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A B S T R A C T   

One central goal of bioprocess engineering is to maximize the production of specific chemicals using microbial 
cell factories. Many bioprocesses are one-stage (batch) processes (OSPs), in which growth and product synthesis 
are coupled. However, OSPs often exhibit low volumetric productivities due to the competition for substrate for 
biomass and product synthesis implying trade-offs between biomass and product yields. Two-stage or, more 
generally, multi-stage processes (MSPs) offer the potential to tackle this trade-off for improved efficiency of 
bioprocesses, for example, by separating growth and production. MSPs have recently gained much attention, also 
because of a rapidly growing toolbox for the dynamic control of metabolic fluxes. Despite these promising ad
vancements, computational tools specifically tailored for the optimal design of MSPs in the field of biotechnology 
are still lacking. 

Here, we present OptMSP, a new Python-based toolbox for identifying optimal MSPs maximizing a user- 
defined process metrics (such as volumetric productivity, yield, and titer or combinations thereof) under 
given constraints. In contrast to other methods, our framework starts with a set of well-defined modules rep
resenting relevant stages or sub-processes. Experimentally determined parameters (such as growth rates, sub
strate uptake and product formation rates) are used to build suitable ODE models describing the dynamic 
behavior of each module. OptMSP finds then the optimal combination of those modules, which, together with the 
optimal switching time points, maximize a given objective function. We demonstrate the applicability and 
relevance of the approach with three different case studies, including the example of lactate production by E. coli 
in a batch setup, where an aerobic growth phase can be combined with anaerobic production phases with or 
without growth and with or without enhanced ATP turnover.   

1. Introduction 

In microbial fermentation processes, microorganisms are used and 
designed to produce specific chemicals and compounds with high titer, 
productivity (rate) and yield (TRY metrics). Many batch bioprocesses 
follow a one-stage process (OSP) approach, coupling growth and prod
uct synthesis. However, this coupling often leads to low volumetric 
productivities due to shared substrate usage for biomass and product 
synthesis, resulting in trade-offs between biomass and product yields. To 
address this problem, two-stage or multi-stage processes1 (MSPs) are 
being explored as a means to enhance bioprocess productivity, e.g. by 
separating growth and production phases (see Fig. 1). Apart from 
switching from a growth to a production phase, other reasons may favor 
the use of MSPs as bioprocess strategies, for example, switching from 

batch to fed-batch operation to avoid high initial substrate concentra
tions that could induce inhibitory effects or overflow metabolism. 

Theory and application of MSPs have garnered significant attention 
in recent years (Burg et al., 2016; Raj et al., 2020; Gadkar et al., 2005; 
Anesiadis et al., 2013; Hjersted and Henson, 2006; Jabarivelisdeh and 
Waldherr, 2018; Ryu et al., 2019; Klamt et al., 2018), also because of the 
growing toolbox for dynamic control of metabolic fluxes via genetic 
switches that depend, for example, on cell density (quorum sensing) 
(Gupta et al., 2017; Soma and Hanai, 2015), temperature (Harder et al., 
2018), phosphate (Menacho-Melgar et al., 2020; Farmer and Liao, 
2000), oxygen (Hwang et al., 2017; Wichmann et al., 2023), or light 
(Carrasco-López et al., 2020). Despite these advancements, there is still a 
need for computational tools to efficiently design optimal MSPs (Burg 
et al., 2016). 

* Corresponding author. 
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1 In the literature, it is sometimes distinguished between two-phase or multi-phase processes (different phases in one bioreactor setup) and two-stage or multi-stage 
processes (different phases in distinct bioreactors or vessels). Herein, we do not make such a distinction, i.e. the terms two-stage or multi-stage process include both 
variants. 
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Various factors demand consideration when enhancing bioprocesses 
within multi-stage setups. First of all, what is to be optimized (e.g. 
volumetric productivity or product yield) under which constraints. 
Second, what are the phases/stages that can be used and how to design 
them to make the overall process efficient. For example, are there 
strategies that can effectively counterbalance the adverse impact of a 
declining substrate uptake rate often observed during growth-arrested 
production phases, a phenomenon that can even lead to an under
performance of MSPs compared to OSPs (Klamt et al., 2018). Finally, 
how and when (optimal switching time point) will the transition from 
one to another stage be initiated, in particular, which specific process 
conditions (e.g. oxygen supply or limitation of nutrients such as nitrogen 
or phosphate) will be changed or/and which genetic switches and tar
gets for metabolic engineering will be used for achieving the intended 
decoupling of growth and production phases. The multiplicity and 
complexity of those factors emphasize the need for a computational 
approach to optimize MSPs. 

A smaller number of tools related to the design and optimization of 
MSP have been presented in the literature. For example, mcPECASO (Raj 
et al., 2020) can be used to find optimal two-stage processes based on 
approximations of the metabolic behavior of the production host. MoVE 
(Venayak et al., 2018) is a computational approach for identifying 
metabolic valves that can be targeted for switching between growth and 
production, however, it does not support the design of the actual process 
(e.g. determination of the optimal time point for switching between 
different phases). 

Here, we introduce the toolbox OptMSP (Optimization of Multi-Stage 
Processes), which can be used to identify, from a given set of possible 
stages, optimal MSPs in a batch setup maximizing a user-defined process 
metrics under given constraints (e.g., demanded minimum product 
yield). In contrast to other methods, our framework starts with a set of 

well-defined modules representing relevant stages or sub-processes (e. 
g., aerobic growth, anaerobic production with or without growth). The 
dynamic behavior of each module needs to be described via mathe
matical models (e.g. based on ordinary differential equations (ODE)), 
using parameters such as growth rate or substrate uptake and product 
formation rates determined in separate experiments. OptMSP finds then 
the optimal combination of those modules, which, together with the 
optimal switching time points, maximize a given objective function. 
OptMSP is a Python-based (VanRossum and Drake, 2010) toolbox and 
provides various options to design optimal MSP based on the given 
process modules. We demonstrate the applicability and relevance of the 
approach with three different case studies, including the example of 
lactate production by E. coli in a batch setup, where an aerobic growth 
phase can be combined with anaerobic production phases, the latter 
with or without growth arrest and with or without enforced ATP 
wasting. 

2. Methods 

2.1. Overview: Workflow of OptMSP 

The workflow of OptMSP is depicted in Fig. 2 and is explained in 
detail in the following. 

2.1.1. Step 1: specification of process modules 
Initially, all sub-processes (modules) considered to be possible pha

ses/stages of the MSP are defined together with their specific conditions 
(e.g. oxygen availability, pH, temperature, gene inducer(s)). The process 
behavior of each module (including the metabolic phenotype of the 
microbial production host) is ideally determined in separate experi
ments, where, for example, time courses of substrates, products and 

Fig. 1. MSP vs OSP. Comparison of a typical MSP, here represented as a two-stage process with separate growth and production phase, and an OSP. The MSP 
generates higher volumetric productivity through the focus on biomass formation in the first stage enabling faster product formation in the second phase. The OSP 
produces product and biomass simultaneously, which results in a shared usage of substrate and therefore slower growth compared to the first phase of the MSP. While 
the final product titer of the OSP might be higher compared to the MSP, its volumetric productivity is lower because of the longer duration of the process. (Figure 
created with BioRender.com.). 
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biomass under the respective conditions are used to calculate parame
ters such as the specific rates of growth (μ), substrate uptake (rS) and 
product formation (rP). 

2.1.2. Step 2: Process models 
For each of the n modules, suitable process models are constructed 

making use of measurements and parameters determined in the exper
iments in step 1. The models are formulated as ODEs: 

dx(t)
dt

= f m(x(t) ) m = 1, .., n. (1) 

x is the vector of the state variables and f m describes the ODEs of the 
m-th module. In theory, the user can incorporate an arbitrary number of 
state variables in the models, but at least biomass, substrate, and product 
should be included to allow for the calculation of TRY performance 
measures. A specific MSP is then defined by (i) an ordered set z = {z1, z2,

…, zj} of j selected modules, (ii) a set tswitch = {tswitch,1, tswitch,2,…, tswitch,j− 1}

containing the j − 1 switching times linking the j modules of z 
(tswitch,1 < tswitch,2 < … < tswitch,j− 1), (iii) the start (t0) and (maximal) end 
time (tend) of the process, and (iv) the initial state variables x0. The entire 

MSP can then be simulated as a sequential simulation of its modules 

dx(t)
dt

= f z1
(x(t)), x(t0) = x0, t ∈ [t0, tswitch,1]

dx(t)
dt

= f z2
(x(t)), x

(
tswitch,1

)
= x1, t ∈ [tswitch,1, tswitch,2]

⋮  

dx(t)
dt

= f zj
(x(t)), x

(
tswitch,j− 1

)
= xj− 1, t ∈ [tswitch,j− 1, tend] (2)  

where x1, x2,…, xj− 1 represent the initial values of the second, third, …, 
j-th simulated module, which are taken from the simulation of the pre
vious module (x1 = x(tswitch,1), x2 = x(tswitch,2), etc.). Importantly, it may 
happen that the actual process finishes before tend is reached (e.g., if the 
substrate is depleted). We here assume that the simulation of the MSP 
performed as described above also delivers the actual time point where 
the process is finished, denoted by ̂tend (note that ̂tend = tend if the process 
is not finished before (or at) tend). For example, if the process is 
considered to be finished when the substrate is depleted then ̂tend is the 

Fig. 2. Workflow of OptMSP. For details see text. (Figure created with https://biorender.com.).  
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time point where the substrate concentration reaches a concentration of 
zero (or where it falls below a given threshold concentration). 

While our approach allows the use of arbitrary (complex) ODE 
models, herein we will also consider the case that the ODE model of a 
module m is a simple process model for exponential growth solely based 
on the concentrations of biomass (xB), substrate (xS) and product (xP) 
together with the associated specific growth (μm), substrate uptake (rS,m) 
and product formation (rP,m) rate of the production host (see also Fig. 2): 

dxB(t)
dt

=

{
μmxB(t) if xs(t) > 0

0 if xs(t) = 0 (3)  

dxS(t)
dt

=

{
− rS,mxB(t) if xS(t) > 0
0 if xS(t) = 0 (4)  

dxP(t)
dt

=

{
rP,mxB(t) if xS(t) > 0
0 if xS(t) = 0 (5) 

Such a simplistic model reflects only the exponential phase of a batch 
process while it would neglect the reduced metabolic activity in the lag 
and (beginning) stationary phase. However, lag and stationary phase 
may only be relevant for smaller time periods of the first and the last 
stage of an MSP, respectively. Using a simplified model with only 
exponential phase representation may serve as a first approximation and 
can even be solved analytically as described in the following. The time 
point ̂tend where the substrate would be depleted in the given module can 

be calculated as t̂end = t0 + ln
(

μmxS,0
rS,mxB,0

+ 1
)
/μm. With this, the analytical 

solutions of the dynamic process behavior of module m read: 

xB(t) =
{

xB,0⋅eμm(t− t0) if t < t̂end

xB,0⋅eμm (̂tend − t0) if t ≥ t̂end
(6)  

xS(t) =

⎧
⎨

⎩

xS,0 −
rS,mxB,0

μm
⋅(eμm(t− t0) − 1) if t < t̂end

0 if t ≥ t̂end

(7)  

xP(t) =

⎧
⎪⎪⎨

⎪⎪⎩

xP,0 +
rP,mxB,0

μm
⋅(eμm(t− t0) − 1) if t < t̂end

xP,0 +
rP,mxB,0

μm
⋅(eμm (̂tend − t0) − 1) if t ≥ t̂end

(8) 

xB,0, xS,0 and xP,0 represent the start concentrations of biomass, sub
strate and product, respectively, and t0 the start time of the process. The 
analytical solution of a combination of different (analytically solved) 
modules can then be obtained in an analogous scheme as for the general 
ODEs described above in Eq. (2). 

2.1.3. Step 3: finding the optimal MSP 
The last step of the workflow is the optimization itself, in which the 

OptMSP package searches for the optimal MSP based on (i) the modules 
with their dynamic models constructed in step 2, (ii) a user-defined 
objective function h, (iii) additional constraints (e.g. demanded mini
mum product yields or titers) and (iv) other metaparameters of the 
optimization routine (e.g., the maximal number of combinable stages in 
the MSP; see below). The general form of the MSP optimization problem 
considered herein reads 

max
z,tswitch

h(x(t0), x(̂tend) )

s.t.

Eq. (2) 

z ∈ Vk
n , 1 ≤ k ≤ smax  

t0 < tswitch,1 < … < tswitch,|z|− 1 < tend  

g(x(t0), x(̂tend) ) ≤ b (9) 

Here, z is an ordered set of stages representing any possible k-vari
ation of all n modules (denoted by Vk

n) with k varying between 1 and smax, 
where smax denotes the maximum number of combinable stages. tswitch is a 
suitable vector with |z| − 1 switching times connecting the chosen stages 
of the MSP. The objective function h describes a user-defined perfor
mance metrics, such as volumetric productivity, which can depend on 
the initial states (e.g. needed for determining product yields) and the 
final state vector at process end (̂tend), the latter obtained from the 
simulated ODE model or its analytical solution. Additional constraints 
for the final state can be expressed by the last inequality. 

For solving the optimization problem (9), the OptMSP package al
lows the user to choose between a brute-force approach (testing all 
possible realizations of MSPs with discretized switching times) or a 
directed optimization approach delivering the selected stages together 
with their order and switching times. Both search algorithms (brute- 
force or directed optimization) can handle arbitrary ODE models or 
explicit analytical models including the ones shown above and return a 
ranked list of MSPs (ranking based on the objective function) together 
with their associated characteristics, e.g., amount of biomass, substrate 
and product at the end of the process (time until substrate was 
consumed) or general performance parameters such as volumetric 
productivity. 

Another metaparameter of OptMSP (beyond smax) is the minimal 
duration of a stage; this feature provides the user with more flexibility to 
incorporate preliminary knowledge (e.g., avoiding too short duration of 
stages that would be not realistic). The brute-force method requires in 
addition the specification of the discretization interval (tstep) of the 
switching time and the directed optimization the number of iterations. 

2.2. Implementation details of the OptMSP package 

The OptMSP package is a Python-based collection of functions for 
optimizing an MSP based on given ODE (or analytical) models for each 
stage according to the workflow in Fig. 1. OptMSP supports both brute- 
force testing as well as directed optimization to find an optimal MSP. 
OptMSP can combine arbitrary many stages, hence, 2-stage, 3-stage, 4- 
stage … processes are possible as result if they maximize the objective 
function. 

Regarding the required model definition for each module, the user 
may easily adapt the default process models (either ODE-based (Eqn. 2) 
or as analytical solution (Eqs. (6-8)) or may provide his own set of 
models. In the latter case, he or she needs to implement a new function 
for each model that accepts the end and start time as well as the initial 
values of its state variables and returns the state variables at ̂tend. The set 
of state variables must include biomass, product or substrate, but 
optionally also further compounds or process parameters needed for a 
proper process description of the module (e.g. concentration of other 
byproducts). 

The directed optimization strategy is based on an improved har
monic search (IHS) algorithm from the pygmo (Biscani and Izzo, 2020) 
package that was already successfully used in bioprocess design (Hem
merich et al., 2021). The pygmo package offers a logger functionality for 
the optimization algorithms that can be used to save the solution of each 
iteration for later analysis and ranking. 

All calculations presented in the Results section have been performed 
via Python scripts and Jupyter notebooks under a custom Anaconda 
environment. The OptMSP package including a detailed documentation 
and tutorial Jupyter notebooks as well as all scripts, generated data and 
process models from the case studies in the Results section can be found 
in the OptMSP GitHub repository: https://github.com/klamt-l 
ab/OptMSP. 

J. Bauer and S. Klamt                                                                                                                                                                                                                         

https://github.com/klamt-lab/OptMSP
https://github.com/klamt-lab/OptMSP


Journal of Biotechnology 383 (2024) 94–102

98

3. Results 

3.1. Example: MSP for lactate production with E. coli 

In our first case study, which was motivated by the work of Wich
mann et al. (2023), we considered the optimization of lactate production 
from glucose by E. coli, where the process modules represent different 
variants of aerobic growth phases (with low or no production of lactate) 
and anaerobic production phases (with or without growth). We used 
data from Wichmann et al. (2023), where different oxygen-dependent 
promoters were tested in E. coli. Generally, oxygen-dependent pro
moters are promising tools for MSPs since growth phases are often 
conducted in aerobic settings, while the production phase is usually 
carried out under anaerobic conditions. Oxygen-dependent promoters 
enable the induction of certain metabolic pathways or modules when 
turning off the oxygen supply during the switch to anaerobic conditions. 

As background strain, Wichmann et al. (2023) considered an E. coli 
strain producing lactate as main fermentation product (ethanol and 
acetate production pathways deleted), in the following denoted by 
Ecolac. Based on Ecolac, another strain, Ecolac,+ATPase, was constructed 
containing a plasmid harboring the genes of the F1-ATPase, an enzyme 
hydrolyzing ATP to ADP. These genes were put under control of the 
oxygen-dependent promoter nirB-m, thus enabling induction of 
enforced ATP wasting (increasing ATP turnover) under anaerobic con
ditions. Enforced ATP wasting has been shown to increase specific 
production rates (but decreasing growth rates) (Boecker et al., 2019, 
2021; Hädicke et al., 2015). For both strains, three different process 
modules are thus available with glucose as substrate: (1) aerobic growth 
(where no or very low lactate production takes place), (2) anaerobic 
growth and production, and (3) anaerobic production under growth 
arrest (nitrogen limitation). The specific rates μ, rS and rP were measured 
for each process (summarized in Table 1) and herein used to build the 

respective analytical (Eqs. (3)-(5)) and, for comparison, the ODE (Eqs. 
(6)-(8)) model for each module. 

We then used OptMSP to find an optimal MSP maximizing the 
volumetric productivity. For demonstration purposes, we initially 
allowed the algorithm to use any of the six modules shown in Table 1, 
although this also admits impractical solutions where the resulting MSP 
can switch between the two strains (these MSPs are marked with an 
asterisk in Table 2). We applied both the brute-force method as well as 
directed optimization to determine an optimal MSP (tend=24 h, 
xB,0=0.01 gDW/L, xS,0=100 mmol/L, xP,0=0 mmol/L). The results are 
shown in Table 2. We first determined the best single-stage process, 
which is module 2 (growth-coupled production under anaerobic con
ditions with strain Ecolac) resulting in a productivity of 9.55 mmol/L/h. 
When allowing a combination of two stages, the best MSP found by the 
brute-force method (with tstep=0.25 h) uses in the first phase module 1 
(aerobic growth of the Ecolac strain) and switches after 4.5 h to module 5 
(anaerobic stage with active ATPase) yielding a volumetric productivity 
of 20.013 mmol/L/h (see Table 2 and Fig. 3). Directed optimization 
found the same MSP but indicates that the optimal switching time point 
is at 4.61 h (leading to a slightly higher value for the maximal produc
tivity), which cannot be found by the brute-force approach with the used 
discretization step (regarding optimal handling of the step size see also 
Discussion section). Generally, the optimal two-stage process is by far 
better than the found best OSP increasing the volumetric productivity by 
more than 100%. 

When allowing combination of three stages, the optimal MSP indeed 
combines three modules (aerobic growth without ATPase, aerobic 
growth with active ATPase followed by growth-coupled production 
under anaerobic conditions) resulting in a slightly higher productivity 
compared to the best two-stage process (20.091 mmol/L/h (brute-force 
approach) or 20.092 mmol/L/h (directed optimization)). 

As already mentioned above, the found optimal MSPs combine un

Table 1 
Process parameters of the different process modules (taken from Wichmann et al. (2023).  

Process module Strain O2 
ATPase 
active 

Growth μ 
[h− 1] 

rGlucose 

[mmol gDW
− 1 h− 1] 

rLactate 

[mmol gDW
− 1 h− 1] 

1 
Ecolac  

+ -  + 0.52  7.62  0.12 
2  -  -  + 0.13  16.13  26.11 
3  -  -  -  0.0  0.86  1.42 
4 

Ecolac,+ATPase  

+ -  + 0.50  6.08  0.08 
5  -  + + 0.06  22.86  41.25 
6  -  + -  0.0  9.37  17.61  

Table 2 
Results of different optimization scenarios for 1-stage, 2-stage, and 3-stage processes calculated by brute-force approach or directed optimization, each with the 
analytic and ODE-based model implementations.  

Stages Optimization method Model Module combination tswitch [h] qLac [mmol/L/h] Run time [min:sec] 

1-stage Brute force Analytic [2] - 9.549 0:02 

2*-stage 
Brute force (tstep=0.25 h) Analytic [1, 5] [4.50] 20.013 0:02 

Numeric (ODE) [1, 5] [4.50] 20.013 4:54 

Directed optimization (iterations= 10,000) Analytic [1, 5] [4.61] 20.029 0:01 
Numeric (ODE) [1, 5] [4.61] 20.029 16:22 

2-stage 
Brute force (tstep=0.25 h) 

Analytic [4, 5] [4.75] 19.905 0:02 
Numeric (ODE) [4, 5] [4.75] 19.905 2:25 

Directed optimization (iterations= 5000) 
Analytic [4, 5] [4.86] 19.920 0:01 
Numeric (ODE) [4, 5] [4.86] 19.920 16:52 

3*-stage 
Brute force (tstep= 0.25 h) Analytic [1, 4, 5] [3.25, 4.75] 20.091 1:04 

Numeric (ODE) [1, 4, 5] [3.25, 4.75] 20.091 926:30 

Directed optimization (iterations= 100,000) Analytic [1, 4, 5] [3.28, 4.72] 20.092 0:03 
Numeric (ODE) [1, 4, 5] [3.28, 4.72] 20.092 121:42 

3-stage 
Brute force (tstep= 0.25 h) 

Analytic [4, 5] [4.75] 19.905 0:19 
Numeric (ODE) [4, 5] [4.75] 19.905 247:64 

Directed optimization (iterations= 50,000) 
Analytic [4, 5] [4.86] 19.920 0:04 
Numeric (ODE) [4, 5] [4.86] 19.920 134:17 

Two different scenarios were considered for the optimization of MSPs with two or three stages. First, all six modules (1− 6) could be combined (marked by 2*-stage and 
3*-stage, respectively). In the second scenario, optimal 2-stage and 3-stage processes were separately determined for strain Ecolac (modules 1–3) and then for strain 
Ecolac,+ATPase (modules 4–6) and the run time of the two optimizations was added and the best combination of both strains selected. 
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realistically process modules from both strains. If we allow only com
binations of modules 1–3 (strain Ecolac) or of modules 4–6 (strain 
Ecolac,+ATPase) then we find that the best two-stage process utilizes the 
ATPase strain with an aerobic growth phase (where expression of the 
ATPase genes in the ATPase strain is switched off by the oxygen- 
dependent promoter) followed by a growth-coupled anaerobic produc
tion phase (where the ATPase is active increasing the specific glucose 
uptake and lactate formation rates) with a tswitch at 4.75 h in the case of 
brute force and 4.86 h in the case of directed optimization (see 2-Stage 
(without asterisk) in Table 2). Allowing a three-stage process that can 

employ either the three modules 1–3 or the modules 4–6 does not 
improve the productivity; the optimization therefore delivers the same 
optimal two-stage process (compare 2-Stage and 3-stage (both without 
asterisk) in Table 2). 

Table 2 also indicates the runtimes for all calculations. With the 
chosen discretization step for the brute-force approach, directed opti
mization is in most cases faster, although the number of iterations had to 
be increased up to 100,000 for three-stage calculations to find and 
converge to the MSP. While the runtimes remain low for both methods 
when using the analytical solution, using the ODE model, requiring 

Fig. 3. Simulations of optimal MSPs as determined by the brute force approach (cf. Table 2).  
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numerical integration for each iteration, drastically increases the run
time by two to three (in one case even four) orders of magnitude. As 
expected, allowing combination of three instead of two stages increases 
the runtime significantly, especially for the brute-force approach since 
the number of module combinations (variations of three stages out of six 
modules) to be tested is massively higher. This effect is generally less 
pronounced when using the analytical solution, in fact, directed opti
mization is then only slightly slower when comparing two-stage and 
three-stage calculations. 

3.2. Example: optimizing plasmid DNA production in a fed-batch process 
with two phases 

The second example relates to a recent study by Gotsmy et al. (2023), 
which aimed to maximize the production of plasmid DNA (pDNA) 
through different process strategies. In their work it was shown that an 
increase of yield and volumetric productivity of pDNA production can be 
achieved by applying a three-stage fermentation process in which the 
first stage was a batch setup (that was given as fixed module and thus 
excluded from the optimization) and a fed-batch setup that was in turn 
separated into a growth and a production phase (the switching time 
between the two phases can be adjusted by the amount of sulfate added 
to the initial medium, which becomes limiting in the production phase). 
As in (Gotsmy et al., 2023), we here focused on optimal switching be
tween the second and the third stage, i.e. between growth and produc
tion during fed-batch operation. In the following we will refer to these 
two phases as first and second phase (of the fed-batch part). We 
implemented the given ODE models of the two phases and used OptMSP 
to find the optimal switching time maximizing the volumetric produc
tivity. With the obtained solution, we could reproduce the main results 
shown in Fig 4 (A and B) of Gotsmy et al. (2023). In particular, our 
calculations resulted in a maximal volumetric productivity of 
0.206 g/L/h when the fed-batch switches at 21.00 h from growth to 
production, which corresponds to an initial sulfate concentration of 
1.7 g/L (optimization with κpDNA=200%). This is in agreement with Fig. 
4 (A) in (Gotsmy et al., 2023) where the optimal t* (process duration of 
the second phase) is around 15 h. With an assumed process duration of 
36 h for the two fed-batch phases, this corresponds to 21 h for the first 
(growth) phase, as was also determined by OptMSP. 

A Jupyter notebook of this case study can be found at the OptMSP 
GitHub repository (https://github.com/klamt-lab/OptMSP). 

3.3. Example: optimal two-stage production with demanded minimal 
product yield 

As a third case study, we reproduced the results of Klamt et al. 
(2018). In this example, the goal was to find optimal switching times for 
maximizing the volumetric productivity of lactate production with 
E. coli in a two-stage process for different metabolic scenarios and, as a 
particular feature, under the side constraint of a demanded minimal 
product yield. The related Jupyter notebook can also be found in the 
OptMSP GitHub repository. 

4. Discussion 

In summary, in this study we introduced OptMSP, a new Python- 
based toolbox for finding optimal multi-stage bioprocesses in batch 
settings. Our package is based on a set of distinct and fully characterized 
sub-processes, whose dynamic behavior is described by process models, 
either via ODEs or via analytical solutions. This approach makes it 
distinct from methods like mcPECASO (Raj et al., 2020), which seek to 
predict the behavior of (e.g. engineered) cells based on constraint-based 
models to find optimal MSPs and associated strains. While the latter 
approach is useful to screen for potentially suitable strain designs, ac
cording to our experience it is generally difficult to predict basic growth 
characteristics, such as growth or substrate uptake rates, for engineered 

strains. In practice, one usually needs to decide for one or few strain 
designs (which may include integration of genetic parts to facilitate 
metabolic switches) and the constructed strains are then routinely 
characterized for their behavior under relevant growth conditions. 
Using these data to build associated process models enables a better 
predictivity of their behavior in single and (later) multi-stage processes. 
In the lactate case study, we used relatively simple process models, 
based on the measured specific rates of growth, substrate uptake and 
product formation for the different conditions. While this approach is a 
rough approximation of the process dynamics, it allows even usage of an 
analytical description of the dynamic process behaviors and could be 
useful and sufficient for many realistic applications. However, users 
retain the flexibility to introduce more intricate models if this is deemed 
necessary. This incorporation may also encompass additional function
alities, including, for example, transitional phases between 
sub-processes, thereby facilitating the representation of more realistic 
dynamics of the process. For example, as a simplifying assumption, in 
our first case study we did not consider a transition phase when 
switching from aerobic to anaerobic conditions since the data of Wich
mann et al. (2023) indicated a relatively short transition time 
(20–30 min) in which the cells switched their metabolism from aerobic 
to anaerobic operation. 

OptMSP offers two distinct methods to identify the optimal MSP: the 
brute-force and the directed optimization approach. The brute-force 
method permits exhaustive testing of all conceivable combinations of 
modules along discretized switching times. The advantage of such an 
exhaustive approach is that the entire solution space is scanned resulting 
in a ranked list of all possible MSPs (within the discretized time steps). 
This full list of MSPs can then also be re-ranked if another objective 
function is considered or if complex constraints for the allowable solu
tions are involved. Potential problems of the brute-force approach are 
related to the discretization step size tstep. The best choice of tstep depends 
on the complexity of the specific process and its modules (including 
number of modules, complexity and size of the models (correlating with 
time needed for simulation), and process duration). Generally, one will 
try to make tstep as small as possible to obtain a fine resolution of the 
sampled solution space and to thus get close to the optimal solution. 
However, if tstep is too small the calculations will take very long. A useful 
strategy is to start the optimization with a larger tstep and then to 
decrease it successively as long as the runtime is acceptable. In a final 
run, an optimization could be performed with an even smaller tstep at the 
vicinity of the switching times of the optimal solution found in the first 
rounds of optimization. 

In contrast, the directed optimization approach facilitates the 
consideration of switching times as continuous parameters thus avoid
ing the potential problems of time discretization. However, even global 
(directed) optimization solvers cannot guarantee to identify the optimal 
MSP. When testing MSPs incorporating more than four stages, the pru
dent choice is to opt for the directed optimization approach due to 
combinatorial explosion massively increasing run time. However, 
consideration of more than four stages are not relevant for most appli
cations. Generally, if complex models or higher order MSPs are 
considered, using a parallelization framework could become an option 
when using the brute-force approach. 

Other reported methods for designing multi-stage or more general 
dynamically controlled bioprocesses are based on dynamic optimization 
approaches (Banga et al., 2005; Gadkar et al., 2005; Anesiadis et al., 
2013; Hjersted and Henson, 2006; Jabarivelisdeh and Waldherr, 2018; 
Ryu et al., 2019; Espinel-Ríos et al., 2022). In these formulations, one is 
typically given an integrated process model in which certain static (e.g. 
initial conditions) as well as dynamic variables (such as temperature or 
oxygen supply) can be adjusted to obtain a process with optimal 
behavior and performance. The designed process involves then usually 
continuous changes in the external inputs instead of distinct, 
well-defined stages as considered by OptMSP. However, this requires 
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often more complex process models (e.g. to describe how dynamic 
changes of the input variables translate to changes in the metabolic 
fluxes (Gadkar et al., 2005; Anesiadis et al., 2013; Jabarivelisdeh and 
Waldherr, 2018; Espinel-Ríos et al., 2022) and solving such dynamic 
(and partially bilevel) optimization problems is much more complicated 
requiring sophisticated solvers and expert knowledge in adjusting 
associated metaparameters. We believe that our presented OptMSP 
approach and associated software provides a good compromise of flex
ibility and simplicity which makes it a useful tool that can straightfor
wardly be employed for many relevant applications where distinct 
phases of processes can be combined. On the other hand, although 
discrete changes in feeding could be taken into account when switching 
between modules in the OptMSP approach, if one aims for the optimi
zation of fed-batch processes dynamic optimization approaches (Banga 
et al., 2005; Hjersted and Henson, 2006) will become the method of 
choice since they allow proper consideration of dynamic feeding profiles 
(this was not relevant in our second case study, where a constant feeding 
was assumed during fed-batch operation). 

In the larger first case study, we employed and tested our OptMSP 
toolbox to identify the MSP with maximal volumetric productivity for 
lactate production, where the six available modules represented two 
dedicated E. coli strains (with or without inducible operation of the 
ATPase to enforce higher ATP turnover), each cultivatable in three 
different stages (aerobic growth, anaerobic growth-coupled or growth- 
decoupled production of lactate). In our investigation we bench
marked the brute-force as well as the directed optimization method, 
each utilizing both the analytical and the ODE models, hence, four 
different computational procedures were tested for each MSP optimi
zation scenario. For all scenarios tested, we found that the different 
calculation schemes found consistent results, while the runtimes differed 
partially significantly. Generally, using the analytical solution of the 
simple process model largely improves runtime behavior of both brute- 
force testing and directed optimization, while the latter performed su
perior in the majority of cases. Interestingly, the analysis of a three-stage 
MSP showed that the best process indeed uses three different modules to 
reach optimal behavior demonstrating that optimal MSPs may involve 
more than two stages. However, this hypothetical result allowed a 
switch between both strains, a scenario which is infeasible in practice. 
When module combinations where only allowed for modules from a 
single strain, then we determined that the most favorable process is a 
two-stage configuration of the ATPase strain, encompassing an aerobic 
growth phase (where the ATPase is switched off in that strain) succeeded 
by an anaerobic phase with growth-coupled production where the 
ATPase and thus ATP wasting is active. Interestingly, this result is in line 
with the (in silico) prediction made in (Raj et al., 2020), that a two-stage 
process with growth-coupled production in the second stage is most 
likely superior to a pure production process without growth. Indeed, 
while module 6 (production under growth arrest) leads to higher 
product yields (1.88 mol lactate / mol glucose; Table 1) compared to 
growth-coupled production in module 5 (1.80 mol lactate / mol 
glucose), the specific productivity of sub-process 5 is ca. 130% higher 
than under module 6 (due to increased metabolic activity in growing 
cells), which is favorable for achieving the highest volumetric 
productivity. 

In the other two case studies we exemplified the use of OptMSP for 
different setups (e.g. fed-batch) and for additional constraints (e.g. 
demanded minimal product yield) further demonstrating the various 
options of OptMSP to design optimal multi-stage processes. 
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