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Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily

affects the elderly. An altered skin microbiota in BP was recently revealed.

Accumulating evidence points toward a link between the gut microbiota and

skin diseases; however, the gut microbiota composition of BP patients remains

largely underexplored, with only one pilot study to date, with a very limited

sample size and no functional profiling of gut microbiota. To thoroughly

investigate the composition and function of the gut microbiota in BP patients,

and explore possible links between skin conditions and gut microbiota, we here

investigated the gut microbiota of 66 patients (81.8% firstly diagnosed) suffering

from BP and 66 age-, sex-, and study center-matched controls (CL) with non-

inflammatory skin diseases (132 total participants), using 16S rRNA gene and

shotgun sequencing data. Decreased alpha-diversity and an overall altered gut

microbial community is observed in BP patients. Similar trends are observed in

subclassifications of BP patients, including first diagnoses and relapsed cases.

Furthermore, we observe a set of BP disease-associated gut microbial features,

including reduced Faecalibacterium prausnitzii and greater abundance of
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pathways related to gamma-aminobutyric acid (GABA) metabolism in BP

patients. Interestingly, F. prausnitzii is a well-known microbiomarker of

inflammatory diseases, which has been reported to be reduced in the gut

microbiome of atopic dermatitis and psoriasis patients. Moreover, GABA plays

multiple roles in maintaining skin health, including the inhibition of itching by

acting as a neurotransmitter, attenuating skin lesions by balancing Th1 and Th2

levels, and maintaining skin elasticity by increasing the expression of type I

collagen. These findings thus suggest that gut microbiota alterations present in

BP may play a role in the disease, and certain key microbes and functions may

contribute to the link between gut dysbiosis and BP disease activity. Further

studies to investigate the underlying mechanisms of the gut-skin interaction are

thus clearly warranted, which could aid in the development of potential

therapeutic interventions.
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Introduction

Bullous pemphigoid (BP) is the most common autoimmune

blistering disorder in Europe, with an incidence of 0.0419 per 1000

person-years, which is increasing by time, and typically develops in

individuals over the age of 70 years (1–5). It occurs when

autoantibodies target the hemidesmosomal proteins BP180 (type

XVII collagen) and/or BP230 in the epidermal basement zone (1, 6,

7). Moreover, BP is characterized by subepidermal blistering and is

associated with a significantly decreased quality of life, numerous

comorbidities, and a significantly increased mortality risk (6). Thus,

the need to further understand the pathogenesis and factors

associated with the initiation and progression of BP is

instrumental to improve the lives of patients suffering from

this disease.

Recently, the host microbiota is considered as a key factor

affecting host skin health (8–10). The skin microbiome plays a

curial role in the maintaining the skin homeostasis, defending the

invasion of pathogens and modulating the immune system (11).

There is evidence that microbiota composition of lesional skin, in

diseases such as atopic dermatitis and psoriatic disease, show

distinct differences compared to healthy skin (8, 12–16).

Moreover, these alterations are considered to be involved in the

development of several inflammatory dermatoses, which is

illustrated e.g. by the predominance of Staphylococcus aureus in

patients with atopic dermatitis before an outbreak (11). Similarly,

studies have indicated a crucial role of skin microbiota in the

pathogenesis of BP (17, 18). Of those, one large-scale study

involving 228 BP patients thoroughly investigated the skin

microbial indicators of BP, in which the abundance of S. aureus,

an inflammation-promoting species, was reported to be increased in

BP patients, suggesting a pathogenic role (17).

Apart from the skin microbiota, the role of gut microbiome in

host skin health and disease is also gaining interest. Recent studies
02
revealed intriguing links between gut microbiota and skin diseases

(9, 19–22). Firstly, some dermatoses pose as comorbidities of

gastrointestinal disorders. For example, 7–11% of patients with

inflammatory bowel disease (IBD) also suffer from psoriasis (9).

Moreover, multiple inflammatory skin disorders including psoriasis

(19, 20, 23–25) and atopic dermatitis (26, 27), are accompanied by

gut dysbiosis with altered diversity and composition of the gut

microbiota. Decreased levels of Faecalibacterium prausnitzii and

Akkermansia muciniphila in the gut were observed in patients with

psoriasis (23, 24, 28), while Escherichia coli was reported to be

increased in patients with both psoriasis (24) and atopic dermatitis

(27). Similarly, a recent study thoroughly characterized the

alterations in the gut microbiota in pemphigus, another

autoimmune bullous disease, whereby potentially pathogenic

bacteria such as E. coli and Bacteroides fragilis were enriched in

patients, while other anti-inflammatory and butyric acid-producing

bacteria were significantly reduced (29). On the other hand, gut

dysbiosis could increase host vulnerability and trigger an

immunological response, resulting in skin imbalances (21, 30).

This intricate, bidirectional link known as the “gut-skin axis”, is

also thought to involve microbial metabolites such as short chain

fatty acids (SCFAs) and gamma-aminobutyric acid (GABA), with

SCFAs enhancing epithelial barrier function and GABA inhibiting

itch-signaling (30).

The gut microbiota in patients with BP, however, remains

largely unexplored, with only a single study to date, with a small

sample size and no functional shotgun sequencing data (31). To

further investigate the composition and function of the gut

microbiota in BP patients, and explore possible interaction

between skin conditions and gut microbiota, we thus here

conducted a larger study with 16S rRNA gene sequencing and

functional shotgun metagenomic sequencing data of 132

individuals. By comparing 66 BP patients and their age-, sex-,

and study center-matched controls, we reveal a decreased
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community richness, altered beta diversity, as well as microbial and

functional indicators for disease in BP patients, including F.

prausnitzii, Flavonifractor plautii, and GABA metabolism-related

pathways. We furthermore sub-grouped the patients and their

corresponding controls according to their disease status (firstly

diagnosed and relapsed BP), which reveals similar trends in both

clinical conditions.
Materials and methods

Ethics statement

All procedures involving human subjects were conducted in

accordance with the standards of the ethical policies and procedures

approved by the ethics committee of the University of Lübeck

(Approval no. 15–051, 18–046), and the respective committees of

the study centers, adhering to the Declaration of Helsinki. All

participants provided written, informed consent.
Participant recruitment

A total of 66 pairs of patients with BP and age-, sex-, and study

center-matched controls (CL) with non-inflammatory skin diseases

such as basal cell carcinoma or squamous cell carcinoma were

included in this study. Participant pairs were recruited from seven

study centers across Europe (Germany: Dresden (n=14), Freiburg

(n=12), Kiel (n=3), Lübeck (n=7) and Würzburg (n=22); Finland:

Oulu (n=3); Bulgaria: Sofia (n=5)) from June 2015 to July 2020. All

participants were of European descent. Inclusion criteria of BP

patients required a diagnosis according to national and

international guidelines as described before (17), and no topical

antiseptics usage within the prior two weeks and no antibiotic

therapy four weeks prior to sampling. Patients can be further

grouped into two sub-classifications according to their disease

status, firstly diagnosed (BPF) and relapsed ones (BPR). Exclusion

criteria for controls included the presence of inflammatory/

infectious dermatoses and systemic antibiotics usage within the

last four weeks as well. Metadata of BP patients and their controls

are provided in Supplementary Table S1 and summarized

demographics are provided in Supplementary Table S2.
Sample collection

Patient and control fecal samples were collected at each study

center and immediately frozen at -80°C until further use.

Specifically, fecal sampels were transferred with sterile CE-

certified plastic spoons into sterile plastic containers (Sarstedt,

Numbrecht, Germany) from stool not touching the collection

container. DNA extraction from stool samples was performed

with QIAamp PowerFecal DNA Kit (Qiagen) following the

manufacturer’s instructions. Briefly, a pea-size aliquot of the
Frontiers in Immunology 03
sample was resuspended in 750 ml of PowerBead Solution and

moved to a sterile bead tube with a wide bore tip. Final elution

volume was 100 ml and DNA was stored at -20°C until further use.

DNA was diluted 1:10 before library preparation.
16S rRNA and data processing

The V1-V2 region of the 16S rRNA gene was amplified using

27F and 338R primers using a dual barcoding approach as described

in our previous analysis of the skin microbiota in BP (17). The

resulting library was sequenced on an Illumina Miseq sequencer

(250PE). During the demultiplexing process, only barcodes with no

mismatches were allowed (Casava, Illumina). Raw 16S rRNA gene

sequencing data were processed using QIIME2 (v2022.8) (32).

Specifically, sequences were firstly denoised by the embedded

DADA2 (33) for trimming the first 7 or 9 bases from 5’ end of

forward or reverse read sequences, truncating the 230 or 200 bases

from 3’ end of forward or reverse sequences, and reads were also

truncated at the first instance of a quality score smaller than or

equal to 3. An abundance table of 16S rRNA amplicon sequence

variants (ASVs) was generated, and the taxonomic annotation of

ASVs was obtained using the SILVA 138 database (34). To

normalize sequencing depth, the samples were randomly sub-

sampled to 11,000 sequences. Subsequently, a total of 3,716 ASVs

were identified and included in downstream analyses.
Metagenomic shotgun sequencing and
data profiling

Paired-end metagenomic shotgun sequencing was performed

on the Illumina NovaSeq platform. Raw metagenomic sequencing

reads were subjected to quality control by KneadData v0.12.0

(https://github.com/biobakery/kneaddata), with usage of

trimmomatic 0.39 (35) to filter and remove reads with low-

quality and reads aligned to the host genome. The clean reads

were then aligned to the database PlusPFP (v.20220908, https://

benlangmead.github.io/aws-indexes/k2) using Kraken v2 2.1.2 (36,

37), and the taxonomic information at the species level was

obtained with Bracken v2.8 (38). The eukaryotic reads (taxid 2759

in NCBI) in clean data were removed using report files produced by

Kraken, and the functional profiling was conducted using the

Uniref90 protein database in HUMAnN v3.6 (39) with

concatenated paired fastq files. This yielded 2,938 species and 417

pathways that were used for downstream analyses.
Microbial diversity

Analyses of diversity indices were conducted in the R package

vegan (R version: 4.2.2; vegan version: v2.6-4). Alpha diversity was

assessed by the Chao1 index and Shannon indices, and differences

between groups were determined by a non-parametric Wilcoxon
frontiersin.org
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test. Statistical analyses of beta diversity based on Bray-Curtis

dissimilarity were performed using a non-parametric multivariate

analysis (PERMANOVA) (40), which accounts for the effects of

confounding factors, including study centers, sex, and age, on

microbiome composition. The test was conducted by using the

“adonis” function, and the empirical p value was obtained by

running 9,999 permutations. When appropriate, statistical p

values were adjusted by the Benjamini-Hochberg procedure. For

species detected by Kraken and Bracken in the shotgun data,

samples were randomly sub-sampled to 1,015,546 reads for

diversity analysis.
Disease-associated gut microbial feature
identification

To identify candidate gut microbial features associated with BP,

we first performed quality control filtering for taxonomic and

functional features. Specifically, an ASV, a species or a pathway

needed to have a minimum prevalence of 25%, and minimum

relative abundance of 0.01% in at least 10% samples. Gut microbial

features associated with BP disease were then determined using

linear discriminant analysis effect size (LEfSe) analysis (41), with an

absolute value of LDA score no less than 2, and a p value <0.05. The

Multivariate analysis by linear models (MaAsLin2) (42, 43) was

then applied to evaluate associations between BP disease status and

microbial features, correcting for the effect of study center, sex and

age, using the Maaslin2 package (v1.12.0) in R. The arcsine square

root transformation was performed on relative abundances, and the

centred log ratio normalization method in the “Maaslin2” function

was performed. Following a similar approach to Kong et al. (43), we

considered the intersection of results of LEfSe and MaAsLin2

analyses (abs (LDA) >2, and p value <0.05 in LEfSe analysis; and

p value < 0.05 in MaAsLin2 analysis) as criteria for identifying

differential microbial features in BP patients.
Frontiers in Immunology 04
The Bullous Pemphigoid Disease Area Index (BPDAI) is a

validated scoring system commonly used to evaluate the severity

of BP disease (17). It takes into account disease activity assessments

on both the skin and mucosal surfaces. To evaluate potential

correlations between microbial features and BP disease severity,

we used the BPDAI scores that were available for a subset of BP

patients (44 out of 66). Spearman correlations, corrected for study

center, were computed using the “cor.test” function in R. To avoid

the influence of zero-inflation, only species or pathways with a

prevalence of at least 50% were selected to be included in the

correlation analysis. When appropriate, statistical p values were

adjusted by the Benjamini-Hochberg procedure.
Results

A total of 66 pairs of patients with BP and their matched

controls (CL) were recruited from seven study centers located in

Germany (5/7; Würzburg, Dresden, Freiburg, Lübeck, and Kiel),

Finland (1/7; Oulu), and Bulgaria (1/7; Sofia) between June 2015

and July 2020 (Tables S1, S2). Of the 66 BP patients, 54 (81.8%)

were firstly diagnosed (BPF), 11 (16.7%) had relapsed (BPR), and

one (1.5%) was unspecified. The average age of BP patients was

80.26 years (range: 63-98), while that of the 66 controls was 80.64

years (range: 62-100). Of the BP patients and controls, 66.7% were

males and 33.3% were females (Tables S1, S2). Fecal samples were

collected from BP patients and their corresponding controls, and

bacterial genomic DNA was extracted from the samples.

Subsequently, 16S rRNA gene sequencing and shotgun

sequencing were conducted (Figure 1). To explore the potential

impact of disease status on gut microbiota, the BP patients and their

corresponding HC were sub-grouped into those who were firstly

diagnosed and their matched controls (BPF and CLF) and those

who had experienced relapses and their controls (BPR and CLR)

(44) (Figure 1).
FIGURE 1

Workflow of investigation on gut microbiome in Bullous pemphigoid (BP) disease. Feces samples were collected from 66 BP patients and their age-,
sex- and study center-matched controls (CL). 16S rRNA gene and metagenomic sequencing was then performed to get the profile of gut
microbiome of BP patients. The participants were next sub-grouped by disease status of BP patients, that is, firstly diagnosis (CLF and BPF) and
relapse (CLR and BPR).
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Decreased alpha diversity and altered
overall gut microbial composition in BP
patients

We firstly utilized 16S rRNA gene sequencing data to

investigate both alpha and beta diversity in BP patients at the

level of amplicon sequence variants (ASVs), which were rarefied to

11,000 reads per sample. Alpha diversity was then assessed with

Chao1 index and Shannon indices, which provide measure of

richness and evenness of the microbiome, respectively. A

significant decrease of the Chao1 index is observed in BP

patients, while only a trend towards lower values of the Shannon

index is observed (Figure 2A). Following the aforementioned sub-

grouping, a significant decrease in the Chao1 index is also observed

in BPR compared to the CLR group (Figure 2A).

Subsequently, beta diversity was analyzed based on Bray-Curtis

dissimilarity, and a partial constrained principal coordinate analysis

(PCoA) was conducted to examine clustering according to disease

status (Figure 2B). This reveals a significant difference between BP

patients and their controls (adonis R2 = 0.0123, p =0.0004), as well

as in a comparison of firstly diagnosed BP patients and their

controls (adonis R2 = 0.0139, p = 0.0017). No significant

difference is observed between relapsed BP patients and their

corresponding controls (adonis R2 = 0.0528, p = 0.138), which

may be attributed to sample size limitations. We next evaluated the

extent to which confounding factors such as study center, age, and

sex contributed to variance in microbial diversity. In line with the

previous reports, our analysis indicates that microbial composition

is significantly impacted by study center (44), in addition to disease

status and age (PERMANOVA q value < 0.05) (Figure 2C). A
Frontiers in Immunology 05
parallel analysis was performed using shotgun data, which,

consistent with the findings in 16S rRNA sequencing data, reveals

a reduction in the Chao1 index and significant differences in beta-

diversity according to disease status (Figure S1).
Disease-associated gut microbes in BP
patients

Following the observation of altered patterns of diversity in BP

patients, we performed analyses to identify individual taxa

contributing to these patterns, both in the 16S rRNA gene and

shotgun data. We first conducted linear discriminant analysis effect

size (LEfSe) analysis (41) to identify differentially abundant

microbial signatures in BP patients, as well as the two BP sub-

groups. Multivariate association with linear models (MaAsLin2)

(42) was then applied to control for potentially confounding factors,

including study center, age and sex. The intersection of significantly

differential features identified by LEfSe and MaAsLin2 were deemed

as credible BP-associated gut microbial features, following similar

previous studies [(43); see Methods]. Compared to the controls, a

total of four ASVs are significantly more abundant in BP patients,

whereas seven ASVs are significantly reduced (Figures S2A, B). Of

the increased ASVs, ASV_219, is enriched in relapsed BP patients as

well (Figures S2D, E), which primarily matches the genus

Flavonifractor in the SILVA 138 database (34), and Flavonifractor

plautii when queried in NCBI (E = 2e-154). Conversely, two out of

seven ASVs reduced in BP groups belong to Faecalibacterium,

together with one closely matching Sutterella (Figures S2A, B).

Notably, ASVs matching Faecalibacterium are also reduced in both
B C

A

FIGURE 2

Diversities of gut microbiome of BP patients and their matched controls at the ASV level. (A) Alpha diversity of gut microbiome in BP, BPF, BPR and
their controls. Abundances of amplicon sequence variants (ASVs) were computed and alpha diversity was assessed by richness (Chao1index) and
evenness (Shannon indices). Difference between groups was measured by non-parametric Wilcoxon test. (B) Principal coordinates analyses (PCoA)
of gut microbiome composition of BP, BPF, BPR groups and corresponding controls (CL, CLF, and CLR) by Bray-Curtis dissimilarity. Statistical
significance of beta diversity difference between groups was computed by PERMANOVA in “adonis” function. (C) Effect size (Adonis R2) of
confounding factors and disease status significantly associated with gut microbial variations (Bray-Curtis dissimilarity, PERMANOVA). Statistical p
values were adjusted by Benjamini-Hochberg procedure. The “*” means statistical significance based on nominal p value and the “*” in red refer to
an adjusted p value (q) smaller than 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1212551
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1212551
subgroups of BP patients (Figures S2C-E). Altogether, alterations in

the genera Flavonifractor and Faecalibacterium appear to be

associated with BP disease.

Next, we performed the same differential analyses using shotgun

data at the species level. This reveals three species to be enriched in BP

patients: Ruthenibacterium lactatiformans, Anaerotruncus colihominis,

and Eubacterium callanderi. In contrast, Prevotella copri,

Faecalibacterium prausnitzii and Faecalibacterium sp. I417 are

decreased in BP patients (Figures 3A, B). Of the three increased in

BP, R. lactatiformans and A. colihominis are more abundant in BP

patients who were newly diagnosed (BPF), along with Bacteroides

eggerthii and Bifidobacterium dentium (Figures 3C, E). Conversely,

Sutterella wadsworthensis was found to be decreased in the BPF group.

The differential analysis between individuals with relapsed BP disease

(BPR) and their controls (CLR) identifies a significant increase in six

bacterial species, including F. plautii, along with a reduction in the

abundance of three other species, such as Alistipes shahii (Figure 3D).

Overall, the observed changes in gut microbial species, including F.

prausnitzii, F. plautii, R. lactatiformans, and A. colihominis, are likely
Frontiers in Immunology 06
associated with BP. Notably, F. plautii appears to have a more

prominent association with BP disease relapse, which is consistent

with the findings from the 16S rRNA gene data.
Functional alterations in the gut
microbiome of BP patients

To investigate differences in the functional potential in the gut

microbiome of BP patients, we used the HUMAnN3 workflow

[(39); see Methods], followed by the same differential analyses that

were applied to the taxonomic data described above. A total of

twelve gut microbial pathways are significantly altered in relation to

BP. Among the nine pathways more represented in BP groups, two

are related to pyridoxal 5’-phosphate biosynthesis [PYRIDOXSYN-

PWY (pyridoxal 5’-phosphate biosynthesis I), PWY0-845

(superpathway of pyridoxal 5’-phosphate biosynthesis and

salvage)]; three involve fatty acid biosynthesis, [PWY-5989

(stearate biosynthesis II (bacteria and plants)), FASYN-ELONG-
B

C D

E

A

FIGURE 3

Gut microbes altered in BP disease at the species level. (A) Differential species identified by combination of linear discriminant analysis effect size
(LEfSe) analysis and Multivariate analysis by linear models (MaAsLin2) in comparison of BP and CL groups based on the metagenomic sequencing.
Specifically, the species with an absolute value of LDA score >2 and p <0.05 (calculated by non-parametric Wilcoxon test) in LEfSe analysis was
identified as candidates of differential species, and MaAsLin2 was then applied to adjusted effect of study center, age and sex (p <0.05). The blue bars
show the bacterial taxa with decreased relative abundance in BP group and the yellow ones refer to those species enriched in BP group after
adjusting for the study center using MaAsLin2. (B) Representative species that were significantly changed in BP group. The P values were computed
by non-parametric Wilcoxon test. (C, D) Differential species detected by comparing (C) BPF and their matched controls (CLF), or (D) BPR and their
controls (CLR). Bars with different colors represent altered species in different groups. (E) Representative species that were significantly altered in
firstly diagnosed or relapsed BP patients (BPF or BPR). The P values were computed by non-parametric Wilcoxon test. “*” means statistically
significant in non-parametric Wilcoxon test.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1212551
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1212551
PWY (fatty acid elongation – saturated), and PWY-6282

(palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate))]; two

are related to biotin biosynthesis [BIOTIN-BIOSYNTHESIS-PWY

(biotin biosynthesis I) and PWY-6519 (8-amino-7-oxononanoate

biosynthesis I), with amino-7-oxononanoate serving as a biotin

precursor (https://metacyc.org)]. The remaining two are PWY-6305

(superpathway of putrescine biosynthesis) and GLUDEG-I-PWY

(GABA shunt). In contrast, two pathways in relation to adenosine

nucleotides biosynthesis [(PWY-6126 and PWY-7229,

superpathway of adenosine nucleotides de novo biosynthesis II

and I), and PWY1ZNC-1 (assimilatory sulfate reduction IV)] are

reduced in BP patients (Figures 4A, B).

Notably, the pyridoxal 5’-phosphate serves as a critical cofactor

for converting glutamate to GABA (45), which can be involved in

the GABA shunt. GABA shunt is a pathway involving the

conversion of L-glutamate into GABA, and next converting

GABA into succinate with the presence of a-Ketoglutaric acid,

which is then coupled with the tricarboxylic acid cycle (46).

Additionally, putrescine, whose production was elevated in BP

patients, was reported to be a disrupter of intestinal barrier

function, with its oral administration increasing gut permeability

in mice (47), and furthermore to have immunoregulatory potential

such as increasing anti-inflammatory macrophages in the colon and

positively correlating with the proinflammatory chemokine CXCL8

in psoriasis patients (48, 49). Moreover, putrescine metabolism also

can be linked with GABA shunt, as it is a potential source of GABA
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to the brain, pancreas, and bacteria including E.coli (50–52). We

therefore evaluated gut microbial candidate species contributing to

PWY-6305 and GLUDEG-I-PWY in the shotgun metagenomic

data using the HUMAnN3 workflow. Interestingly, this analysis

identifies E.coli as the predominant species associated with these

two pathways (Figure 4C).

Subsequent comparison between BPF and CLF groups revealed

six altered pathways in the newly diagnosed BP patients, including

three differential pathways identified in the BP group, namely

PYRIDOXSYN-PWY, PWY0-845 and PWY1ZNC-1 (Figure 4D).

Additionally, the other two pathways which were more represented

in the BPF group are HSERMETANA-PWY (L-methionine

biosynthesis III) and PWY0-1241 (ADP-L-glycero-&beta;-D-

manno-heptose biosynthesis). Conversely, the PWY-6527

(stachyose degradation) is one of two pathways reduced in

BPF group. We next compared the abundance of pathways

between BPR and CLR groups, and a total of ten differential

pathways were identified. Notably, we observed that four out of

five pathways enriched in the BP group are also significantly

enriched in the BPR group (Figures 4E, F). Another enriched

pathway is GALACTITOLCAT-PWY (galactitol degradation).

Five pathways that were decreased in the BPR group are PWY-

5705 (allantoin degradation to glyoxylate III), PWY-7242 (D-

fructuronate degradation), ARGDEG-PWY (superpathway of L-

arginine, putrescine, and 4-aminobutanoate degradation),

ORNARGDEG-PWY (superpathway of L-arginine and L-
B C

D E F

A

FIGURE 4

Gut microbial functions altered in BP disease based on the metagenomic sequencing. (A) Differential metagenomic pathways altered in BP patients
versus their matched control (CL), which were identified by LEfSe analysis (absolute value of LDA score >2 and p <0.05; p values were calculated by
non-parametric Wilcoxon test), with MaAsLin2 correcting effect of study center, age and sex (p <0.05). (B) Relative abundance of four representative
pathways that were significantly changed in BP group. The P values were computed by non-parametric Wilcoxon test. (C) Dominant microbial
species contributing to two representative pathways: PWY-6305 and GLUDEG-I-PWY, referring to superpathway of putrescine biosynthesis and
GABA shunt, respectively. Bars with different colors means different species. (D, E) Differential gut microbial functions detected in the comparisons
of (D) BPF versus their controls (CLF), or (E) BPR versus their controls (CLR). (F) Relative abundance of two representative pathways that were
significantly altered in firstly diagnosed or relapsed BP patients (BPF or BPR). The PWY0-845 means superpathway of pyridoxal 5’-phosphate
biosynthesis and salvage. The P values were computed by non-parametric Wilcoxon test. “*” means statistically significant in non-parametric
Wilcoxon test.
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ornithine degradation), and ECASYN-PWY (enterobacterial

common antigen biosynthesis). Among them, ARGDEG-PWY is

a pathway involved in GABA (4-aminobutanoate) degradation, and

is hence also linked to the GABA shunt.
BP disease severity-associated gut
microbial species and functions

The severity of BP disease is commonly assessed using the BPDAI

score, a validated scoring system that incorporates disease activity

assessments on both the skin and mucosal surfaces (17). To evaluate

the potential relationship between gut microbial features and BP

severity, we tested for correlations with BPDAI scores, which were

available for a subset of BP patients (44 out of 66). The analysis was

limited to species or pathways with a prevalence of 50% or greater.

After calculating Spearman’s correlation coefficients and correcting for

the effect of study center, we identify 30 species and 49 pathways with

nominally significant association to the BPDAI score (p < 0.05) (Figure

S3). After correction for multiple testing, no association is significant (q

value > 0.05), although we considered associations with q values < 0.25

as “possible” candidates. Among these, E. coli abundance displays the

highest positive correlation with BP disease severity (Spearman’s rho =

0.48, p = 0.001, q = 0.2). In terms of pathways, three out of 49 were

negatively correlated with BPDAI scores, namely 1CMET2-PWY

(folate transformations III (E. coli); Spearman’s rho = -0.39, p =

0.0082, q = 0.15), DTDPRHAMSYN-PWY (dTDP-&beta; -L-

rhamnose biosynthesis; Spearman’s rho = -0.39, p = 0.0089, q =

0.16), and PWY-6609 (adenine and adenosine salvage III;

Spearman’s rho = -0.35, p = 0.02, q = 0.24). Conversely, PWY-5723

displays the highest positive correlation with BPDAI scores (Rubisco

shunt; Spearman’s rho = -0.49, p = 0.00075, q = 0.14), together with the

two differential pathways in relation to GABA metabolism, namely the

GABA shunt (GLUDEG-I-PWY, Spearman’s rho = -0.36, p = 0.017, q

= 0.22), and PWY-6305 (Spearman’s rho = -0.31, p = 0.038, q = 0.28,

nominally associated). Overall, the positive correlations between

GLUDEG-I-PWY, PWY-6305 and E. coli (the aforementioned

dominant species involved in the GLUDEG-I-PWY and PWY-6305

pathways) with BP disease severity again suggest a potential link

between the GABA shunt and BP.
Discussion

Our study provides a first thorough analysis of the gut

microbiome in BP, at both the taxonomic and functional

metagenomic level. We find significant alterations of diversity

patterns and promising candidate pathways such as the GABA

shunt. These findings are in agreement with previous studies

reporting altered microbial diversity in various inflammatory and

autoimmune diseases, and in particular represents an additional
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example of a skin disease associated with an altered gut microbiome

(53–58).

Among the significant microbial features identified by 16S

rRNA gene analysis, increases in abundance of the genus

Flavonifractor and a decrease of Faecalibacterium are of particular

interest. F. prausnitzii is a well-known microbiomarker of

inflammatory diseases, including Crohn’s disease (59, 60),

irritable bowel syndrome (61), multiple sclerosis (44), rheumatic

diseases (62), and even other inflammatory skin diseases, such as

atopic dermatitis, psoriasis, and another autoimmune bullous

disease, pemphigus (19, 21, 29). F. prausnitzii possesses anti-

inflammatory properties, which could contribute to its potential

protective effects in inflammatory diseases (63). A reduction of F.

prausnitzii was also observed in the shotgun data, which adds

further reliability to this result. Similarly, the shotgun data also

confirms an increase of F. plautii in relapsed BP patients, and F.

plautii was reported to be enriched in early-onset colorectal cancer

(43, 64). It is thus intriguing that the increase of Flavonifractor and

positive correlation between Flavonifractor and circulating

inflammatory markers (C5a, IL-6, IL-8, IL-7, IL-1b and IL-21)

were reported in pemphigus vulgaris, a subgroup of pemphigus

(65). Flavonifractor was shown to have the ability to cleave

quercetin, which has anti-oxidant and anti-inflammatory

properties (66). It is thus possible that increased Flavonifractor

could contribute to oxidative stress and inflammation in the host.

Moreover, investigations on a potential immunoregulatory role of

F. plautii based on mouse models revealed it to inhibit the Th2

immune response, TNF-a expression and interleukin (IL)-17

signaling, thus, potentially alleviating inflammatory responses in

allergic diseases, adipose tissue in obesity, and gut inflammation,

respectively (67–69). Given these diverse observations, F. plautii

may contribute to the dysregulation of the immune system in BP

leading to the onset or progression of disease. Further research is

needed to fully understand the role of F. plautii in BP disease. Two

other notable species of interest include R. lactatiformans and A.

colihominis, which are increased in the BP and BPF groups;

interestingly, both were reported to be associated with multiple

sclerosis (44, 70).

Importantly, our inclusion of shotgun metagenomic sequence

data provides critical insight into candidate functional pathways

associated with BP. In particular, we identified the GABA shunt and

related pathways, two involving the biosynthesis of a key cofactor

(pyridoxal 5’-phosphate) in GABA conversion into succinate, and

one involving biosynthesis of precursor (putrescine) of GABA,

which points towards an underlying importance of the gut

microbial GABA shunt in BP pathophysiology. Of note, the key

metabolite in this bioprocess, GABA, known as an inhibitory

neurotransmitter, has various biological activities, such as

antioxidant and anti-inflammation (71), and plays multiple roles

in maintaining skin health, including inhibition of itching by acting

as an inhibitory neurotransmitter (9, 30), attenuating skin lesions by
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balancing Th1 and Th2 levels and maintaining skin elasticity by

increasing the expression of type I collagen (30). Interestingly,

GABA metabolism was also reported to be altered in patients

with atopic dermatitis, with degradation being significantly

positively associated with reduction of disease severity and GABA

biosynthesis from putrescine being positively associated with

disease severity (72), which suggests a possible positive

association between microbial-derived GABA and atopic

dermatitis. Further, GABA or GABA receptor agonists were

reported to alleviate induced atopic dermatitis or acute skin

inflammation in mouse models (73, 74). In the current study, the

GABA shunt was observed enriched in the BP patients, with the

increased biosynthesis of a key cofactor in GABA shunt, and

increased biosynthesis of a precursor of GABA. However, there is

evidence that components and activity of GABA shunt can vary a

lot even within the same genus (75), which suggests that more

refined profiles on GABA metabolism in the gut microbiome need

to be carried out to clearly investigate the changes in GABA, GABA

metabolism and signaling in BP.

In addition to the GABA shunt and related pathways, other

notable pathways, such as PWY-6282 (palmitoleate biosynthesis I

(from (5Z)-dodec-5-enoate)), which is higher in BP, overlaps with a

previous report showing its increase in individuals with irritable

bowel syndrome (76). In contrast, a study investigating links

between the human gut microbiome and inflammatory cytokine

production reported anti-inflammatory properties of palmitoleic

acid (or palmitoleate) by reducing monocyte-derived cytokines,

such as IL-1b, TNFa, and IL-6 (77). Finally, the ADP-L-glycero-

b-D-mano-heptose in PWY0-1241 (ADP-L-glycero-&beta;-D-

manno-heptose biosynthesis), which is more presented in the

newly diagnosed BP patients, can be involved in the involved in

the synthesis of bacterial lipopolysaccharides (LPS) (78).

Our study has limitations, including a comparatively small

sample size and lack of longitudinal data and metabolome data.

Further, our age and sex match controls included individuals with

basal cell carcinoma or squamous cell carcinoma, thus, it is possible

that differences observed in BP could also reflect elements of this

type of cancer in the controls. However, the inclusion of these

individuals as controls was motivated by the fact that the basal cell

carcinoma and squamous cell carcinoma are mainly epidermal skin

cancers, characterized by skin lesions or abnormalities, but only

rarely metastasize (79, 80). We also excluded patients with any

possible metastases to make sure the cancer was always restricted to

the epidermis. Moreover, gut dysbiosis was not reported in patients

with these cancers thus far (9), despite an altered gut microbiome

being reported in other types of cancer, including melanoma, which

in contrast can be characterized by rapid metastasis (81, 82). On the

other hand, given that these cancers are so common within the

elderly, it can be reasonably argued that they genuinely reflect the

gut microbiome of this age group (83, 84).

Despite these limitations, our study contributes to a growing

body of evidence of common dysbiotic features in the gut

microbiome across inflammatory diseases (i.e. reduced alpha

diversity, reduced F. prausnitzii, role for GABA-related

pathways), including those afflicting the skin, and as such

emphasize the importance of the gut-skin axis. Future studies
Frontiers in Immunology 09
including longitudinal data and experimental preclinical models

are thus justified to help establish causality and to test microbiome-

based intervention strategies.
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