temperature. An interesting application in
this direction would be to study axionic perturbations of the so-called rotating D0 brane
solutions [17, 71], along the lines of the discussion above. More generally, having access to the
full SO(9) theory and its uplift opens up the possibility of studying many other deformations
of the BFSS model with different symmetry breaking patterns.
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A Algebras and decompositions

In this appendix, we collect more details on several decompositions of e8, e9 and their
representations that are used in the main body of the paper.

A.1 The gl8 branching of e8 and e9

The graded decomposition of e8 under its gl8 subalgebra associated with nodes 1, . . . , 7 of
figure 1 was given in (2.1) along with a convention of the generators and their transformation
under gl8 in (2.3).

In order to complete this description to e8, we begin by giving the normalisations of
all the generators

〈
T ij
∣∣∣T kℓ〉 = δiℓδ

k
j −

1
9δ

i
jδ
k
ℓ ,〈

T i1i2i3
∣∣∣Tj1j2j3〉 = 3! δi1i2i3j1j2j3

,〈
T ij
∣∣∣Tkℓ〉 = 2 δijkℓ ,〈
T i
∣∣∣Tj〉 = δij . (A.1)

The induced bilinear form is the Cartan-Killing form on e8 and invariant under the
commutation relations (2.4) and26

[
T i1i2i3 , T i4i5i6

]
= 1

2ε
i1...i6kℓTkℓ ,

[
T i1i2i3 , T j1j2

]
= −1

6ε
i1i2i3j1j2k1k2k3Tk1k2k3 ,[

T i1i2i3 , Tj1j2

]
= 6 δ[i1i2

j1j2
T
i3]
,

[
Ti1i2i3 , T

j
]

= 3 δj[i1Ti2i3] ,[
T i, Tj

]
= T ij + δij T

k
k ,

[
T ij , Tkℓ

]
= 4 δ[i

[k T
j]
ℓ] − 2 δijkℓT

p
p ,

[Tij , Tk] = Tijk (A.2)

In particular, we note T i = 1
42
[
T ij1j2 , Tj1j2

]
.

As explained in section 2.1, the generators T ij , T i and T−i form an sl9 algebra whose
generators are denoted by T IJ and commutation relation given in (2.6). The e8 Killing
form restricted to this sl9 is

⟨T IJ |TKL⟩ = δILδ
K
J − 1

9δ
I
Jδ

K
L . (A.3)

The branching of e8 under sl9 is (see (2.7))

248 = 84 ⊕ 80 ⊕ 84 (A.4)

where the 84 generators T IJK = T [IJK] are made out of T ijk and T ij and similarly for the
downstairs indices and the induced normalisation is

⟨T IJK |TLMN ⟩ = 3! δIJKLMN , (A.5)

26The numerical εi1...i8 ∈ {−1, 0, 1} commutes with T ij .
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while the e8 commutation relations become[
T IJ , T

K1K2K3
]

= 3δ[K1
J T

K2K3]I − 1
3δ

I
JT

K1K2K3 ,[
T IJ , TK1K2K3

]
= −3δI[K1

TK2K3]J + 1
3δ

I
JTK1K2K3 ,[

T I1I2I3 , TJ1J2J3

]
= 18 δ[I1I2

[J1J2
T
I3]
J3] , (A.6)[

T I1I2I3 , T I4I5I6
]

= −1
6ε

I1...I9TI7I8I9 ,

[TI1I2I3 , TI4I5I6 ] = 1
6εI1...I9T

I7I8I9 .

Note that (2.7) is not a graded decomposition of e8 as exemplified by the last two com-
mutators above.

The gl8 basis of e8 can be extended to the loop algebra ê8 of e8 as

Tn i , T ijn , Tn ijk , T in j , T ijkn , Tn ij , T in (A.7)

with n ∈ Z corresponding to the loop number.
The central element K occurs in the central extension of the loop commutators:[

TAm, T
B
n

]
= fABC T

C
m+n +mηABδm,−nK , (A.8)

where fABC are the e8 structure constants and ηAB the Killing form. For example, we have[
T i1, T−1 j

]
= T ij + δijT

k
k + δijK . (A.9)

A.2 Basic representation

The dual of the basic representation R(Λ0)−1, in which derivatives take their values, is
written in terms of bra vectors as in (2.22) with e8 decomposition given in (2.24). Using the
gl8 ⊂ e8 subalgebra defined in (2.3), this can be further decomposed under gl8 according
to the following doubly graded decomposition

R(Λ0)−1 = 1(0)
0 ⊕

(
8(−1) ⊕ 28(−2/3) ⊕ 56(−1/3) ⊕ (gl8)(0) ⊕ 56(1/3) ⊕ 28(2/3) ⊕ 8(1)

)
1
⊕ . . .

(A.10)

The superscripts denote the gl1 ⊂ gl8 weights whereas the subscripts are the affine levels
(in e9) with respect to L0. For example, the 8(1)

1 corresponds to the state ⟨0|T1 i. We also
note the decomposition

3875 = 8(−5/3) ⊕ 70(−4/3) ⊕
(
28 ⊗ 8

)(−1) ⊕
(
56 ⊗ 8 ⊕ 36

)(−2/3) ⊕
(
70 ⊗ 8 ⊕ 168

)(−1/3)

⊕ (720 ⊕ 2×63 ⊕ 1)(0) ⊕
(
70 ⊗ 8 ⊕ 168

)(1/3)
. . . (A.11)

of the next e8 representation under gl8 which enters at affine level two in (2.24). Some of
the representations were written reducibly as tensor products for conciseness. The following
mixed tensors appear: 168 = R(λ1+λ2) and 720 = R(λ2+λ6), where the weights refer to
sl8 and 8 = R(λ7) in these conventions.
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The module R(Λ0)−1 is irreducible and therefore there are null vectors that are generated
when acting with the loop generators on the groundstate ⟨0|, i.e., not all states

⟨0|
∏
i

TAini (A.12)

are non-vanishing, where ni > 0 since the groundstate is e8 invariant, and Ai denotes an
adjoint e8 index. As we shall make use of some them, we work out a few examples of such
null states in the further gl8 decomposition.

At L0-level two, we could write the vector

⟨0|T (i
1 T

j)
1 . (A.13)

By construction this would have to be part of the 27000 in the symmetric tensor product
of two e8 adjoints. However, by inspecting (2.24), we know the generic symmetric 27000 of
e8 is absent at level two. Therefore, the above vector has to be a null vector in the Verma
module, i.e., it vanishes in the irreducible module R(Λ0)−1.

This can be checked by direct computation by using (2.12) and the gl8 invariance of
the ground state:

⟨0|T (i
1 T

j)
1 T−1 k = ⟨0|

(
δ

(i
k T

j)
1 + T

(i
1 T

j)
0 k + δ

(i
k T

j)
1 T

ℓ
0 ℓ + δ

(i
k T

j)
1

)
= ⟨0|

(
δ

(i
k T

j)
1 − δ

(i
k T

j)
1 − δ

(i
k T

j)
1 + δ

(i
k T

j)
1

)
= 0 . (A.14)

Since the generic anti-symmetric 30380 is also absent (and since [T im, T jn] = 0 by gl8 grading),
one actually has the null vector

⟨0|T i1T
j
1 = 0 (A.15)

without any specific symmetry assumptions.
This null state has as a descendant

⟨0|T (i
1 T

j)
2 = 1

2⟨0|T
(i
1 T

j)
1 L1 (A.16)

since again [T i1, T
j
2 ] = 0. Therefore in the module R(Λ0)−1 the following relation holds

⟨0|T i1T
j
2 = ⟨0|T [i

1 T
j]
2 , (A.17)

which thus automatically projects to the anti-symmetric rank-two representation of gl8 at
L0 eigenvalue three.

A.3 Branching of the basic module under spectrally flowed sl9

In section 2.1.2 we have introduced spectrally flowed sl9 subalgebras of e9 for any p ∈ Z.
The case p = 0 corresponds to the sl9 ⊂ e8 with generators T IJ that appear in (2.6). For
any p ∈ Z, we have defined the flowed sl9 in (2.8). We also record here that the shifted
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bilinear form η−k αβ introduced in (2.20) takes the following form in the basis where the
sl9 was flowed by p ∈ Z units

η−k αβTα ⊗ Tβ =
∑
m∈Z

(
T I
m−k J ⊗ TJ−mI + 1

6TIJKm−k−p/3 ⊗ T−m+p/3 IJK

+ 1
6T−m+p/3 IJK ⊗ TIJKm−k−p/3

)
− L−k ⊗ K − K ⊗ L−k . (A.18)

In the following we work out some details of the decomposition of the basic module
R(Λ0)−1 under the various flowed sl9 subalgebras of e9. A summary of the results was
given in section 2.2.

A.3.1 Spectral flow by p = 1 unit

The case p = 1 corresponds to the D = 11 gravity line and we recall from section 2.1.3 that
we use the convention to denote generators in the p = 1 with a tilde. The corresponding
fundamental indices are written as Ĩ = (i, 9), where, contrary to the p = 2 flow, we denote
the index extending the gl8 by 9 rather than 0.

The lowest eigenvalue of L̃0 = L0 + T ℓ0 ℓ + 4
9K is L̃0 = 4

9 and it is realised by the states

⟨0| = 1
8⟨0|T

k
1 T−1 k = 1

8⟨0|T̃
k
0 9T̃9

0 k and ⟨0|T i1 = ⟨0|T̃i0 9 , (A.19)

in the module R(Λ0)−1. We have written the states in several forms to emphasise that
we can identity among these lowest L̃0 states an sl9 representation 9 of the p = 1 flowed
sl9 that we write as

⟨̃0|Ĩ with ⟨̃0|9 = ⟨0| , ⟨̃0|i = −⟨0|T i1 . (A.20)

Under the p = 1 flowed sl9 this transforms as

⟨̃0|Ĩ T̃J̃0 K̃ = −δĨ
K̃
⟨̃0|J̃ + 1

9δ
J̃
K̃
⟨̃0|Ĩ , (A.21)

where the extra term is required by the tracelessness of sl9 and the minus sign in (A.20)
is related to the minus sign in the sl9 action.

The physical interpretation of this 9 is that the corresponding nine derivatives are those
of the coordinates of the M-theory solution of the section constraint that completes the two
external coordinates to D = 11 dimensions.

The next possible L̃0 eigenvalue is 7
9 and is obtained by the action with T̃1/3 Ĩ J̃K̃ on the 9:

⟨̃1/3|Ĩ J̃ = 1
7 ⟨̃0|

K̃T̃1/3 Ĩ J̃K̃ . (A.22)

Plugging in the definition of T̃1/3 Ĩ J̃K̃ from (2.13) we find for example explicitly

⟨̃1/3|ij = 1
7⟨0|T1ij −

1
7⟨0|T

k
1 T0ijk ,

⟨̃1/3|i9 = 1
7⟨0|T

k
1 T1ik . (A.23)
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One can continue the construction of the module R(Λ0)−1 along these lines and ends
up with the following decomposition

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕
(
9 ⊕ 315

)
13
9
⊕
(
36 ⊕ 45 ⊕ 720

)
16
9
⊕ . . . . (A.24)

Some specific basis elements of this decomposition are defined as

⟨̃1/3|Ĩ J̃ = 1
7 ⟨̃0|

K̃T̃1/3 Ĩ J̃K̃ , ⟨̃2/3|Ĩ J̃K̃L̃ = ⟨̃0|Ĩ T̃J̃K̃L̃2/3 ,

⟨̃1|Ĩ J̃
K̃

= ⟨̃0|Ĩ T̃J̃1 K̃ − 1
10δ

J̃
K̃
⟨̃0|L̃T̃Ĩ1L̃ , ⟨̃4/3|Ĩ J̃ = 1

8 ⟨̃1/3|K̃(Ĩ T̃
K̃
1 J̃) , (A.25)

where we have labelled the state by the L̃0 weight relative to that of the lowest 9. Note that,
due to the irreducibility of the module, some symmetries are implied for the left-hand sides
that are not manifest on the corresponding right-hand sides. For instance, the state ⟨̃2/3|Ĩ J̃K̃L̃

is completely anti-symmetric in its four indices and belongs to the 126 representation. The
naïve (3, 1) mixed symmetry term on the right-hand side of its definition is a null state.
Similarly, the state ⟨̃1|Ĩ J̃

K̃
is anti-symmetric in Ĩ J̃ and contains a trace and thus represents

reducibly the two components 9⊕315 at L̃0 level 13
9 . For L̃0 level 16

9 we have only written out
the definition of the component in the 45 since this is the only one that appears in our analysis.

A.3.2 Spectral flow by p = 2 units

The generators and indices for the spectral flow by p = 2 are the prevalent ones in the paper
and therefore written without tilde. The lowest L0 = L0 + 2T ℓ0 ℓ + 16

9 K eigenvalue that can
be obtained is again L0 = 4

9 and arises for the states

⟨0|T j1T1 ij = ⟨0|Tj−1 0T−1/3 ij0 and ⟨0|T j1T1 ijT
j
2 = ⟨0|Tj−1 0T−1/3 ij0Ti0 0 (A.26)

that together form a 9 under the p = 2 flowed sl9. We have written the states both in the
standard gl8 basis of e9 and in terms of the flowed affine generators from section 2.1.2. We
will write the corresponding ground state as

⟨0|I with ⟨0|i = ⟨0|T j1T1 ij , ⟨0|0 = 1
8⟨0|T

j
1T1 ijT

i
2 (A.27)

that transforms under the flowed sl9 as

⟨0|ITJ0K = δJI ⟨0|K − 1
9δ

J
K⟨0|I , (A.28)

where the extra term is due to the tracelessness of TJ0K .
The next L0 eigenvalue that arises is L0 = 7

9 which occurs for the states

⟨0|T i1 = ⟨0|Ti−1 0 and ⟨0|T i1T
j
2 = ⟨0|Ti−1 0Tj0 0 . (A.29)

Due to the structure of the module R(Λ0)−1 we know (see (A.17)) that the second state is
automatically anti-symmetric in [ij] and therefore these two states together form a 36 of
the flowed sl9. We write it and subsequent states as

⟨1/3|IJ = 1
7⟨0|KTIJK1/3 , ⟨2/3|IJKL = ⟨0|IT2/3 JKL ,

⟨1|KIJ = ⟨0|ITK1 J − 1
10δ

K
J ⟨0|LTL1 I , ⟨4/3|IJ = 1

8⟨1/3|
K(ITJ)

1 K . (A.30)
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Note that ⟨1|KIJ is anti-symmetric in IJ even though this is not manifest on the right-hand
side of its definition. This formula is similar to (A.25) and corresponds to the branching

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕
(
9 ⊕ 315

)
13
9
⊕ (36 ⊕ 45 ⊕ 720) 16

9
⊕ . . . (A.31)

It is also useful to write out some consequences of the irreducibility of the module in
this basis, i.e., the structure of the null vectors. We have

⟨0|LTIJK1/3 = 3 δ[I
L ⟨1/3|

JK] ,

⟨0|IT2/3 JKL = ⟨0|[IT2/3 JKL] , (A.32)
⟨0|KTIKL1/3 T2/3L[J1J2 ΘJ3]I = −42⟨0|[J1TI1 J2 ΘJ3]I ,

where in the last relation ΘIJ = Θ(IJ) is any symmetric sl9 tensor (in the 45).
Moreover, since the 3616/9 in (A.31) is multiplicity-free, one can show that

⟨1/3|P [ITJ ]
1P = 5⟨1/3|IJL1 (A.33)

by relating the two ways of reaching this representation.

A.3.3 Relation between the two bases and matrix elements

The basis elements in the two decompositions (A.25) and (A.30) are related by

⟨̃0|9 = ⟨4/3|00 , ⟨̃0|i = ⟨1/3|0i ,

⟨̃1/3|i9 = ⟨0|i , ⟨̃1/3|ij = ⟨1|0ij ,

⟨̃2/3|ijkl = − 1
24ε

ijklpqrs⟨2/3|pqrs , ⟨̃1|ij9 = ⟨1/3|ij ,

⟨̃1|i99 = 2⟨4/3|i0 . (A.34)

This can be verified by following through the definitions of all objects.
For the uplift formulæ we also require the dressing by V of the basis states (A.30) in

the p = 2 flowed basis of the basic representation. Here, V is the E9 element given in (2.39)
and the dressing results in

⟨0|IV −1 = eσϱ
4
9 vA

I⟨0|A

⟨1/3|IJV −1 = eσϱ
7
9
(
v−1I

Av−1J
B⟨1/3|AB + ϱ−

1
3aIJKvA

K⟨0|A
)
, (A.35)

as well as

⟨1|KIJV
−1 = eσϱ

13
9

(
vA

IvB
Jv−1K

C⟨1|CAB−
1
2ϱ

− 1
3 aKP QvA

IvB
JvC

P vD
Q⟨2/3|ABCD (A.36)

+ϱ− 2
3
(
δK

P bIJQ+δK
[I bJ]P Q

)(
v−1P

Av−1Q
B⟨1/3|AB+ϱ− 1

3 aP QRvA
R⟨0|A

)
− 1

48ϱ
− 2

3 εIJL1...L7a
KL1L2aL3L4L5v−1L6 Av−1L7 B⟨1/3|AB

+ϱ−1
(

2δK
[I h

L
J]−2hK

[Iδ
L
J]−

1
144εIJP1...P7a

KP1P2aP3P4P5aP6P7L

)
vA

L⟨0|A
)

– 44 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

and

⟨4/3|IJV −1 = eσϱ
16
9

(
v−1I

Av−1J
B⟨4/3|AB−ϱ−1h(I

Kv−1J)
Av−1K

B⟨1/3|AB

+ 1
2ϱ

−1/3aKL(Iv−1J)
AvB

KvC
L⟨1|ABC+ϱ−4/3aKL(IhJ)

LvA
K⟨0|A

− 1
8ϱ

−2/3aKL(IaJ)PQvA
KvB

LvC
P vD

Q⟨2/3|ABCD

− 1
288ϱ

−1aK1K2(IaJ)K3K4aK5K6K7εK1...K7RSv−1R
Av−1S

B⟨1/3|AB

− 1
1152ϱ

−4/3aK1K2(IaJ)K3K4aK5K6K7aK8K9LεK1...K9vA
L⟨0|A

)
, (A.37)

where use of (A.32) was made repeatedly. The (flattened) basis vectors are normalised
such that

⟨0|AB|0⟩ = δB
A , ⟨1/3|AB

CD|1/3⟩ = 2δAB
CD ,

⟨2/3|ABCD
EFGH|2/3⟩ = 24 δEFGH

ABCD , ⟨1|CAB
EF
G |1⟩ = 2δEF

ABδ
C
G + 4δC[F

AB δ
E]
G ,

⟨4/3|AB
CD|4/3⟩ = δ

(A
(Cδ

B)
D) . (A.38)

A.4 Inequivalent flows

Using the decomposition of the basic representation, we can discuss conjugacy of the various
flowed algebras that were defined in section 2.1.2. As one of the main points will be comparing
different units of flow p, we decorate the Virasoro generator by a label that keeps track of
this and so write L(p)

0 and similarly for the other flowed generators T in this section only.
In the case p = 0 mod 3, the algebra that commutes with L(p)

0 is again gl1 ⊕ gl1 ⊕ e8,
composed of

K , L(p)
0 , T(p)I

0 J , T(p)IJK
0 , T(p)

0 IJK . (A.39)

Starting from the original vacuum of the basic module ⟨0|, one can built a state of eigenvalue
0 with respect to L(3)

0 for p = 3 as

⟨0|′ = ⟨0|T i1T
j
2T1 ij . (A.40)

This state is in the highest weight representation of the 1472504 of E8 in (2.24), and is
therefore annihilated by all generators

T−n−3i , T ij−n−2 , T−n−1ijk , T i
−nj+

1
3δn,0δ

i
jK , T ijk1−n , T2−nij , T i3−n ,

(A.41)

for n ≥ 0 and defines a vacuum state vector for the L(3)
0 decomposition of the basic module. One

can construct the vacuum states of all L(p)
0 for p = 0 mod 3 using the same procedure, because

L(p+3)
0 = L(p)

0 + 3T(p)
0
i
i + 4K , (A.42)

for any p and one can therefore obtain the spectral flowed subalgebra at p + 3 from the
one at p. Writing the vacuum ⟨0|(q) of the basic module of eigenvalue 0 with respect to L(p)

0
for p = 3q, one obtains by construction that

ηαβ⟨0|(q)Tα ⊗ ⟨0|(q)Tβ = 0 , (A.43)
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and therefore that ⟨0|(q) is in the E9 orbit of ⟨0|(0) for an element g of the small Kac-Moody
group [73]. The stabiliser of ⟨0|(q) determines the parabolic subgroup of Levi component
GL(1)×GL(1)×E8 and all the spectrally flowed e8 subalgebras for p = 0 mod 3 are therefore
conjugate to each other in E9.

The same argument can be applied to case p = 1, 2 mod 3 using the level 3 module of
weight Λ8 in the labelling of figure 1. Then one can further check that the cases p = 1 and
p = −1 are conjugate using that T(p)

0
i
i is conjugate to −T(p)

0
i
i in E8.

Therefore there are only two conjugacy classes, for p = 0 mod 3 and p = ±1 mod 3.
The cases p = 1 and p = 2 play a prominent role in our paper and they are related by an
E9 transformation (from the small Kac-Moody group).

A.5 Reproducing physical Lagrangians

We give some details on the manipulations of (2.51) that lead to the kinetic term for the
E8/(Spin(16)/Z2) nonlinear sigma model. We begin by noticing that we can rewrite (2.51)
by isolating Pm for even or odd values of m (also taking into account hermiticity). We do so
but then add up half of each such rewriting, thus finding (we hide an overall factor of 2ϱ)∑
n∈Z

|n|PnP−n−1 = (A.44)

= 1
2P

1P 0+ 1
2
∑
n≥1

(P 2n+1−P 2n−1)P−2n− 1
2
∑
n≥0

(P−2n−P−2n−2)P 2n+1

=−1
2P

0⋆P 0+ 1
2(P 1−⋆P 0)P 0+ 1

2
∑
n≥1

(P 2n+1−P 2n−1)P−2n− 1
2
∑
n≥0

(P−2n−P−2n−2)P 2n+1

In these and the following expressions we have hidden ηAB as well as the E8 indices on the
currents, as they do not play any role in the computation. We remind the reader that these
currents are spacetime one-forms and a wedge product is understood. We now use twice a trick
similar to what we did in the dilaton/central sector. In the first series, we add and subtract
⋆P−2n inside the parenthesis. In the second series, we add and subtract ⋆P 2n+1 to find

=−1
2P

0⋆P 0+ 1
2
∑
n≥0

(P 2n+1−⋆P−2n)P−2n− 1
2
∑
n≥1

(P 2n−1−⋆P−2n)P−2n (A.45)

− 1
2
∑
n≥0

(P−2n−⋆P 2n+1)P 2n+1+ 1
2
∑
n≥0

(P−2n−2−⋆P 2n+1)P 2n+1

In the second line, we add Hodge duals as done in the dilaton/central sector:

=−1
2P

0⋆P 0+ 1
2
∑
n≥0

(P 2n+1−⋆P−2n)P−2n− 1
2
∑
n≥1

(P 2n−1−⋆P−2n)P−2n

− 1
2
∑
n≥0

(P 2n+1−⋆P−2n)⋆P 2n+1+ 1
2
∑
n≥0

(P 2n+1−⋆P−2n−2)⋆P 2n+1

=−1
2P

0⋆P 0 (A.46)

+ 1
2
∑
n≥0

(P 2n+1−⋆P−2n)(P−2n−⋆P 2n+1)− 1
2
∑
n≥0

(P 2n+1−⋆P−2n−2)(P−2n−2−⋆P 2n+1) ,

so that the first term gives the physical kinetic term as in (2.52).
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Let us now look at the axion sector in the SL(9) duality frame and reproduce (2.59).
We start with the cocycle

−2ϱ
∑
n∈Z

[(
n− 2

3

) 1
6Qn−2/3 ABCP−n−1/3

ABC +
(
n+ 2

3

) 1
6Qn+2/3

ABC P−n−5/3 ABC
]

(A.47)

and in what follows, for brevity, we will hide the ABC indices of the local SO(9)K . From
each term we extract the only term where both coefficients are along the negative modes
and write the rest in terms of n≥ 1:

(A.47) = 1
9ϱQ−1/3P−2/3− 1

3ϱ
∞∑
n=1

(
n− 1

3

)
Qn−1/3P−n−2/3+ 1

3ϱ
∞∑
n=1

(
n+ 1

3

)
Q−n−1/3Pn−2/3

+ 2
9ϱQ−2/3P−1/3− 1

3ϱ
∞∑
n=1

(
n− 2

3

)
Qn−2/3P−n−1/3+ 1

3ϱ
∞∑
n=1

(
n+ 2

3

)
Q−n−2/3Pn−1/3

=− 1
36ϱΩ−1/3Ω−2/3− 1

12ϱ
∞∑
n=0

(
Ω−1/3−nΩ−4/3−n+Ω−2/3−nΩ−5/3−n

)
(A.48)

Now we want to reproduce squares of (2.58b) and (2.58c) in the series above. To do so we
follow the same procedure as for the E8 case, but separately for the parts with weights shifted
by −1/3 and −2/3, respectively. To do so, let us define Xn to correspond to either Ω−1/3+n

or Ω−2/3+n. Then, in both cases the relevant term in the series above becomes
∞∑
n=0

X−nX−n−1 (A.49)

= −1
2X

−1X0 + 1
2

∞∑
n=1

(X−2n+1 −X−2n−1)X−2n + 1
2

∞∑
n=0

(X−2n −X−2n−2)X−2n−1 .

This is identical to (minus) the second line of (A.44) if we rewrite that expression in terms of
Ω (and rename Ω to X). Of course, the objects we are dealing with here sit in the 84 and 84
of SL(9) rather than the 248 of E8, but this plays no role in the manipulations we are carrying
out. Twisted self-duality applies to X here as it does to Ω there. We thus reuse the end result:

= 1
2X

0 ⋆ X0 (A.50)

− 1
2
∑
n≥0

(X−2n−1 − ⋆X−2n)(X−2n − ⋆X−2n−1)

+ 1
2
∑
n≥0

(X−2n−1 − ⋆X−2n−2)(X−2n−2 − ⋆X−2n−1) .

Mapping back Xn to Ω−1/3+n or Ω−2/3+n and hiding the squares of self-duality for brevity,
we have

(A.47) =− 1
18ϱΩ−1/3Ω−2/3− 1

24ϱΩ−1/3⋆Ω−1/3− 1
24ϱΩ−2/3⋆Ω−2/3+. . .

= 1
18ϱΩ−1/3Ω−2/3− 1

12ϱΩ−1/3⋆Ω−1/3+ 1
24ϱ(Ω−1/3−⋆Ω−2/3)(⋆Ω−1/3−Ω−2/3)+. . .

= 1
18ϱΩ−1/3Ω−2/3− 1

12ϱΩ−1/3⋆Ω−1/3+. . . (A.51)

reproducing the physical Lagrangian (2.59) once the indices are reinstated.
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B Details on the Weitzenböck connection

In order to work out the Weitzenböck connection (3.11) and the embedding tensor components
for the ansatz

U−1 = rL0esKu−1 (B.1)

we first note that the SL(9) matrix u acts on tensor generators written in components as

u TIJu−1 = u−1 I
KuLJTKL (B.2)

and similarly for other tensors.
With the ansatz (B.1) and the solution (3.15) to the section constraint, we then get the

trombone component of the embedding tensor to be of the simple form

⟨ϑ| = −r−1⟨∂|U−1 = −r−1∂i
(
r

7
9 esu−1 I

Ku−1 J
L

)
⟨1/3|0i . (B.3)

For the standard embedding tensor we work out the Maurer-Cartan derivative

∂iUU−1 = −∂iuIKu−1K
JTJ0 I − ∂isK − r−1∂ir L0 . (B.4)

The expression (3.17) in the body of the paper is then computed as follows

⟨θ| = r−
2
9 esu−1 0

Ku−1 i
L∂iuSPu−1P

R⟨1/3|KLTR1S
+ r−

11
9 esu−1 0

Ku−1 i
L∂ir⟨1/3|KLL1 − ⟨W+|

= r−
2
9 esu−1 0

Ku−1 i
L∂iuSPu−1P

R

(
⟨1/3|[KLTR]

1S − 2
7⟨1/3|

Q[KTL1Qδ
R]
S

)
+ 1

8r
− 2

9 es
(
u−1 0

K∂iu−1 i
R − u−1 i

K∂iu−1 0
R

)
⟨1/3|P (KTR)

1P

+ 9
7r

− 2
9 esu−1 [0

K∂iu−1 i]
R⟨1/3|KRL1 + r−

11
9 esu−1 0

Ku−1 i
L∂ir⟨1/3|KLL1 − ⟨W+|

= r−
2
9 esu−1 0

Ku−1 i
L∂iuSPu−1P

R

(
⟨1/3|[KLTR]

1S − 2
7⟨1/3|

Q[KTL1Qδ
R]
S

)
+ 1

8r
− 2

9 es
(
u−1 0

K∂iu−1 i
L − u−1 i

K∂iu−1 0
L −W+

00 u−1 0
Ku−1 0

L

)
⟨1/3|P (KTL)

1P

+ 9
14r

−16/9es∂i
(
r14/9u−1 0

Ku−1 i
L

)
⟨1/3|KLL1 , (B.5)

where we used (2.19) and the transformation

⟨1/3|IJTK0L = 2δ[I
L ⟨1/3|

J ]K + 2
9δ

K
L ⟨1/3|IJ . (B.6)

We have also specialised ⟨w+| = W+
00⟨4/3|00 and the terms in TR1S were rewritten using the

decomposition into irreducible SL(9) representations

⟨1/3|KLTR1S

=
[
⟨1

3 |
KLTR1S − ⟨1

3 |
[KLTR]

1S + 1
4δ

[K
S ⟨1

3 |
L]PTR1P − 1

40δ
R
S ⟨

1
3 |
P [KTL]

1P + 11
40⟨

1
3 |
P [KTL1P δ

R]
S

]
2079

+
[
⟨1

3 |
[KLTR]

1S − 2
7⟨

1
3 |
P [KTL1P δ

R]
S

]
720

+ 1
8
[
δKS ⟨1

3 |
P (LTR)

1P − δLS ⟨1
3 |
P (KTR)

1P

]
45

+ 9
70

[
δKS ⟨1

3 |
P [LTR]

1P − δLS ⟨1
3 |
P [KTR]

1P + 2
9δ

R
S ⟨1

3 |
P [KTL]

1P

]
36
, (B.7)
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where the subscripts are written to highlight the irreducible representations associated to
each projection. The module 2079 = R(λ1+λ2+λ8) is absent in the basic module due to

45 ⊕ 36 ⊕ 720 = 45 ⊕ 9 ⊗ 84 , (B.8)

and (2.27), and therefore does not appear in (B.5). For the 36 we have used (A.33) when
simplifying ⟨θ|, together with the fact that det u = 1.

C Exceptional field theory conventions in eleven dimensions

In order to fix the sign conventions for the exceptional field theory formulation of eleven
dimensional supergravity, it is useful to compute the four-form field strength. Using the Kaluza-
Klein ansatz (4.2) for the three-form potential, one obtains for the four-form field strength

F 11D = 1
24fĨ J̃K̃L̃(dyĨ + ⟨̃0|Ĩ |A⟩) ∧ (dyJ̃ + ⟨̃0|J̃ |A⟩) ∧ (dyK̃ + ⟨̃0|K̃ |A⟩) ∧ (dyL̃ + ⟨̃0|L̃|A⟩)

+ 1
6DαĨ J̃K̃ ∧ (dyĨ + ⟨̃0|Ĩ |A⟩) ∧ (dyJ̃ + ⟨̃0|J̃ |A⟩) ∧ (dyK̃ + ⟨̃0|K̃ |A⟩)

+ 1
2
(
FĨ J̃ + αĨ J̃K̃F K̃) ∧ (dyĨ + ⟨̃0|Ĩ |A⟩) ∧ (dyJ̃ + ⟨̃0|J̃ |A⟩) , (C.1)

where

fĨ J̃K̃L̃ = 4∂[ĨαJ̃K̃L̃]

DαĨ J̃K̃ = dαĨ J̃K̃ − 4⟨̃0|L̃|A⟩∂[L̃αĨ J̃K̃] − 3∂[Ĩ
(
⟨̃0|L̃|A⟩αJ̃K̃]L̃

)
− 3∂[Ĩ ⟨̃1/3|J̃K̃]|A⟩

FĨ J̃ = d⟨̃1/3|Ĩ J̃ |A⟩ − 3⟨̃0|K̃ |A⟩ ∧ ∂[Ĩ ⟨̃1/3|J̃K̃]|A⟩ + 2∂[Ĩ
(
⟨̃0|K̃ |A⟩ ∧ ⟨̃1/3|J̃ ]K̃ |A⟩

)
+ 4∂[Ĩ ⟨̃0|

K̃ |C⟩⟨̃1/3|J̃ ]K̃ |C⟩

F Ĩ = d⟨̃0|Ĩ |A⟩ − ⟨̃0|J̃ |A⟩∂J̃ ⟨̃0|
Ĩ |A⟩ . (C.2)

The matching of the Kaluza-Klein ansatz with the exceptional field theory parametrisation is
fixed such that the covariant derivative and the field strengths are compatible. One computes
using (4.4) that the covariant derivative in exceptional field theory gives27

DαĨJ̃K̃ = dαĨJ̃K̃−⟨̃0|L̃|A⟩∂L̃αĨJ̃K̃ +3∂P̃ ⟨̃0|
P̃ T L̃

0 [Ĩ |A⟩αJ̃K̃]L̃−
1
3∂L̃⟨̃0|

L̃|A⟩αĨJ̃K̃−∂L̃⟨̃0|
L̃T 1

3 ĨJ̃K̃ |A⟩
(C.3)

Note in particular that this determines the sign of αĨ J̃K̃ in (4.4) for a fixed sign of ⟨̃1/3|Ĩ J̃ |A⟩.
The two-form ansatz is justified by checking that it matches the exceptional contribution

27Using DV = dV − ⟨̃0|Ĩ |A⟩∂ĨV − ηαβ ⟨̃0|ĨTα∂Ĩ |A⟩VT β +hV, where h is the local K(e9) compensating trans-
formation.
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in the field strength

FĨ J̃ = ⟨̃1/3|Ĩ J̃
(
d|A⟩ − 1

2 ⟨̃0|
K̃ |A⟩∂K̃ |A⟩ + 1

2ηαβ ⟨̃0|
K̃Tα∂K̃ |A⟩T β |A⟩ + 1

2 ⟨̃0|
K̃∂K̃ |A⟩|A⟩

ηαβ∂K̃ ⟨̃0|K̃Tα|C⟩T β |C⟩ + ηαβ ⟨̃0|K̃Tα|C[1⟩T β |C2]K̃⟩ + 2⟨̃0|K̃ |C[1⟩|C2]K̃⟩

+ η−1αβ ⟨̃0|K̃Tα|C+
1 ⟩T β |C+

2K̃⟩
)

= d⟨̃1/3|Ĩ J̃ |A⟩ − 3⟨̃0|K̃ |A⟩ ∧ ∂[Ĩ ⟨̃1/3|J̃K̃]|A⟩ + 2∂[Ĩ ⟨̃0|
K̃ |A⟩ ∧ ⟨̃1/3|J̃ ]K̃ |A⟩

+ ∂[Ĩ

(
4⟨̃0|K̃ |C⟩⟨̃1/3|J̃ ]K̃ |C⟩ + ⟨̃0|K̃ |A⟩⟨̃1/3|J̃ ]K̃ |A⟩

)
, (C.4)

and

F Ĩ = ⟨̃0|Ĩ
(
d|A⟩ − 1

2 ⟨̃0|
K̃ |A⟩∂K̃ |A⟩ + 1

2ηαβ ⟨̃0|
K̃Tα∂K̃ |A⟩T β |A⟩ + 1

2 ⟨̃0|
K̃∂K̃ |A⟩|A⟩

ηαβ∂K̃ ⟨̃0|K̃Tα|C⟩T β |C⟩ + ηαβ ⟨̃0|K̃Tα|C[1⟩T β |C2]K̃⟩ + 2⟨̃0|K̃ |C[1⟩|C2]K̃⟩

+ η−1αβ ⟨̃0|K̃Tα|C+
1 ⟩T β |C+

2K̃⟩
)

= d⟨̃0|Ĩ |A⟩ − ⟨̃0|J̃ |A⟩∂J̃ ⟨̃0|
Ĩ |A⟩ . (C.5)

Note that there is here a redefinition of the 2-form.

D Gauge invariance and uplift formulæ

In order to understand the dependence of the uplift ansatz on the pure gauge fields bIJK
and δK(Ih

K
J), it is useful to consider the corresponding gauge transformations in eleven-

dimensional supergravity and gauged supergravity. For this purpose let us recall the gauge
transformation in gauged supergravity

δ|A⟩ = d|λ⟩ + η−1αβ⟨θ|Tα|λ⟩Tβ |A⟩ + η−1αβ⟨θ|Tα ⊗ T β ||Σ⟩⟩ , (D.1)

δ||C⟩⟩ = η−1αβ⟨θ|Tα|λ⟩
(
1⊗ Tβ + Tβ ⊗ 1

)
||C⟩⟩ + 1

2d|λ⟩ ⊗ ∧|A⟩ − 1
2 |A⟩ ⊗ ∧d|λ⟩

+ d||Σ⟩⟩ − 1
2η−1αβ |A⟩ ⊗ ∧⟨θ|Tα ⊗ T β ||Σ⟩⟩ + 1

2η−1αβ⟨θ|Tα ⊗ T β ||Σ⟩⟩ ⊗ ∧|A⟩ ,

where both the two-form ||C⟩⟩ and one-form gauge parameter ||Σ⟩⟩ are in the symmetric
tensor product of two copies of the basic module. One can redefine ||Σ⟩⟩ such that the gauge
transformation of the gauge field becomes a covariant derivative, but both forms will be
useful in this section.

The following gauge transformation of the three-form in eleven dimensions

δA11D = d
(g

2λ
K
IJYK∂iY

I∂jY
J(dyi + Ai) ∧ (dyj + Aj)

)
= g

2δL[Kλ
L
IJ ]∂iY

I∂jY
J∂kY

K(dyi + Ai) ∧ (dyj + Aj) ∧ (dyk + Ak)

+ g
2Y

K∂iY
I∂jY

JDλKIJ ∧ (dyi + Ai) ∧ (dyj + Aj)

− g2λKIJ⟨1/3|IL|F ⟩YKYL∂iY J ∧ (dyi + Ai) (D.2)
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with

DλKIJ = dλKIJ − gδPQ⟨1/3|KP |A⟩λQIJ + 2gδP [I⟨1/3|PQ|A⟩λKJ ]Q ,

⟨1/3|IJ |F ⟩ = ⟨1/3|IJ |dA⟩ + gδKL⟨1/3|IK |A⟩ ∧ ⟨1/3|JL|A⟩ , (D.3)

is equivalent to the gauged supergravity gauge transformation defined as a covariant derivative

δbIJK = −3ΘL[Iλ
L
JK]

δ⟨1|KIJ |A⟩ = dλKIJ − ΘPQ⟨1/3|KP |A⟩λQIJ + 2ΘP [I⟨1/3|PQ|A⟩λKJ ]Q (D.4)

of parameter

λKIJ = ⟨1|KIJ |λ⟩ . (D.5)

Note moreover that the four-form field strength in eleven dimensions only depends on the
field bIJK through its covariant derivative and the linear combination

⟨1|KIJ |F ⟩ − bIJL⟨1/3|KL|F ⟩ (D.6)

for which the right-hand side of (3.44d) and (3.44a) does not depend on the field bIJK ,
as one sees in (3.48).

We find therefore that bIJK can consistently be gauged away both in eleven-dimensional
supergravity and gauged supergravity.

One similarly exhibits that hIJ only appears non-trivially in the gauged supergravity
Lagrangian through it antisymmetric component ΘK[Ih

K
J ], while its symmetric component

is pure gauge. To see this, note that one can use a diffeomorphism along the circle coordinate

ζ9 → y9 − gYIYJξIJ(x) (D.7)

for a symmetric tensor ξIJ function of the external coordinates. This diffeomorphism only
affects the fibre one-form as

dy9 + A9 +Ki(dyi + Ai) = dy9 + gYIYJ⟨4/3|IJ |A⟩ +Ki
(
dyi + gYI g̊ij∂jYJ⟨1/3|IJ |A⟩

)
→ dy9 + gYIYJ

(
⟨4/3|IJ |A⟩ − dξIJ − 2gδKL⟨1/3|K(I |A⟩ξJ)L)

+
(
Ki − 2gYI∂iYJξIJ

)(
dyi + gYK g̊ij∂jYL⟨1/3|KL|A⟩

)
. (D.8)

Using the metric ansatz one obtains

ρ− 8
9 e2ςGij

(
Kj−2gYI∂jYJξ

IJ
)

=−g2ϱ− 16
9 (det g̊) 1

9YIYJYK g̊
ij∂jYL

(
⟨4/3|IJM−1 KL|1/3⟩+2gδP Qξ

P (I⟨1/3|J)QM−1 KL|1/3⟩
)

such that this diffeomorphism is equivalent to the gauge transformation

δ⟨4/3|IJ |A⟩ = dξIJ + 2gδKL⟨1/3|K(I |A⟩ξJ)L ,

δhIJ = 2gδJKξIK − 2
9gδIJδKLξKL . (D.9)
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In gauge supergravity one can identify

ξIJ = ⟨4/3|IJ |λ⟩ . (D.10)

The trace component is not relevant to this discussion, therefore we assume ΘIJξ
IJ = 0

to simplify expressions. One then obtains from (D.1) the gauge transformation of the
following fields as

δhIJ = 2ΘJKξ
IK ,

δ⟨4/3|IJ |A⟩ = dξIJ + 2ΘKL⟨1/3|K(I |A⟩ξJ)L ,

δ⟨1|KIJ |A⟩ = −4ΘL[I⟨0|J ]|A⟩ξKL + 4δK[I ΘJ ]P ⟨0|Q|A⟩ξPQ . (D.11)

With this transformation of hIJ , one checks that

δ⟨4/3|IJM−1 KL|1/3⟩ = −2ΘPQξ
P (I⟨1/3|J)QM−1 KL|1/3⟩ (D.12)

δ⟨1|PIJM−1 KL|1/3⟩ = −4ξPQΘQ[I⟨0|J ]M
−1 KL|1/3⟩ + 4δP[IΘJ ]Qξ

QR⟨0|RM−1 KL|1/3⟩

such that the three-form component transforms under the associated diffeomorphism

δAij = 4gξIJYI∂[iYJA9j] , δαijk = 6gξIJYI∂[iYJα9jk] , (D.13)

using (4.15) and (4.16).
Let us finally note that this gauge transformation acts on the field strength

δ⟨4/3|IJ |F ⟩ = 2ΘKL⟨1/3|K(I |F ⟩ξJ)L (D.14)

consistently with the property that the derivative of the potential in the right-hand side
of (3.44b) is not gauge invariant, but transforms as

δ
∂Vgsugra
∂ΘIJ

= 2ΘKL⟨1/3|K(IM−1|θ⟩ξJ)L (D.15)

so that (3.44b) transforms into the Yang-Mills equation (3.44a).
This completes the proof of equivalence between the diffeomorphism (D.7) and the gauged

supergravity gauged transformation of parameter ξIJ . One can therefore gauge fix ΘK(Ih
K
J)

to any convenient value in the equations of motion to determine the eleven-dimensional fields.

E Embedding tensors with uplift

It would be highly desirable to be able to classify the most general consistent truncations of
ten- and eleven-dimensional maximal supergravity to gauged maximal supergravity in two
dimensions. We may assume that all such truncations are necessarily generalised Scherk-
Schwarz reductions, as seems plausible from the requirement that maximal supersymmetry
must be preserved, see for instance [29, 74]. Then, the problem can be roughly divided
into two objectives: to classify all inequivalent embedding tensors of the two-dimensional
theory admitting a gSS uplift and to explicitly identify the internal space and twist matrix
for each case.
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These are however extremely difficult tasks in general, that have not yet been completed
for truncations to D ≥ 3 maximal supergravities. Significant progress has been made in
recent years for En ExFTs with n ≤ 7 [46, 75–78]. Necessary and sufficient constraints
for an embedding tensor to admit an uplift have been identified [46, 76–78], and a general
construction procedure for the twist matrix — assuming such constraints are satisfied — was
determined [46]. The classification of solutions of such constraints, up to duality orbits, is
at the time of this writing an unsolved problem. Duality covariant, necessary conditions
for the existence of an uplift of a D = 3 gauged maximal supergravity have recently been
presented in [79] and analogous set of necessary conditions for D = 2 is presented in the
companion paper [19] (see equations (3.71), (3.72) there).

In this appendix we take a complementary point of view. We impose that the embedding
tensor must originate from a twist matrix satisfying the section constraint. By fixing a
solution of the section constraint, we then find which entries within the embedding tensor
can actually be generated by projecting a putative Weitzenböck connection through (3.12).
A similar approach was recently taken in [80] for D ≥ 4 supergravities. We will show that
any Lagrangian embedding tensor ⟨θ| admitting an uplift is only parametrised by finitely
many components, which we identify in equations (E.19) and (E.39) below for uplifts to
eleven-dimensional and IIB supergravities, respectively. Notice that the conditions found
in this way break the exceptional group to a parabolic subgroup (the one preserving the
fixed choice of section) and therefore an embedding tensor with uplift is only required to
match the ones identified with this procedure up to the action of a rigid E9 element. We do
not prove whether a twist matrix actually exists for the embedding tensors parametrised
by (E.19) and (E.39). We only consider reductions from either eleven-dimensional or type
IIB supergravity, excluding for example the case of massive type IIA, since a Romans mass
deformation of E9 ExFT analogous to [81] is not yet available.

We will use a basis appropriate to the chosen solution of the section constraint. For
instance, for eleven-dimensional supergravity we use the basis (2.30) and internal derivatives
take the form (3.15). For short, only in this appendix we drop all the tildes introduced
in (2.30) to distinguish the p = 1 flowed basis from the p = 2 one in (2.28). We do the same
for the generators Tα, which we always assume to be set in a basis adapted to the choice of
section constraint (i.e. the p = 1 flowed SL(9) basis for the eleven-dimensional supergravity
section). Therefore in this section we shall write

⟨∂| = ⟨0|I∂I (E.1)

where I = 1 to 9 for eleven-dimensional supergravity, and I = 1 to 8 for type IIB supergravity.
We assume that the appropriate basis is used also for type IIB supergravity, such that

⟨0|IL−n = 0 , ∀n ≥ 1 . (E.2)

The IIB basis will be further described below.
The approach followed in this appendix is made possible by an observation on the general

form of the twist matrix. One first notices that the internal space must be a homogeneous
space G/H where G is the gauged supergravity gauge group and H some subgroup [20].
Notice that in D = 2 both G and H are infinite-dimensional. Following the analysis of [46],
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the internal vectors ⟨0|Ir−1U−1 = ⟨kI | generate the transitive action of G. The ancillary
gauge parameters appearing in E8 and E9 generalised diffeomorphisms do not affect this
observation, hence we can carry over any conclusions from [46] which only rely on this
observation. In particular, it implies that the twist matrix always decomposes as

U = LE−1 (E.3)

where L(y) ∈ G is the coset representative of G/H , while E belongs to the parabolic subgroup
preserving the choice of solution of the section constraints, i.e. only includes generators of non-
positive mode number with respect to the Virasoro generator L0 satisfying (E.2). Explicitly,

⟨0|IE = gIJ⟨0|J , (E.4)

with gIJ a GL(d) element. Because the embedding tensor ⟨θ| is gauge invariant, one then has

⟨θ|U = ⟨θ|E−1 . (E.5)

This is important because it will be easier to constrain the components that can be non-
vanishing in ⟨θ|U and the action of E preserves the highest possible L0 degree.

It will be convenient to define the conjugate Weitzenböck connection

⟨W̃α| ⊗ Tα = ⟨Wα|rU ⊗ U−1TαU = ⟨eM | ⊗ U−1∂MU . (E.6)

We shall assume that U ∈ E9. The most general case can be analysed similarly, but requires
slightly heavier notation, so we shall refrain from writing it. With this definition

⟨ϑ| = ⟨W̃α|Tαr−1U−1 , ⟨θ| = −⟨W̃α|S1(Tα)r−2U−1 − ⟨W̃+|r−2U−1 , (E.7)

where
⟨W̃+| = r−1⟨W+| − ωα−1(U)⟨W̃α| . (E.8)

Because r−1U−1 is invertible, the condition ⟨ϑ| = 0 implies

⟨W̃α|Tα = 0 (E.9)

pointwise. As we shall see, this equation severely constrains the possible non-zero components
of ⟨θ|r2U and in turn ⟨θ|.

E.1 Eleven-dimensional supergravity

Let us start with eleven-dimensional supergravity. One uses therefore the GL(9)
decomposition,

R(Λ0)−1 = 9 4
9
⊕ 36 7

9
⊕ 126 10

9
⊕ (36 ⊗ 9) 13

9
⊕
(
9 ⊗ 84 ⊕ 45

)
16
9

⊕ (9 ⊗ 84 ⊕ 1008) 19
9
⊕ . . . , (E.10)

and we recall that we drop for short all tildes in (2.30) in this appendix. The conjugate
Weitzenböck connection then takes the form

⟨W̃α| ⊗ Tα = ⟨0|I ⊗
∑
n

(
W̃ (n)
I

J
KTKn J + 1

6W̃
(n+ 1

3 )
I

JKLTn+ 1
3 JKL

+ 1
6W̃

(n+ 2
3 )

I;JKLTJKL
n+ 2

3

)
(E.11)

+ W̃ 0
I ⟨0|I ⊗ L0 + W̃K

I ⟨0|I ⊗ K , (E.12)

– 54 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

where the index I labels the derivative along the eleven coordinates, while the adjoint indices
are labeled with the indices JKL. The condition that there is no trombone gives therefore

0 != ⟨W̃α|Tα

=⟨0|I
(4

9W̃
0
I +W̃K

I −W̃ (n)
J

J
I

)
+ 1

2⟨1/3|IJW̃
( 1

3 )
K

IJK+ 1
6⟨2/3|

IJKLW̃
( 2

3 )
I;JKL+⟨1|IJK W̃

(1)
I

K
JTKn J

+
∑
n≥1

⟨0|I
(

1
6W̃

(n+ 1
3 )

I
JKLTn+ 1

3 JKL
+ 1

6W̃
(n+ 2

3 )
I;JKLTJKL

n+ 2
3

+W̃ (n+1)
I

J
KTKn J

)
. (E.13)

This equation must be true for each basis element separately, and one finds that it sets to
zero all the components of W̃α with n ≥ 4/3. To prove this we compute the relations

⟨0|IT 1
3 +nJKLTPQR− 1

3−n
= 18δI[PQ

JKL ⟨0|
R] + 6nδPQRJKL ⟨0|

I

⟨0|ITJKL2
3 +nT− 2

3−nPQR
= −24δ[IJK

PQR⟨0|
L] + 6nδJKLPQR⟨0|I

⟨0|IT J
1+nKT P

−1−nQ = −2δPKδ
[I
Q⟨0|

J ] + δIKδ
J
Q⟨0|P + nδPKδ

J
Q⟨0|I −

n+ 1
9 δJKδ

P
Q⟨0|I . (E.14)

One finds from these formulas that none of the components of ⟨0|IT 1
3 +nJKL, ⟨0|ITJKL2

3 +n and
⟨0|IT J

1+nK vanish for n ≥ 1, because their norm square is strictly positive. We conclude
therefore that

W̃
(n+ 1

3 )
I

JKL = 0 , W̃
(n+ 2

3 )
I;JKL , W̃ (n+1)

I
J
K = 0 , ∀n ≥ 1 (E.15)

and

W̃
( 1

3 )
K

IJK = 0 , W̃
( 2

3 )

[I;JKL] = 0 , W̃ (1)
[I K]

J = 0 , W̃K
I = W̃ (0)

J
J
I − 4

9W̃
0
I . (E.16)

From these constraints one gets immediately that ⟨W̃α|S−n(Tα) = 0 for n ≥ 1 and that
the embedding tensor can be written as

⟨θ|r2U = ⟨0|IΘ̃( 4
9 )
I + 1

2⟨1/3|IJΘ̃( 7
9 )IJ + 1

24⟨2/3|
IJKLΘ̃( 10

9 )
IJKL + 1

2⟨1|
IJ
K Θ̃( 13

9 )K
IJ

− 1
6⟨4/3|

L
IJKW̃

( 1
3 )

L
IJK − 1

6⟨5/3|
I,JKLW̃

( 2
3 )

I;JKL − ⟨2|IJK W̃
(1)K
I J (E.17)

where the first four components are a priori generic while one defines ⟨4/3|LIJK , ⟨5/3|I,JKL

and ⟨2|IJK in the corresponding irreducible SL(9) representations 720, 630 and 396, i.e.

⟨2|IJK = ⟨2|JIK , ⟨2|IJJ = 0 , ⟨5/3|[I,JKL] = 0 , ⟨4/3|KIJK = 0 . (E.18)

One checks that this structure is preserved by the action of the parabolic subgroup of negative
L0 degree. Indeed the two other irreducible representations 126 and 1008 of degree 19

9
cannot be obtained from the degree 22

9 element in the 396, and the two other irreducible
representations 45 and 36 of degree 16

9 cannot be obtained from the degree 19
9 element in

the 630 or the degree 22
9 element in the 396. We conclude therefore from (E.5) that the

embedding tensor admits the same expansion

⟨θ| = ⟨0|IΘ( 4
9 )
I + 1

2⟨1/3|IJΘ( 7
9 )IJ + 1

24⟨2/3|
IJKLΘ( 10

9 )
IJKL + 1

2⟨1|
IJ
K Θ( 13

9 )K
IJ

+ 1
6⟨4/3|

L
IJKΘ( 16

9 )
L

IJK + 1
6⟨5/3|

I,JKLΘ( 19
9 )

I,JKL + ⟨2|IJK Θ( 22
9 )K

IJ (E.19)

where the last three components are in the corresponding SL(9) irreducible representations.
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To further constrain the components of the embedding tensor, we can use the quadratic
constraint (3.13). For short we introduce the notation

ΘK
IJ ≡ Θ( 22

9 )K
IJ , (E.20)

for the component of main interest for us. The first components of the quadratic con-
straint give28

ΘP
IJΘQ

KL

(
2⟨1|IKP ⊗ ⟨2|LJQ − δIQ⟨1|JRP ⊗ ⟨2|KLR

)
= 0 , (E.21)

and
ΘP
IJΘQ

KL

(
2⟨4/3|IPQR ⊗ ⟨5/3|K,LJR − δIQ⟨4/3|JPRS ⊗ ⟨5/3|K,LRS

)
= 0 , (E.22)

which imply the two equations

Θ[P
IJΘQ]

KL = 0 , ΘP
IJΘQ

KP = 0 . (E.23)

The first equation gives that ΘP
IJ factorises in uPΘIJ and one gets

ΘP
IJ = uPΘIJ , uJΘIJ = 0 , (E.24)

such that uI defines a specific direction in SL(9) and ΘIJ is a symmetric tensor in the
orthogonal subspace. Without loss of generality we can always choose coordinates such
that i = 1 to 8 and

Θk
IJ = 0 , ΘK

9J = 0 , (E.25)

and the only non-vanishing components are Θ9
ij , which defines a symmetric matrix of rank

8 − r ≤ 8.
The next constraint we get from (3.13) is

Θ( 19
9 )

K,L1L2L3
ΘP
IJ

(
2⟨2/3|L1L2L3I ⊗ ⟨2|JK − δKP ⟨2/3|L1L2L3Q ⊗ ⟨2|IJQ

)
= 0 (E.26)

which implies the two equations

Θ( 19
9 )

K),[L1L2L3
ΘP
I](J = 0 , Θ( 19

9 )
P,L1L2L3

ΘP
IJ = 0 . (E.27)

One finds therefore that Θ( 19
9 )

I,JKL is orthogonal to the vector uI on its first index. One can
write the general solution as the sum of two terms

Θ( 19
9 )

I,JKL = ΘP
I[JΛKL]P + ΘI,JKL (E.28)

where ΛIJK is an arbitrary antisymmetric tensor and ΘI,JKL satisfies

uIΘI,JKL = 0 , ΘK,[L1L2L3ΘP
L4]J = 0 . (E.29)

The term in ΛIJK can be absorbed in a E9 transformation and can therefore be disregarded.
There is a non-trivial solution ΘI,JKL to this equation if and only if Θ9

ij has rank at most

28Where we use ⟨2|IJK TP−1Q = δ
(I
Q ⟨1|J)P

K − 1
10δ

(I
K ⟨1|J)P

Q + 1
10δ

(I
K δ

J)
Q ⟨1|PLL .

– 56 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

three, i.e. r ≥ 5. To describe the solution it is convenient to split the indices i = 1 to 8,
to a = 1 to 8 − r and â = 8 − r + 1 to 8, such that Θ9

ab is non-degenerate and the other
components Θ9

ab̂
= Θ9

âb̂
= 0.

• r = 5: The solution has Θi,123 arbitrary and the other components vanish.
• r = 6: The solution has Θi,12L arbitrary and the other components vanish.
• r = 7: The solution has Θi,1KL arbitrary and the other components vanish.
• r = 8: ΘK

IJ = 0 and there is no constraint in these components.
At the next orders, the constraints become more and more complicated and we will not

give the full solution. If one assumes that Θij is maximal rank, one finds the unique solution

⟨θ| = ⟨0|9Θ00 + ⟨1|i99 Θ0i + ⟨2|ij9 Θij , (E.30)

corresponding to the CSO(p, q, r) gaugings discussed in this paper.

E.2 Type IIB supergravity

The basis appropriate to make the type IIB section constraint manifest corresponds to
the grading

e9 =
⊕
n

(
(sl2 ⊕ sl8)n ⊕ (2,28) 1

4 +n ⊕ (1,70) 1
2 +n ⊕ (2,28) 3

4 +n
)
⊕ ⟨K, L0⟩ . (E.31)

This decomposition can be obtained by spectral flow. Starting from the associated Z4
graded decomposition of e8, one further decomposes sl8 into gl7 with the sl8 generators
T IJ splitting into

T ij , T 0
j , T i0 , T 0

0 = −T kk , (E.32)

for I = 0 to 7 and i = 1 to 7. The spectrally flowed Virasoro generators are then

L(p)
n = Ln + pT kn k + 7p2

16 δn,0K , (E.33)

and the corresponding ê8 generators are

Tinj = T inj + p2

8 δ
i
jK , Tin0 = T in+p0 , T0

nj = T 0
n−pj . (E.34)

One finds that the Virasoro generator L0 defines the grading (E.31) for p = 1 mod 4. For
p = 3 mod 4 one gets the same graded decomposition with the conjugate representations.
We shall use the p = 1 basis for the uplift to ten dimensions.

One finds then the corresponding decomposition of the basic module

R(Λ0)−1 = (1,8) 7
16

⊕ (2,8) 11
16

⊕ (1,56) 15
16

⊕ (2,56) 19
16

⊕
(
(1,8 ⊗ 28) ⊕ (3,8)

)
23
16

⊕
(
(2,8 ⊗ 28) ⊕ (2,8)

)
27
16

⊕
(
(3,56) ⊕ (1,8 ⊗ 70) ⊕ (1,168)

)
31
16

⊕
(
(2,8 ⊗ 70) ⊕ (2,56) ⊕ (2,168)

)
35
16

+ . . . (E.35)

where the (1,8)7/16 corresponds to the derivatives in the eight internal coordinates.
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As in the preceding section, one writes the conjugate Weitzenböck connection in the
appropriate basis as

⟨W̃α| ⊗ Tα = ⟨0|I ⊗
∑
n

(
W̃ (n)
I

J
KTKn J + W̃ (n)

I
α
βTβnα + 1

2W̃
(n+ 1

4 )
I

JK
α T α

n+ 1
2 JK

+ 1
24W̃

(n+ 1
2 )

I;JKLPTJKLP
n+ 1

2
+ 1

2W̃
(n+ 3

4 ) α
I;JK TJK

n+ 1
4 α

)
+ W̃ 0

I ⟨0|I ⊗ L0 + W̃K
I ⟨0|I ⊗ K (E.36)

where I, J,K are the SL(8) indices and α, β (on the right-hand side) are the SL(2) indices.
There should not be any confusion with the index α of e9 on the left-hand side.

The decomposition of the basic module includes

R(Λ0)−1 ⊃ (1,8) 7
16

⊕ (2,8) 11
16

⊕ (1,56) 15
16

⊕ (2,56) 19
16

⊕
(
(1,8 ⊗ 28) ⊕ (3,8)

)
23
16

⊕
∞⊕
n=0

[(
(1,8) ⊗ (2,28)

)
27
16 +n ⊕

(
(1,8) ⊗ (1,70)

)
31
16 +n ⊕

(
(1,8) ⊗ (2,28)

)
35
16 +n

⊕
(
(1,8 ⊗ 63) ⊕ (3,8)

)
39
16 +n

]
.

From this decomposition and the condition that ⟨ϑ| = 0 one then concludes that all the
components of the Weitzenböck connection of L0 degree greater or equal to 5

4 vanish, be-
cause the projection to the basic module does not project these components to smaller
representations. One moreover gets that

W̃
( 1

4 )
J

IJ
α = 0 , W̃

( 1
2 )

[I;JKLP ] = 0 , W̃
( 3

4 ) α

[I;JK] = 0 , W̃ (1)
[I K]

J = 0 , W̃ (1)
I

α
β = 0 , (E.37)

and W̃K
I is determined. From these constraints one gets immediately that ⟨W̃α|S−n(Tα) = 0

for n ≥ 1 and that the embedding tensor can be written as

⟨θ|r2U = ⟨0|IΘ̃( 7
16 )
I + ⟨1/4|αI Θ̃( 11

16 )I
α + 1

6⟨1/2|IJKΘ̃( 15
16 )IJK + 1

6⟨3/4|
IJK
α Θ̃( 19

16 ) α
IJK

+ 1
2⟨1|

IJ
K Θ̃( 23

16 )K
IJ + ⟨1|IαβΘ̃( 23

16 )αβ
I − 1

2⟨5/4|
K α
IJ W̃

( 1
4 )

K
IJ
α

− 1
24⟨3/2|

I,JKLP W̃
( 1

2 )
I;JKLP − 1

2⟨7/4|
I,JK
α W̃

( 3
4 ) α

I;JK − ⟨2|IJK W̃
(1)K
I J , (E.38)

where the basis elements ⟨5/4|K α
IJ , ⟨3/2|I,JKLP , ⟨7/4|I,JKα and ⟨2|IJK are in the corresponding

irreducible representations.
One can now use (E.5) and check that all the generators of negative L0 degree preserve

this form such that the embedding tensor decomposes as well as

⟨θ| = ⟨0|IΘ( 7
16 )
I + ⟨1/4|αI Θ( 11

16 )I
α + 1

6⟨1/2|IJKΘ̃( 15
16 )IJK + 1

6⟨3/4|
IJK
α Θ̃( 19

16 ) α
IJK

+ 1
2⟨1|

IJ
K Θ( 23

16 )K
IJ + ⟨1|IαβΘ( 23

16 )αβ
I + 1

2⟨5/4|
K α
IJ Θ( 27

16 )
K

IJ
α

+ 1
24⟨3/2|

I,JKLPΘ( 31
16 )
I,JKLP + 1

2⟨7/4|
I,JK
α Θ( 35

16 )α
I,JK + ⟨2|IJK Θ( 39

16 )K
IJ . (E.39)

As for the eleven-dimensional case, the highest degree component is a vector valued
symmetric tensor Θ( 39

16 )K
IJ , and one expects the same constraint (E.23) to follow from the

quadratic constraint (3.13). There is again a solution

⟨θ| = ⟨0|8Θ00 + ⟨1|i88 Θ0i + ⟨2|ij8 Θij , (E.40)

– 58 –



J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

to the quadratic constraint that corresponds to CSO(p, q, r) gaugings obtained by reduction
of type IIB supergravity on a circle times S7 or other hyperboloids and contractions thereof.

To understand this particular example it is useful to consider the p = 2 spectral flowed
basis in which

e9 =
⊕
n

(
(sl2 ⊕ e7)n ⊕ (2,56) 1

2 +n

)
⊕ ⟨K, L0⟩ (E.41)

and the basic module decomposes as

R(Λ0)−1 = (2,1) 1
4
⊕(1,56) 3

4
⊕
(
(2,133)⊕(2,1))

)
5
4
⊕
(
(1,56⊕912)⊕(3,56)

)
7
4
⊕. . .

(E.42)
One finds therefore that the symmetric tensor (E.40) of SL(8) sits inside the 9127/4 and is a
solution to the quadratic constraint by embedding in e7. This consistent truncation is T-dual
to the reduction of eleven-dimensional supergravity on S7 further reduced over a torus T 2,
and is therefore already known to be a consistent truncation [47, 48, 82].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J. Hoppe, Quantum theory of a massless relativistic surface and a two-dimensional bound state
problem, Ph.D. thesis, Deptartment of Physics, Massachusetts Institute of Technology,
Cambridge, MA 02139-4307, U.S.A. (1982).

[2] B. de Wit, J. Hoppe and H. Nicolai, On the Quantum Mechanics of Supermembranes, Nucl.
Phys. B 305 (1988) 545 [INSPIRE].

[3] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture,
Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

[4] N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N
limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042]
[INSPIRE].

[5] H.J. Boonstra, K. Skenderis and P.K. Townsend, The domain wall / QFT correspondence, JHEP
01 (1999) 003 [hep-th/9807137] [INSPIRE].

[6] C.M. Hull, Exact pp Wave Solutions of Eleven-dimensional Supergravity, Phys. Lett. B 139
(1984) 39 [INSPIRE].

[7] H. Nicolai and H. Samtleben, A U(1) × SO(9) invariant compactification of D = 11 supergravity
to two dimensions, PoS tmr2000 (2000) 014 [INSPIRE].

[8] Y. Sekino and T. Yoneya, Generalized AdS / CFT correspondence for matrix theory in the large
N limit, Nucl. Phys. B 570 (2000) 174 [hep-th/9907029] [INSPIRE].

[9] Y. Sekino, Supercurrents in matrix theory and the generalized AdS / CFT correspondence, Nucl.
Phys. B 602 (2001) 147 [hep-th/0011122] [INSPIRE].

[10] M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Direct test of the gauge-gravity
correspondence for Matrix theory correlation functions, JHEP 12 (2011) 020 [arXiv:1108.5153]
[INSPIRE].

– 59 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(88)90116-2
https://doi.org/10.1016/0550-3213(88)90116-2
https://inspirehep.net/literature/261702
https://doi.org/10.1103/PhysRevD.55.5112
https://arxiv.org/abs/hep-th/9610043
https://inspirehep.net/literature/424266
https://doi.org/10.1103/PhysRevD.58.046004
https://arxiv.org/abs/hep-th/9802042
https://inspirehep.net/literature/466929
https://doi.org/10.1088/1126-6708/1999/01/003
https://doi.org/10.1088/1126-6708/1999/01/003
https://arxiv.org/abs/hep-th/9807137
https://inspirehep.net/literature/473549
https://doi.org/10.1016/0370-2693(84)90030-3
https://doi.org/10.1016/0370-2693(84)90030-3
https://inspirehep.net/literature/14499
https://doi.org/10.22323/1.006.0014
https://inspirehep.net/literature/536575
https://doi.org/10.1016/S0550-3213(99)00793-2
https://arxiv.org/abs/hep-th/9907029
https://inspirehep.net/literature/503175
https://doi.org/10.1016/S0550-3213(01)00126-2
https://doi.org/10.1016/S0550-3213(01)00126-2
https://arxiv.org/abs/hep-th/0011122
https://inspirehep.net/literature/536842
https://doi.org/10.1007/JHEP12(2011)020
https://arxiv.org/abs/1108.5153
https://inspirehep.net/literature/925076


J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

[11] T. Ortiz, H. Samtleben and D. Tsimpis, Matrix model holography, JHEP 12 (2014) 096
[arXiv:1410.0487] [INSPIRE].

[12] V.G. Filev and D. O’Connor, The BFSS model on the lattice, JHEP 05 (2016) 167
[arXiv:1506.01366] [INSPIRE].

[13] M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041
[hep-th/0105276] [INSPIRE].

[14] M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631
(2002) 159 [hep-th/0112119] [INSPIRE].

[15] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849
[hep-th/0209067] [INSPIRE].

[16] T. Ortiz and H. Samtleben, SO(9) supergravity in two dimensions, JHEP 01 (2013) 183
[arXiv:1210.4266] [INSPIRE].

[17] A. Anabalón, T. Ortiz and H. Samtleben, Rotating D0-branes and consistent truncations of
supergravity, Phys. Lett. B 727 (2013) 516 [arXiv:1310.1321] [INSPIRE].

[18] G. Bossard, F. Ciceri, G. Inverso and A. Kleinschmidt, Consistent Kaluza-Klein Truncations and
Two-Dimensional Gauged Supergravity, Phys. Rev. Lett. 129 (2022) 201602 [arXiv:2209.02729]
[INSPIRE].

[19] G. Bossard, F. Ciceri, G. Inverso and A. Kleinschmidt, Maximal D = 2 supergravities from
higher dimensions, JHEP 01 (2024) 046 [arXiv:2309.07232] [INSPIRE].

[20] M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and
Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

[21] G. Aldazabal, W. Baron, D. Marqués and C. Nuñéz, The effective action of Double Field Theory,
JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].

[22] D. Geissbuhler, Double Field Theory and N = 4 Gauged Supergravity, JHEP 11 (2011) 116
[arXiv:1109.4280] [INSPIRE].

[23] M. Graña and D. Marqués, Gauged Double Field Theory, JHEP 04 (2012) 020
[arXiv:1201.2924] [INSPIRE].

[24] D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality Invariant M-theory:
Gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174 [arXiv:1208.0020]
[INSPIRE].

[25] E.T. Musaev, Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz
reductions, JHEP 05 (2013) 161 [arXiv:1301.0467] [INSPIRE].

[26] G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal
supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].

[27] D.S. Berman and K. Lee, Supersymmetry for Gauged Double Field Theory and Generalised
Scherk-Schwarz Reductions, Nucl. Phys. B 881 (2014) 369 [arXiv:1305.2747] [INSPIRE].

[28] G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, The gauge structure of Exceptional Field
Theories and the tensor hierarchy, JHEP 04 (2014) 049 [arXiv:1312.4549] [INSPIRE].

[29] K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and
consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].

[30] O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field Theory,
JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

– 60 –

https://doi.org/10.1007/JHEP12(2014)096
https://arxiv.org/abs/1410.0487
https://inspirehep.net/literature/1319786
https://doi.org/10.1007/JHEP05(2016)167
https://arxiv.org/abs/1506.01366
https://inspirehep.net/literature/1374523
https://doi.org/10.1088/1126-6708/2001/08/041
https://arxiv.org/abs/hep-th/0105276
https://inspirehep.net/literature/557370
https://doi.org/10.1016/S0550-3213(02)00179-7
https://doi.org/10.1016/S0550-3213(02)00179-7
https://arxiv.org/abs/hep-th/0112119
https://inspirehep.net/literature/568280
https://doi.org/10.1088/0264-9381/19/22/306
https://arxiv.org/abs/hep-th/0209067
https://inspirehep.net/literature/594622
https://doi.org/10.1007/JHEP01(2013)183
https://arxiv.org/abs/1210.4266
https://inspirehep.net/literature/1190919
https://doi.org/10.1016/j.physletb.2013.10.049
https://arxiv.org/abs/1310.1321
https://inspirehep.net/literature/1256969
https://doi.org/10.1103/PhysRevLett.129.201602
https://arxiv.org/abs/2209.02729
https://inspirehep.net/literature/2148184
https://doi.org/10.1007/JHEP01(2024)046
https://arxiv.org/abs/2309.07232
https://inspirehep.net/literature/2697681
https://doi.org/10.1088/1126-6708/2009/04/075
https://arxiv.org/abs/0807.4527
https://inspirehep.net/literature/791705
https://doi.org/10.1007/JHEP11(2011)052
https://arxiv.org/abs/1109.0290
https://inspirehep.net/literature/926170
https://doi.org/10.1007/JHEP11(2011)116
https://arxiv.org/abs/1109.4280
https://inspirehep.net/literature/927991
https://doi.org/10.1007/JHEP04(2012)020
https://arxiv.org/abs/1201.2924
https://inspirehep.net/literature/1084565
https://doi.org/10.1007/JHEP10(2012)174
https://arxiv.org/abs/1208.0020
https://inspirehep.net/literature/1124604
https://doi.org/10.1007/JHEP05(2013)161
https://arxiv.org/abs/1301.0467
https://inspirehep.net/literature/1209295
https://doi.org/10.1007/JHEP06(2013)046
https://arxiv.org/abs/1302.5419
https://inspirehep.net/literature/1220816
https://doi.org/10.1016/j.nuclphysb.2014.02.015
https://arxiv.org/abs/1305.2747
https://inspirehep.net/literature/1233122
https://doi.org/10.1007/JHEP04(2014)049
https://arxiv.org/abs/1312.4549
https://inspirehep.net/literature/1269757
https://doi.org/10.1002/prop.201700048
https://arxiv.org/abs/1401.3360
https://inspirehep.net/literature/1277262
https://doi.org/10.1007/JHEP01(2015)131
https://arxiv.org/abs/1410.8145
https://inspirehep.net/literature/1325132


J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

[31] O. Hohm, E.T. Musaev and H. Samtleben, O(d+ 1, d+ 1) enhanced double field theory, JHEP
10 (2017) 086 [arXiv:1707.06693] [INSPIRE].

[32] G. Bossard et al., E9 exceptional field theory. Part I. The potential, JHEP 03 (2019) 089
[arXiv:1811.04088] [INSPIRE].

[33] G. Bossard et al., E9 exceptional field theory. Part II. The complete dynamics, JHEP 05 (2021)
107 [arXiv:2103.12118] [INSPIRE].

[34] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from
N = 4 superYang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].

[35] M.S. Costa, L. Greenspan, J. Penedones and J. Santos, Thermodynamics of the BMN matrix
model at strong coupling, JHEP 03 (2015) 069 [arXiv:1411.5541] [INSPIRE].

[36] D.S. Berman and M.J. Perry, Generalized Geometry and M theory, JHEP 06 (2011) 074
[arXiv:1008.1763] [INSPIRE].

[37] O. Hohm and H. Samtleben, Exceptional Form of D = 11 Supergravity, Phys. Rev. Lett. 111
(2013) 231601 [arXiv:1308.1673] [INSPIRE].

[38] O. Hohm and H. Samtleben, Exceptional Field Theory I: E6(6) covariant Form of M-Theory and
Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

[39] O. Hohm and H. Samtleben, Exceptional field theory. II. E7(7), Phys. Rev. D 89 (2014) 066017
[arXiv:1312.4542] [INSPIRE].

[40] O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8), Phys. Rev. D 90 (2014) 066002
[arXiv:1406.3348] [INSPIRE].

[41] A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP 06 (2015)
088 [arXiv:1504.01523] [INSPIRE].

[42] E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163]
[INSPIRE].

[43] D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)R+

exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].

[44] A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry I:
Type II Theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].

[45] D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of
generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

[46] G. Inverso, Generalised Scherk-Schwarz reductions from gauged supergravity, JHEP 12 (2017)
124 [Erratum ibid. 06 (2021) 148] [arXiv:1708.02589] [INSPIRE].

[47] B. de Wit, H. Nicolai and N.P. Warner, The Embedding of Gauged N = 8 Supergravity Into
d = 11 Supergravity, Nucl. Phys. B 255 (1985) 29 [INSPIRE].

[48] H. Godazgar, M. Godazgar and H. Nicolai, Testing the non-linear flux ansatz for maximal
supergravity, Phys. Rev. D 87 (2013) 085038 [arXiv:1303.1013] [INSPIRE].

[49] F. Ciceri, B. de Wit and O. Varela, IIB supergravity and the E6(6) covariant vector-tensor
hierarchy, JHEP 04 (2015) 094 [arXiv:1412.8297] [INSPIRE].

[50] O. Varela, Complete D = 11 embedding of SO(8) supergravity, Phys. Rev. D 97 (2018) 045010
[arXiv:1512.04943] [INSPIRE].

[51] A. Baguet, O. Hohm and H. Samtleben, Consistent Type IIB Reductions to Maximal 5D
Supergravity, Phys. Rev. D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].

– 61 –

https://doi.org/10.1007/JHEP10(2017)086
https://doi.org/10.1007/JHEP10(2017)086
https://arxiv.org/abs/1707.06693
https://inspirehep.net/literature/1611052
https://doi.org/10.1007/JHEP03(2019)089
https://arxiv.org/abs/1811.04088
https://inspirehep.net/literature/1703162
https://doi.org/10.1007/JHEP05(2021)107
https://doi.org/10.1007/JHEP05(2021)107
https://arxiv.org/abs/2103.12118
https://inspirehep.net/literature/1853088
https://doi.org/10.1088/1126-6708/2002/04/013
https://arxiv.org/abs/hep-th/0202021
https://inspirehep.net/literature/582561
https://doi.org/10.1007/JHEP03(2015)069
https://arxiv.org/abs/1411.5541
https://inspirehep.net/literature/1328986
https://doi.org/10.1007/JHEP06(2011)074
https://arxiv.org/abs/1008.1763
https://inspirehep.net/literature/865018
https://doi.org/10.1103/PhysRevLett.111.231601
https://doi.org/10.1103/PhysRevLett.111.231601
https://arxiv.org/abs/1308.1673
https://inspirehep.net/literature/1247079
https://doi.org/10.1103/PhysRevD.89.066016
https://arxiv.org/abs/1312.0614
https://inspirehep.net/literature/1267235
https://doi.org/10.1103/PhysRevD.89.066017
https://arxiv.org/abs/1312.4542
https://inspirehep.net/literature/1269756
https://doi.org/10.1103/PhysRevD.90.066002
https://arxiv.org/abs/1406.3348
https://inspirehep.net/literature/1300551
https://doi.org/10.1007/JHEP06(2015)088
https://doi.org/10.1007/JHEP06(2015)088
https://arxiv.org/abs/1504.01523
https://inspirehep.net/literature/1358244
https://doi.org/10.1007/JHEP02(2016)012
https://arxiv.org/abs/1512.02163
https://inspirehep.net/literature/1408570
https://doi.org/10.1088/0264-9381/33/19/195009
https://arxiv.org/abs/1512.06115
https://inspirehep.net/literature/1410625
https://doi.org/10.1007/JHEP11(2011)091
https://arxiv.org/abs/1107.1733
https://inspirehep.net/literature/917624
https://doi.org/10.1007/JHEP01(2013)064
https://arxiv.org/abs/1208.5884
https://inspirehep.net/literature/1182537
https://doi.org/10.1007/JHEP06(2021)148
https://doi.org/10.1007/JHEP06(2021)148
https://arxiv.org/abs/1708.02589
https://inspirehep.net/literature/1615221
https://doi.org/10.1016/0550-3213(85)90128-2
https://inspirehep.net/literature/207631
https://doi.org/10.1103/PhysRevD.87.085038
https://arxiv.org/abs/1303.1013
https://inspirehep.net/literature/1222533
https://doi.org/10.1007/JHEP04(2015)094
https://arxiv.org/abs/1412.8297
https://inspirehep.net/literature/1335746
https://doi.org/10.1103/PhysRevD.97.045010
https://arxiv.org/abs/1512.04943
https://inspirehep.net/literature/1409954
https://doi.org/10.1103/PhysRevD.92.065004
https://arxiv.org/abs/1506.01385
https://inspirehep.net/literature/1374638


J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

[52] O. Krüger, Non-linear uplift Ansätze for the internal metric and the four-form field-strength of
maximal supergravity, JHEP 05 (2016) 145 [arXiv:1602.03327] [INSPIRE].

[53] G. Bossard, A. Kleinschmidt and E. Sezgin, A master exceptional field theory, JHEP 06 (2021)
185 [arXiv:2103.13411] [INSPIRE].

[54] C.M. Hull, More Gaugings of N = 8 Supergravity, Phys. Lett. B 148 (1984) 297 [INSPIRE].

[55] A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 Superconformal Algebras
in Two-Dimensions, Phys. Lett. B 184 (1987) 191 [INSPIRE].

[56] J.M. Maldacena and H. Ooguri, Strings in AdS3 and SL(2, R) WZW model. I: The Spectrum, J.
Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].

[57] P. Breitenlohner and D. Maison, On the Geroch Group, Ann. Inst. H. Poincare Phys. Theor. 46
(1987) 215 [INSPIRE].

[58] H. Nicolai, The Integrability of N = 16 Supergravity, Phys. Lett. B 194 (1987) 402 [INSPIRE].

[59] H. Samtleben and M. Weidner, Gauging hidden symmetries in two dimensions, JHEP 08 (2007)
076 [arXiv:0705.2606] [INSPIRE].

[60] T. Damour, M. Henneaux and H. Nicolai, E10 and a ‘small tension expansion’ of M theory, Phys.
Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [INSPIRE].

[61] P.C. West, Very extended E8 and A8 at low levels, gravity and supergravity, Class. Quant. Grav.
20 (2003) 2393 [hep-th/0212291] [INSPIRE].

[62] H. Nicolai and T. Fischbacher, Low level representations for E10 and E11, in the proceedings of
the Ramanaujan International Symposium on Kac-Moody Lie Algebras and Applications
(ISKMAA 2002), Chennai, India, January 28–31 (2002), p. 191–227 [hep-th/0301017] [INSPIRE].

[63] A. Kleinschmidt, I. Schnakenburg and P.C. West, Very extended Kac-Moody algebras and their
interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198] [INSPIRE].

[64] G. Bossard et al., Generalized diffeomorphisms for E9, Phys. Rev. D 96 (2017) 106022
[arXiv:1708.08936] [INSPIRE].

[65] X.C. de la Ossa and F. Quevedo, Duality symmetries from nonAbelian isometries in string
theory, Nucl. Phys. B 403 (1993) 377 [hep-th/9210021] [INSPIRE].

[66] M.K. Gaillard and B. Zumino, Duality Rotations for Interacting Fields, Nucl. Phys. B 193
(1981) 221 [INSPIRE].

[67] B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09
(2005) 016 [hep-th/0507289] [INSPIRE].

[68] C.M. Hull, Noncompact Gaugings of N = 8 Supergravity, Phys. Lett. B 142 (1984) 39 [INSPIRE].

[69] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10
(2004) 025 [hep-th/0409174] [INSPIRE].

[70] H. Lin and J.M. Maldacena, Fivebranes from gauge theory, Phys. Rev. D 74 (2006) 084014
[hep-th/0509235] [INSPIRE].

[71] M. Cvetic et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl.
Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

[72] T. Wiseman, On black hole thermodynamics from super Yang-Mills, JHEP 07 (2013) 101
[arXiv:1304.3938] [INSPIRE].

– 62 –

https://doi.org/10.1007/JHEP05(2016)145
https://arxiv.org/abs/1602.03327
https://inspirehep.net/literature/1420724
https://doi.org/10.1007/JHEP06(2021)185
https://doi.org/10.1007/JHEP06(2021)185
https://arxiv.org/abs/2103.13411
https://inspirehep.net/literature/1853479
https://doi.org/10.1016/0370-2693(84)90091-1
https://inspirehep.net/literature/15460
https://doi.org/10.1016/0370-2693(87)90566-1
https://inspirehep.net/literature/20868
https://doi.org/10.1063/1.1377273
https://doi.org/10.1063/1.1377273
https://arxiv.org/abs/hep-th/0001053
https://inspirehep.net/literature/522878
https://inspirehep.net/literature/235814
https://doi.org/10.1016/0370-2693(87)91072-0
https://inspirehep.net/literature/21766
https://doi.org/10.1088/1126-6708/2007/08/076
https://doi.org/10.1088/1126-6708/2007/08/076
https://arxiv.org/abs/0705.2606
https://inspirehep.net/literature/750861
https://doi.org/10.1103/PhysRevLett.89.221601
https://doi.org/10.1103/PhysRevLett.89.221601
https://arxiv.org/abs/hep-th/0207267
https://inspirehep.net/literature/591616
https://doi.org/10.1088/0264-9381/20/11/328
https://doi.org/10.1088/0264-9381/20/11/328
https://arxiv.org/abs/hep-th/0212291
https://inspirehep.net/literature/605468
https://arxiv.org/abs/hep-th/0301017
https://inspirehep.net/literature/611166
https://doi.org/10.1088/0264-9381/21/9/021
https://arxiv.org/abs/hep-th/0309198
https://inspirehep.net/literature/628669
https://doi.org/10.1103/PhysRevD.96.106022
https://arxiv.org/abs/1708.08936
https://inspirehep.net/literature/1620717
https://doi.org/10.1016/0550-3213(93)90041-M
https://arxiv.org/abs/hep-th/9210021
https://inspirehep.net/literature/339018
https://doi.org/10.1016/0550-3213(81)90527-7
https://doi.org/10.1016/0550-3213(81)90527-7
https://inspirehep.net/literature/165994
https://doi.org/10.1088/1126-6708/2005/09/016
https://doi.org/10.1088/1126-6708/2005/09/016
https://arxiv.org/abs/hep-th/0507289
https://inspirehep.net/literature/688553
https://doi.org/10.1016/0370-2693(84)91131-6
https://inspirehep.net/literature/14498
https://doi.org/10.1088/1126-6708/2004/10/025
https://doi.org/10.1088/1126-6708/2004/10/025
https://arxiv.org/abs/hep-th/0409174
https://inspirehep.net/literature/659502
https://doi.org/10.1103/PhysRevD.74.084014
https://arxiv.org/abs/hep-th/0509235
https://inspirehep.net/literature/693776
https://doi.org/10.1016/S0550-3213(99)00419-8
https://doi.org/10.1016/S0550-3213(99)00419-8
https://arxiv.org/abs/hep-th/9903214
https://inspirehep.net/literature/497368
https://doi.org/10.1007/JHEP07(2013)101
https://arxiv.org/abs/1304.3938
https://inspirehep.net/literature/1228372


J
H
E
P
0
1
(
2
0
2
4
)
0
4
5

[73] D.H. Peterson and V.G. Kac, Infinite Flag Varieties and Conjugacy Theorems, Proc. Nat. Acad.
Sci. U.S.A. 80 (1983) 1778.

[74] D. Cassani, G. Josse, M. Petrini and D. Waldram, Systematics of consistent truncations from
generalised geometry, JHEP 11 (2019) 017 [arXiv:1907.06730] [INSPIRE].

[75] P. du Bosque, F. Hassler and D. Lüst, Generalized parallelizable spaces from exceptional field
theory, JHEP 01 (2018) 117 [arXiv:1705.09304] [INSPIRE].

[76] M. Bugden, O. Hulik, F. Valach and D. Waldram, G-Algebroids: A Unified Framework for
Exceptional and Generalised Geometry, and Poisson-Lie Duality, Fortsch. Phys. 69 (2021)
2100028 [arXiv:2103.01139] [INSPIRE].

[77] M. Bugden, O. Hulik, F. Valach and D. Waldram, Exceptional Algebroids and Type IIB
Superstrings, Fortsch. Phys. 70 (2022) 2100104 [arXiv:2107.00091] [INSPIRE].

[78] O. Hulik and F. Valach, Exceptional Algebroids and Type IIA Superstrings, Fortsch. Phys. 70
(2022) 2200027 [arXiv:2202.00355] [INSPIRE].

[79] C. Eloy, M. Galli and E. Malek, Adding fluxes to consistent truncations: IIB supergravity on
AdS3 × S3 × S3 × S1, JHEP 11 (2023) 049 [arXiv:2306.12487] [INSPIRE].

[80] F. Hassler and Y. Sakatani, All maximal gauged supergravities with uplift, arXiv:2212.14886
[DOI:10.1093/ptep/ptad104] [INSPIRE].

[81] F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP
08 (2016) 154 [arXiv:1604.08602] [INSPIRE].

[82] H. Nicolai and K. Pilch, Consistent Truncation of d = 11 Supergravity on AdS4 × S7, JHEP 03
(2012) 099 [arXiv:1112.6131] [INSPIRE].

– 63 –

https://doi.org/10.1073/pnas.80.6.1778
https://doi.org/10.1073/pnas.80.6.1778
https://doi.org/10.1007/JHEP11(2019)017
https://arxiv.org/abs/1907.06730
https://inspirehep.net/literature/1743993
https://doi.org/10.1007/JHEP01(2018)117
https://arxiv.org/abs/1705.09304
https://inspirehep.net/literature/1601400
https://doi.org/10.1002/prop.202100028
https://doi.org/10.1002/prop.202100028
https://arxiv.org/abs/2103.01139
https://inspirehep.net/literature/1849530
https://doi.org/10.1002/prop.202100104
https://arxiv.org/abs/2107.00091
https://inspirehep.net/literature/1874102
https://doi.org/10.1002/prop.202200027
https://doi.org/10.1002/prop.202200027
https://arxiv.org/abs/2202.00355
https://inspirehep.net/literature/2024268
https://doi.org/10.1007/JHEP11(2023)049
https://arxiv.org/abs/2306.12487
https://inspirehep.net/literature/2670826
https://arxiv.org/abs/2212.14886
https://doi.org/10.1093/ptep/ptad104
https://inspirehep.net/literature/2619395
https://doi.org/10.1007/JHEP08(2016)154
https://doi.org/10.1007/JHEP08(2016)154
https://arxiv.org/abs/1604.08602
https://inspirehep.net/literature/1454097
https://doi.org/10.1007/JHEP03(2012)099
https://doi.org/10.1007/JHEP03(2012)099
https://arxiv.org/abs/1112.6131
https://inspirehep.net/literature/1083012

	Introduction and summary
	Spectral flow and duality frames
	SL(9) subgroups of E9
	Branching of e8
	Spectrally flowed sl9 algebras
	Spectral flow by p=1 unit
	Spectral flow by p=2 units

	Basic module and its decomposition
	Interpretation of spectral flow as change of duality frame
	From pseudo-Lagrangians to physical Lagrangians
	E(8) duality frame
	SL(9) duality frame


	Consistent truncation on S8xS1
	Review of SO(9) gauged supergravity
	The generalised Scherk-Schwarz ansatz on S8 x S1
	From pseudo-Lagrangian to physical Lagrangian
	Duality equation for the gauge field strength

	Uplift formulæ
	Derivation of the uplift formulas
	Truncation to the SO(3)xSO(6) invariant sector

	Algebras and decompositions
	The gl8 branching of e8 and e9
	Basic representation
	Branching of the basic module under spectrally flowed sl9
	Spectral flow by p=1 unit
	Spectral flow by p=2 units
	Relation between the two bases and matrix elements

	Inequivalent flows
	Reproducing physical Lagrangians

	Details on the Weitzenböck connection
	Exceptional field theory conventions in eleven dimensions
	Gauge invariance and uplift formulæ
	Embedding tensors with uplift
	Eleven-dimensional supergravity
	Type IIB supergravity


