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Abstract. We present a method to infer the arbitrary space-dependent drift and

diffusion of a nonlinear stochastic model driven by multiplicative fractional Gaussian

noise from a single trajectory. Our method, fractional Onsager-Machlup optimisation

(fOMo), introduces a maximum likelihood estimator by minimising a field-theoretic

action which we construct from the observed time series. We successfully test fOMo

for a wide range of Hurst exponents using artificial data with strong nonlinearities,

and apply it to a data set of daily mean temperatures. We further highlight the

significant systematic estimation errors when ignoring non-Markovianity, underlining

the need for nonlinear fractional inference methods when studying real-world long-

range (anti-)correlated systems.
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1. Introduction

The dynamic behaviour of complex systems comprising many degrees of freedom

poses significant challenges to analytic description and often eludes physical intuition.

Typically, measurements only access few slowly evolving degrees of freedom which

fluctuate stochastically, indicating the presence of hidden interactions within the system.

If the system is organised in hierarchical self-similar subsystems, their fractal nature may

be mirrored in scale-free correlated, i.e., fractional, fluctuations leading to non-negligible

departure from Markovianity [1]. Important examples of systems displaying fractional

correlations include the climate [2–6], DNA [7, 8], cell motility [9, 10], and the brain

[11, 12].

Recent efforts in studying such processes have focused on machine learning-based

prediction; despite their power [13], such approaches often lack interpretability [14] or
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Figure 1. The stochastic difference equation given in Equation (1) describes the

stochastic evolution of a process xn subject to a nonlinear drift f(x) = −V ′(x) (V (x)

shown as blue shade) and a non-homogeneous diffusion g(x) (rainbow coloured ground).

The process is driven by multiplicative fractional driving noise g(x)∆ξH . We propose

an algorithm which infers both f(x), g(x) from a single finite trajectory (green dots).

robustness in real-world scenarios [15, 16]. In order to build an analytic and intuitive

understanding of such fractional processes, statistical inference, in which parameters of a

conjectured stochastic model are inferred from experimental data, may help in providing

clearer explainability and interpretation. Recent inference methods focused on either

linear fractional [17–21], or nonlinear non-fractional processes [22–33]. In scenarios,

however, where nonlinear dynamics and fractional fluctuations appear simultaneously,

their complicated interplay leads to many emergent features not present in either purely

nonlinear or fractional models. Hence, if these phenomenologically richer scenarios

are to be studied, more generalised statistical inference methods are required. In this

article, we propose an estimation method for a fully nonlinear, fractional model of

time series, recovering space dependent drift and diffusion parameters from a single

trajectory. Thus, it is suitable for scenarios in which only single realisations are

available [34, 35]. In developing the estimation method, we draw on the field-theoretic

Onsager-Machlup formalism [36–39] which we generalise to arbitrarily correlated, and

in particular fractional, processes. We benchmark the method using both synthetic and

real world data, where it reconstructs nonlinear parameters and statistics with excellent

accuracy. We further show that ignoring fractional correlations leads to systematically

wrong parameter inferences.



Inferring nonlinear fractional diffusion processes from single trajectories 3

2. Fractional processes

We discuss a stochastic model for nonlinear time series described by an Itô-type

stochastic difference equation driven by fractional noise

xn+1 = xn + f(xn)∆t+ g(xn)∆ξ
H
n+1 , (1)

where f(x), g(x) denote space-dependent drift and diffusion terms of dimension [f ] =

[x]/[time], [g] = [x]/[time]H . The process is illustrated in Figure 1. Equation (1) is the

first-order discretisation (Euler-Maruyama scheme) of a stochastic differential equation

driven by fractional noise [40]. While ∆t denotes the time step of the discretisation,

∆ξHn is a discretised fractional Gaussian noise (fGN) [41, 42], defined by its correlation

matrix

Cmn =
〈
∆ξHm∆ξHn

〉
= (∆t)2H

(
|n−m+ 1|2H + |n−m− 1|2H − 2 |n−m|2H

)
. (2)

Choosing H = 1
2
, the noise ∆ξHn is discrete standard Gaussian white noise. For H > 1

2

(H < 1
2
), the increments ∆ξHn are positively (negatively) correlated.

3. Inference method

We propose an algorithm that given a single measured trajectory x⃗ = {x0, x1, . . . , xN}
sampled at ∆t infers the functional parameters f(x), g(x) as introduced in Equation (1).

We argue that f(x) and g(x) only introduce short-range correlations, which

exponentially decay for a stationary process. We therefore expect that the asymptotic

scaling of the correlation function of Equation (1) is solely determined by H and ∆t

and does not depend on f(x), g(x). We assume that the Hurst parameter has already

been estimated previously using established methods (e.g., [43–46]).

The central idea is to find the functions f and g which maximise the log-likelihood

lnP [x⃗|f, g] of the observed trajectory x⃗. The likelihood is obtained by measuring the

likelihood of the noise realisation ∆⃗ξH = {∆ξH1 , ...,∆ξHN }, which together with f and g

produces the measurement x⃗. This realisation is found by inversion of Equation (1),(
∆⃗ξH (x⃗)

)
n
=
xn − xn−1 − f(xn−1)∆t

g(xn−1)
. (3)

The probability to observe a measurement x⃗ then follows from Pξ[∆⃗ξH ], the probability

distribution of a noise realisation, by a standard change of variables in RN ,

P [x⃗|f, g] = Pξ

[
∆⃗ξH (x⃗)

] ∣∣∣∣∣∂∆⃗ξH∂x⃗

∣∣∣∣∣ , (4)

where the nonlinear transform (Equation 3) induces a Jacobian determinant accounting

for the measure change from
∏

n d∆ξ
H
n to

∏
n dxn [47].

Since ∆⃗ξH is discrete fractional Gaussian noise, its probability distribution is a

N -dimensional Gaussian distribution. We write the distribution field-theoretically as

Pξ =
(
(2π)N det[C]

)− 1
2
exp

(
−A[∆ξH ]

)
(5)
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where A is the free action

A[∆ξH ] =
1

2

(
∆⃗ξH

)T
C−1∆⃗ξH , (6)

and C−1 is the matrix inverse of the correlation matrix given in Equation (2) [48]. Here,

the non-diagonal correlation matrix accounts exactly for the full memory of the process.

The determinant
∣∣∣∂∆⃗ξH/∂x⃗∣∣∣ itself is readily evaluated as ∂∆ξHn /∂xm is a lower

triangular matrix with all entries vanishing for m > n (see Equation (3)). Hence, the

determinant is given by the product over the diagonal entries,

∂∆ξHn /∂xn = g(xn−1)
−1 . (7)

This results in a log-likelihood of the measurement

lnP [x⃗|f, g] = −1

2

N∑
m,n=1

xm − xm−1 − f(xm−1)∆t

g(xm−1)
C−1

m,n

xn − xn−1 − f(xn−1)∆t

g(xn−1)
−

N−1∑
n=0

ln |g(xn)| , (8)

where we drop added normalisation constants independent of f or g.

In the field-theoretic literature, expressions of the form of Equation (8) are well

known for diagonal correlation matrices C, corresponding to uncorrelated noise with

H = 1
2
, where they are referred to as Onsager-Machlup actions [36–39]. These have been

extensively studied to characterise the “most likely path” of a specifically parametrised

stochastic process [37, 49–53]. In this article, we take the opposite direction and use

Onsager-Machlup theory to determine which parameters render the observed path the

likeliest. This means that we henceforth interpret the term in Equation (8) as a

path action S[f, g|x⃗] = − lnP [x⃗|f, g] in the parameters f and g, while the path x

now in turn serves as a parametrisation. In doing so, we draw a connection from

established (Markovian) maximum likelihood estimators [28, 32, 54] to the Onsager-

Machlup formalism. We generalise these results to fractionally driven processes and

hence refer to the estimation method based on maximising Equation (8) as fractional

Onsager-Machlup optimisation (fOMo).

In order to estimate the optimal parameters f and g that maximise the likelihood

of an observation x⃗, one needs to find the minimum of the path action S[f, g|x⃗] =

− lnP [x⃗|f, g] for some fixed observed x⃗. In order to do so, some finite-dimensional

parametrisation of f and g is required; by introducing a set of suitable basis functions

χp(x), χ
′
p′(x), one may rewrite f(x) =

∑P
p=1 fpχp(x), g(x) =

∑P ′

p′=1 gpχp′(x) for some

finite P, P ′ (chosen to be much smaller than N). The optimisation then takes place

in the finite coefficients fp, gp′ of the parametrisation. Suitable basis functions include

polynomials or indicator functions of disjoint intervals.

In finding the minima of the parametrised path action

S[{fp}, {gp′}] = S
[

P∑
p=1

fpχ(p),
P ′∑

p′=1

gpχp′(x)

]
(9)

in {fp}, {gp′}, it remains to discuss the uniqueness of any solution. As a derivation

provided in Appendix A shows, the action has a unique global minimum in either the
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parameters of drift, {fp}, or diffusion, {gp}, when keeping the respective other set

of parameters constant. When, however, considering the path action with fully free

parameters {fp}, {gp′}, the picture is different. On the one hand, the action is smooth,

globally bounded from below and remains partially convex along both fp, gp since both

∂2S/(∂fp∂fq) > 0, ∂2S/(∂gp∂gq) > 0 (see Appendix A), therefore is assured to have a

minimum, and excludes the possibility of more than one isolated local minimum. On

the other hand, the set of points where S assumes its minimum could hypothetically

be a submanifold, and the optimal choice of f, g could be non-unique. This degeneracy,

however, is rooted in a physical ambiguity: for a specific observed time series x⃗, it is

mathematically possible to modify both drift and diffusion simultaneously in a way that

leaves the path probability of x⃗ unchanged. Consequently, the set of possible {fp, gp′}
which are equally compatible with an observation x⃗ may not be unique.

The problem of finding the optimum of Equation (8) in f and g is generally solved

numerically. Nonetheless, in certain cases the optimum of S can be found analytically.

These special cases are discussed in the following section.

4. Exact results

The estimation method corresponds to finding the configuration f(x), g(x) that

minimises − lnP [x⃗|f, g]. Interpreting S[f, g|x⃗] = − lnP [x⃗|f, g] as a field theoretic

action in f(x), g(x) that is parametrised by the inherently stochastic measurement x⃗

and therefore random (“disordered”), fOMo amounts to finding the minimum of S,
where simultaneously δS/δf ≡ δS/δg ≡ 0.

If g is fixed, but not necessarily constant, the minimum in f can be found

analytically. We introduce the empirical propagator

[G(g)]m,n =
C−1

m,n

g(xm−1)g(xn−1)
, (10)

as well as the empirical velocity vn = (xn−xn−1)/∆t. Inserting these into Equation (8),

the action then reads

S =
(∆t)2

2

N∑
m,n=1

(f(xm−1)− vm)Gm,n(g) (f(xn−1)− vn) , (11)

omitting f -independent terms. This bilinear action corresponds to a Gaussian field

theory [48] in f(x) of mean ⟨f(xn−1)⟩ = v(xn) with non-local correlated fluctuations

following ⟨f(xm−1)f(xn−1)⟩ − vmvn = (G−1)m,n.

Parametrising f polynomially, f(x) =
∑L−1

ℓ=0 fℓx
ℓ for some L < N , the optimal

coefficients f̂ℓ can be found by inserting the polynomial ansatz into Equation (11) and

setting ∂S/∂f̂ℓ = 0. The resulting action in the fℓ resembles the Hamiltonian of L

fully coupled harmonic oscillators in a confining harmonic potential which allows for a

single optimal configuration corresponding to the estimate f̂ℓ; a calculation provided in

Appendix B shows that this minimum is given by f̂ℓ = (H−1j⃗)ℓ, where we introduced

Hℓ,k =
∑
m,n

xℓm−1Gm,nx
k
n−1 and jℓ =

∑
m,n

Gm,nvnx
ℓ
m−1 . (12)
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This estimate is exact for arbitrary inhomogeneous fixed diffusion g(x); it further

simplifies when f is linear and g constant (discretised fractional Ornstein-Uhlenbeck

process, see Appendix C).

Analogously, we consider the case of f(x) general but fixed. Introducing the

empirical noise correlation

[D(f)]m,n = (f(xm−1)− vm)C
−1
m,n (f(xn−1)− vn) (13)

together with the inverse field ψn = (g(xn−1))
−1, S reads

S =
(∆t)2

2

N∑
m,n=1

ψmDm,n(f)ψn −
N∑

n=1

ln |ψn| . (14)

The action resembles a fully interacting N -body Hamiltonian on the positive half

line; the “particles” at position ψn are quadratically coupled to one another, confined

harmonically for ψn → ∞, since Dnn > 0, yet repelled from the origin by a

logarithmically diverging potential giving rise to a stable minimum satisfying a self-

consistency relation

(∆t)2ψ̂n

∑
m

Dm,nψ̂m = 1 (15)

for all n. If g ≡ g0 is assumed to be constant (additive noise), this immediately returns

ĝ20 = (∆t)2
∑

m,nDm,n. If further H = 1
2
, Dm,n is diagonal, and Equation (14) resembles

the Hamiltonian of N non-interacting particles in a logarithmic-harmonic potential [55].

The estimate for g0 then recovers the well-known Markovian result [54]

ĝ20 =
∑
n

(f(xn−1)∆t− (xn − xn−1))
2 . (16)

5. Superposition of noise processes

The method is readily adapted to processes subject to different additional Gaussian

noise sources which could model, for instance, the additional coupling of the process to

a heat bath. We consider a generalisation of xn, the fractional process introduced in

Equation (1), by setting

xn+1 = xn + f(xn)∆t+ g(xn)∆ξ
H
n+1 + ηn+1 , (17)

where ηn is an additional independent Gaussian noise term of correlation Km,n = ηmηn.

Repeating the previous steps in constructing the fractional Onsager-Machlup action,

one inverts the new stochastic equation for xn to find[
∆⃗ξH(x⃗)

]
n
= (xn − xn−1 − f(xn−1)∆t− ηn)/g(xn) , (18)

which one inserts into the free actionA[∆⃗ξH ] (see Equations (3, 8)). This transformation

leaves the Jacobian,
∑

n |(g(xn))|
−1, unchanged. Instead the path likelihood of x⃗

conditioned on a particular η⃗, Equation (8), acquires some extra terms of the form
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Figure 2. Inference via fOMo correctly recovers drift and diffusion in contrast to

Markovian estimation. Ensemble study with 100 trajectories withN = 106,∆t = 10−2,

random initial conditions and equilibration time Teq = 104 [56]. (top left and top center

panels) Drift and (bottom left and bottom center panels) diffusion estimation via fOMo

(red) and Markov least-squares fit (brown) for anti-correlated (H = 0.35) and long-

range correlated (H = 0.65) dynamics. Inferred drift and diffusion of all ensemble

members are plotted in light grey, only visible in (top left panel). (top right panel)

Reconstruction error of drift f(x) for fOMo (red) and Markovian estimate (brown).

(bottom right panel) Reconstruction error of diffusion g(x). Root-mean-square-errors

are computed using the empirical invariant density (see text).

∑
n ηnan − 1

2

∑
m,n ηmGm,nηn, where we abbreviate an =

∑
mGm,n (f(xm−1)− vm)∆t.

It remains to average over the additional noise distribution

Pη[η⃗] =
(
(2π)N detK

)− 1
2 exp

(
−1/2

∑
m,n

ηm(K
−1)mnηn

)
. (19)

Carrying out the Gaussian integral in
∏

n dηn , one finds that the modified action is

S̃ = − lnP [x⃗|f, g] = − ln

∫
D[η⃗]P [x⃗|f, g, η⃗]Pη[η⃗] (20)

=
(∆t)2

2

N∑
m,n=1

(f(xm−1)− vm) G̃m,n (f(xm−1)− vm) +
N−1∑
n=0

ln |gn| , (21)

where we omit terms independent of f, g, and, in contrast to Equation (8), replace the

empirical propagator by G̃ = [G−1 +K]−1.

6. Fast Inversion

In order to numerically evaluate the log-likelihood given by Equation (8) the correlation

matrix C has to be inverted. This is an operation of computational complexity O(N3)
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and memory requirements of order O(N2), rendering it prohibitively costly for times

series of only intermediate length (N ∼ 104). We circumvent this problem by exploiting

the Toeplitz structure of the correlation matrix; since the process is stationary, Cmn

depends on |m − n| only and can be inverted efficiently [57]. In doing so, we reduce

computational complexity to O(N2) and memory requirements to O(N) (see Appendix

D for further details), rendering fOMo computationally tractable even for long time

series (N ∼ 106). This fast inversion method may be generalised to other stationary

driving processes such as, for instance, tempered fractional noise [58–60].

7. Synthetic Data

We have successfully tested fOMo with various nonlinear models and illustrate a

representative example in the following. We consider a model system defined by

Equation (1) choosing f(x) = −0.25x3 + 0.5x, corresponding to a double well potential,

and inhomogeneous diffusion g(x) = 0.2x2 + 0.5, implying large stochastic fluctuations

far away from the origin. We assume the Hurst exponent to be already determined and

infer f and g employing fOMo (Equation (8)). In order to highlight the significance of

the noise correlations, we compare this estimate to a fOMo estimate where we wrongly fix

H = 1
2
, whence C−1 is diagonal, effectively producing a Markovian maximum likelihood

estimate (see [54]). We use polynomial basis functions for drift (L = 3) and diffusion

(L = 2). For an ensemble of 100 trajectories (see Figure 2 for details), we simultaneously

infer drift and diffusion terms and measure the root-mean-square error (RMSE) of the

inferred terms f̂ , ĝ. Inference errors are weighted with the empirical invariant measure

of the process

RMSE(f̂) =

[
N∑

n=1

(
f̂(xn)− f(xn)

)2
/N

] 1
2

, (22)

and analogous for g.

Remarkably, the Markovian model underestimates (overestimates) both drift and

diffusion terms forH > 1
2
(H < 1

2
) while fOMo correctly recovers the true input functions

(Figure 2) with excellent accuracy. The (anti-)correlations of the noise process lead to

a wider (narrower) width of the invariant density of the process, also explaining the

visible deviations of the fOMo samples from the ensemble mean for H = 0.35 (Figure 2

(top left panel)). Markovian modelling fails to recover the double well shape of the

corresponding potential in our example for H = 0.35. The inference error of Markovian

modelling steeply increases for small deviations from H = 1
2
, highlighting the necessity

of taking fractional correlations into account.

We investigate the finite-size error scaling as a function of the trajectory length N

and find a drift error scaling RMSE ∼ 1/
√
N for H = 1

2
, and RMSE ∼ Nα with α ∼ H2

for H ̸= 1
2
, while the diffusion error scaling does not show a clear trend (see Appendix

E).
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Figure 3. Stochastic fractional nonlinear model inferred with fOMo for Potsdam

daily mean temperature anomalies compared to original data. Semi-transparent grey

lines indicate statistics of 100 model data trajectories, red lines are ensemble averages

of model data (labelled fOMo data) and blue lines show statistics of original data.

Top left: Histogram of marginal distribution. Top right: Power spectral density

(PSD). Bottom left: Autocorrelation function (ACF). Bottom right: DFA3 fluctuation

function.

8. Temperature Data

We apply fOMo to daily mean temperature data recorded at Potsdam Telegrafenberg

weather station, Germany. This time series consists of 130 years of uninterrupted

temperature measurements downloaded from the ECAD project [61, 62]. Removing

the seasonal cycle using a Fourier series, we obtain the temperature anomalies T , an

approximately stationary time series. Temperature anomalies are long-range correlated

[3, 4], monofractal [63] and have been described by overdamped models driven by

fractional Gaussian noise [64–66]. We determine the Hurst exponent using detrended

fluctuation analysis with a cubic polynomial (DFA3) [43, 44] and construct the

correlation matrix using the estimated Hurst exponent H ≈ 0.65 [64], and a sampling

time ∆t = 1d. In this model, f may be interpreted as an atmospheric response

function bearing the unit [f ] = K/day and its stochastic fluctuations g, measured

in [g] = K/dayH [65]. We use cubic and quadratic polynomial ansatzes for drift and
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Figure 4. Drift and diffusion term estimates for Potsdam daily mean temperature

anomalies. Blue lines indicate fOMo estimates from the original data and dark olive

lines the Markovian estimate from original data. Semi-transparent lines show 100 fOMo

estimates from model data generated using Equation (1) and inferred drift and diffusion

(blue lines). Red lines indicate the ensemble mean of the grey semi-transparent lines.

Red and blue lines show excellent agreement, indicating that the estimator is free from

bias.

diffusion, respectively and employ fOMo and a Markovian maximum likelihood estimate

(H = 1
2
, see above). Since f and g of real-world data are not a priori known, we

cannot conduct an error analysis as described above for synthetic data. However, we

can compare model data with the original data and check the consistency of the model.

To this end, we generate an ensemble of model time series using Equation (1) and the

parameters of f and g obtained via fOMo. Subsequently, we compare statistics of the

original data and the model data ensemble. Additionally, we infer drift and diffusion

parameters from the synthetic model data ensemble and compare these with drift and

diffusion obtained for the original data. For a method without bias, the mean of the

inferred drift and diffusion terms should coincide with the drift and diffusion estimates

of the original data. The spread of the ensemble of inferred drift and diffusion terms

then gives an estimate of the errors of the inferred drift and diffusion terms due to

finite samples and thus hints at the reliability of the estimate. Temperature data and

synthetic model data are in very good agreement, as Figure 3 shows. Furthermore,

the model is consistent since the mean of inferred drift and diffusion from model data

coincides with drift and diffusion estimates from the original data (see Figure 4). The

Markovian model significantly underestimates the deterministic force term compared to

the force term inferred by fOMo which takes the long-range correlations into account.

Unlike for the double well potential, the Markovian diffusion estimate agrees well with

the fOMo estimate. This is due to the approximate linearity of f . In this article, we

neglect the estimation error of the Hurst exponent. However, we propose the following

procedure using a recently published operational method for identifying scaling regimes

in attractor dimension estimation [67] which may also be employed to obtain error bars
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for Hurst exponents estimated via DFA [68]. At first, one determines the Hurst exponent

values at the lower and upper error bars and subsequently conducts fOMo with these

values. The obtained parameters for drift and diffusion terms then serve as an error

estimate.

9. Conclusion

By way of a fractional generalisation of the Onsager-Machlup formalism, we create

an estimation method that is able to infer functional parameters of a fully nonlinear

model driven by multiplicative fractional noise from a single trajectory. Applying the

algorithm to both synthetic and real data, we recover excellent estimates even for Hurst

values deep in the non-Markovian regime, where ignoring the (anti-)correlations of

the fluctuations leads to gross systematic errors. The method provides a needed tool

for modelling real-world complex systems whose fractal nature cannot be neglected,

and illuminates intriguing connections bridging time series analysis with the statistical

physics of fractionally correlated many-body systems.
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[37] Dürr D and Bach A 1978 Commun. Math. Phys. 60 153–170 ISSN 1432-0916 URL

https://doi.org/10.1007/BF01609446
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Appendix A. Convexity in either drift or diffusion parameters

In this section, we provide more details regarding the uniqueness of the optimal solution

of Equation (8), showing that the optimisation of S in either f or g is unique. Since S
is not convex in g, we apply a trick and show that S is instead convex in f and

ψ(x) =
1

g(x)
. (A.1)

As

δS

δg
=

δψ

δg︸︷︷︸
̸=0

δS

δψ
(A.2)

shows, it is then sufficient to study the optima in ψ, and as we assume throughout the

work that g(x) > 0, this unique solution in ψ defines a unique solution for g too.

The action to be considered now reads

S[f, ψ] = ∆t2

2

∑
m,n

ψ(xm−1)(vm−f(xm−1))C
−1
m,n(vn−f(xn−1))ψ(xn−1)−

∑
n

ln |ψ(xn−1)|. (A.3)

We begin by allowing for a general parametrisation of f(x) and ψ(x) by choosing a

general set of basis functions χp(x) for p = 1, ..., P , q = 1, ..., Q to write

f(x) =
P∑

p=1

fpχp(x) ψ(x) =

Q∑
q=1

ψqχq(x). (A.4)

Suitable choices for these basis functions include polynomials (χp(x) = xp) or indicator

functions of disjoint intervals. The only requirement is that the decomposition in

Equation (A.4) be unique in the coefficients {fp}, {ψq}. The optimisation of the log-

likelihood (Equation (8)) then takes place in these coefficients,

S[{fp}, {ψq}] = (A.5)

∆t2

2

N∑
m,n=1

(∑
q

ψqχq(xm−1)

)(
vm −

∑
p

fpχp(xm−1)

)
C−1

m,n

(
vn −

∑
p′

fp′χp′(xn−1)

)(∑
q′

ψq′χq′(xn−1)

)

−
N−1∑
n=0

ln

∣∣∣∣∣∑
q

ψqχq(xn)

∣∣∣∣∣ , (A.6)

and therefore is a finite-dimensional optimisation problem.

It remains to show that S is convex in either {fp}, or {ψq}. We treat S as a sum

of a bilinear and a logarithmic part, defining Slog = −∑N−1
n=0 ln

∣∣∣∑q ψqχq(xn)
∣∣∣.

It follows that the Hessian of Slog is

[∂2Slog]p,q =
∂2

∂ψpψq

(
−

N−1∑
n=0

ln

∣∣∣∣∣∑
p′

ψp′χp′(xn)

∣∣∣∣∣
)

=
∑
n

χp(xn)χq(xn)(∑
p′ ψp′χp′(xn)

)2 . (A.7)
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For an arbitrary vector w1, ..., wq, one therefore finds

∑
p,q

wp[∂
2Slog]p,qwq =

∑
n

(∑
p χp(xn)wp

)2
(∑

p′ ψp′χp′(xn)
)2 > 0, (A.8)

and hence the Hessian is positive definite and Slog is convex.

We next consider the bilinar contribution to S and study the P × P (or Q × Q)-

dimensional diagonal sub-blocks of the Hessian matrix of Sbil in either {fp} or {ψq}. We

obtain

∂S
∂fp∂fq

= ∆t2
∑
m,n

χp(xm−1)

(∑
p′

ψp′χp′(xm−1)

)
C−1

m,n

(∑
q′

ψq′χ
′
q(xn−1)

)
χq(xn−1), (A.9)

∂S
∂ψp∂ψq

= ∆t2
∑
m,n

χp(xm−1)

[(
vm −

∑
p

fpχp(xm−1)

)
C−1

m,n

(
vn −

∑
q

fqχq(xn−1)

)]
χq(xn−1). (A.10)

We now consider an arbitrary vector wk with k = 1, ..., P for drift and k = 1, ..., Q for

diffusion and evaluate
P∑

p,q=1

wp
∂S

∂fp∂fq
wq and

Q∑
p,q=1

wp
∂S

∂ψp∂ψq

wq . (A.11)

The first term corresponds to

P∑
p,q=1

wp
∂S

∂fp∂fq
wq = (A.12)

∆t2
∑
m,n

(∑
p

wpχp(xm−1)

)(∑
p′

ψp′χp′(xm−1)

)
C−1

m,n

(∑
q′

ψq′χ
′
q(xn−1)

)(∑
q

wqχq(xn−1)

)
. (A.13)

Introducing

W−
n =

∑
p

wpχp(xn−1) (A.14)

Ψn =
∑
q′

ψq′χ
′
q(xn−1) = ψ(xn−1), (A.15)

this reads
P∑

p,q=1

wp
∂S

∂fp∂fq
wq =

∆t2

2

∑
m,n

W−
mΨmC

−1
m,nΨnW

−
n . (A.16)

Since C−1 is the inverse of a Gaussian correlation matrix it is a positive definite matrix,

and therefore
P∑

p,q=1

wp
∂S

∂fp∂fq
wq > 0 (A.17)

for all choices of w. Hence S is convex in fp.
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To study convexity in ψ, we evaluate the second term which is

Q∑
q,q′=1

wq
∂S

∂ψq∂ψq′
wq′ = (A.18)

∆t2
∑
m,n

(∑
q

wqχq(xm−1)

)(
vm −

∑
p

fpχp(xm−1)

)
C−1

m,n

(
vn −

∑
p′

fp′χp′(xn−1)

)(∑
q′

wq′χq′(xn−1)

)
.

(A.19)

Further introducing

W+
n =

∑
q

wqχq(xn−1) (A.20)

Vn = vn −
∑
p

fpχp(xn−1), (A.21)

this reads
Q∑

p,q=1

wp
∂S

∂ψp∂ψq

wq = ∆t2
∑
m,n

W+
mVmC

−1
m,nW

+
n Vn. (A.22)

Again, positive definiteness of C−1 implies that

Q∑
p,q=1

wp
∂S

∂ψp∂ψq

wq > 0 (A.23)

for all choices of w and hence S is convex in Ψ.

Since both Hessians in {fp}, {ψp} of the log-likelihood are positiv definite, the log-

likelihood is convex in both subspaces and possesses a global minimum in each of the

subspaces.

Appendix B. Optimal drift estimate for fixed diffusion

We provide further details on the analytic solution given for the minimum solution

δS/δf̂ ≡ 0 when g(x) is fixed, see Equation (11).

Setting out from Equations (3, 8), the full action reads

S[f, g|x⃗] = 1

2

∑
m,n

(f(xm−1)∆t− (xm − xm−1))

g(xm)
C−1

m,n

(f(xn−1)∆t− (xn − xn−1))

g(xn)
. (B.1)

Since we do not vary g(x), we absorb the inhomogeneous diffusivity into the inverse of the

fractional correlation matrix (see Equation (2)) and introduce the effective propagator

Gm,n =
C−1

m,n

g(xm−1)g(xn−1)
. (B.2)

Further introducing vn = (xn − xn−1)/∆t, one readily recovers the expression given in

Equation (11).

Technically, this action is minimised by the “empirical force” f(xn−1) = vn. In

order to effectively average over the fluctuations of xn, however, a low-dimensional
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representation of f is more suitable. We choose a polynomial representation,

i.e., f(x) =
∑L−1

ℓ=0 fℓx
ℓ with L ≪ N . Inserting this ansatz into Equation (B.1), one

finds

S[f, g|x⃗] = (∆t)2

2

∑
ℓ,k

∑
m,n

(
fℓx

ℓ
m−1 − vm

)
Gm,n

(
fkx

k
n−1 − vn

)
(B.3)

=
(∆t)2

2

{∑
ℓ,k

fℓfk

(∑
m,n

xℓm−1Gm,nx
l
n−1

)
− 2

∑
ℓ

fℓ

(∑
m,n

xℓm−1G(g)m,n(xn − xn−1)

)}
+ . . . ,(B.4)

where we ignore f -independent terms. Identifying

Hℓ,k =
∑
m,n

xℓm−1G(g)m,nx
k
n−1 (B.5)

Jℓ =
∑
m,n

xℓm−1G(g)m,n(xn − xn−1), (B.6)

the optimal point ∇f̂S = 0 implies (∆t)2
{
Hf̂ − J

}
= 0, and hence f̂ = H−1J as

stated in the main text.

Appendix C. fOMo estimation for the fractional Ornstein-Uhlenbeck

process

In the special case of linear drift and constant diffusion, Equation (1) recovers the

Euler-Maruyama discretisation of a fractional Ornstein Uhlenbeck process, i.e.,

xn+1 − xn = −fxn∆t+ g∆ξHn+1. (C.1)

Accordingly parametrising f(x) = fx, g(x) = g, the fractional Onsager Machlup action

(Equation (8)) reduces to the two-dimensional function

S[f, g] = (∆t)2

2g2

∑
m,n

(f − vm)C
−1
m,n (f − vn) + ln |g|. (C.2)

The minimum in f is g-independent and is given by

f̂ =

∑
m,nC

−1
m,nvn∑

m,nC
−1
m,n

, (C.3)

which extends [28] from white noise to processes driven by Gaussian noise with arbitrary

correlations. The minimum in g is given by

ĝ2 = (∆t)2
∑
m,n

(
f̂ − vm

)
C−1

m,n

(
f̂ − vn

)
. (C.4)

Appendix D. A Note on the Numerics

In this section, we elaborate on the computation of the stochastic action given by

Equation (8). For stationary processes, the autocovariance function solely depends

on the difference between two time instances. Hence, the covariance matrix Cij is a
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(N−1)×(N−1) symmetric Toeplitz matrix, where N is the length of the time series, i.e.

Cij = (∆t)2H ×
(
|i− j + 1|2H + |i− j − 1|2H − 2 |i− j|2H

)
=: C(|i − j|∆t), in which

i, j ∈ {1, . . . , N − 1}. We compute the inverse correlation matrix, the propagator,

exploiting this fact. The inverse of a Toeplitz matrix may be expressed as [57]

C−1 = T1U1 + T2U2 , (D.1)

in which T1 and T2 are Toeplitz matrices and U1, U2 are upper triangular matrices with

Toeplitz structure:

T1 =


y1 yn . . . y2

y2 y1
. . .

...
. . . . . . yn

yn . . . y2 y1

 , U1 =


1 −xn . . . −x2

1
. . .

...
. . . −xn

1

 (D.2)

T2 =


x1 xn . . . x2

x2 x1
. . .

...
...

. . .
... xn

xn . . . x2 x1

 , U2 =


0 yn . . . y2

0
. . .

...
. . . yn

0

 . (D.3)

The vectors x and y are solutions to the linear equations

Cx = h , (D.4)

Cy = e1 , (D.5)

e1 =


1

0
...

0

 , h =


0

C((N − 1)∆t)− C(∆t)
...

C(2∆t)− C((N − 2)∆t)

C(∆t)− C((N − 1)∆t)

 . (D.6)

The matrices T and U are entirely determined by x and y. Hence, only these two vectors

have to be saved during computation. We obtain x and y solving the linear equations

Equation (D.4) and Equation (D.5) using the Levinson-Durbin algorithm, which has

complexity O(N2). Thus, the action reads

S[x⃗|f, g] = (∆t)2

2

N∑
m,n=1

(fm−1 − vm)

gm−1

(T1U1 + T2U2)mn
(fn−1 − vn)

gn−1

+
N−1∑
n=0

ln |gn| (D.7)

which are repeated Toeplitz matrix multiplications. During the optimisation of f

and g, C−1 does not change. Thus, we only compute Toeplitz matrix multiplications

throughout the optimisation.

Appendix E. Finite-Size Error Scaling of Synthetic Data

We investigate the finite-size error scaling as a function of the trajectory length N of

synthetic data generated from the model (see main text)

xn+1 = xn +∆t(−0.25x3n + 0.5xn) + (0.2x2n + 0.5)∆ξHn+1 , (E.1)
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Figure E1. Toy model with double well potential and quadratic diffusion term. Error

scaling in trajectory length N as a function of the Hurst exponent H.

with ∆t = 0.01. For fixed Hurst exponent and an ensemble of 100 trajectories, we fit a

power law to the asymptotic scaling of the RMSE in N , up to N = 2×106. In accordance

with the central limit theorem, we find RMSE ∼ 1/
√
N in the case H = 1

2
for both

drift and diffusion. However, we observe that the inference error of the drift for H ̸= 1
2

scales according to RMSE ∼ Nα with α ∼ H2, while the diffusion error scaling does not

show a clear trend. We further observe qualitatively similar error scaling for other toy

models, e.g. monostable potentials. Scaling behaviour deviating from the central limit

theorem for correlated data is also observed for the sample mean of correlated Gaussian

random variables. Its standard deviation scales like σµN
∼ NH−1 [69, 70]. Hence, the

convergence speed of the sample mean depends on the strengths of the correlations, also

allowing faster convergence for H < 1
2
, which we observe as well.

Appendix F. Potsdam Temperature Data

In the main text, we demonstrate fOMo by reconstructing a stochastic model from

daily mean temperature anomalies recorded at Potsdam Telegrafenberg weather station,

Potsdam, Germany. Here, we elaborate on the procedure. We obtain the temperature

anomalies by subtracting the seasonal cycle. In the main text, we state that the resulting

time series is approximately stationary. In fact, there are slow-mode variations in the

time series as well as a warming trend. However, these only marginally violate the

stationarity of the time series. We thus abstain from subtracting an additional trend

from the data besides seasonality. Furthermore, we neglect measurement errors in our

analysis since they are sufficiently small compared to the dynamics.
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