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Abstract We present the macroscopic dynamics of ferroelectric smectic A, smectic AF , liquid crystals
reported recently experimentally by three groups. In this fluid and orthogonal smectic phase, the macro-
scopic polarization, P, is parallel to the layer normal thus giving rise to C∞v overall symmetry for this
phase in the spatially homogeneous limit. A combination of linear irreversible thermodynamics and sym-
metry arguments is used to derive the resulting dynamic equations applicable at sufficiently low frequencies
and sufficiently long wavelengths. Compared to non-polar smectic A phases, we find a static cross-coupling
between compression of the layering and bending of the layers, which does not lead to elastic forces, but to
elastic stresses. In addition, it turns out that a reversible cross-coupling between flow and the magnitude
of the polarization modifies the velocities of both, first and second sound. At the same time, the relaxation
of the polarization gives rise to dissipative effects for second sound at the same order of the wavevector
as for the sound velocity. We also analyze reversible cross-coupling terms between elongational flow and
electric fields as well as temperature and concentration gradients, which lend themselves to experimental
detection. Apparently this type of terms has never been considered before for smectic phases. The question
how the linear P ·E coupling in the energy alters the macroscopic response behavior when compared to
usual non-polar smectic A phases is also addressed.

1 Introduction

Last year the experimental observation of polar smectic
A phases has been announced in Refs. [1–3]. In this
phase, which is an orthogonal fluid smectic phase, the
macroscopic polarization in the ground state is oriented
parallel to the layer normal of the smectic planes and
thus overall C∞v symmetry prevails.

It is the purpose of the present paper to characterize
the ferroelectric smectic A phase in the framework of
macroscopic dynamics thus generalizing previous work
on the macroscopic dynamics of usual non-polar smectic
A phases [4–6] as well as of ferroelectric nematics [7–9].

To derive the macroscopic dynamic equations, we use
the combination of irreversible thermodynamics and
of symmetry arguments including the behavior of the
macroscopic variables along with that of the associated
currents and quasi-currents under time reversal, par-
ity (spatial inversion) as well as under rigid rotations
and Galilei transformations [5,6,10–12]. This approach
has been applied to many condensed matter systems
including spin waves in magnets [12,13], nematic liquid
crystals [4,5,12,14], polymeric liquids [15–18] as well
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as superfluids including superfluid 4He [19,20] and the
superfluid phases of 3He [21–24].

The experimental discovery of ferroelectric smectic A
phases followed about 5 years after ferroelectric nematic
phases have been found experimentally [25,26]. While
ferroelectric (polar) nematic phases had been antici-
pated theoretically [7–9], this has apparently not been
the case for ferroelectric smectic A phases. Over the last
five years or so ferroelectric nematic phases have been
further investigated in detail, both experimentally [27–
40] as well as theoretically [41–43].

The paper is organized as follows. In Sect. 2, we dis-
cuss in detail our choice of the macroscopic variables,
including the absolute value of the polarization, a con-
centration variable, and the electric charge density, in
addition to standard variables of smectic A systems.
The orientation of the polarization is expressed by gra-
dients of the layer displacements. The static behavior
follows from a total energy density expression in har-
monic approximation that contains the static suscepti-
bilities and allows for derivation of the conjugate fields.
Section 3 is without electric fields, while Sect. 4 sum-
marizes the electric field contributions. Compared to
non-polar smectic A liquid crystals, there are cross-
couplings among gradients of the polarization and the
layer displacement on the one hand with changes of
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the density, entropy, concentration on the other. A very
peculiar coupling of layer compression with layer bend-
ing is presented and its implications for elastic stresses
are discussed in Sect. 8.1.

In Sect. 5, the dynamical equations are listed and the
currents (in conservation laws) and quasi-currents (in
balance equations) defined. Depending on their time
reversal behavior, those currents are reversible or irre-
versible and explicitly shown in Sects. 6 and 7, respec-
tively. Two examples from the reversible sector are fur-
ther elucidated, first a coupling of the polarization with
first and second sound in (Sect. 8.2) and, second, cou-
plings of temperature or density gradients to reversible
shear and extensional flow, characteristic for polar sys-
tems, in Sect. 8.3. In Sect. 9, we compare how some of
the key features of this manuscript can be applied to
other, related systems, like non-polar smectics, polar
and non-polar nematics, when the order parameter is
taken into account. We close with a summary and per-
spective in Sect. 10.

2 Variables

In this section of the manuscript, we discuss the macro-
scopic variables, that must be taken into account for
polar smectic A phases, also called smectic AF , where
AF refers to the ferroelectric nature of this phase. For
certain polar aspects, we will make use of the previous
work on the macroscopic description of polar nematics
[7,8]. Two fluid effects as they arise in immiscible mix-
tures [44,45] are not the subject of this paper, since we
will assume the presence of a miscible system.

Other variables are the entropy density, σ, the mass
density, ρ, the density of linear momentum, gi, and the
macroscopic polarization, Pi. We split Pi into its mag-
nitude, P , and its direction, p̂i with Pi = P p̂i, where p̂i

is a polar unit vector with (p̂i)2 = 1. Rotations of the
polarization are described by δp̂i. The strength of the
polar order, P , is the order parameter, and δP is not
a conserved quantity. For very fast relaxation times, P
does not couple to the macroscopic variables and will
be no longer kept on the list of variables, while for suffi-
ciently long relaxation times its dynamic equation will
be incorporated.

Since the system we study, smectic AF , has a layered
structure, we keep u, the layer displacement, in our list
of macroscopic variables, just as for non-polar smectic
A. There is, however, an important difference: in the
AF phase, u = uip̂i is a component of the general dis-
placement vector along the polar direction. Thus, u is
scalar under inversion. In the non-polar case, uA = uin̂i

involves the nematic direction and is therefore subject
to the n̂i → −n̂i invariance characteristic for nematic
order. In our description, uA is completely masked by
u.

In this paper, we assume that the layer normal and
the macroscopic polarization in equilibrium, p̂0i , are par-
allel and fixed. As a result, rotations of the polarization
are not independent from rotations of the layer and p̂i

is not an independent variable. In particular, in linear
order

δp̂ = −∇⊥u (1)

with the transverse gradient vector ∇⊥ = {∇x,∇y, 0}
and the z-axis taken as the preferred direction. Of
course, compression/dilation of the layers cannot be
described by δp̂i.

The presence of impurities, contaminants, etc., can
be taken care of by adding a concentration variable φ.
We assume the associated mass density, ρs, with ρs =
ρφ to be conserved, i.e., there are no chemical reactions
involved [6].

The first law of thermodynamics relates changes of
the variables to changes of the energy density ε by the
Gibbs relation [6,10]

dε = T dσ + μdρ + Π dφ + hu
i d∇iu

+ hP dP + EidDi + vidgi (2)

The electric displacement field Di is related to the
charge density ρe by ∇iDi = −δρe as the independent
variable. The conjugate field Ei is the external electric
field. Our notation follows closely that of Refs. [8,46].

The Gibbs relation contains the entropy density σ,
representing the thermal degree of freedom, with its
thermodynamic conjugate, the temperature T . Other
conjugates are the chemical potential μ, the osmotic
pressure Π, the mean velocity vi = gi/ρ, the field hu

i is
conjugate to ∇iu, and the molecular field hP associated
with the magnitude of the polarization P .

3 Statics-without fields

The static behavior of the macroscopic system studied
here is conveniently described by the energy functional
in harmonic approximation, Ref. [8,47]. Disregarding
electric fields for the moment and including the kinetic
energy density, we get

ε = +
1
2
cP (δP )2 +

1
2
K

(2)
ij (∇iP )(∇jP )

+
1
2
B(∇zu)2 +

1
2
K(∇2

⊥u)2 + CP0(∇zu)(∇2
⊥u)

+ (∇zu)(d1δP + d2∇zP ) + (∇2
⊥u)(d3δP + d4∇zP )

+
1
2
cρρ(δρ)2 +

1
2
cσσ(δσ)2 +

1
2
cφφ(δφ)2

+ cρφ(δρ)(δφ) + cρσ(δρ)(δσ) + cσφ(δσ)(δφ)
+ (γ1δρ + γ2δσ + γ3δφ) δP

+ (θ1δρ + θ2δσ + θ3δφ)∇zP

+ (θ̂1δρ + θ̂2δσ + θ̂3δφ)∇zu

+ (θ̄1δρ + θ̄2δσ + θ̄3δφ) (∇2
⊥u) +

1
2ρ

g2 (3)

where ∇z is a short hand notation for p̂0i ∇i. A δ denotes
deviations from the equilibrium value, in particular
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δP = P − P0, δp̂i = p̂i − p̂0i , δφ = φ − φ0, δρ = ρ − ρ0
and δT = T − T0. The Einstein summation convention
is used throughout the paper.

Stability of the system requires a positive free energy.
As a result, the static coefficients have to fulfil certain
conditions; in particular for those related to the new
variables δP and ∇iP we have cp > 0, K

(2)
⊥ > 0, K

(2)
|| >

0 and d21 < cpB, d22 < K
(2)
|| B, d23 < cpK, d24 < K

(2)
|| K

and γ2
1 < cpcρρ, γ2

2 < cpcσσ, γ2
3 < cpcφφ and θ21 <

K
(2)
|| cρρ, θ22 < K

(2)
|| cσσ, θ23 < K

(2)
|| cφφ.

Going beyond these inequalities in the estimate of
static cross-coupling terms for room temperature com-
plex fluids is a challenge. We note, however, that for
uniaxial magnetic gels, Menzel [48] has presented a
mesoscopic model of the cross-coupling between relative
rotations and strains and evaluated the corresponding
coupling parameter D2 in term of the parameters of his
mesoscopic model.

Even in harmonic approximation the energy density
Eq. (3) can give rise to nonlinear effects, since mate-
rial parameters generally are still functions of the state
variables, like temperature, pressure, and polarization
P0.

The stiffness of order parameter variations is given
by cP . Inhomogeneous deviations of the polarization
are described by energy contributions (∼ K

(2)
ij which

is of the standard uniaxial form) [6]. A surface term
∼ (δP )(∇zP ) has been suppressed.

Of the static contributions associated with layer dis-
placements (gradients of u), the compression/dilation
term ∼ B and the layer bending term ∼ K are of the
standard form familiar from non-polar smectic A [4].
The contribution ∼ CP0 is specific for polar smectic
A and vanishes in the non-polar case because of par-
ity. This is made manifest by the factor P0. It couples
compression/dilation of the layers with bending of the
layers. However, in linear order, the C term does not
enter the Euler equation for the first variation of ε.
There are four coupling terms between the polarization
and layer displacement (coefficients d1,2,3,4) unknown
in non-polar smectics.

In addition, the energy density of a fluid binary mix-
ture involving only δσ, δρ and δφ is as in the non-
polar case. Specific for the AF phase are couplings
between those variables and δP , ∇zP , ∇zu and ∇2

⊥u
with three new coefficients in each case. These coupling
terms are absent in a smectic A phase, since they vio-
late the n̂ → −n̂ invariance. The couplings with δP
have counter parts in solids that show piezoelectricity
[49].

It is well-known that a phase with div p̂ = const.
(“splay phase”) does have a lower Ginzburg–Landau
free energy (compared to the homogeneous state), but
necessarily involves defects that increase the energy.
The stability of such a splay phase depends, e.g., on
boundary conditions and will not be considered here.
For a hydrodynamic treatment of splay phases see [7].
Since we are dealing with a stable homogeneous equi-

librium state here, the linear surface term, ∼ div p̂, can
be neglected.

According to the Gibbs relation, Eq. (2) the conju-
gate quantities to the hydrodynamic and macroscopic
variables follow from the free energy as variational or
partial derivatives with respect to the appropriate vari-
able, while all the other variables are kept constant. We
provide a list of the conjugates in Sect. 4, with the field
contributions included.

Naturally the harmonic approximation is a restric-
tion in the sense that only sufficiently small deviations
from the spatially homogeneous ground state are con-
tained. Big changes such as, for example, a complete
director reorientation as in the Frederiks transition [4],
require a fully nonlinear analysis of all the variables
involved.

Nonlinear generalizations of Eq. (3) contain the
replacements P0 → P and, particularly in the material
tensors, p̂0i → p̂i. The linear relation Eq. (1) is replaced
by

p̂ =
(

∇xu,∇yu, 1 − 1
2
(∇⊥u)2

)
(4)

making sure that p̂2i = 1 up to quadratic order in gra-
dients of u.

In addition, nonlinear rotations of the layers are
accompanied by compression, which (in quadratic order)
gives rise to the replacement

∇zu → ∇zu − 1
2
(∇⊥u)2 (5)

as is explained in Fig. 3b of Ref. [50]. This replacement
applies in Eq. (3) to the terms ∼ B as well as ∼ C, thus
guaranteeing positivity of the energy, for BK > C2P 2

0 .

4 Statics-with external field

Applying a constant external electric field Ei with mag-
nitude E, the orientation of p̂0i in equilibrium will be
parallel to the external field, p̂0i = Ei/E due to the
polarization electric coupling energy, −P · E. For devi-
ations from the preferred direction, a hydrodynamic
polar orientation energy (1/2)P0E(δp̂i)2 follows that
describes the energetic penalty for not being in equi-
librium. This latter expression follows from p̂iδp̂i = 0
and p̂0i δp̂i = − 1

2 (δp̂i)2. Finally, the polar orientation
energy can be related to local layer rotations and is
written as (1/2)P0E (∇⊥u)2 in harmonic approxima-
tion. Thus, the electric part of the orientational energy
can be written

εor(E) =
1
2
KE(∇⊥u)2 (6)

with KE = P0E −εaE2. The non-polar dielectric orien-
tation energy of the underlying smectic structure (with
negative εa) has been kept for completeness. In har-
monic approximation, KE is constant.
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Stability requires the necessary condition εa < P0,
while εa < 0 is sufficient.

It is the linear field dependence on P0 that can lead
to a linear E dependence of certain material parame-
ters. This is in contrast to ordinary nematics/smectics,
where the material parameters can only be a function
of E2.

Ordinary non-polar nematics with a director field,
n̂, show flexoelectricity described by a contribution
to the generalized energy of the form e1(δ⊥

ijnk −
δ⊥
jkni)(∇inj)Ek (for curlE = 0) [4,6]. For the polar

AF phase, the flexoelectric energy reads e1p̂iEi(div p̂)
and simply renormalizes the prefactor of the lin-
ear splay term, which we neglect in the free energy
anyhow.

An applied constant magnetic field leads to an energy
contribution 1

2χm
a H2(∇⊥u)2 involving the diamagnetic

anisotropy χm
a . It is quadratic in the field strength, since

Hi is odd under time reversal.
We add the electric orientational energy Eq. (6) to

the field-free energy Eq. (3), ε̃ ≡ ε + εor and derive
the conjugates by appropriate partial derivation. Writ-
ing hP = h

′P − ∇iΦ
P
i and hu

i = h
′u
i − ∇jΦ

u
ij we

get

h
′P =

∂ε

∂δP

⏐⏐
...

= cP δP + γ1δρ + γ2δσ + γ3δφ

+ d1∇zu + d3∇2
⊥u (7)

ΦP
i =

∂ε

∂(∇iP )

⏐⏐
...

= K
(2)
ij ∇jP + p̂i(d2∇zu + d4∇2

⊥u)

+ p̂i(θ1δρ + θ2δσ + θ3δφ) (8)

h′u
i =

∂ε̃

∂∇iu

⏐⏐
...

= p̂i

(
B∇zu + CP0∇2

⊥u + θ̂1δρ

+ θ̂2δσ + θ̂3δφ + d1P + d2∇zP
)

+ δ⊥
ijKE∇ju (9)

Φu
ij =

∂ε

∂∇i∇ju

⏐⏐
...

= δtr
ij (K∇2

⊥u + CP0∇zu + θ̄1δρ

+ θ̄2δσ + θ̄3δφ + d3δP + d4∇zP ) (10)

δμ =
∂ε

∂δρ

⏐⏐
...

= γ1δP + θ1∇zP + θ̄1∇2
⊥u + θ̂1∇zu

+ cρρδρ + cρφδφ + cρσδσ (11)

δT =
∂ε

∂δσ

⏐⏐
...

= γ2δP + θ2∇zP + θ̄2∇2
⊥u + θ̂2∇zu

+ cσσδσ + cρσδρ + cσφδφ (12)

δΠ =
∂ε

∂δφ

⏐⏐
...

= γ3δP + θ3∇zP + θ̄3∇2
⊥u + θ̂3∇zu

+ cφφδφ + cφρδρ + cφσδσ (13)

vi =
∂ε

∂gi

⏐⏐
...

= gi/ρ (14)

with δtr
ij = δij − p̂ip̂j .

5 Dynamics

In the following, we will disregard dynamical effects of
the electric field, assuming ∇ × E = 0. The dynamic
equations have the form

σ̇ + ∇i(σvi + j σR
i + j σD

i ) =
2R

T
(15)

ρ̇ + ∇i(ρvi) = 0, (16)

ġi + ∇j(givj + ψ δij − p̂ih
u
j + σth

ij + σ R
ij + σD

ij) = 0,
(17)

φ̇ + vj∇jφ + ∇i(j
φR
i + jφD

i ) = 0, (18)

u̇ + vj∇ju − vz + XuR + XuD = 0, (19)

Ṗ + vi∇iP + XPR + XPD = 0, (20)

ρ̇e + ∇j(ρevj) + ∇i(jeR
i + jeD

i ) = 0. (21)

The conserved quantities and the entropy density
contain phenomenological currents (∼ ji), while the
quasi-currents (∼ X) are associated with spontaneously
broken continuous symmetry variables or macroscopic
variables. The superscripts D and R on the cur-
rents denote, respectively, the dissipative and reversible
parts.

The energy conservation law

ε̇ + ∇i(ε + ψ)vi + ∇i

(
j εR
i + j εD

i

)
= 0, (22)

is redundant, since it follows from Eqs. (15)–(21) due
to the Gibbs relation (2).

We use the pressure ψ including the isotropic part of
the Maxwell stress

ψ =
∂ (

∫
εdV )

∂V
= −ε + μρ + Tσ + v · g + DiEi (23)

and the off-diagonal terms of the Maxwell and the
Ericksen-type stresses [51]

2σth
ij = − (EiDj + DiEj) + ΦP

j ∇iP + ΦP
i ∇jP

+ Φu
ki∇k∇ju + Φu

kj∇k∇iu (24)

The Maxwell stress is of the standard form [11,52]
with Di = Ei + Pi and has been symmetrized with the
help of the requirement that the energy density should
be invariant under rigid rotations [6]. In detail, one first
obtains directly from the condition of zero entropy pro-
duction in Eq. (28)

σth
ij = −DjEi + ΦP

j ∇iP + Φu
kj∇k∇iu (25)

and uses the requirement of rotational invariance of the
Gibbs relation [5]. Compare also Ref. [5] for a detailed
exposition.

With a redefinition of the pressure, ψ = ψ̃+(1/2)E2,
another useful form of the momentum conservation
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Eq. (17) can be found

ġi + ∇j

(
givj + ψ̃ δij − p̂ih

u
j + ΦP

j ∇iP + σ R
ij + σ D

ij

)
= ρeEi + Pj∇jEi, (26)

with the Coulomb and Kelvin external forces as source
terms. Using the Gibbs relation Eq. (2), the pressure
gradient can be written as

∇iψ̃ = ρ∇iμ + σ∇iT − Π∇iφ + Pj∇iEj (27)

The source term of Eq. (15) contains R, the dissipa-
tion function, which represents the energy dissipation of
the system. Due to the second law of thermodynamics,
R must satisfy R ≥ 0: For reversible processes, this dis-
sipation function is equal to zero, while for irreversible
processes it must be positive

2R = −jσ∗
i ∇iT − jφ∗

i ∇iΠ − σ∗
ij∇jvi − je∗

i Ei

− Xu∗∇ih
u
i + XP∗hP ≥ 0 (28)

where positive entropy production (R > 0) applies for
∗ = D and vanishing entropy production (R = 0) for
∗ = R. The superscripts D refer to the dissipative part
of the currents and quasi-currents in Eqs. (15)–(21)
while the superscripts R refer to the reversible parts
in Eqs. (15)–(21).

The phenomenological currents and quasi-currents
are the sum of the reversible and the dissipative part,
as can be seen in Eqs. (15)–(21). The various trans-
port contributions in Eqs. (15)–(21) (as well as ψ and
σth

ij ) are reversible and add up to zero in the entropy
production.

These phenomenological currents and quasi-currents
are treated in the following subsections within ‘lin-
ear irreversible thermodynamics’ (guaranteeing general
Onsager relations), i.e., as linear relations between cur-
rents and thermodynamic forces. The resulting expres-
sions are nevertheless nonlinear, since all material
parameters can be functions of the scalar state vari-
ables (e.g., σ, ρ, P , φ).

The form of Eq. (18) reflects the assumption that the
impurity density is conserved, while Eq. (21) describes
the polar order parameter modulus as a slowly relaxing
quantity (similar to, e.g., the nematic order parameter
modulus [53] or the superfluid degree of order [20,54]).

6 Reversible currents

To obtain the reversible currents, one expands all cur-
rents and quasi-currents systematically into the ther-
modynamic forces/conjugates taking into account the
behavior under time reversal, spatial inversion, rigid
rotations and, most importantly, zero entropy produc-
tion. For a more detailed exposition of the method, we
refer to Ref. [6]. For the reversible dynamic behavior of

our macroscopic system, we obtain the following expres-
sions for the reversible currents containing phenomeno-
logical parameters

j σR
i = ϕσ

ijkAjk, (29)

j eR
i = ϕe

ijkAjk, (30)

σ R
ij = λP

ijh
P − ϕσ

kji∇kT − ϕφ
kji∇kΠ − ϕe

kjiEk,

(31)

XPR = λP
ijAij , (32)

XuR = 0, (33)

jφR
i = ϕφ

ijkAjk, (34)

with the symmetrized velocity gradient Aij , where
2Aij = ∇ivj +∇jvi. There is a coupling of the modulus
of the polarization and the density of linear momentum
provided by the tensor

λP
ij = λP

1 δ⊥
ij + λP

2 p̂ip̂j (35)

The experimental implications of this coupling are dis-
cussed in Sect. 8.2.

A second class of reversible couplings are provided
by the third-rank material tensors ϕα

ijk for α ∈ {σ, e, φ}
with the structure

ϕα
ijk = ϕα

1 p̂ip̂j p̂k + ϕα
2 p̂iδ

⊥
jk + ϕα

3 (p̂jδ
⊥
ik + p̂kδ⊥

ij) (36)

They connect currents of scalar conserved quantities
with Aij and, reciprocally, their conjugate forces with
the stress tensor σij . Such couplings require the pres-
ence of a parity breaking vector (compare, for example,
Ref. [9]). All parts of the tensors ϕα

ijk therefore contain
an odd number of p̂i in order to restore parity symme-
try. These reversible dynamic cross-coupling terms are
absent in non-polar systems such as non-polar smectic
A. In Sect. 8.3, we discuss consequences of those contri-
butions that can be detected experimentally.

7 Dissipative currents

To describe dissipative processes, it is convenient to
expand the dissipation function, R, the source term in
the dynamic equation for the entropy density, Eq. (15),
into a positive definite expression quadratic in the
thermodynamic forces. Then taking variational deriva-
tives (or partial derivatives when applicable) of R with
respect to forces, one obtains linear relations (listed
below) between the currents and the quasi-currents on
the one hand and thermodynamic forces on the other.
The entropy production is a scalar under all transforma-
tions compatible with symmetry including time rever-
sal, spatial parity, and rigid rotations. For a detailed
exposition of the method, we refer to Ref. [6]. The dis-
sipative dynamic behavior of our macroscopic system is
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characterized by the dissipation function R

2R = κij(∇iT )(∇jT ) + Dij(∇iΠ)(∇jΠ)

+ 2DTΠ
ij (∇iT )(∇jΠ) + σE

ijEiEj

+ 2DTE
ij (∇iT )Ej + 2DΠE

ij (∇iΠ)Ej

+
1
γu

(∇ih
u
i )(∇jh

u
j ) + νijkl(∇jvi)(∇lvk)

+ 2DPEEzh
P + 2DuΠ(∇zΠ)(∇ih

u
i ) + b||hP hP

+ 2DPT (∇zT )hP + 2DPΠ(∇zΠ)hP

+ 2DuT (∇zT )(∇ih
u
i ) + 2DuEEz(∇ih

u
i ) (37)

where Ez is a short-hand notation for p̂iEi. The tensors
κij , DTΠ

ij , Dij , σE
ij , DTE

ij and DΠE
ij as well as νijkl are of

the standard uniaxial form for second and fourth ranks
tensors [6,49]. The contribution ∼ b|| in the entropy
production describes the relaxation of the polarization
modulus P . This term has an analog in ordinary nemat-
ics (with the order parameter modulus included). Spe-
cific for polar systems including polar nematics, polar
nematics with a solvent and polar smectic AF are the
dissipative cross-couplings between polarization on the
one hand and gradients of temperature, gradients of
osmotic pressure and electric fields on the other gov-
erned by the material parameters DPT , DPΠ as well
as DPE . These contributions can only exist in polar
system, since they are odd in p̂i.

The positivity of R requires certain conditions on
the dissipative parameters, in particular, b|| > 0 and
(DPE)2 < σE

|| b||, (DPT )2 < κ||b||, and (DPΠ)2 < D||b||.
To go in general beyond these positivity requirements
is highly nontrivial. In fact, we are not aware of any
systematic approach to evaluate transport coefficients
quantitatively for room temperature fluid condensed
systems in the bulk. We would like to mention, however,
that in superfluid 3He, which arises at temperatures
below 3 mK in the bulk, one can evaluate transport
coefficients quantitatively [55], since one has a small
expansion parameter, namely Δ/εF ∼ 10−3, where Δ
is the energy gap and where εF is the Fermi energy.

To obtain the dissipative parts of the currents and
quasi-currents, we take the partial derivatives of R with
respect to the appropriate thermodynamic force

jσD
i = − ∂R

∂(∇iT )

⏐⏐
...

= −κij∇jT − DΠE
ij ∇jΠ

− DTE
ij Ej − DTP p̂ih

P

− DuT p̂i(∇jh
u
j ) (38)

jeD
i = − ∂R

∂Ei

⏐⏐
...

= −σE
ijEj − DΠE

ij ∇jΠ

− DTE
ij ∇jT − DPE p̂ih

P

− DuE p̂i(∇jh
u
j ) (39)

jφD
i = − ∂R

∂(∇jΠ)

⏐⏐
...

= −Dij∇jΠ − DTΠ
ij ∇jT

− DΠE
ij Ej − DPΠ p̂ih

P

− DuΠ p̂i(∇jh
u
j ) (40)

σD
ij = − ∂R

∂(∇jvi)

⏐⏐
...

= −νijklAkl (41)

XPD =
∂R

∂hP

⏐⏐
...

= b||hP + DPΠ∇zΠ

+ DPEEz + DPT ∇zT
(42)

XuD = − ∂R

∂(∇ihu
i )

⏐⏐
...

= − 1
γu

∇ih
u
i − DuΠ∇zΠ

− DuEEz − DuT ∇zT (43)

8 Possible static and dynamic experiments

8.1 On the unusual static coupling between
compression and deformations of the layering

As pointed out briefly in Sect. 3, the most interest-
ing new static cross-coupling term when compared to
usual smectic A is the contribution CP0(∇zu)(∇2

⊥u) in
Eq. (3), which couples layer compressions to a bending
of the layers.

From Eqs. (9) and (10), it is easy to see that this
novel contribution does not generate bulk effects in the
dissipative currents, Eqs. (38)–(43), since its first vari-
ational derivative, ∇ih

u
i vanishes identically. On the

other hand, the C term is not a pure surface term, in
contrast, e.g., to ∇iPi in the energy. The nonlinear,
rotationally invariant generalization of ∇zu in the C
term using Eq. (5), leads to the same conclusions. We
are not aware of any other cross-coupling term in the
hydrostatic regime for which such a situation arises.

The only instance where hu
i appears (and not its

divergence) is the stress tensor σij in Eq. (17), where
p̂ih

u
j represents the elastic tensions. It consists of two

parts,

σC
ij = CP0 (p̂ip̂j∇2

⊥u − p̂iδ
tr
jk∇k∇zu) (44)

describing a relative compression—shear tension weig
hted with ∇2

⊥u (for the part of compressional tensions)
and ∇⊥∇zu (for the contribution from shear tensions).
Clearly, the challenge lies in an experimental detection
of these two effects.

To come closer to a physical interpretation of Eq. (44)
or generally of the contribution ∼ C, we can introduce
a vector potential Ai by hu

i = εijk∇jAk similar to the
condition of incompressibility in hydrodynamic flow or
to the Coulomb gauge in electrodynamics. We find

Ai = CP0εijkp̂j∇ku (45)

which looks rather simple.
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8.2 Sound-like excitations

In simple fluids, ordinary sound is known as the only
propagating low-k excitation, exp i(kiri − ωt), with
ω2 ∼ k2. It is related to momentum conservation,
isotropic, and results from reversible couplings of ∇ivi

with δρ and δσ via the isotropic pressure in Eq. (17).
In a smectic A liquid crystal, polar or non-polar,

there is an additional propagating mode, sometimes
called second sound. It is due to the spontaneously
broken translational symmetry along the normal of the
layers (the z direction). This one-dimensional compres-
sion/dilation mode, with susceptibility B, Eq. (3), is
anisotropic and leads to an anisotropic part in the first
sound spectrum. It involves excitations of ∇ivi and
∇zu.

In a polar smectic phase, AF , the polarization δP
provides additionally a low-k coupling with ∇ivi and
∇zvz via λP

ij in Eqs. (31) and (32). As a result, both
sound-like excitations are more complicated.

Disregarding dissipation for the moment, the solv-
ability condition for the linearized equations of motion,
Eqs. (15)–(20) leads after some trivial algebra to the
dispersion relations for first sound

ω2
1 = c210k

2 +
B

ρ0

k4
z

k2
+

cP

ρ0

(λP
1 k2 + λP

a k2
z)2

k2
(46)

with λP
a = λP

2 −λP
1 and kz short-hand for p̂iki. For the

isotropic first sound velocity (of simple fluids), we get
ρ0c

2
10 = c2ρρρ

2
0 +2c2ρσρ0σ0 +c2σσσ2

0 in our representation.
The second contribution (∼ B) shows a uniaxial

dependence on the angle ϑ between ki and p̂i, k2 cos4 ϑ.
The last contribution (∼ cP ) reflects the anisotropy of
the material tensor λP

ij . In case of vanishing anisotropy
in the λP

ij tensor, λP
a = 0, it adds to the isotropic part

of first sound velocity, c210 → c210 + cP (λP
1 )2, while for

λP
1 = 0 the compression modulus is effectively renor-

malized B → B + cP (λP
a )2. In the general case, first

sound anisotropy has contributions ∼ k2 cos4 ϑ and
∼ k2 cos2 ϑ.

The rather simple form of Eq. (46) is due to our
assumption that c210k

2 is the dominant contribution to
first sound. In addition, we have neglected γ1,2,3, since
those couplings only lead to isotropic contributions.

For second sound, we find two parts

ω2
20 = (c2B + c22λ)

k2
⊥k2

z

k2
≡ c22k

2 sin2 ϑ cos2 ϑ (47)

with c2B = B/ρ, related to the smectic compression
mode, and c22λ = (cP /ρ)(λP

a )2, related to the λP
ij cou-

pling. The perpendicular wave vector is k2
⊥ = k2 sin2 ϑ.

Second sound does not have an isotropic part and is
a manifestation of the couplings among δP , ∇ivi, ∇zvz

and δψ. This mode vanishes for ki that is either parallel
or perpendicular to p̂i.

Concerning dissipation, it is well known that there
is no damping for ordinary first sound and the smectic

compressional wave in lowest order of the wave vector
ω ∼ k and is therefore often neglected. This is different
for the coupling of the polarization ∼ λP

ij , since the
relaxation of δP , given by Ṗ + λP

ijAij + b||cP P = 0
(in lowest order in k) enters the dispersion relations
discussed above.

For second sound, we find the implicit relation

ω2
2 =

(
c2B +

ω2

ω2 + ib||cP
c22λ

)
k2

⊥k2
z

k2
(48)

where the imaginary part (∼ b||) indicates damping. As
expected, only the λP

ij contribution is damped.
Approximate solutions for weak and strong damping,

respectively, are obtained by replacing in Eq. (48) the
factor

(
ω2

ω2+ib||cP
c22λ

)
by c22λ

(
1 − i

b||cP
ω20

)
if ω2

20 	 b2||c
2
P

(49)

and(
ω2

ω2+ib||cP
c22λ

)
by c22λ

ω20
b||cP

(
−i + ω20

b||cP

)
if ω2

20 
 b2||c
2
P

(50)

In the case of small b||, the real (propagating)
part is unchanged, Re(ω2

2) = ω2
20, and the imagi-

nary (relaxing) part is basically the polarization
relaxation Im(ω2

2) ∼ cP b||. For large b||, the real
part of ω2

2 is dominated by c2B, while the imagi-
nary part is due to c22λ. For very large b||, second
sound becomes real and is the ordinary smectic
compression mode (ω2

2 ∼ c2B).
The influence of the relaxation of δP in the

first sound spectrum shows up only in the part
(∼ cP ) of Eq. (46). The results for second sound
discussed above can be taken over accordingly
for this part of first sound.

8.3 Reversible shear and elongational flows

Here, we discuss some of the implications of the
reversible cross-coupling terms described by the
tensors ϕα

ijk, Eq. (36), between velocity gradi-
ents and gradients of temperature (α = σ) and
concentration (α = φ), or electric fields (α = e).
We take p̂i parallel to the z-direction with the
perpendicular layering in the x−y planes resem-
bling a free-standing film geometry.

Among the external flow patterns that lead to
those couplings in an AF phase, there are basi-
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cally two configurations. First, a simple shear
flow (with shear rate S) in a plane contain-
ing the preferred direction z and an orthogonal
direction, y, meaning v

(1)
i = Sy δiz or 2Ajk =

S(δjyδkz + δjzδky), Eq. (29) leads to a heat cur-
rent of the form

jσ,R
y = ϕσ

3S (51)

and vanishing components jσ,R
z and jσ,R

x . There-
fore, the heat current is within the smectic lay-
ering and along the applied velocity. Of course,
the y-direction can be any in-layer direction.

The second example is uniaxial elongational or
compressional flow in a in-layer direction, v

(2)
i =

Ly δiy or Ajk = Lδjyδky that results in a heat
current with the single component

jσ,R
z = ϕσ

2L (52)

across the layers along the preferred direction.
In principle, also another uniaxial elongational

flow (along the preferred direction), v
(3)
i =

L′z δiz or Ajk = L′δjzδkz results in a heat cur-
rent jσ,R

z = ϕσ
1L

′ across the layers. However, this
flow is incompatible with a constant layer spac-
ing and would be challenging in measuring ϕσ

1 .
Perhaps one can achieve this goal by applying
an oscillatory flow of small amplitude.

Analogously, we obtain concentration and
electric currents of the same form (replacing in
the ϕ tensor superscript σ by φ and e, respec-
tively,

Reciprocally one can apply a temperature, a
concentration gradient or an electrical field to a
sample and then obtain non-vanishing elements
of the stress tensor. For a temperature gradient
parallel to p̂, ∇zT = G‖, we find

σzz = ϕσ
1G‖ (53)

σxx = σyy = ϕσ
2G‖ (54)

σxz = σxy = σyz ≡ 0 (55)

For a temperature gradient perpendicular to
p̂, ∇xT = G⊥, we find

σxz = σzx = ϕσ
3G⊥ (56)

σxx = σyy = σzz = σxy ≡ 0 (57)

Such stresses can lead to flows via the dynamic
equation for the density of linear momentum
only for spatially inhomogeneous external tem-
perature or concentration gradients or inhomo-
geneous electric fields.

9 Comparison with other liquid crystal
systems

In the smectic AF phase, we have found a novel
static cross-coupling between compression of the
layering and bending of the layers, Sect. 8.1. A
similar coupling can be expected for the hypo-
thetical ferroelectric analog of the tilted smectic
C phase. In addition, a hypothetical ferroelec-
tric CM phase, which can be viewed as a smec-
tic AF phase that has an additional preferred
(nematic or polar) direction within the layers,
should allow for a C-type coupling.

To the best of our knowledge, there is no other
liquid crystalline system to date that allows for
the C term. It does not lead to bulk forces, since
its first variational derivative vanishes, but it is
not a simple boundary term. It gives a rather
complicated contribution to the stress tensor,
Sect. 8.1.

Other effects, discussed above, have counter-
parts in various liquid crystal systems. The mod-
ification of the sound mode spectrum due to a
reversible coupling between flow and the polar-
ization (the polar order parameter), Sect. 8.2,
is present analogously in non-polar smectics,
if there, the nematic order parameter (usually
called S) relaxes slowly and is taken into account
as a macroscopic variable. In the standard
description of non-polar smectic A (and dis-
cotic/columnar) phases [56], such sound modifi-
cations are not contained. Similarly, in polar and
non-polar nematics with slowly relaxing polar
or nematic order, respectively, the reversible
coupling via λP

ij in Ref. [8] or βij in Ref. [57]
between flow and the appropriate order parame-
ter exists. As a consequence first sound becomes
anisotropic and second sound arises as a propa-
gating mode (with slowly relaxing amplitude).
They are easier measurable (than in smectic
systems), since there are no layer compression
modes in nematics.
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The reversible couplings of temperature or
density gradients to reversible shear and exten-
sional flow, Sect. 8.3, are characteristic for sys-
tems with polar order or tetrahedral (octupolar)
order. The former case includes polar nematics,
Ref. [8], the latter comprises tetrahedral phases,
like the Td, D2d, S4 and D2 phase, Ref. [58]. The
tetrahedral order parameter is a rank 3 tensor
without inversion symmetry.

10 Summary and perspective

In this work, we have focused on the macroscopic
dynamics of ferroelectric smectic A, smectic AF ,
liquid crystals reported recently experimentally.
In this fluid and orthogonal smectic phase, the
macroscopic polarization, P, is parallel to the
layer normal thus giving rise to C∞v overall sym-
metry for this phase in the spatially homoge-
neous limit. A combination of linear irreversible
thermodynamics and symmetry arguments has
been used to derive the resulting dynamic equa-
tions applicable at sufficiently low frequencies
and sufficiently long wavelengths.

There are several directions into which one
can generalize the analysis presented in this
paper. First of all one could produce a material
composed of chiral molecules, which will most
likely lead to a ferroelectric A phase, which will
also break mirror symmetry in all three spatial
dimensions, in contrast to the smectic AF phase
analyzed here—one could call this phase smectic
A∗

F .
In a step toward soft solids and gels, it would

be natural to study the influence of a network
leading to ferroelectric smectic A elastomers
and gels. Such a material would combine the
material and mechanical properties of smectic A
elastomers studied in the past by Nishikawa et
al. [59,60] with ferroelectricity along the layer
normal of the smectic layering. These systems
would be very interesting, because it has been
shown in Refs. [59,60] for usual smectic A elas-
tomers that the in-plane elasticity is about two
orders of magnitude smaller than the elastic
modulus for compression due to the layered
structure.

Another direction to go into would be the
investigation of two fluid effects in smectic liq-
uid crystals, both for non-polar usual smectic
A phases as well as for ferroelectric smectic
AF in a solvent each. Even for polar nemat-
ics, such a study is rather recent [43]. In such
systems, relative motions between the layering
and the solvent will be of interest, in particu-
lar for lyotropic systems, which can have a large
layer spacing compared to a molecular length
and even becoming comparable to optical wave-
lengths. This issue has not been addressed in the
literature so far.

We close this perspective by mentioning that
the investigation of ferromagnetic instead of fer-
roelectric smectic A phases would open a new
field of study altogether, since new dynamic
cross-coupling terms, reversible as well as irre-
versible ones, would become possible in such a
material, since ferroelectric and ferromagnetic
systems differ re. electric polarization, P, and
spontaneous magnetization, M, by their differ-
ent behavior under both, parity and time rever-
sal. Experimental studies on ferrosmectics are
rather rare (compare in particular [61,62]) and
are so far confined to systems that are not ferro-
magnetic, since the particles used were neither
plate- nor rod-like. This situation is in strong
contrast to experimental and theoretical studies
of ferronematics and ferromagnetic nematics, a
field that has flourished over the last decade [63–
74].
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