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Ordering and classifying multipartite quantum states by their entanglement content remains an
open problem. One class of highly entangled states, useful in quantum information protocols, the
absolutely maximally entangled (AME) ones, are specially hard to compare as all their subsystems
are maximally random. While, it is well-known that there is no AME state of four qubits, many
analytical examples and numerically generated ensembles of four qutrit AME states are known.
However, we prove the surprising result that there is truly only one AME state of four qutrits up to
local unitary equivalence. In contrast, for larger local dimensions, the number of local unitary classes
of AME states is shown to be infinite. Of special interest is the case of local dimension 6 where it
was established recently that a four-party AME state does exist, providing a quantum solution to the
classically impossible Euler problem of 36 officers. Based on this, an infinity of quantum solutions
are constructed and we prove that these are not equivalent. The methods developed can be usefully
generalized to multipartite states of any number of particles.

I. INTRODUCTION

Quantum entanglement between two distant par-
ties, with its counterintuitive nonclassical features, has
been experimentally verified [1–4] via violations of
Bell-CHSH inequalities [5]. Multipartite entanglement
which is at the heart of quantum information, computa-
tion and many-body physics is still poorly understood.
Studying the entanglement content in them via inter-
convertibility and classifying them are of fundamen-
tal importance. A putative maximally entangled class
called absolutely maximally entangled (AME) states
are such that there is maximum entanglement between
any subset of particles and the rest [6]. They have
been related to error correcting codes [7], both clas-
sical and quantum, combinatorial designs such as or-
thogonal Latin squares (OLS) [8–10], quantum parallel-
teleportation and secret sharing [6], and holography
[11]. It is therefore of considerable interest to find
structure among such highly entangled multipartite
states, in particular, can some AME states have more
nonlocal resource than others?

Given N particles with d levels each (the local dimen-
sion is d) there is no guarantee that an AME state, de-
noted AME(N, d), exists. For example, AME(4, 2) does
not exist; four qubits cannot be absolutely maximally
entangled [12]. It is known that AME(N, 2) exists only
for N = 2, 3, 5, and 6 [7, 13, 14]. A table of known
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AME(N, d) constructions is maintained [15], and a re-
cent update is presumably AME(4, 6) [16]. This long
defied construction and provided a quantum solution
to the classically impossible problem of “36-officers of
Euler”. This state was dubbed the “golden-AME” state
due to the unexpected appearance of the golden ratio in
it. Recent works have appeared elucidating the nature
of the solution and its geometric implications [17, 18].

Given that any type of entanglement cannot on the
average increase under local operations and classical
communication (LOCC), two states |ψ1⟩ and |ψ2⟩ are
said to be LOCC-equivalent if they can be converted to
each other under such operations [19, 20]. A finer, but
easily defined, equivalence is local unitary (LU) equiv-
alence:

|ψ1⟩
LU∼ |ψ2⟩ (1)

iff there exists local unitary operators ui, such that
|ψ2⟩ = (u1 ⊗ · · · ⊗ uN)|ψ1⟩. A coarser classification
is provided by Stochastic-LOCC wherein conversion
occurs with a nonzero probability of success [21, 22].
Mathematically, this replaces the unitary ui in the LU-
equivalence by invertible matrices. For pure AME states
such as this work addresses, SLOCC (and hence also
LOCC) equivalence is identical to LU-equivalence [23].

However LU-equivalence among AME states is a
long-standing problem that is notoriously hard to re-
solve [23–25] as all the subsystem states are maximally
mixed. There have been several examples of AME(4, 3)
in the literature, from those based on graph states and
combinatorial structures [8, 9, 26–28] to numerically
generated ensembles [29, 30]. Despite this, we prove
the surprising conjecture [31] that there is exactly one
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LU-equivalence class of AME(4, 3) states. We show that
they are all equivalent to each other and hence equiva-
lent to one with minimal support or rank such as:

|ΨP9⟩ =(|1111⟩+ |1222⟩+ |1333⟩+ |2123⟩+ |2231⟩
+ |2312⟩+ |3132⟩+ |3213⟩+ |3321⟩)/3.

(2)

The minimal support or rank here refers to the min-
imum natural number r such that the corresponding
state can be represented as a superposition of r or-
thonormal product states [32]. For an AME(N, d) state
with N, d ≥ 2, the minimal support is found to be
d⌊N/2⌋ [33].

We provide a set of invariants that when they coin-
cide for two states implies their LU-equivalence. For
d > 3, but d ̸= 6, orthogonal Latin squares (OLS) can be
used to construct AME(4, d) states [8, 9]. We show that
a continuous parametrization based on multiplication
of suitable components by phases gives invariants that
can take an uncountable infinity of values and hence
lead to an infinity of LU-equivalence classes. For the
special case of d = 6, there are no OLS constructions
[34], but we use the recently constructed “golden-state”
[16] as a basis for a similar construction which leads to
an infinity of LU-equivalence classes in this case as well.
The methods developed can be generalized to larger
number of particles and provides a new outlook into
highly entangled multipartite states.

A unitary matrix U of order d2 can be used to define
a four-party state

|ΨU⟩ =
1
d ∑

iαjβ
Uiα

jβ|iαjβ⟩, (3)

where Uiα
jβ := ⟨iα|U |jβ⟩. The state |ΨU⟩ is a vector-

ization of the matrix U [35, 36]. If the unitary U is 2-
unitary (defined in next section), then the correspond-
ing state is an AME(4, d). A unitary operator U is LU
equivalent to U′ if there exist single-qudit gates ui and
vi such that

U′ = (u1 ⊗ u2)U(v1 ⊗ v2). (4)

The corresponding four-party states are also LU equiv-
alent as |ΨU′⟩ = (u1 ⊗ u2 ⊗ vT

1 ⊗ vT
2 ) |ΨU⟩, where T is

the usual transpose. Therefore the equivalence among
AME(4, d) states can be studied via equivalence of 2-
unitary operators. In this paper, we construct and use
LU invariants that are based on unitary operators rather
than directly the coefficients of states. Based on four
permutations of n copies, these are easily computed
and are in principle complete, in the sense that if all
of them are equal then the operators or corresponding
states are LU-equivalent [37].

The fact that there is only one LU class of AME(4, 3)
states implies that there is only one 2-unitary matrix

of order 9 denoted P9, up to multiplication by local
unitaries on either side, and no genuinely orthogonal
quantum Latin square [10, 38] in d = 3. It should also
be noted that while generic states of four parties (even
for qubits) have an infinity of LU-equivalence classes,
the case of AME states forms an exceptional set.

II. PRELIMINARIES AND DEFINITIONS

In this section, we recall necessary background on
classical and quantum orthogonal Latin squares, and
2-unitary operators.

A. Orthogonal Latin squares

A Latin square (LS) of order d is a d× d array filled by
numbers [d] = {1, 2, .., d} each appearing exactly once
in each row and column. Two Latin squares K and L
of order d, with entries Kij and Lij in i-th row and j-th
column, are called orthogonal Latin squares if the d2

pairs (Kij, Lij), i, j ∈ [d] occur exactly once.
As mentioned earlier, a pair of orthogonal Latin

squares of order d can be used to construct an
AME(4, d) state. If the orthogonal Latin squares are K
and L with order d, the corresponding AME(4, d) state
can be constructed as follows

|ψ(K,L)⟩ =
1
d ∑

i,j
|ij⟩ |KijLij⟩ . (5)

Such construction exists for all d, except d = 2 and d =
6, where there are no OLS.

The notion of a Latin square can be generalized
by replacing discrete symbols with vectors or pure
quantum states [39]. A quantum Latin square of
size d is a d × d arrangement of d-dimensional vec-
tors such that each row and column forms an or-
thonormal basis. The mapping of discrete symbols
in a classical Latin square to computational basis vec-
tors;

{
i 7→ |i⟩ , j 7→ |j⟩ : ⟨i|j⟩ = δij, i, j = 1, 2, · · · , d

}
, re-

sults in a quantum Latin square of size d. For d = 2 and
3 all quantum Latin squares are equivalent to classical
ones for some appropriate choice of bases [40]. How-
ever, for d ≥ 4 there exist quantum Latin squares that
are not equivalent to classical Latin squares [40].

Analogous to orthogonality of classical Latin squares
there is a notion of orthogonality of quantum Latin
squares [10, 38]. Two quantum Latin squares Q1 and
Q2 are said to be orthogonal if together they form an
orthonormal basis in Hd2 . To be precise, if |ψij⟩ and
|ϕij⟩ denote single-qudit states in the i-th row and j-
th column of orthogonal quantum Latin squares Q1
and Q2, then the set

{
|ψij⟩ ⊗ |ϕij⟩ ; i, j = 1, 2, · · · , d

}
is

an orthonormal basis. Thus orthogonal quantum Latin
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squares provide a special product basis in Hd ⊗Hd in
which both single-qudit basis form a quantum Latin
square.

A more general notion of orthogonal quantum Latin
squares allows for an entangled basis in Hd ⊗Hd. In
this case a d × d array of bipartite pure states |Ψij⟩ ∈
HA

d ⊗HB
d form an orthogonal quantum Latin square, if

they satisfy the following conditions [16, 30]:

⟨Ψij|Ψkl⟩ = δijδkl ,

TrA

(
d

∑
k=1

|Ψik⟩ ⟨Ψjk|
)

= δijId = TrB

(
d

∑
k=1

|Ψik⟩ ⟨Ψjk|
)

,

TrA

(
d

∑
k=1

|Ψki⟩ ⟨Ψkj|
)

= δijId = TrB

(
d

∑
k=1

|Ψki⟩ ⟨Ψkj|
)

.

Here TrA and TrB denotes the partial trace operations
onto subsystems B and A, respectively. It is easily seen
that in the case of an unentangled basis these conditions
are equivalent to the first definition.

The above definitions are equivalent to the bipar-
tite unitary operator U = ∑d

i,j=1 |i⟩ |j⟩ ⟨Ψij| remaining
unitary under particular matrix rearrangements as ex-
plained below. Such unitary operators are called 2-
unitary [9] and form the main focus of this work.

B. 2-unitary operators

A unitary operator U on Cd ⊗ Cd ∈ U (d2) can be
expanded in a product basis as

U = ∑
iαjβ

⟨iα|U |jβ⟩ |iα⟩ ⟨jβ| . (6)

We recall the following matrix rearrangement opera-
tions familiar from state separability criteria [41, 42]:

(i) Realignment, R :

⟨ij|UR |αβ⟩ = ⟨iα|U |jβ⟩ (7)

(ii) Partial (or blockwise) transpose, Γ:

⟨iβ|UΓ |jα⟩ = ⟨iα|U |jβ⟩ . (8)

Here UR and UΓ denote the matrices obtained after
realignment and partial transpose operations, respec-
tively. These operations allows us to define the follow-
ing classes of unitary operators:

Definition 1. (Dual unitary) A matrix U is dual unitary if
U and UR are unitary.

Definition 2. (T-dual unitary) A matrix U is called T-dual
unitary if U and UΓ are unitary.

Definition 3. (2-unitary) A matrix U is 2-unitary if it is
dual unitary and T-dual unitary.

Quantum circuit models constructed from dual uni-
taries have been widely studied recently as models
of nonintegrable many-body quantum systems [43–45],
and the circuits constructed form 2-unitaries have been
shown to possess extreme ergodic properties [28]. A
generalization of 2-unitary matrices to multi-unitary
matrices allows the construction of AME states with
higher number of parties [9].

The 2-unitary matrix corresponding to the state in Eq.
(5) constructed from OLS gives a 2-unitary permutation
defined as follows

P = ∑
i,j

|ij⟩ ⟨KijLij| . (9)

2-unitary permutations can be constructed from OLS in
all local dimensions d > 2, except d = 6. It is also noted
that if we multiply a 2-unitary permutation with a di-
agonal unitary matrix, it remains 2-unitary. In fact, per-
mutations that are dual/T-dual unitary remain dual/T-
dual unitary under the multiplication of all nonvanish-
ing (unit) elements by phases–we refer to this as enphas-
ing. Thus, all 2-unitary permutations remain 2-unitary
under enphasing.

III. LU-EQUIVALENCE OF AME(4, 3) STATES

This is the smallest case where four-party AME states
exist. It has been shown that AME states of minimal
support or rank 9 are all LU-equivalent [23]. It is now
shown that

Theorem 1. There is only one LU-equivalent class of
AME(4, 3) states or, equivalently, one LU-equivalent class
of 2-unitary gates of size 9.

Proof. A universal entangler on Cd ⊗ Cd entangles ev-
ery product state, and it is known that they do not ex-
ist in d = 2 and d = 3 [46]. The fact that there are
no two-qutrit universal entanglers implies that for any
two-qutrit gate U ∈ U(9) there exists a product state in
C3 ⊗ C3 such that

U(|α1⟩ ⊗ |β1⟩) = |α2⟩ ⊗ |β2⟩ . (10)

Writing |α1⟩ ⊗ |β1⟩ = (v1 ⊗ v2) |11⟩ and |α2⟩ ⊗ |β2⟩ =
(u†

1 ⊗ u†
2) |11⟩, where ui and vi are single-qutrit unitary

gates, it is easy to see that

U1 = (u1 ⊗ u2)U(v1 ⊗ v2) (11)

such that

U1(|1⟩ ⊗ |1⟩) = |1⟩ ⊗ |1⟩ . (12)
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Denoting non-zero entries of U1 by ∗ , the matrix form
of U1 becomes

U1 =



1 0 0 0 0 0 0 0 0
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


. (13)

If U is a 2-unitary operator, the LU tranformation
in Eq.(11) will lead to U1 given in the matrix form in
Eq.(16). The steps given below explains the reduction
in the number of non-zero entries upon imposing dual
unitary and T-dual unitary constraints.

1. Dual unitarity: If UR
1 is unitary, then the nine

3 × 3 blocks in U1 are orthonormal to each other.
This implies that all nonzero entries in the first
block containing 1 vanish and in all the remain-
ing blocks the element in the first row and the
first column vanish. Therefore, the dual unitary
constraint implies that U1 is of the form

U1 =



1 0 0 0 0 0 0 0 0
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


. (14)

This provides the most general form of the non-
local part of two-qutrit dual-unitary gates.

2. T-dual unitarity: If UΓ
1 is unitary, U1 takes the

form

U1 =



1 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


. (15)

Note that the four columns 2,3,4, and 7 have only
four potentially non-vanishing elements. Thus
these form a 4-dimensional orthonormal basis

themselves and imply that the elements in the cor-
responding rows of columns 5,6,8, and 9 vanish.
Therefore, Eq. (15) further simplifies to

U1 =



1 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0


. (16)

The LU transformation reduces the maximum
number of non-zero entries of the 2-unitary from
81 to 33.

From U1, we perform a series of local unitary
transformations, involving only 2 × 2 unitaries such

that U1
LU∼ P9, reducing the total number of non-

zero entries to only 9. Here P9 is the 2-unitary
permutation that takes (11, 12, 13, 21, 22, 23, 31, 32, 33)
to (11, 23, 32, 33, 12, 21, 22, 31, 13) and results in the
AME(4, 3) state |ΨP9⟩ in Eq. (2). The details of the LU
transformations can be found in the appendix A.

We have shown that every 2-unitary matrix U in C3 ⊗
C3 can be expressed in the form U = (u′

1 ⊗ u′
2) P9 (v′1 ⊗

v′2). The four 3 × 3 unitaries, u′
1,2 and v′1,2 define a 33-

dimensional manifold of 2-unitaries.
Hence, it is proven that there is only one LU class of

2-unitary gates of size 9 or, equivalently, there is only
one AME(4, 3) state up to multiplication by local uni-
taries.

Corollary 1. For any 2-unitary two-qutrit gate U ∈ U(9),
there exist orthonormal product bases {|αiβ j⟩ : i, j = 1, 2, 3}
and {|α′iβ′

j⟩ : i, j = 1, 2, 3} in C3 ⊗ C3 such that

U |αiβ j⟩ = |α′iβ′
j⟩ , i, j = 1, 2, 3. (17)

Let the action of the 2-unitary permutation P9 on
the compuational basis be given by P9 |ij⟩ = |kijlij⟩,
where i, j, ki,j, li,j ∈ {1, 2, 3}. The set of product states
{|ki,jli,j⟩ : i, j = 1, 2, 3} also form a product basis in C3 ⊗
C3. Any 2-unitary two-qutrit gate can be expressed
as U = (u†

1 ⊗ u†
2) P9 (v†

1 ⊗ v†
2), where u1,2 and v1,2 are

3 × 3 unitaries. This allows to define the product states
|αiβ j⟩ = (v1 ⊗ v2) |ij⟩ and |α′iβ′

i⟩ = (u†
1 ⊗ u†

2) |kijlij⟩
which satisfies the condition in Eq. (17). If these lo-
cal unitary operators u1,2 and v1,2 are used in the LU
transformation in Eq. (11), the reduction to P9 occurs in
one step.
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1. Illustration of the proof of Theorem 1

We illustrate the proof of Theorem 1 for generic two-
qutrit (d2 = 9) 2-unitary matrices. Such generic 2-
unitary operators have all d4 = 34 elements nonzero
and can be obtained from the algorithms presented in
Ref. [29]. The absolute values of the entries of one such
realization of a generic 2-unitary of size 9, denoted sim-
ply as U below is shown in Fig. (1.a). We use an al-
gorithm similar to the one described in Ref. [47] that,
given an bipartite unitary U, finds a pair of maximally
entangled states |Φ1⟩ and |Φ2⟩ such that U |Φ1⟩ = |Φ2⟩.
We use the modified algorithm to find a product state
that remains a product state under the action of U. The
existence of such a product state is guaranteed due to
the non-existence of a two-qutrit universal entangler
gate [46].

Using the product state obtained from the algorithm
for the 2-unitary U, we illustrate the proof of Theorem
1 step-by-step for U showing that it is LU-equivalent to
the P9 (2-unitary permutation) as follows:

Let |ΨX⟩ and |ΨY⟩ be the product states found using
the modified algorithm such that U |ΨX⟩ = |ΨY⟩. De-
fine matrices X and Y with elements Xij = ⟨ij|ΨX⟩ and
Yij = ⟨ij|ΨY⟩, respectively, where i, j = 1, 2, ..., d. Let the
singular value decompositions of the matrices X and Y
are given by

X = a1D1b1, Y = a2D2b2, (18)

where a1, a2, b1, b2 are d× d unitary matrices and D1, D2
are diagonal matrices with only one nonzero entry that
is equal to 1. Rewriting the above equations in the
vector form gives |ΨX⟩ = (a1 ⊗ bT

1 ) |11⟩ and |ΨY⟩ =

(a2 ⊗ bT
2 ) |11⟩. The unitary matrices obtained from these

relations can be used to implement the LU transforma-
tion given in Eq.(11) by setting u1 = a1, u2 = bT

1 , v1 = a†
2

and v2 = b∗2 . The transformation results in a 2-unitary
matrix whose nonzero entries are shown in Fig. (1 b).
Note that the number of nonzero entries is reduced
from 81 to 33. The non-existence of a two-qutrit univer-
sal entangler together with 2-unitarity conditions im-
ply that any 2-unitary of size 9 is of the form shown in
Fig. (1 b). The matrices UR

1 and UΓ
1 also have exactly the

same structure for the non-zero entries.
We apply a sequence of local unitary transformations

defined in Eqs. (A7)–(A11) to further simplify the 2-
unitary matrix. The result of these local transformations
is shown in Figs. (1 c)– (1 e).

IV. COMPUTABLE AND COMPLETE SET OF
LU-INVARIANTS

In this section, we provide a complete set of LU-
invariants that, in principle, allow us to determine if

two given operators are LU-equivalent. A family of
LU-invariants for a general matrix A ∈ Cd ⊗ Cd may
be constructed as follows. Take any natural number n
and permutations σ, τ, ρ, λ ∈ Sn - the symmetric group
on {1, · · · , n}. From this data compute the following
number: A(σ, τ, ρ, λ) =

Ai1 j1
k1l1

· · · Ain jn
kn ln

(A†)
kρ(1) lλ(1)
iσ(1) jτ(1)

· · · (A†)
kρ(n) lλ(n)
iσ(n) jτ(n)

, (19)

where the sum over repeated indices is assumed. It
is straightforward to check that this is an invariant of
LU-equivalence. The content of Propositions 8 and 20

of Ref. [37] is that the collection of all these numbers
is a complete LU-invariant. In other words, A, B, not
necessarily unitary, are LU-equivalent, if and only if
A(σ, τ, ρ, λ) = B(σ, τ, ρ, λ) for every n and choice of
σ, τ, ρ, λ ∈ Sn. In the present work, this is used to show
that matrices A and B are not LU-equivalent by display-
ing σ, τ, ρ, λ ∈ Sn for some n such that A(σ, τ, ρ, λ) ̸=
B(σ, τ, ρ, λ).

In general, for the LU-invariant A(σ, τ, ρ, λ) to be
nontrivial and not obtainable from a smaller value of
n, the four permutations of length n must form a 4 × n
Latin rectangle i.e., there are n different symbols in all
four rows and 4 different symbols in all n columns. For
n < 4, there are repetitions of symbols and the resulting
invariant reduces to a function of either trivial invariant
Tr AA† or known invariants based on matrix rearrange-
ments such as realignment and partial transpose.

Our main interest is to distinguish 2-unitary opera-
tors that are not LU equivalent. The problem of LU-
equivalence for 2-unitaries is specially hard because all
known LU invariants based on matrix rearrangements
such as realignment and partial transpose are constants
[48, 49]. For distinguishing 2-unitaries that are not LU
equivalent, we need to choose the four permutations
in Eq. 19 in such a way that the resulting invariant
does not reduce to a function of known invariants in-
volving realignment and partial transpose matrix rear-
rangements. A possible choice of such permutations for
n = 4 is

σ = (1 2 3 4), τ = (2 1 4 3),
ρ = (3 4 1 2), λ = (4 3 2 1).

(20)

Note that the above four permutations arranged in a
4 × 4 arrangement form a Latin square of size 4 and
one of them can be chosen to be identity. The resulting
LU-invariant is equal to

Ai1 j1
k1l1

Ai2 j2
k2l2

Ai3 j3
k3l3

Ai4 j4
k4l4

(A†)k3l4
i1 j2

(A†)k4l3
i2 j1

(A†)k1l2
i3 j4

(A†)k2l1
i4 j3

,
(21)

and is useful in distingushing 2-unitaries that are not
LU equivalent as discussed below.
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(a) (b) (c) (d) (e)

FIG. 1: (a) The absolute values of the entries of a generic 2-unitary of size 9 obtained from the MTR algorithm presented in
Ref. [29] are shown. All d4 = 81 entries are nonzero and the rows and columns are entangled. The numbers 1 to 9 on the left
indicate the row number and similarly, the numbers on the top indicate the column number (b) The absolute values of entries
of the LU-equivalent 2-unitary matrix to U, U1 = (u†

1 ⊗ v†
1)U(u2 ⊗ v2). The only nonzero entry in the first block is equal to 1

and the number of nonzero entries in the 2-unitary matrix is 81 − 48 = 33. (c,d) The absolute values of entries of the 2-unitary
matrix are shown after performing local transformation defined in Eq. (A7) and Eq. (A9). (e) The local transformation defined
in Eq. (A11) results in 2-unitary enphased permutation in which there is only one nonzero entry (of modulus 1) in any row and
column.

V. LU-EQUIVALENCE CLASSES OF AME(4, d) STATES
IN d ≥ 4

In this section, using the concept of LU-invariants,
we study the LU-equivalence classes of AME states in
d ≥ 4.

Theorem 2. The number of LU-equivalence classes of 2-
unitary gates of size d2 (equivalently, the number of LU-
equivalence classes of AME states of four qudits) for d ≥ 4 is
infinite.

Proof. Consider first the case of d ≥ 4 and d ̸= 6. We
observed that 2-unitary permutations remain 2-unitary
under enphasing– multiplication of all nonvanishing
(unit) elements by phases. However, such 2-unitaries
are not necessarily LU equivalent.

What we actually see is that given one permutation
gate, there are infinitely many LU-equivalence classes
of enphased permutation gates of the same size, the
method of proof necessitating the restriction d ̸= 6 -
since permutation 2-unitary gates (which are in bijec-
tion with orthogonal Latin squares) are known to exist
for all d ≥ 4 except for d = 6.

Fix a permutation P of size d2. For every i, j ∈ [d] =
{1, 2, · · · , d}, there exist unique k, l ∈ [d] such that Pij

kl =

1. Let S ⊆ [d]×4 be the set of all (i, j, k, l) as i, j vary
over [d] and k, l are the unique elements with Pij

kl = 1.
For t = 1, 2, 3, 4, let πt : S → [d] be the tth component
function, so that, for instance, π3((i, j, k, l)) = k. Note
that |S| = d2 and that for each k ∈ [d], there are exactly
d elements s ∈ S with π3(s) = k, and similarly for
each l ∈ [d], there are exactly d elements s ∈ S with
π4(s) = l.

We will be interested in multi-subsets of S, consisting
of sets that have elements of S that could be repeated.
Such multi-subsets construct the invariant in Eq. (19)

and define functions X(s) from S to {0, 1, 2, 3, · · · }
counting the number of times s occurs in X. Any such
multi-subset X also determines four functions from [d]
to {0, 1, 2, 3, · · · }. These are IX , JX , KX , LX where

IX(p) = ∑
s∈S,π1(s)=p

X(s),

with analogous definitions for JX , KX and LX . These
count how many times p occurs as a first, second, third,
or fourth component of elements of X.

We claim that there are two distinct multi-subsets
X, Y of S for which all these functions are identical. To
see this, note that a multi-subset X of S corresponds
naturally to a function F : [d] × [d] → {0, 1, 2, 3, · · · }.
For given such a function, we could define X : S →
{0, 1, 2, 3, · · · } by X((i, j, k, l)) = F(i, j) and conversely,
given X, we may define F(i, j) = X((i, j, k, l)) where k, l
are the unique elements with Pij

kl = 1.
Say X corresponds to F and Y to G. The condition

that IX = IY is given by ∑j F(i, j) = ∑j G(i, j), for each
i ∈ [d]. Similarly the condition that JX = JY is given
by ∑i F(i, j) = ∑i G(i, j), for each j ∈ [d]. The condition
that KX = KY is not as easily expressed since it depends
on the permutation P, but it is clear that is given by
a sum of d F(i, j)s in the LHS and the corresponding
G(i, j)s in the RHS where the (i, j) vary over those for
which the corresponding k’s are equal, for each k ∈ [d].
A similar statement holds for when LX = LY.

To summarise, two multi-subsets X, Y corresponding
to functions F, G have the same I, J, K, L functions ex-
actly (the K and L functions should not be confused
with the Latin square symbols) when 4d homogeneous
linear equations in F(i, j) − G(i, j) are satisfied. How-
ever these equations are not independent because the
sum of all the F(i, j) coincides with the sum of all G(i, j)
once IX = IY and so we need to consider only d − 1
equations for each of the J, K, and L. The actual num-
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ber of equations is thus at most 4d − 3. The number of
variables is d2, namely the F(i, j) − G(i, j). For d ≥ 4,
d2 > 4d − 3, that is, the number of variables is greater
than the number of equations. Since it is a system of ho-
mogeneous equations with more variables than equa-
tions, these equations have a non-trivial solution. The
coefficients in the system of equations are rational, and
hence a rational solution exists. Further, by clearing
all the denominators by multiplying by some number,
we may assume that this solution is integral and then
choose each F(i, j) and G(i, j) to be non-negative. The
homogeneity of the equations ensures that this remains
a solution.

Finally, we have two distinct multi-subsets X, Y
of S such that for any p, the number of elements
of X with first component p equals the number of
elements of Y with first component p, and sim-
ilarly for the other three components too. Say
these multi-subsets have N elements each. This
condition implies that there exist permutations
σ, τ, ρ, λ ∈ SN such that if X is enumerated (arbitrar-
ily) as {(i1, j1, k1, l1), · · · , (iN , jN , kN , lN)} then Y =
{(iσ(1), jτ(1), kρ(1), lλ(1)), · · · , (iσ(N), jτ(N), kρ(N), lλ(N))}.
Note that N = ∑i,j F(i, j) = ∑i,j G(i, j).

Since X and Y are distinct, there is an s = (i, j, k, l) ∈
S for which X(s) ̸= Y(s). Let Q be the 2-unitary
obtained from a 2-unitary permutation P by setting
Qij

kl = α ∈ S1 with other entries untouched. The invari-
ant Q(σ, τ, ρ, λ), by definition, is a sum of terms each of
which is a monomial in α, α. It suffices to see that one
of these terms is a non-zero power of α for this poly-
nomial to take infinitely many values as α ranges over
S1. But this is true because the term corresponding to
{(i1, j1, k1, l1), · · · , (iN , jN , kN , lN)} is αX(s)αY(s) which is
a non-zero power of α.

To illustrate that enphasing of 2-unitary permu-
tations leads to different LU-equivalence classes in
d = 4, consider the permutation denoted P16 and
(P16)

ij
kl elements are such that (kl) are ordered as

(11, 44, 22, 33, 43, 12, 34, 21, 24, 31, 13, 42, 32, 23, 41, 14)
when (ij) is in the lexicographic ordering
(11, 12, · · · , 44). Let P16(θ) denote the 2-unitary
obtained from P16 by changing only (P16)

11
11 from 1 to

eiθ .
The invariant given in Eq. 21 for P16(θ) evaluates to

the following simple continuous function of θ:

P16 (θ; σ, τ, ρ, λ) = 8(29 + 3 cos θ). (22)

As θ ranges in (−π, π], the invariant takes infinitely
many distinct values and so the corresponding 2-
unitaries are not LU-equivalent.

While an interpretation of this invariant is not clear,
it can be related to a moment of an operator on two

copies, or four parties A, B, C, and D with U acting on
the pairs (A, B) and (C, D):

L[U] := (SBD ⊗ IAC)(U† ⊗ U†)(SBD ⊗ IAC)(U ⊗ U),
(23)

where SBD is the SWAP gate between subsystems B and
D. Representing bipartite operator with a tensor hav-
ing two incoming and two outgoing indices, diagram-
matic representation of L[U] in terms of bipartite uni-
tary operators U and SUS (where S is the SWAP gate)
is given by

(24)

It can be easily checked that L[U] = L[SUS] and all
the moments, Tr Lk[U]; k = 1, 2, 3, · · · , are local unitary
invariants. For example, Tr L[U] = Tr

(
URUR†)2 is re-

lated to the operator entanglement of U [29, 35, 36] and
the invariant in Eq. (22) is equal to the second moment
Tr L2[P16(θ)]. Note that Tr L[U] is equal to d2 for dual
unitaries and thus cannot distinguish dual unitaries in
different LU-equivalence classes.

A. Proof based on Orthogonal Diagonal Latin Squares

In this section, we give a constructive proof for The-
orem 2 for the case d ≥ 4 and d ̸= 6 using special
orthogonal Latin squares. We find explicit examples of
multi-sets with desired properties discussed above, and
construct the four permutations σ, τ, ρ, λ.

Consider a Latin square of order d with elements
from the set [d] = {1, 2, .., d}. A transversal of a Latin
square is a set of d distinct entries such that no two en-
tries share the same row or column. A diagonal Latin
square is one in which both the main diagonal and the
main back (or “anti-”) diagonal are transversals.

Two Latin squares K and L form a pair of orthogo-
nal diagonal Latin squares (ODLS) if both are diagonal
Latin squares and orthogonal. It is known that ODLS’s
exist for every order d except 2,3 and 6 [50]. An ex-
ample of a pair of orthogonal diagonal Latin squares in
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d = 4 is given below

ODLS(4) =

1, 2 3, 3 4, 1 2, 4
4, 4 2, 1 1, 3 3, 2
2, 3 4, 2 3, 4 1, 1
3, 1 1, 4 2, 2 4, 3

. (25)

Given a pair of orthogonal Latin squares K and L, we
can construct a 2-unitary operator P as follows

P =
d

∑
i,j=1

αi,j |i, j⟩ ⟨Ki,j, Li,j| , (26)

where αi,j ∈ S1. For our purpose, we set αi,j = 1, for
all i, j except α1,1 = α ̸= 1.

We choose both K and L to be diagonal Latin
squares such that they form a pair of orthogonal di-
agonal Latin squares. Let S ⊆ [d]×4 be the set of all
(i, j, Ki,j, Li,j), i, j ∈ [d] such that Pi,j

Ki,j ,Li,j
is non-zero. It is

noted that the multi-subsets of S construct the invariant
in Eq. (19). Consider the following subsets of S con-
structed using the addresses and elements of main and
back diagonals of K and L:

X = {(i, i, Ki,i, Li,i), i ∈ [d]},
Y = {(i, d + 1 − i, Ki,d+1−i, Li,d+1−i), i ∈ [d]}.

(27)

An element (i, i, Ki,i, Li,i) ∈ X is different from any ele-
ment (j, d + 1 − j, Kj,d+1−j, Lj,d+1−j) ∈ Y except the case
when d is odd and i = j = (d + 1)/2. Therefore, X and
Y are distinct. However, for the multi-subset X the func-
tions IX , JX , KX , LX are identical with the corresponding
functions for the multi-subset Y, both being constant
functions (equal to 1). For the example in Eq. (25),
X = {(1, 1, 1, 2), (2, 2, 2, 1), (3, 3, 3, 4), (4, 4, 4, 3)} and
Y = {(1, 4, 2, 4), (2, 3, 1, 3), (3, 2, 4, 2), (4, 1, 3, 1)}.

The four permutations σ, τ, ρ, λ can be found by in-
spection since all the functions I, J, K, L evaluates to 1

for the subsets X and Y. Note that the sets {Ki,i, i ∈ [d]}
and {Ki,d+1−i, i ∈ [d]} contains elements in the main di-
agonal and the back diagonals of K, respectively. Since
K is assumed to be a diagonal Latin square, these two
sets are related by a permutation. This gives the permu-
tation ρ ∈ Sd. A similar argument can be given in the
case of sets {Li,i, i ∈ [d]} and {Li,d+1−i, i ∈ [d]}, and
the corresponding permutation is λ ∈ Sd. It is also evi-
dent that the set [d] and {d + 1 − i, i ∈ [d]} are related
by a permutation

τ =

(
1 2 ... d
d d − 1 ... 1

)
. (28)

Therefore, if we enumerate elements in
X as {(i1, j1, k1, l1), · · · , (id, jd, kd, ld)}, then
Y = {(i1, jτ(1), kρ(1), lλ(1)), · · · , (id, jτ(d), kρ(d), lλ(d))}.
The permutation ρ is identity in this case. Note

that the element (1, 1, K1,1, L1,1) ∈ X does not
belong to Y. Then, the term corresponding to
{(i1, j1, k1, l1), · · · , (id, jd, kd, ld)} in the LU invariant
P(1, τ, ρ, λ) evaluates to α. Therefore P(1, τ, ρ, λ)
can have infinitely many values as α is a continuous
parameter. Hence it shows that there exists an infinite
number of LU-equivalence classes of 2-unitary gates
for d ≥ 4 except d = 6. In d = 3, as proven earlier, there
is only one LU-equivalence class of AME(4,3) states.
This is consistent with the fact that there are no ODLS
in d = 3 [50].

B. Special case of d = 6:

Due to the non-existence of orthogonal Latin squares
of size 6 [34], 2-unitary permutations of size 36 do not
exist [8] and we need to treat this case separately. How-
ever, it was shown recently in Ref. [16] that a 2-unitary
matrix of size 36 denoted as U36, or, equivalently, AME
state of four six-level systems, AME(4, 6), |ΨU36⟩ exists.
This settled positively a long-standing open problem in
quantum information theory [51].

The number of non-zero elements of U36, equiva-
lently, coefficients of |ΨU36⟩ is 112, and involve the 20th

root of unity ω = exp(2πi/20) and the real numbers
[16]:

a =
(

5 +
√

5
)−1/2

, b/a = φ, c = 1/
√

2, (29)

where φ = (1 +
√

5)/2 is the golden ratio. For the
sake of completeness, we show the nonzeros matrix el-
ements of the 2-unitary U36 corresponding to the golden
AME(4, 6) state [16] in Fig. (2). The pair of indices (k, l)
shown in rows label the rows and the (i, j) shown in
columns label the columns in U36.

Here, we show that one can obtain an infinite number
of 2-unitaries from U36 by multiplying it with appropri-
ate diagonal unitaries. Unlike 2-unitary permutations,
U36 does not remain 2-unitary under multiplication by
diagonal unitaries with arbitrary phases. In order to
preserve 2-unitarity, one needs to multiply particular
rows or columns of the given 2-unitary with specially
designed phases depending on its structure. The sim-
plest example in the case of U36 is the one-parameter
family of 2-unitaries

U36(θ) = D(θ)U36, (30)

where D(θ) = Diag[eiθ , 1, 1, eiθ , 1, 1, eiθ , 1, 1, eiθ , 126] and
θ ∈ (−π, π]. The notation 1K is to indicate a length-
K string of 1s. This yields an infinity of AME(4, 6)
states parameterized by θ under the correspondence
in Eq. (3). That this enphasing retains the 2-unitary
property is not evident, but follows from the obser-
vation that [U36(θ)]

R = UR
36 D′(θ) and [U36(θ)]

Γ =
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FIG. 2: Non-vanishing matrix elements of the 2-unitary U36. The pair of indices (i, j) indicated in rows label the relevant row,
j + 6(i − 1), and the pair of indices (k, l) indicated in columns determine the relevant column, l + 6(k − 1). ω denotes the
complex conjugate of ω.

D′′(θ)UΓ
36, where D′(θ) = Diag[eiθ , eiθ , 116, eiθ , eiθ , 116],

and D′′(θ) = Diag[eiθ , eiθ , 1, 1, 1, 1, eiθ , eiθ , 128].
We show that these 2-unitaries are not LU-equivalent

by evaluating the invariant U36(θ; σ, τ, ρ, λ) for permu-
tation of indices given by Eq. (20). The invariant evalu-
ates to the following function of θ:

U36(θ; σ, τ, ρ, λ) = C0 + 6 cos θ, (31)

where C0 = 3
(

202 +
√

5 + 2
√

5 − 2
√

5
)

/4 ≈ 154.267
is a constant. The θ dependence proves that the invari-
ant can take infinitely many distinct values and the cor-
responding U36(θ) are not LU-equivalent.The invariant
in Eq. (31) is equal to tr L2[U36(θ)] = C0 + 6 cos θ,. The
realignment and partial transpose of 2-unitaries pro-
vide other 2-unitaries and for U36(θ), one needs to eval-
uate the third moment tr L3[U] to show that these are
not LU-equivalent.

C. 25-parameter family of AME(4, 6) states

Apart from the one-parameter family of enphasing
discussed above, we give a more general construction
consisting of 25 real parameters. Let U = U36. This
has 112 non-zero entries. Consider a matrix, say V , ob-
tained from U by multiplying each of these non-zero
entries by a phase factor. For definiteness, suppose that
each non-zero Uij is multiplied by eiθij . We now try to
understand under what conditions on the θij is the new
matrix V also 2-unitary.

First V must be unitary. Since its rows are still of
norm 1, only the orthogonality of the rows needs to be

ensured. Take any two rows say i1, i2 of V . Suppose that
the columns where both these rows have non-zero en-
tries are j1, j2, ... (at most 4, from the structure of U ). For
the inner-product of these rows to vanish it suffices that
θi1 j1 − θi2 j1 = θi1 j2 − θi2 j2 = θi1 j3 − θi2 j3 = .... This is a set
of homogeneous linear equations in the θij. Similarly
for VR and VΓ to be unitary we get other homogeneous
linear equations in the θij.

Writing out all these homogeneous linear equations
for the θij, we get a system of 246 equations - 75 for V ,
87 for VΓ and 84 for VR - in 112 variables. The rank of
the coefficient matrix can be computed to be 87 using,
say Mathematica, thereby yielding a 25-dimensional so-
lution space. This is the required 25-dimensional family
of 2-unitary enphasings of U .

Apart from solving the difficult problem of establish-
ing LU-equivalence classes for AME states of four par-
ties or 2-unitary operators in any local dimension, the
methods developed herein can be extended both to un-
equal local dimensions and to more parties. This re-
quires as many permutations as the number of parties
to construct the invariants. That the case of qutrits are
special and have only one class needs further elucida-
tion in terms of the geometry of the set of 2-unitaries in
this case. We hope that these results pave for a deeper
understanding of multipartite states and new entangle-
ment measures.
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Życzkowski. Rank of a tensor and quantum entan-
glement. Linear and Multilinear Algebra, pages 1–64,
2023.

[33] Antonio Bernal Serrano. On the existence of absolutely
maximally entangled states of minimal support. Quan-
tum Physics Letters, 2017, vol. 6, num. 1, p. 1-3, 2017.

[34] R. C. Bose, S. S. Shrikhande, and E. T. Parker. Further
results on the construction of mutually orthogonal latin
squares and the falsity of Euler’s conjecture. Canadian
Journal of Mathematics, 12:189–203, 1960.

[35] Paolo Zanardi. Entanglement of quantum evolutions.
Phys. Rev. A, 63:040304, Mar 2001.
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relation functions for dual-unitary lattice models in 1+ 1
dimensions. Phys. Rev. Lett., 123:210601, Nov 2019.

[44] Pieter W. Claeys and Austen Lamacraft. Ergodic and
nonergodic dual-unitary quantum circuits with arbitrary
local hilbert space dimension. Phys. Rev. Lett., 126:100603,
Mar 2021.

[45] Sarang Gopalakrishnan and Austen Lamacraft. Unitary
circuits of finite depth and infinite width from quantum
channels. Phys. Rev. B, 100:064309, Aug 2019.

[46] Jianxin Chen, Runyao Duan, Zhengfeng Ji, Mingsheng
Ying, and Jun Yu. Existence of universal entangler. Jour-
nal of Mathematical Physics, 49(1):012103, 2008.

[47] Shrigyan Brahmachari, Rohan Narayan Rajmohan,
Suhail Ahmad Rather, and Arul Lakshminarayan. Dual
unitaries as maximizers of the distance to local product
gates. arXiv:2210.13307.

[48] Zhihao Ma and Xiaoguang Wang. Matrix realignment
and partial-transpose approach to entangling power of
quantum evolutions. Phys. Rev. A, 75:014304, Jan 2007.

[49] Bhargavi Jonnadula, Prabha Mandayam, Karol
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Appendix A: LU transformations involved in proof of the theorem 1

There exist no universal entanglers in d = 3. This result allows us to find a unitary operator U1 that is LU-
equivalent to a given two-qutrit operator U such that the entry in the first column and first row of U1 is equal to 1.
The corresponding LU transformation, given in Eq. (11), is restated here for completeness:

U1 = (v†
1 ⊗ v†

2)U(u1 ⊗ u2), (A1)

where u1,2 and v1,2 are single-qutrit unitary gates.
Requiring U to be 2-unitary and imposing 2-unitarity constraints will lead to the following matrix form of U1:

U1 =



1 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0


. (A2)

From here, we apply appropriate local unitary transformations to simplify further.

https://arxiv.org/abs/2210.13307
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In the following step, we label relevant non-zero entries and represent U1 as

U1 =



1 0 0 0 0 0 0 0 0
0 0 0 0 p11 p12 0 q11 q12
0 0 0 0 p21 p22 0 q21 q22
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0


. (A3)

Consider the matrices

P =

(
p11 p12
p21 p22

)
, Q =

(
q11 q12
q21 q22

)
. (A4)

The constraint that U1 be 2-unitary gives the following conditions:

PP† + QQ† = I2 (Unitarity)

P†P + Q†Q = I2 (T-dual),

tr
(

P†P
)
= 1,

tr
(

Q†Q
)
= 1,

tr
(

P†Q
)
= 0

 (Dual-unitary).

(A5)

Consider the singular value decomposition P = V1D1W†
1 , where V1 and W1 are unitary matrices and D1 =

Diag{σ1, σ2}. The orthonormality condition tr
(

P†P
)
= 1 implies σ2

1 + σ2
2 = 1. From the first two relations in

Eq. (A5), we get

QQ† = V1D
′2
1 V†

1 ,

Q†Q = W1D
′2
1 W†

1 ,
(A6)

where D′
1 = Diag{σ2, σ1}. Therefore, Q can be written as Q = V1D2W†

1 where D2 is a diagonal matrix denoted by
D2 = Diag{σ′

1, σ′
2} and can in general be complex. Therefore, a local unitary transformation on U1 given by

U2 =

(
I3 ⊗

(
1 0
0 V†

1

))
U1

(
I3 ⊗

(
1 0
0 W1

))

=



1 0 0 0 0 0 0 0 0
0 0 0 0 σ1 0 0 σ′

1 0
0 0 0 0 0 σ2 0 0 σ′

2
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0



=



1 0 0 0 0 0 0 0 0
0 0 0 0 σ1 0 0 σ′

1 0
0 0 0 0 0 σ2 0 0 σ′

2
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 ∗ ∗ 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 ∗ ∗ 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 ∗ 0 0


.

(A7)
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The final form above has two more elements set to 0 as the 3 × 3 blocks have to be orthonormal.
It follows from the last two conditions in Eq. (A5) that the matrix given by

σσσ =

(
σ1 σ′

1
σ2 σ′

2

)
, (A8)

is unitary. A local unitary transformation of the form

U3 = U2

((
1 0
0 σσσ†

)
⊗ I3

)
(A9)

followed by considering the unitarity of UΓ
3 results in

U3 =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 c11 0 c12 0
0 0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 0 0 0
0 0 0 0 0 c21 0 c22 0
0 0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 0 0 0


. (A10)

At this stage, we notice that all the columns of U3 are unentangled. Therefore we need to apply local transformations
on the left to reduce further. Note that four potentially non-zero entries are labeled cij in U3 form a 2 × 2 unitary
matrix. Using this unitary matrix

C =

(
c11 c12
c21 c22

)
, (A11)

we apply the following local unitary transformation

U4 =

((
1 0
0 C†

)
⊗ I3

)
U3. (A12)

The constraint of U4 being 2-unitary gives

U4 =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 α2 0 0
0 α1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 α3 0 0 0 0 0 0
0 0 0 α4 0 0 0 0 0


, (A13)

where α1, α2, α3 and α4 are of modulus 1.
In the final step, we perform the following local unitary transformation

P9 = (Φ1 ⊗ Φ2)U4(Φ3 ⊗ Φ4)

=



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0


,

(A14)
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where

Φ1 = Diag
{

1, (α∗1α∗2)
1
3 , (α∗3α∗4)

1
3
}

,

Φ2 = Diag
{

1, (α∗2α∗3)
1
3 , (α∗1α∗4)

1
3
}

,

Φ3 = Diag
{

1, (α1α3α∗4)
1
3 , (α1α3α∗2)

1
3
}

,

Φ4 = Diag
{

1, (α2α4α∗1)
1
3 , (α2α4α∗3)

1
3
}

,

(A15)

are diagonal unitaries. Here, we choose the principal value of the cube root z1/3 with argument arg(z) ∈ [0, 2π).
Concerning this last step, it has already been shown that any enphasing of P9 is LU-equivalent to it [23].

Therefore, we have shown that, any 2-unitary two-qutrit operator is LU-equivalent to P9. Hence, there exists
only one LU-equivalence class of 2-unitary gates in d = 3, or equivalently, there is only one AME(4, 3) state up to
LU-equivalence.
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