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We study the transport and equilibration properties of a classical Heisenberg chain, whose cou-
plings are random variables drawn from a one-parameter family of power-law distributions. The
absence of a scale in the couplings makes the system deviate substantially from the usual paradigm
of diffusive spin hydrodynamics, and exhibit a regime of subdiffusive transport with an exponent
changing continuously with the parameter of the distribution. We propose a solvable phenomeno-
logical model that correctly yields the subdiffusive exponent, thereby linking local fluctuations in
the coupling strengths to the long-time, large-distance behaviour. It also yields the finite-time cor-
rections to the asymptotic scaling, which can be important in fitting the numerical data. We show
how such exponents undergo transitions as the distribution of the coupling gets wider, marking the
passage from diffusion to a regime of slow diffusion, and finally to subdiffusion.

I. INTRODUCTION

Ever since the original recognition that diffusion is ab-
sent in certain random lattices [1], the study of transport
in impure materials has been a rich source of surprising,
and often subtle, phenomena. Recently, the study of the
mechanism of equilibration in quantum many-body sys-
tems has provided an additional impetus, carried by ex-
perimental advances [2–4] as well as concomitant concep-
tual progress [5–7]. The quantum statistical mechanics
of non-equilibrium systems, and of the process of equili-
bration itself [8, 9], is now reaching the level of detail that
classical ergodic theory has reached more than a hundred
years after the works of Boltzmann [10, 11].

It is, in particular, the study of systems with both in-
teractions and disorder that has thrown up many puzzles.
This is subject to formidable technical difficulties, as ex-
act solutions are generically unavailable, whilst numer-
ics for quantum systems is typically restricted to small
system sizes and/or short times. This has led to vig-
orous debates regarding nature and lifetime of possible
intermediate-time dynamical regimes [12–18] (and the
role of rare events in their genesis [19, 20]), and how
to distinguish them from expected or desired long-time
behaviour.

One aspect of much recent interest relates to the ques-
tion of under what conditions, and with what conse-
quences, many-body systems may exhibit neither diffu-
sive nor localised behaviour; much-explored possibilities
relate to subdiffusive [21–24] or Kardar-Parisi-Zhang [25–
29] behaviours.

Here, we study a family of disordered, classical chains
of Heisenberg spins. This picks up the aforementioned
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threads in the following ways. (i) Such chains are, a pri-
ori, generic one-dimensional many-body systems, but (ii)
even the clean (i.e. without disorder) Heisenberg chain
has recently been shown to be capable of exhibiting ex-
tended non-diffusive transport regimes [30–33]—closing
a long-standing debate regarding the diffusive nature of
excitations [34–41]. (iii) It is technically possible to sim-
ulate large system sizes for long times, and thus there
is hope of probing various regimes and their crossovers,
all the more as (iv) the tuning parameter distinguishing
members of the family of models allows us to access very
different behavioural regimes.

In the following, we show how this family of disor-
dered Heisenberg chains exhibits a rich set of trans-
port phenomena, comprising standard diffusion as well
as tunable subdiffusion, but, as established in previous
work [42, 43], no classical counterpart of many-body lo-
calisation. We account for all of these phenomena with a
relatively simple treatment, which makes transparent the
role of extreme-value statistics and rare phenomena. We
also provide detailed insights into the origin and nature
of short- to intermediate-time crossovers and corrections,
which can be important in the numerics over a broad time
window.

Atypical rare regions of the system, where, for exam-
ple, local couplings are much smaller or much larger than
their typical value, are suspected to play a significant role
in achieving or inhibiting thermalisation in classical and
quantum systems. However, their signature in numeri-
cal results is often obscured, and can lead to different,
contrasting interpretations of finite-size and finite-time
numerics on account of the very slow emergence of the
true asymptotic behaviour. It is therefore highly desir-
able to have access to models in which analytical results
sufficiently constrain the data analysis to yield a clear
interpretation of the numerics.

In this work, we present one such example. Crucially,
our solution of a phenomenological model for transport,
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FIG. 1. Sketch of the spin chain from Eq. (1). The spins
Si live on the sphere S2, and interact via broadly-distributed
nearest-neighbour couplings Ji, cf. Eq. (2). We use periodic
boundary conditions.

in which the local diffusion coefficient is a broadly dis-
tributed random variable, provides both leading and sub-
leading terms in the large-time expansion of observables.
We show how, in the absence of such an analytic predic-
tion for the subleading behaviour, slow diffusion could
be mistaken for subdiffusion, the diffusive term achiev-
ing dominance for times orders of magnitude larger than
those typically reachable in state-of-the-art numerics.

The paper is organised as follows. In §II we introduce
the family of models we study. In §III we present the
numerical results, and explain how to pin down the dif-
fusion/subdiffusion transition from them. In §IV we de-
velop an effective model for the dynamics of the Heisen-
berg chain, upon which the understanding of the numer-
ical results is based. Finally, in §V we draw our con-
clusions. Additional information regarding the effective
model is provided in Apps. A & B.

II. MODEL

We consider a bond-disordered version of the classical
Heisenberg chain, with the Hamiltonian

H =

L∑
i=1

JiSi · Si+1, (1)

where Si ∈ S2 are classical unit-length spins, and we use
periodic boundary conditions. The random couplings Ji
are independent and identically distributed (i.i.d.), and
drawn from a one-parameter family of power-law distri-
butions. The probability density function,

pη(J) = (1− η)J−η, J ∈ [0, 1] (2)

is controlled by an exponent η ∈ (−∞, 1). We show
the distributions pη(J) for representative values of η in
Fig. 2: for η > 0, the probability density diverges at
J = 0; for η < 0, the weight accumulates around J = 1,
and approaches the clean model as η → −∞; precisely at
η = 0, the distribution is uniform. Throughout, units are
implicitly defined by the maximum coupling Jmax = 1.
It is, however, the distribution of the inverse couplings

R = J−1 that determines the bare dynamical timescales.
Their probability density,

qη(R) = (1− η)Rη−2, R ∈ [1,∞), (3)
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FIG. 2. (a) Probability density function of the couplings Ji for
representative values of η. (b) Cumulative distribution func-
tion of the inverse couplings R = J−1, showing the fat tails
of the distribution for η > 0. (c) Overview of the dynamical
regimes as a function of η. The point at η = 0 corresponds to
logarithmically-suppressed diffusion.

is fat-tailed: the first moment R diverges for η > 0; the
second moment R2 diverges for η > −1; and so on for the
higher moments (we denote the average over disorder by
an overline). We will derive the consequences of these
divergences in §IV.
Now, the classical dynamics of the Hamiltonian (1) is

defined by the fundamental Poisson brackets,

{Sα
i , S

β
j } = δijϵ

αβγSγ
i , (4)

from which one obtains the equations of motion,

∂tSi = (Ji−1Si−1 + JiSi+1)× Si. (5)

These equations are manifestly SO(3) invariant: as in the
clean model, all three components of the magnetisation
are conserved.

III. NUMERICAL RESULTS FOR THE
DYNAMICS

We study the dynamics of the model (1) at infinite
temperature; in particular, we consider the correlation
function of the spins,

C(j, t) := ⟨Sj(t) · S0(0)⟩, (6)

and the associated autocorrelator A(t) := C(0, t), aver-
aged over both realisations of disorder (overline) and a
thermal ensemble of initial states (angular brackets), as
described below. In the long-time limit, we expect to
reach a hydrodynamic regime, wherein the correlation
functions of conserved densities approach an asymptotic
scaling form,

C(x, t) ∼ t−αF(x/tα), (7)
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FIG. 3. Spin dynamics in the “slow diffusion” regime, shown for η = −0.5. In each panel, the main figure shows the rescaled
autocorrelator A(t) = C(x = 0, t) (cf. Eq. (6)). The insets show the corresponding scaling collapse of the full correlation
function C(x, t). (a) Autocorrelator and scaling collapse from Eq. (9), i.e., assuming an asymptotic diffusive behaviour with
strong, anomalous corrections. (b) Diffusive scaling without finite-time corrections (i.e., setting λ = 0, a one-parameter fit),
showing that the corrections must be accounted for, at least up to the final time of the simulation, t = 106. (c) Numerical fit
with an anomalous (subdiffusive) exponent, i.e., a direct two-parameter fit to Eq. (8). See main text for additional details.

for some universal function F and scaling exponent α.
The latter can also be obtained by fitting the autocorre-
lator to a power law:

A(t) ≃ κt−α. (8)

However, the asymptotics—whilst they define the dy-
namical exponent—capture only the leading behaviour.
As we will show, the finite-time corrections to Eq. (8)
can be quite severe, and persist, at least, to late times
t = 106 (in units with Jmax = 1).
To evaluate the correlator (6) for a given disorder expo-

nent η, we construct an ensemble of 20000 initial states
at infinite temperature: each spin is simply, and inde-
pendently, drawn from the uniform distribution on the
sphere. For each state in the ensemble, we draw a distinct
realisation of the couplings Ji, and numerically integrate
the equations of motion (5). Snapshots of the state are
stored at intervals of ∆t = 10, with the correlation func-
tion at a given time-difference t calculated by averaging
over 1000 consecutive snapshots. Data shown are for the
system size L = 8192 [44].

There are four distinct dynamical regimes. First, in
the clean limit (η → −∞), the spin dynamics is diffu-
sive. Even in this limit, however, finite-size and finite-
time effects are capable of hiding the asymptotic be-
haviour, and it has taken modern-day computing re-
sources [30, 31, 40, 41] to resolve the long-lasting debate
on this topic [34–39]. Second, as η becomes finite, and
in particular for −1 ≤ η < 0, diffusion persists at ex-
tremely large times, but finite-time corrections become
increasingly severe. This is due to the existence of lo-
cal dynamical bottlenecks, which arise from the grow-
ing probability of drawing an arbitrarily small coupling.
We refer to this regime as “slow diffusion”, and study
it in detail in §IIIA. Third, at η = 0, the probability
density pη(J) = 1 becomes uniform, and the first mo-

ment of the inverse couplings, i.e., R, diverges logarithmi-
cally. Accordingly, the asymptotic spin dynamics shows
logarithmically-suppressed diffusion, cf. §III B. Finally,
when 0 < η < 1, the spin dynamics is truly subdiffusive,
with an exponent (Hurst index) α < 1/2, cf. §III C.
In practise, for all the considered cases, the leading

corrections to the asymptotics are required to obtain the
correct scaling exponent α from the numerical data. If
the corrections are neglected, one finds an α smaller than
the true value. We first present the numerical results,
and develop an effective model which accounts for our
observations in §IV.

A. −1 ≤ η < 0: Slow diffusion

We begin with the regime of slow diffusion, observed
when −1 ≤ η < 0. Here, pη(J) is maximal at J = 1 and
vanishes at J = 0 (cf. Fig. 2).
In this regime, the average bare timescale R remains

finite, so the leading behaviour remains diffusive, i.e.,
α = 1/2. Higher moments (e.g. R2), however, diverge,
giving rise to strong corrections. Correspondingly, the
autocorrelator takes the form

A(t) ∼ κ

t1/2(1 + λtγ)
, γ =

η

1− η
< 0, (9)

with κ and λ obtained numerically in a two-parameter fit,
and the scaling function F approaches a Gaussian at late
times. The subleading exponent γ is fixed by the effective
model of §IV. We show the slow-diffusion dynamics for
a representative value η = −0.5 in Fig. 3. We find that
the corrections postulated by Eq. (9) capture the slow
spreading of the correlations, and are necessary to obtain
the correct scaling at finite times.
It is interesting to point out that it is also possible

to fit the correlations with an anomalous (subdiffusive)
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FIG. 4. Spin dynamics at the slow-diffusion/subdiffusion transition, η = 0. (a) Rescaled autocorrelator (main panel) and scaling
collapse of the correlation function (inset), as predicted by the logarithmic suppression of diffusion, i.e., a two-parameter fit to
Eq. (11). (b) Same data as panel (a), but fitting with a subdiffusive exponent, i.e., a direct two-parameter fit to Eq. (8). Note
that the scaling collapse in the tails of the correlations is slightly better using the logarithmic-suppression, indicating that this
is the correct picture.

exponent, i.e., applying a two-parameter fit to Eq. (8) di-
rectly. In the slow diffusion regime, this procedure yields
a numerical agreement with the simulation data that is
comparable to the diffusion-with-strong-corrections hy-
pothesis. We stress, however, that subdiffusion is not
the correct asymptotic picture; rather, it is an artefact
of the corrections taking the form of a sum of (small)
power-laws. Indeed, at η = −0.5, and for the times ac-
cessible by our numerics, a direct power-law fit finds a
subdiffusive exponent α = 0.465. The effective model
we develop in §IV instead predicts the form Eq. (9) with
γ = −1/3: plugging in the value of λ found from the fits,
it holds exactly that

∂ logA(t)

∂ log(t)
≈ 0.465 . . . at t = 105. (10)

Thus, whilst locally, around the largest times we could
access, the effective power-law decay is slower than 1/2,
our analytical understanding predicts that this is but a
crossover, and much longer times (t ≈ 108) are needed
for the corrections to become negligible (say, 1% of the
leading term).

B. η = 0: Logarithmically-suppressed diffusion

At η = 0 the slow diffusion regime terminates. The
distribution of the couplings Ji becomes uniform over
[0, 1], and the corrections to the diffusive behaviour are
enhanced, fundamentally changing the leading asymp-
totics. In particular, spin diffusion is now logarithmically
suppressed, and one finds

A(t) ∼ κ log(λt)

t1/2
, (11)

cf. §IVD.

We show the logarithmically-suppressed diffusion in
Fig. 4. Whilst, again, a direct fit to Eq. (8)—i.e., a
fit to determine the subdiffusive exponent—is in good
agreement with the data (Fig. 4(b)), in this case the cor-
responding scaling collapse is slightly worse in the tails
than that provided by the logarithmic-suppression pic-
ture (Fig. 4(a)). That Eq. (11) fits both the centre (the
autocorrelator) and the tails of the correlations is strong
evidence in favour of the picture predicted by the effec-
tive model of §IV.
From Fig. 4 one can also appreciate how the scaling

function F is no longer Gaussian, and has developed
a non-analytic feature at the origin—which will become
more pronounced in the subdiffusive regime.

C. η > 0: Subdiffusion

Finally, we turn to the case η > 0. The distribution
pη(J) now diverges at J = 0, which means that a finite
fraction of the bonds become arbitrarily small. This leads
to truly subdiffusive dynamics, with exponent α < 1/2.
However, the fact that corrections in the slow diffusion

regime were strong enough that a naive numerical fit to
Eq. (8) already finds subdiffusion at η < 0 suggests that,
again, there will be strong corrections which hide the
correct exponent (the exponent obtained numerically is
continuous as a function of η). This is indeed the case,
and we find

A(t) ∼ κ

tα(1 + λtγ)
, (12)

cf. §IVD, with

α =
1− η

2− η
, γ = 2α− 1 < 0. (13)

We show the subdiffusive dynamics for η = 0.5 in Fig. 5,
again finding that the leading finite-time corrections are
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required. As was the case at η = 0, we show that the the
form of A(t) predicted by the effective model, Eq. (12),
collapses the tails of the correlations slightly better than
a direct fit to Eq. (8) (compare Figs. 5(a) and 5(c)).

As to the scaling function F , it is clear from Fig. 5
that it is not Gaussian. It appears from the inset scal-
ing collapses that F approaches a stretched-exponential;
though we cannot draw a sharp conclusion on this point
since our simulations do not reach the truly asymptotic
regime.

IV. AN EFFECTIVE MODEL FOR SPIN
TRANSPORT

Having first presented the numerical data, including,
without justification, the forms of the corrections, we now
present a phenomenological model of the spin transport
which explains, at least qualitatively, the results of §III.
In particular, in §IVA we introduce the effective model
and motivate its form. In §IVB we show how the model
can be solved by means of a transfer-matrix technique.
Finally, in §IVC we extract the asymptotic scaling via
the transfer-matrix trick, whilst in §IVD we address the
finite-time corrections to the asymptotics. The reader
may refer to App. A for another way of solving the effec-
tive model.

A. Motivation for the effective model

In order to access the late-time behaviour of the spin-
spin correlations, we set ourselves on a hydrodynamic
scale, and linearise the microscopic dynamics whilst ac-
counting for the local exchange of energy and spin. By
rotational invariance, we consider only the magnetisa-
tion density along one axis: whilst one could write down
hydrodynamic equations that couple the local magneti-
sation components along all three axes in an SO(3)-
symmetric fashion, we will show that the simplest ansatz
of totally decoupled components is sufficient to explain
our numerical findings.

Let us denote the magnetisation at the coarse-grained
site x by mx(t). We retain a discretised lattice even on
the hydrodynamic scale, because this way it is easier to
account for the strong, fat-tailed disorder of Eq. (2). The
disorder in the couplings Jx suggests that the local dif-
fusion coefficient Dx will vary similarly, giving rise to a
local diffusion equation:

∂tmx = Dx−1mx−1 +Dxmx+1 − (Dx +Dx+1)mx. (14)

We argue that this is the correct lattice discretisation
of the diffusion equation, since it comes from enforcing
Kirchhoff’s law at each site, i.e., the inflow and outflow
of magnetisation at each site cancel out. In turn, this
fact implies that the constant vector mx ≡ m is a stable
solution of Eq. (14), and that the magnetisation is locally
conserved.

The local, random diffusion coefficients Dx have some
unknown distribution function, depending on the under-
lying Ji’s. Interpreting Eq. (14) as a coarse graining of
Eq. (5), the distribution of the Dx’s should be obtained,
in principle, via some renormalisation procedure (may-
haps akin to the strong-disorder renormalisation group
used for quantum disordered spin chains [45–49]). For
our purposes, however, it suffices to assume that 1/Dx

has the same fat tails as 1/Ji. We thus assume, for sim-
plicity, that Dx has the same probability density function
as in Eq. (2):

pη(D) = (1− η)D−η, D ∈ [0, 1]. (15)

Using a different distribution that shares the same tails
leads to equivalent results, as will become clear from the
extreme-value analysis below. We have, here, implicitly
rescaled the units of time by setting the maximum pos-
sible value Dmax = 1.
In the following, we solve the dynamics described by

Eq. (14). Before doing so, however, some comments are
in order. First, we stress that Eq. (14) was already known
to approximate the dynamics of the classical Heisenberg
model near zero temperature [50–52]. Indeed, a spin-
wave expansion of the equations of motion (5) leads to
a copy of Eq. (14), if the interactions among spin waves
are neglected. Our new contribution is to show that this
linearised equation is also capable of describing the dy-
namical scaling of space and time at infinite temperature.
Second, we remind the reader that Eq. (14) has been

the subject of a vast literature, pioneered by Dyson [53]
(see also the reviews [50–52]), and sometimes goes by
the name of “random barrier model”. The long-time be-
haviour ofmx(t) can be obtained by various methods: an
integral equation that leads to the exact solution [53–55],
small-disorder expansions [56, 57], an effective-medium
theory [50], and renormalisation-group approaches [58–
61]. Here, we solve the model by yet another technique—
a series expansion of a transfer-matrix representation—
for two reasons: first, we find it faster, and more trans-
parent from a physical standpoint; second, it allows us
to access the subleading terms, which, as noted in §III,
must be taken into account. In the following sections, we
describe in detail the transfer-matrix method, and then
extract the scaling in the different dynamical regimes.
We benchmark our solution against the integral equation
method in App. A.

B. Transfer matrix representation, and solution in
the clean case

The exact solution of Eq. (14) can be obtained only
numerically, owing to the random nature of the Dx’s.
However, the dynamical behaviour of the solution can
be accessed with a clever transfer-matrix trick, bor-
rowed from the problem of Anderson localisation [62, 63].
Let us first pass to the Fourier transform in time,
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FIG. 5. Subdiffusive spin dynamics in the strongly-disordered regime, shown for a representative η = 0.5. Again, each main
panel shows the autocorrelator, whilst the insets show the scaling collapse of the correlation function. (a) The autocorrelator
and scaling collapse from Eq. (12), i.e., a two-parameter fit with the subdiffusive exponent α = (1 − η)/(2 − η) = 1/3, and
with leading corrections included. (b) Subdiffusion with the same exponent as panel (a), but without the corrections, i.e., a
one-parameter fit setting λ = 0. (c) Scaling with an exponent obtained numerically without finite-time corrections, i.e., a direct
two-parameter fit to Eq. (8). Again, note that the scaling collapse in the tails is better in (a) than in (c), indicating that the
finite-time corrections provide the correct picture.

m̃x(ω) =
∫
dt e−iωtmx(t), which yields

iωm̃x(ω) = Dx−1m̃x−1(ω) +Dxm̃x+1(ω)

− (Dx−1 +Dx)m̃x(ω). (16)

We now rewrite this equation in transfer matrix form:(
m̃x+1

m̃x

)
=

(
Dx−1+Dx+iω

Dx
−Dx−1

Dx

1 0

)(
m̃x

m̃x−1

)
, (17)

which can be recast in a more compact notation,

Mx+1 = Tx(ω)Mx, (18)

where we have introduced the vector of the two magneti-
sations Mx, and the 2× 2 transfer matrix Tx(ω). Iterat-
ing, one finds

Mx+1 = Tx(ω)Tx−1(ω) · · ·T1(ω)M1, (19)

which expresses mx+1 for any x in terms of m0 and m1.
Equation (19) does not admit a solution any more than

the original form, but it does bring the problem into the
realm of products of random matrices—a classic topic in
statistical physics dating back to the works of Fursten-
berg [64, 65]. Now, to get an idea of the nature of the
product, let us consider the clean case,

T =

(
2 + iω

D −1
1 0

)
. (20)

Even though T is not Hermitian, it is diagonalisable and
has eigenvalues

λ1,2 =
2D + iω ±

√
4iDω − ω2

2D
. (21)

Notice that, since det(T ) = 1, it holds that λ1 = 1/λ2;
we choose the labels such that |λ1| ≥ 1 ≥ |λ2|. Now, an

n-fold application of T to a generic vector corresponds
(approximately) to a rotation plus an enlargement by a
factor |λ1|. This represents a vector localised away from
the left boundary—ideally, on the right boundary. By,
instead, fine-tuning the initial vector to the right eigen-
vector corresponding to λ2, one finds a vector localised on
the left boundary, which corresponds to the propagation
of a disturbance created on the site y = 0.
The long-time dynamics corresponds to small values of

ω, for which

λ1,2 = 1±
√
iω

D
+
iω

2D
+ · · · . (22)

Therefore, for a disturbance localised on y = 0, one finds

m̃y(ω) ≃
(
1−

√
iω/D + · · ·

)y
= e−y

√
iω/D, (23)

whilst the other eigenvalue corresponds to a disturbance
localised at y → ∞,

m̃y(ω) ≃
(
1 +

√
iω/D + · · ·

)y
= e+y

√
iω/D. (24)

Above, we have set the values of the initial seed to
M1 ≈ 1. The dispersion relation y2 ∼ Dt is immediately
apparent from Eqs. (23)–(24), since y and ω appear only
in the combination yω1/2 ∼ y/t1/2. Then, selecting the
decaying exponential, the inverse transform is

my(t) ≈
∫ +∞

−∞

dω

2π
e−

√
iω/Dy+iωt. (25)

If both y and t are large, this integral is dominated by
the saddle point,

0 =
∂

∂ω

(
−
√
iω

D
y + iωt

)
=⇒ ω = −i y2

4Dt2
, (26)
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and, substituting this back in, one finds

my(t) ∼ e−
y2

4Dt , (27)

i.e., diffusive behaviour y2 ≈ 2Dt. Note also that the
gaussian tails of diffusion are correctly reproduced.

Let us now see how one can get the same results by
expanding the product Tx(ω)Tx−1(ω) · · ·T1(ω) in powers
of ω. This will be useful for the disordered case, as the
eigenvalue of the product of the random transfer matrices
cannot be obtained from the eigenvalues of the separate
Tx’s. We consider the action of Tx(ω)Tx−1(ω) · · ·T1(ω)
on the trial vectorM1 = (1, 1)T , which represents a good
starting guess for a long-wavelength vector. Order-by-
order in ω, one finds (re-introducing the index on D for
future reference, although Dx ≡ D in the clean case):

m̃y+1(ω) = 1+iω
∑
x1≤y

x1
Dx1

+(iω)2
∑

x1<x2≤y

x1(x2 − x1)

Dx1
Dx2

+ (iω)3
∑

x1<x2<x3≤y

x1(x2 − x1)(x3 − x2)

Dx1Dx2Dx3

+ · · · . (28)

The terms in the expression above are reminiscent of the
locator expansion, which is a useful tool when studying
the physics of localisation [1, 66, 67].

The sums over x1, x2, . . . in Eq. (28), when the uniform
D is factored out, reduce to∑

x1<···<xn≤y

x1(x2 − x1) · · · (xn − xn−1) =
(y + n)!

(2n)!(y − n)!
.

(29)
The first terms in the large-y expansion read

(y + n)!

(2n)!(y − n)!
=

y2n

(2n)!

(
1 +

n

y
+ · · ·

)
. (30)

Thus, in the limit of large y, one finds the approximate
solution

m̃y(ω) ≈
∞∑

n=0

(iω)n

Dn

y2n

(2n)!
= cosh

(√
iω

D
y

)

=
1

2

(
e
√

iω
D y + e−

√
iω
D y
)
, (31)

the two terms corresponding exactly to the two eigenval-
ues of the transfer matrix. Again, selecting the decaying
exponential and inverting the Fourier transform yields
the diffusion profile and the Brownian dispersion rela-
tion.

To summarise, one can obtain the dispersion relation
from the dependence of the series (28) on the combination
of ω and y, whilst access to the functional form requires
the coefficients of the series.

Crucially, this solution strategy can be transposed to
the disordered case, as we now move to show in the fol-
lowing sections.

C. Scaling in the disordered model

We now use the transfer-matrix method to solve the
disordered chain, in which the Dx’s are i.i.d. random
variables distributed according to pη(D). Note that,

if the average 1/D exists (i.e. η < 0), then my be-
haves diffusively, with an effective diffusion coefficient
Deff = (1/D)−1. We stress that the effective diffusion

coefficient is not given byD, since the resistances ∼ 1/Dx

are additive but the conductances ∼ Dx are not [68].
The only case we need to treat, therefore, is when the

moment 1/D is infinite, i.e., η ≥ 0. We will focus, how-
ever, on η > 0, leaving the limiting case η = 0 to §IVD.
When η > 0, one must retain the explicit sums in

Eq. (28). Now, since 1/Dx has a fat-tailed distribution,
the (finite) sums are dominated by the maximum—in
particular, ∑

xi−1≤xi

xi−1

Dxi−1

≃ max
xi−1<xi

xi−1

Dxi−1

. (32)

For η > 0 the numerator is irrelevant—it is just a random
number uniformly distributed in [0, xi], which we write
as cixi with ci ∈ [0, 1]. Thus, simplifying further, one has∑

xi−1≤xi

xi−1

Dxi−1

≃ cixi max
xi−1<xi

1

Dxi−1

. (33)

The maximum, over a large number of instances xi, of
the i.i.d. random variables 1/Dxi−1

is a random variable

of typical value x
1/(1−η)
i ≫ xi, owing to η > 0. Conse-

quently, the whole sum is approximately∑
xi−1≤xi

xi−1

Dxi−1

≃ bix
1+ 1

1−η

i , (34)

where bi is another random variable of O(1). Therefore:∑
x1≤y

x1
Dx1

≃ b(1)y1+
1

1−η , (35)

∑
x1<x2≤y

x1(x2 − x1)

Dx1
Dx2

≃ b(2)y2+2 1
1−η , (36)

and so on.
We have now all the tools to evaluate the random se-

ries, Eq. (28):

m̃y(ω) = 1 + iωb(1)y1+
1

1−η
[
1 + o(y0)

]
+ (iω)2b(2)y2+2 1

1−η
[
1 + o(y0)

]
+ (iω)3b(3)y3+3 1

1−η
[
1 + o(y0)

]
+ · · ·

= fη(ωy
2−η
1−η )

[
1 + o(y0)

]
. (37)

The neglected terms of o(y0) represent finite-time cor-
rections, and they will be the object of the next section.
The functional form of fη(x) cannot be evaluated at this
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coarse level of calculation, since it requires the knowledge
of the coefficients b(n) at every order: for example, in the
clean case one has b(n) = 1/(2n)!, and thus it simplifies

to fη(x) = cosh(
√
ix) when η → −∞.

Even if fη is left undetermined, the dispersion relation
is found from the scaling

t ∼ ω−1 ∼ y(2−η)/(1−η) (38)

or, equivalently,

y ∼ t(1−η)/(2−η). (39)

We conclude that, in the region 0 < η < 1, the scaling is
subdiffusive, with an exponent (Hurst index)

α =
1− η

2− η
<

1

2
. (40)

This is exactly the subdiffusive exponent used in §III C
(see Eq. (12) in particular) to fit the numerical data.

D. Finite-time corrections to the scaling

As can be seen from the numerical data of §III, size-
able corrections to the asymptotic scaling persist until
very long times in the bond-disordered Heisenberg chain,
Eq. (1). This feature is shared by the phenomenological
model, Eq. (14), as we now show. We will split the discus-
sion for the regimes of diffusion, slow diffusion, and subd-
iffusion; the logarithmically-suppressed diffusion will fol-
low as a limiting case.

a. Diffusion. To set the stage, let us first address
the finite-time corrections in the clean case Dx ≡ D (i.e.
η → −∞). The same features are shared by the whole
region −∞ < η < −1, as will become clear. Retaining
the first-order corrections in Eq. (30), one can resum the
series in Eq. (28) to

m̃y+1(ω) = cosh

(√
iω

D
y

)
+

1

2

√
iω

D
sinh

(√
iω

D
y

)
+ · · ·

(41)
The second term, upon taking the inverse Fourier trans-
form, is dominated by the same saddle as the first, and
one finds

my+1(t) = e−
y2

4Dt

(
1

2
+

y

8Dt
+ · · ·

)
. (42)

Again, the overall constant needs to be fixed by normal-
isation, since the initial guess for m was not normalised.
What counts for our purposes is the relative size of the
first two terms: using y ∼ t1/2 from the scaling, the sec-
ond term is seen to be of order t−1/2 w.r.t. the first.
Upon reintroducing the disorder, finding the explicit

first-order corrections to Eq. (37) is more difficult, and
a careful study of the random sums in Eq. (28) at all
orders of ω is needed. Indeed, m̃y(ω) is itself a random

variable, and the large-space and long-time behaviour of
my(t) should be inspected by considering not only the

average, my(t), but also its moments—or, equivalently,

the average of quantities such as logmy(t). For this rea-
son, we find it convenient to pass to the logarithm at the
level of the Fourier transform:

log m̃y+1(ω) = iω
∑
x1≤y

x1
Dx1

+ (iω)2
[ ∑
x1≤y

x21
D2

x1

+ 2
∑

x1<x2≤y

x21
Dx1

Dx2

]
+ · · · (43)

The equation above has the useful property that, at each
order ωn, there is one term ∝ 1/Dn

x1
, followed by less

singular terms 1/Dn−1
x1

Dx2 , 1/D
n−2
x1

Dx2Dx3 , and so on.

When the moment 1/Dn does not exist, but all the mo-

ments 1/Dm with m < n exist (i.e. for η ≤ −n + 1), an
anomalous contribution to m̃y(ω) appears—influencing
the finite-time dynamics at order ωn. As long as η < −1,
both the terms of order ω and ω2 are regular, and thus
we expect moderately long times to suffice to make dif-
fusion manifest. On the other hand, when η crosses −1,
the first correction O(ω2) gains an anomalous power, and
signatures of slow diffusion are found. We detail this fact
in the next paragraph.
b. Slow diffusion. Let us focus again on Eq. (43).

By using the same analysis as §IVC for the sums of ran-
dom variables, one finds, in the region −1 ≤ η < 0,∑

x1≤y

x1
Dx1

∼ 1/D y2, (44)

∑
x1≤y

x21
D2

x1

∼ y2(2−η)/(1−η), (45)

∑
x1<x2≤y

x21
Dx1

Dx2

∼ 1/D
2
y4, (46)

and similarly for higher moments. By looking at the
expression above, one recognizes that the terms (44) and
(46) combine to form a regular function of ωy2. Indeed,
similarly to the subdiffusive case (see Eq. (37)), one can
group terms and find

log m̃y+1(ω) = log fη(ωy
2) + c(1)ω2y2(2−η)/(1−η) + · · ·

(47)
with c(1) being a constant of O(1). This has to be inter-
preted in the same way as an anomalous scaling of the
free energy at a critical point: the analytic part is repre-
sented by the first term and it is followed by a series of
anomalous corrections, beginning with ω2y2(2−η)/(1−η) ∼
tη/(1−η) (having used the scaling of the dominant term
y2 ∼ t).
We remark that the subleading terms are very impor-

tant when one wants to extract the scaling exponents
from the numerics, as we already showed in §III. If they
are not properly accounted for, the errors are rather large



9

and the determination of the onset of subdiffusion is mis-
placed. The reason is that the subleading term tη/(1−η)

has to be much smaller than unity if one wants to ex-
tract the leading exponent 1/2 with some accuracy: this
requires extremely long times for |η| < 1, and is a major
source of obfuscation in the analysis of numerical data as
shown in the previous sections.

c. Subdiffusion. We now consider the case η > 0,
where not even the first moment of the random variable
1/D exists. Extreme-value statistics tells us that all the
sums in Eqs. (28) or (43) become anomalous, giving rise
to the expression in Eq. (37). Here, we argue that the
corrections left out in Eq. (37) involve regular powers of
y, as we illustrate with a very simple example. Consider
the first-order term iω

∑
x1≤y x1/Dx1

. Let us split the
sum according to whether Dx1

> D⋆ or Dx1
< D⋆, where

the value D⋆ is fixed so that the probability D < D⋆ is
p = 1/2 (any other finite value of p would lead to the
same conclusion). Then, one recognises that the random
variable

ψ :=
∑
x1≤y

x1
Dx1

(48)

has a broad probability distribution peaked at a value
ψ ∼ y(2−η)/(1−η), but with non-zero weight down to ψ ∼
y2: this latter value comes from the regular sum of the
terms involving Dx1

> D⋆, whilst the former represents
the anomalous contribution of the very small instances
Dx1

< D⋆. So, with a slight abuse of notation, one can
say that ∑

x1≤y

x1
Dx1

∼ y(2−η)/(1−η) + cy2, (49)

in the sense that all functions of this random variable
may be expanded, at large y, in these two (leading and
subleading) terms.

A careful treatment of the random sums thus leads
to two families of terms: those involving regular powers
of y, and those involving anomalous powers. These two
families receive contributions from all orders in ω, and
a resummation of all the terms is beyond the scope of
this work. We will content ourselves with the following
simple scaling analysis: the combination of ω and y which
appears is

ω(y(2−η)/(1−η) + cy2) ∼ 1, (50)

from which it follows that

y ∼ tα(1 + c′t2α−1), (51)

which is the form of the autocorrelator (12) used to fit the
numerical data. The constants c and c′ cannot be fixed at
this rough level of calculation; thus, in §III, some fitting
was still required.

d. Logarithmically-suppressed diffusion. We fi-
nally consider how logarithmically-suppressed diffusion
emerges. Being the limiting case between subdiffusion

and slow diffusion, it can be understood from both
sides. From the slow-diffusion side, one can see that the
corrections to the asymptotic (diffusive) scaling tend
to become of the same order of the leading term as
η → 0−: this is because (2 − η)/(1 − η) → 2, and the
two terms on the r.h.s. of Eq. (47) coalesce, forming a
logarithm. The same happens from the subdiffusive side,
where the dominant term is now y(2−η)/(1−η), whilst
the corrections are given by y2: the mechanism is the
same, though the role of the two terms is exchanged.
We point out that this coalescence of power-laws can be
understood from a complementary perspective via the
integral-equation solution, see App. A.

V. CONCLUSIONS

We have shown that the dynamics of a classical Heisen-
berg chain with broadly-distributed couplings Ji, specif-
ically pη(J) ∼ J−η, goes through various dynamical
phases as η is increased from very negative to its maxi-
mum achievable value, η = 1. For η < −1 the correla-
tion functions are diffusive (data not presented, though
see, e.g., the supplementary material of Ref. [31]). For
−1 < η < 0, we have shown that, whilst the asymp-
totic behaviour is still diffusive, there are strong finite-
time corrections which can be mistaken as signs of sub-
diffusive transport. True subdiffusion sets in only when
η > 0, with the subdiffusive exponent matching the ana-
lytic prediction of a phenomenological model in which a
local diffusion coefficient is assumed to be a random vari-
able, also broadly-distributed, with the same exponent η
as the local couplings J .

We point out that the quantum version of the model
considered here (1) was the subject of recent works [69,
70], in which it was argued that a regime intermediate
between many-body localisation and thermalisation per-
sists in the thermodynamic limit. Such a regime is found
in a range of parameters equivalent to our 0 ≤ η < 1, i.e.,
when the classical model shows subdiffusive transport.
It may be interesting to consider whether a semiclassical
treatment of the quantum model could link these find-
ings.

Our work, we believe, settles the question about the
onset of diffusion and subdiffusion in classical Heisen-
berg chains with random couplings, in part already con-
sidered in Refs. [38, 40]. It also presents yet another
cautionary tale for efforts to extract potentially anoma-
lous dynamical exponents, and identify possible dynam-
ical phase transitions based on short-time, small-system
numerics. Indeed, the discrepancy between exponents
obtained from different but, visually, similarly good fits
on system sizes of several thousand spins at times of a
million J−1

max, gives a quantitative indication of just how
challenging it is to estimate “systematic” error bars.

To conclude, leaving aside the considerations of a
largely technical nature, the family of models we have
studied provides a window on the physics of how rare
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(or not-so-rare) local fluctuations manifest themselves at
long length- and time-scales. Our work, in this sense,
is a classical counterpart to the strong-disorder renor-
malisation group treatments [45–49] which have been so
influential for the study of quantum models in the last
few decades. The question of which regimes still await
discovery, in addition to those found and referenced in
this work, strikes us as a subject of study likely to hold
more than one surprise in store.
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Appendix A: Integral equation solution of the
effective model

In this appendix we solve the effective model, Eq. (14),
taking inspiration from the calculations of Ref. [54], but
employing a simpler strategy. We start by rewriting
Eq. (14) as

∂tmx(t) = −(Hm)x(t), (A1)

where

H =
∑
x

[
(Dx +Dx−1)|x⟩⟨x| −Dx(|x+ 1⟩⟨x|+ h.c.)

]
,

(A2)
and the state |x⟩ represents a particle located at position
x on the chain. We now introduce the diagonal element
of the resolvent of H, namely,

G00 := ⟨0| 1

ω −H
|0⟩. (A3)

Notice that here the frequency ω is obtained via a Laplace
transform instead of a Fourier transform, so there is an
imaginary unit of difference w.r.t. §IV.
Using standard methods for tridiagonal matrices—or,

equivalently, a locator expansion [1, 66, 67]—Eq. (A3)
can be recast in the form

G00(ω) =
1

G+ +G− + ω
, (A4)

with the random variables Dx to the right of site 0 ap-
pearing in

G+ =
1

D−1
1 + 1

ω+ 1
D2+...

, (A5)

Re s

Im s

<latexit sha1_base64="k1iKSEc+ALfVNNjO4a6N66bote0=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1nqxmUF+4DpUDJppg3NJENyRyhDP8ONC0Xc+jXu/Bsz7Sy09UDgcM695NwTJoIbcN1vp7S2vrG5Vd6u7Ozu7R9UD486RqWasjZVQuleSAwTXLI2cBCsl2hG4lCwbji5y/3uE9OGK/kI04QFMRlJHnFKwEp+PyYwpkRkzdmgWnPr7hx4lXgFqaECrUH1qz9UNI2ZBCqIMb7nJhBkRAOngs0q/dSwhNAJGTHfUkliZoJsHnmGz6wyxJHS9knAc/X3RkZiY6ZxaCfziGbZy8X/PD+F6DbIuExSYJIuPopSgUHh/H485JpREFNLCNXcZsV0TDShYFuq2BK85ZNXSeei7l3Xrx4ua41mUUcZnaBTdI48dIMa6B61UBtRpNAzekVvDjgvzrvzsRgtOcXOMfoD5/MHdRORYg==</latexit>

B

η − 1
10−1−2 2

FIG. 6. Bromwich contour for the inversion of the Mellin
transform, Eq. (A11). The poles at integer-values (black
crosses) are responsible for a regular scaling of time and space,
whilst the pole at s = η − 1 (red dot) is responsible for sub-
diffusion when η > 0, and for the anomalous corrections to
diffusion when −1 < η < 0.

and those to the left appearing in

G− =
1

D−1
0 + 1

ω+ 1
D−1+...

. (A6)

Now, G± are themselves random variables, and their dis-
tribution can be found in an iterative way. In fact, the
relation

G±,x =
1

D−1
x + 1/(ω +G±,x−1)

(A7)

is a sort of recursion equation familiar from the theory of
Anderson localisation [66, 67, 71], and that of spin glasses
[72–74]. The limiting distribution of G must be invariant
under the iteration

f(g) =

∫
dg′f(g′)

∫
dD ρ(D)

× δ
[
g −

(
D−1 + (ω + g)−1

)−1
]
. (A8)

The scaling form at small ω can be recovered by looking
at the first moment g =

∫
dg g f(g):

g =

∫
dg′f(g′)

∫
dD ρ(D)

[
D−1 + (ω + g)−1

]−1

=

∫
dg′f(g′)(ω + g′)F (ω + g′), (A9)

where

F (s) =

∫
dD ρ(D)

1

1 + s/D

= (1− η)

∫ ∞

1

dRR−2+η 1

1 + sR
, (A10)

having passed to the variable R := 1/D. Notice that
F (0) = 1, but one needs also the corrections at small
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FIG. 7. Slow diffusion in the effective model at η = −0.5,
obtained by directly simulating Eq. (14). The leading and
sub-leading terms predicted by the transfer matrix solution,
and used to fit the spin correlations in the main text for the
same value of η (Fig. 3), provide an excellent fit to the data.

s = ω+ g′. Going to the Mellin transform, one can write

F (s) =

∫
B

dz

2πi

πs−z

sinπz

1− η

z + 1− η
, (A11)

where B is the Bromwich path from −i∞ to +i∞ with
0 < Re(z) < 1, see Fig. 6. The function F (s) in the
complex s plane contains poles at all the integers s ∈ Z
and at s = η−1 < 0, see again Fig. 6. In order to find the
small-s behaviour, one can move the contour to the left,
picking up as many poles as terms required. For η > 0,
one finds

F (s) = 1− π(1− η)

sinπ(1− η)
s1−η +O(s). (A12)

Inserting the relation above in Eq. (A9), we have

g =

∫
dg′f(g′)(ω + g′)

[
1− π(1− η)

sinπ(1− η)
(ω + g′)1−η

]
= ω + g − π(1− η)

sinπ(1− η)
(ω + g)2−η, (A13)

with the promised small s corrections. Neglecting, self-
consistently, ω w.r.t. g, one obtains

ω =
π(1− η)

sinπ(1− η)
g2−η, (A14)

and so

g2−η ∼ ω. (A15)

Analogously, for all n ≥ 2 one can prove that
gn−η/gn−2 ∼ ω. Therefore, the typical value of g ∼
ω1/(2−η) which, when inserted in Eq. (A4), gives

A(t) ∼
∫
dω

eiωt

ω
1

2−η +O(ω)
∼ t−

1−η
2−η . (A16)
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FIG. 8. Subdiffusion in the effective model at η = 0.5, ob-
tained by directly simulating Eq. (14). Similarly to the case
of slow-diffusion (Fig. 7), the transfer-matrix solution, which
describes the spin correlations at the same η (cf. Fig. 5), is
in agreement with the effective model’s numerics.

This is consistent with the result obtained in the main
text.
From the Mellin transform formalism one can also get

a complementary understanding of the subleading terms.
Looking at Eq. (A11) or Fig. 6, one can see that the
function F (s) receives contributions from two kinds of
poles: those at integer-values, and an anomalous pole at
s = η − 1. This last pole moves as the disorder strength
η is tuned, and, depending on the relative position of the
anomalous pole s = η − 1 and the pole at s = −1, the
asymptotic behaviour changes from diffusion to subdif-
fusion: indeed, it is the first pole to the left of s = 0 that
determines the asymptotics. One can see that the two
poles coalesce precisely at η = 0, in accordance with the
power series treatment of §IV.
The poles at s = −2, s = −3, etc., represent sub-

leading corrections to the scaling of g w.r.t. ω. When
−1 < η < 0, i.e., in the slow diffusion regime, all such
poles are subleading; the anomalous pole is the first to be
encountered to the left of s = −1, and thus provides the
leading finite-time corrections to the asymptotic scaling.
When, instead, η < −1, it is the pole at s = −2 that
dominates the corrections, and standard diffusion is re-
covered to a very good approximation.

Appendix B: Numerics of the effective model

As a further consistency check that our effective model
accurately captures the phenomenology of the disordered
Heisenberg chains (1), and that our transfer-matrix ap-
proach is correct, we directly simulate Eq. (14). We take
a finite system with sites x ∈ [−L/2, L/2)∩Z, L = 8192,
and the initial conditions mx = δx,0. The results are av-
eraged over 20000 realisations of the random coefficients
Dx. We expect the spreading of the magnetisation profile
mx(t) under this set-up to mimic the spin correlations of
Eq. (1).
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FIG. 9. Logarithmically suppressed diffusion at η = 0 in the
effective model Eq. (14).

We show convincingly in Fig. 7 that the slow-diffusion
regime (−1 < η < 0) falls within these expectations,
with the leading and sub-leading terms from the transfer
matrix solution (47) providing an excellent fit to the au-
tocorrelator, and a scaling collapse over three decades of
time. We find that the subdiffusive regime η > 0 evinces
a similarly good agreement, shown in Fig. 8, using the
leading and sub-leading terms found in Eq. (51). Fi-
nally, the transition point η = 0, as displayed in Fig. 9,
shows a good agreement with the autocorrelator, and a
decent scaling collapse. We note that the size of the pa-
rameter λ ≈ 107 does not imply a poorly converged fit,
since the combination κ log λ ≈ 0.433 entails a perfectly-
reasonable, additive, subleading correction.
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