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Abstract. We present a theoretical method to calculate Delbrück scattering

amplitudes for photon energies above the electron-positron pair production threshold.

The method is based on the application of the relativistic Dirac-Coulomb Green

function and describes the interaction of the virtual e+e− pair with the Coulomb

field of a target to all orders in the coupling strength parameter αZ. To illustrate

the application of the developed approach, detailed calculations have been performed

for the scattering of 2.754 MeV photons off bare ions with a wide range of nuclear

charge numbers. Results of these calculations clearly indicate that the higher-order

terms beyond the Born approximation lead to a strong enhancement of the imaginary

part of the Delbrück amplitude and have to be taken into account for the analysis and

guidance of gamma-ray scattering experiments.

1. Introduction

Elastic scattering of photons by atomic targets is a well-established experimental

technique commonly used to investigate the structure of atoms, molecules and solid

state materials [1, 2]. For moderate photon energies between 1 and 10 MeV, there are

three main channels contributing to this process: elastic nuclear Compton, Rayleigh and

Delbrück scattering. The Delbrück channel is the elastic scattering of photons by the

Coulomb field of a nucleus via the creation and annihilation of virtual electron positron

pairs. This process is of particular interest because it is one of very few non-linear

quantum electrodynamical (QED) processes that can be studied in experiment [3, 4].

The accurate theoretical description of the Delbrück process has been a very

challenging task in the past, mainly due to the necessity to account for the coupling

between the virtual electron-positron pairs and the Coulomb field of a nucleus.

Previously, this coupling was taken into account mainly within the lowest-order Born

approximation [5–9]. This approximation is based upon expanding the Delbrück

amplitude in powers of αZ, where α is the fine structure constant and Z is the

nuclear charge, and neglecting all terms beyond the lowest order ∼ (αZ)2. The Born
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approximation works very well for light target atoms since αZ ≪ 1 in this case. For

heavy systems, in contrast, higher-order corrections are not negligible anymore and are

known to modify the Delbrück amplitude significantly [4, 10–13]. To estimate those

corrections, a number of approximate methods have been developed in the past, which

are applicable, however, only in very restricted parameter regimes. For example, the

limit of high photon energies and large or small scattering angles as well as the low

photon energy limit have been discussed in the literature [14–19]. To the best of our

knowledge, no general approach was successfully applied to treat Delbrück scattering

beyond the Born approximation for arbitrary energies and scattering angles.

Within the framework of quantum electrodynamics, all-order calculations of

Delbrück scattering can be performed by using the Dirac-Coulomb propagator which

accounts for the Coulomb interaction with a target atom exactly. The structure of this

propagator is more complicated than that of the free Dirac propagator, thus making

calculations computationally very demanding. Up to now, only few calculations were

performed for photon energies below the pair production threshold [20–22]. The above

threshold case is even more demanding due to the fact that the production of a real

electron-positron pair is possible in this regime. In the present work, we propose an

efficient approach for calculations of the above-threshold Delbrück scattering, which

allows to take into the account the interaction of the electron-positron pairs with

the Coulomb centre to all orders. Very recently, this approach was applied by us to

explain a long-standing discrepancy between experiment and theory for the scattering

of 2.754 MeV photons off plutonium targets [23].

The present manuscript is organized as follows. In section 2, we recall the basic

equations of relativistic quantum electrodynamics used to describe Delbrück scattering.

In particular, we discuss the Feynman diagram of the scattering process and the

corresponding amplitude. The evaluation of this amplitude involves multidimensional

integrals, both, over the energies of the virtual electron and positron as well as over

the spatial vertex coordinates. We discuss the theoretical approach that makes the

computation of these integrals accessible and numerically stable. In particular, we show

that the integration over the energies can be performed using a Wick rotated contour and

the treatment of the radial integrals can be simplified by using analytical expressions

for the Dirac-Coulomb Green function in the asymptotic regime. The details of the

practical implementation of our method as well as estimates of uncertainties introduced

by the numerical procedures used in the computation are presented in section 3. In

section 4, we apply our method to calculate the Delbrück amplitude for the scattering

of 2.754 MeV photons off bare zinc, cerium, lead and plutonium nuclei. The result of the

all-order in αZ calculations were compared with the predictions of the lowest order Born

approximation in order to investigate the role of the higher-order Coulomb corrections.

We found in particular that these Coulomb corrections beyond the Born approach can

significantly modify the imaginary part of the scattering amplitude, thus stressing the

importance of the all-order treatment of Delbrück scattering. Finally, we summarize our

work in section 5. Relativistic units h̄ = me = c = 1 are used throughout this paper, if
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r1 r2

k1, ϵ1 k2, ϵ2

Figure 1. Feynman diagram for Delbrück scattering to all orders in αZ and leading

order in α.

not stated otherwise.

2. Theoretical background

Within the framework of QED, Delbrück scattering can be described by the Feynman

diagram in Fig. 1. As usual, the wavy lines in the diagram represent the

incoming/outgoing photon and the double lines indicate the propagator of the virtual

electron and positron moving in the Coulomb field of the nucleus. In this so-called Furry

picture, the interactions between the leptons and the nucleus are treated in all-orders in

αZ. In contrast, the interaction with the photon field is treated in lowest-order in the

coupling parameter α displayed by the two vertices r1 and r2.

By using the Feynman correspondence rules, we can translate the diagram in Fig. 1

into the scattering amplitude

M (D)(k1, ϵ1,k2, ϵ2, Z) =
iα

2π

∫ ∞

−∞
dz

∫ ∞

−∞
dz′
∫

d3r1

∫
d3r2 Tr

[
R(r1,k1, ϵ1)G(r1, r2, z)

×R†(r2,k2, ϵ2)G(r2, r1, z
′)
]
δ(ω + z − z′) ,

(1)

where z and z′ are the energy arguments of the electron propagators and ω is the

energy of the incoming and outgoing photon. Moreover, two theoretical “ingredients”

enter into the scattering amplitude: The electron-photon interaction operator R(r,k, ϵ)

and the Dirac-Coulomb Green function G(r2, r1, z). In what follows, we will discuss

these functions in detail starting with the latter one. For the numerical analysis of

amplitude (1), it is convenient to expand the Green function into partial waves

G(r2, r1, z) =
∑

κµ

1

wκ(z)

×
[
Θ(r2 − r1)

(
F 1
κ,∞(r2, z)χ

µ
κ(r̂2)

iF 2
κ,∞(r2, z)χ

µ
−κ(r̂2)

)(
F 1
κ,0(r1, z)χ

µ†
κ (r̂1) −iF 2

κ,0(r1, z)χ
µ†
−κ(r̂1)

)

+Θ(r1 − r2)

(
F 1
κ,0(r2, z)χ

µ
κ(r̂2)

iF 2
κ,0(r2, z)χ

µ
−κ(r̂2)

)(
F 1
κ,∞(r1, z)χ

µ†
κ (r̂1) −iF 2

κ,∞(r1, z)χ
µ†
−κ(r̂1)

)]

(2)
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which are characterized by the Dirac angular-momentum quantum number κ and total

angular momentum projection µ. In Eq. (2), moreover, F 1,2
κ,0 and F 1,2

κ,∞ are solutions

of the radial Dirac equation that are regular at the origin and at infinity, χµ†
κ are the

spin-angular wave functions and the Wronskian is given by

wκ(z) = r2[F 2
κ,0(r, z)F

1
κ,∞(r, z)− F 1

κ,0(r, z)F
2
κ,∞(r, z)] . (3)

For a pure Coulomb potential, a closed analytical form of the radial components of the

Green function is known
[

F 1
κ,0(x, z)

F 2
κ,0(x, z)

]
=

[ √
1+z

2cx3/2

(
(λ− ν)Mν−1/2,λ(2cx)−

(
κ− γ

c

)
Mν+1/2,λ(2cx)

)
√
1−z

2cx3/2

(
(λ− ν)Mν−1/2,λ(2cx) +

(
κ− γ

c

)
Mν+1/2,λ(2cx)

)
]

,

(4a)
[

F 1
κ,∞(x, z)

F 2
κ,∞(x, z)

]
=

Γ(λ− ν)

Γ(1 + 2λ)

[ √
1+z

2cx3/2

((
κ+ γ

c

)
Wν−1/2,λ(2cx) +Wν+1/2,λ(2cx)

)
√
1−z

2cx3/2

((
κ+ γ

c

)
Wν−1/2,λ(2cx)−Wν+1/2,λ(2cx)

)
]

,

(4b)

where Mκ,µ and Wκ,µ are the Whittaker functions, c =
√
1− z2, γ = αZ, ν = γz/c and

λ =
√
κ2 − γ2, see Ref. [25] for further details. Here, the branch of the square root is

taken so that Re(c) ≥ 0 and, moreover, the Wronskian (3) is unity, wκ(z) = 1.

As mentioned above, besides the Green function, the electron-photon interaction

operator R̂(r,k, ϵ) with wave vector k and polarization vector ϵ also appears in Eq. (1).

Similar to G(r2, r1, z), it is convenient to expand this operator into its multipole

components. In Coulomb gauge and in the helicity basis for the photon polarization

ϵλ = 1√
2
(ex + iλey), λ = ±1, this expansion reads as

R̂(r,k, ϵ) = α · ϵλeik·r =
√
2π
∑

PLM

iL
√
2L+ 1(iλ)PDL

Mλ(k̂)α · a(P )
LM . (5)

Here, the magnetic (P = 0) and electric (P = 1) multipole fields are given by

a
(0)
LM = jL(ωr) TLLM , (6a)

a
(1)
LM =

√
L+ 1

2L+ 1
jL−1(ωr) TL,L−1,M −

√
L

2L+ 1
jL+1(ωr) TL,L+1,M , (6b)

with jL being the spherical Bessel function, and the vector spherical harmonics TJLM

are constructed as irreducible tensors of rank J as

TJLM =
1∑

µ=−1

⟨L (M − µ) 1 µ|J M⟩YL,M−µξµ , (7)

see Ref. [26] for further details. By inserting Eqs. (2) and (5) into amplitude (1) one can

solve all angular integrals analytically while the integration over the radial coordinates

and the energy needs to be performed numerically [22].
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All-Orders in αZ Free Loop ∼ (αZ)0

Born Approximation ∼ (αZ)2

First Coulomb Correction ∼ (αZ)4

Figure 2. Expansion of the full Delbrück scattering Feynman diagram (left-hand side)

into Coulomb interactions (right-hand side). The expansion consists of the free-loop

diagram (zeroth-order in αZ), the lowest-order Born approximation (second-order in

αZ) and the Coulomb corrections (fourth-order in αZ and higher). We only show one

diagram for each order although all permutations of the photon interactions should

also be taken into account.

2.1. Energy integral

In order to perform an integration over the energy arguments z and z′ of the electron

propagators in the amplitude (1), it is convenient to consider first a formal αZ expansion

of M (D). This expansion is illustrated in terms of Feynman diagrams in Fig. 2, where

the single solid line represents the electron propagator in the absence of an external field

while the wavy lines originating from crossed vertices describe single interactions with

the Coulomb centre. The first term on the right-hand side of the figure is known as

the free-loop contribution which contains a logarithmically divergent loop-momentum

integral. Since this free-loop diagram does not contribute to the light-light interaction

process, it should be subtracted from the further calculations as discussed in Ref. [22].

In practise, this subtraction can be performed as

M̃ (D)(k1, ϵ1,k2, ϵ2, Z) = M (D)(k1, ϵ1,k2, ϵ2, Z)−M (D)(k1, ϵ1,k2, ϵ2, Z = 0) , (8)

where M (D)(k1, ϵ1,k2, ϵ2, Z = 0) is the amplitude for the free-loop diagram. The

remaining amplitude M̃ (D) accounts for all interactions of the virtual electron-positron

pair starting from the lowest order (αZ)2 and is known to be finite. For this amplitude,
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Im(z′)

Re(z′)

−1− ω
2

−1 + ω
2

δ δ
+1− ω

2
+1 + ω

2

C1

C1

C2

C2C3

Figure 3. Original (blue) and Wick rotated (red) path for the z′ integration in Eq. (1).

The singularities (black crosses) and branch cuts (zig zag lines) of the integrand are

shown in the complex z′ plane for ω > 2.

the integration over z can be carried out trivially due to the presence of the Dirac delta

function δ(ω+z−z′) while the integration over z′ is performed numerically. We improve

the stability of this integration by substituting z′ → z′ + ω
2
thus making the integrand

symmetric with respect to the origin z′ = 0. The resulting integrand is analytical in

the entire complex plane except for two sets of branch cuts starting at z′ = ±1 + ω
2

and z′ = ±1− ω
2
that originate from the positive and negative energy continuum states

of the two virtual particles. Moreover, the bound electron states result in two sets of

poles at z′ = (λ′ + n)/
√

γ2 + (λ′ + n)2 + ω
2
and z′ = (λ+ n)/

√
γ2 + (λ+ n)2 − ω

2
with

n = 0, 1, 2, ..., see Fig. 3. The z′ integration on the interval (−∞,∞) displayed by the

blue path in Fig. 3 is troublesome since the poles and branch cuts are located infinitely

close to the real axis, δ → 0. To overcome this problem, we construct a new integration

path by forming a closed contour in the complex z′-plane using three parts C1, C2 and

C3, see Fig. 3. The part C1 extends along the imaginary axis, C2 goes along the cuts of

the electron propagators and C3 encloses all bound-state poles of one of the propagators.

By using Cauchy’s integration formula, we arrive at the replacement

M̃ (D)(k1, ϵ1,k2, ϵ2, Z) =

∫ ∞

−∞
dz′f(z′) =

∫

C1,C2

dz′f(z′)− 2πi
∑

z′n∈C3

Res[f, z′n] , (9)
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where we used the shorthand notation

f(z′) =
iα

2π

∫
d3r1

∫
d3r2 Tr

[
R(r1,k1, ϵ1)G(r1, r2, z

′ − ω
2
)R†(r2,k2, ϵ2)G(r2, r1, z

′ + ω
2
)

−
{
R(r1,k1, ϵ1)G(r1, r2, z

′ − ω
2
)R†(r2,k2, ϵ2)G(r2, r1, z

′ + ω
2
)
}∣∣∣

Z=0

]

(10)

for the integrand in amplitude (8) and, moreover, Res[f, z′n] is the residue of f(z′) at

its nth enclosed pole z′n. While the techniques used to calculate the integral along the

imaginary axis C1 are identical to those used in the below-threshold calculations in

Ref. [22], the contributions C2 and C3 require some more attention. To calculate the

residue C3, we note that the enclosed poles originate from the prefactor Γ(λ′−ν ′) arising

in the radial components of the Green function in Eq. (4b). Therefore, to obtain the

contribution from the bound states, we simply replace this prefactor by its residue

Res

[
Γ(λ′ − ν ′), z′n =

λ′ + n√
γ2 + (λ′ + n)2

− ω

2

]

= −(−1)n

n!

(
1− (λ′+n)2

γ2+(λ′+n)2

)3/2

γ
.

(11)

The main difficulty in performing the numerical integration along the paths C2 comes

from the fact that the integrand is sharply peaked at the beginning of the branch cuts at

z′ = ±1∓ ω
2
. To obtain

∫
C2

dz′f(z′) in a numerically stable way, we use Gauss-Legendre

quadrature with an enhanced density of integration points close to the peaked regions

by making the substitution z′ → ±u2 + (±1∓ ω
2
).

2.2. Radial integrals

To obtain the integrand f(z′) in Eq. (9), one has to perform first the integration over

the vertex coordinates r1 and r2, see Eq. (10). As mentioned already above, this six-

dimensional integral can be reduced to a two-dimensional one by using the multipole

expansions of R(r,k, ϵ) andG(r2, r1, z) and by solving the angular integrals analytically.

As shown in Appendix A of Ref. [22], the remaining radial integrals can be traced back

to the expression

J =

∫ ∞

0

dr1
r1

Wν′+
p1
2
,λ′(2c′r1)jL1(ωr1)Wν+

p2
2
,λ(2cr1)

×
∫ r1

0

dr2
r2

Mν′+
p3
2
,λ′(2c′r2)jL2(ωr2)Mν+

p4
2
,λ(2cr2) ,

(12)

where L1 and L2 denote the multipolarities of the incoming and outgoing photon, λ, λ′

and ν, ν ′ are the parameters from Eq. (4) of the two electron propagators and p1, ..., p4
can take the values +1 or −1.
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To evaluate Eq. (12), the integration over r1 and r2 is done numerically for the

interval 0 ≤ r1 ≤ R1, 0 ≤ r2 ≤ R2, while an analytical integration is carried out in the

asymptotic regime, r1 > R1, r2 > R2, by using the expansions

Mα,β(2c̃r) ∼
Γ(1 + 2β)

Γ(1
2
+ β − α)

ec̃r(2c̃r)−α

∞∑

s=0

uM(s, α, β)(2c̃r)−s

+
Γ(1 + 2β)

Γ(1
2
+ β + α)

e−c̃rz+q( 1
2
+β−α)πi(2c̃r)α

∞∑

s=0

ũM(s, α, β)(−2c̃r)−s ,

(13a)

Wα,β(2c̃r) ∼ e−c̃r(2c̃r)α
∞∑

s=0

uW (s, α, β)(−2c̃r)−s , (13b)

where

uM(s, α, β) =
(1
2
− β + α)s(

1
2
+ β + α)s

s!
, (14a)

ũM(s, α, β) =
(1
2
+ β − α)s(

1
2
− β − α)s

s!
, (14b)

uW (s, α, β) =
(1
2
+ β − α)s(

1
2
− β − α)s

s!
, (14c)

with q being −1 for Im(z) < 0 and +1 otherwise, and (x)n being the Pochhammer

symbol. In the asymptotic regime, moreover, we use the exact expansion of the spherical

Bessel function

jL(x) =
L∑

m=0

(L+m)!

m!(L−m)!
iL+1−m(2x)−m−1[(−1)L+1−meix + e−ix] . (15)

By inserting Eqs. (13) - (15) into Eq. (12), we can express the integral J as a sum of

weighted incomplete gamma functions, see Appendix A for further details.

While the approach based on the asymptotic expansions (13) - (15) can be

generally performed for incident photon energies both, below and above the electron-

positron pair production threshold, its practical realization for the latter case is more

cumbersome. To understand this difference, one has to inspect the expansion (13a) of

the Whittaker function. As seen from this formula, Mα,β has an argument 2c̃r, where

c̃ =
√
1− (z′ ± ω

2
)2, which always has a large real part for ω < 2. Therefore, for the

below threshold case, the second term in Eq. (13a) is exponentially suppressed compared

to the first term and can be neglected for all practical purposes. For ω ≥ 2, in contrast,

the argument 2c̃r can be purely imaginary leading to the fact that the two terms on

the right-hand side of Eq. (13a) are similar in size and both of them need to be taken

into account in the integration. This causes a longer computation time compared to the

low-energy case.

3. Computational Details

In the previous section, we have discussed the evaluation of the Delbrück scattering

amplitude for photon energies above the pair production threshold. The practical
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0 30 60 90 120 150 180
Scattering angle θ (deg)

6

5

4

3

2

1

0

−1

−2

R
e[ M̃

(D
)

‖

] ((
α
Z

)2
r 0

)
×10−1

Figure 4. Real part of the contributions to the Delbrück amplitude (9) from

the integrals along C1 (orange dash-dotted line), along C2 (blue dashed line), the

contributions from the residue (red dotted line) and their sum (black solid line) when

summing κ in the range from −15 to +15. The amplitudes where obtained for the

scattering of 2.754 MeV photons off bare plutonium ions and for radiation that is

linearly polarized within the scattering plane spanned by k1 and k2. Results are given

in units (αZ)2r0, where r0 = 2.818 fm is the classical electron radius.

implementation of our theoretical approach also comes with some difficulties that need

to be addressed. The first difficulty is due to the spurious contributions to the real

part of the Delbrück amplitude M̃ (D) which arise from the integration of the individual

segments C1, C2 and C3 of the energy contour in Fig. 3. These spurious contributions

should disappear if one would perform the summation over all multipole components of

the electron propagator, characterized by the Dirac quantum number κ. For example,

the integral along the path C2 should not contribute to the real part of M (D) at all after

summing over all multipoles. This is not the case, however, for the truncated summation

over κ, see Ref. [21]. In order to solve the problem of the spurious contributions, we

add the integrals over the segments C1, C2 and C3 for each Dirac quantum number and

only after this perform the summation over κ. This results in a significant acceleration

of the convergence of the partial wave summation since the unphysical contributions

cancel between the different segments of the integration contour, see Fig. 4. As seen

from this figure, the contributions to the amplitude Re[M̃
(D)
∥ ] that are obtained upon

integration over individual segments C1 (orange dash-dotted line), C2 (blue dashed
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0 60 120 180
Scattering angle θ (deg)

10−2

10−1

A
m

p
lit

u
d

e
((
α
Z

)2 r
0)

0 60 120 180
Scattering angle θ (deg)

Re
[
M̃

(D)
‖

]
Im
[
M̃

(D)
‖

]

Figure 5. Real (left panel) and imaginary (right panel) part of the Delbrück

amplitude (8) for the scattering of 2.754 MeV photons by bare plutonium nuclei. The

calculations were done for radiation that is linearly polarized within the scattering

plane and by summing over the Dirac quantuam number κ up to κ = ±6 (blue dashed

line), κ = ±9 (orange dash-dotted line), κ = ±12 (red dotted line), and κ = ±15 (black

solid line). Results are given in units (αZ)2r0, where r0 = 2.818 fm is the classical

electron radius.

line) and C3 (red dotted line) exhibit a strong oscillatory behaviour as functions of

the scattering angle θ, which usually indicates convergence problems. When summed

together (black solid line), however, they provide a reliable prediction for the scattering

amplitude which monotonically decreases with θ and which remains unaltered when

including more multipoles. By using this approach, we are able to achieve a relative

uncertainty for Re[M̃ (D)] of less than 2% for θ ≤ 120◦ and around 5% for θ > 120◦ as

well as a relative uncertainty of less than 1% for Im[M̃ (D)] by summing over κ in the

range from −15 to +15. The convergence of the computational results with increasing

range of the electron partial waves is illustrated in Fig. 5.

Another problem with the above-threshold calculations of Delbrück scattering arises

due to the poles C3 that are enclosed by the integration contour. These poles are

accounted for by summing over the residue in Eq. (9). This summation over the principal

quantum number n is infinite reflecting the bound-state spectrum of the hydrogen-

like system. The sum converges however relatively fast and, in analogy to Rayleigh

scattering [29], high-n terms contribute only for very low scattering angles, see Fig. 6.

For all calculations presented in the next section, the summation up to n = 13 is

performed to achieve a relative accuracy of less than 0.1% for scattering angles larger

than θ = 30◦.

The calculation of the radial integrals (12) both, near the origin 0 ≤ r1 ≤ R1,

0 ≤ r2 ≤ R2, and in the asymptotic regime, relies on the stable evaluation of the involved

special functions. In the present work, we employ the Arb C library as implemented

by Johansson [27], which is based on using the power series representation of these

functions. For example, the confluent hypergeometric function, which is related to the
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M̃
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]
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[
M̃

(D)
‖

]

Figure 6. Real (left panel) and imaginary (right panel) part of the Delbrück

amplitude (8) for the scattering of 2.754 MeV photons by bare plutonium nuclei. The

calculations were done for radiation that is linearly polarized within the scattering

plane and by summing over the residue of the poles in Eq. (9) up to n = 7 (blue

dashed line), n = 13 (red dotted line) and n = 19 (black solid line). Results are given

in units (αZ)2r0, where r0 = 2.818 fm is the classical electron radius.

Whittaker functions in Eq. (12), can be represented as

1F1(a; b; z) =
∞∑

n=0

(a)nz
n

(b)nn!
. (16)

The summation in Eq. (16) runs up to infinity and suffers from severe cancellation

problems. Similar problems arise for the sum over the weighted incomplete gamma

functions shown in Appendix A. Furthermore, the subtraction of the free-loop

contribution in Eq. (8) can also cancel many additional digits of accuracy. Therefore,

performing computations using the standard double precision arithmetics would lead

to the loss of all significant digits in the final Delbrück amplitudes. To overcome this

problem, we use arbitrary precision ball arithmetics as implemented in the Arb C library,

which is a form of interval arithmetic and, hence, automatically gives rigorous bounds

for all rounding errors [27]. Computations are simplified by using symmetry properties

to transform the functions to numerically more favourable parameter regimes. For

example, for the confluent hypergeometric function, Kummer’s transformation

1F1(a, b; z) = ez1F1(b− a, b;−z) , (17)

is employed to avoid calculations with negative arguments which are more susceptible

to cancellations errors. We usually use around 25 bytes of precision for the real and

complex part of all variables in our calculations and re-evaluate the special functions

with a higher precision if the rounding errors get too large.

Despite all analytical and numerical methods introduced in this and the previous

sections, the calculation of Delbrück amplitudes for photon energies above the pair
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creation threshold requires dramatically more computer time compared to the below

threshold case. This is due to the necessity to calculate the radial integrals (12) close to

the edges of the branch cuts at z′ − ω
2
= ±1 and z′ + ω

2
= ±1, where the integrand is a

fast oscillating function that converges particularly slow. To speed up the calculations,

we use a hybrid parallelization scheme and calculate the radial integrals with multiple

threads using the C library pthread. Moreover, we use MPI to distribute the radial

integrals for different energies z′ over different nodes of the PTB high perfomance

cluster [28]. Using this method, we can calculate one full set of amplitudes including all

scattering angles and polarization states in about one week using around 200 threads.

4. Numerical Results

Above we have discussed the theoretical and computational details of calculating

Delbrück scattering amplitudes for photon energies above the e+e− pair production

threshold. To illustrate the application of our method, we will present numerical results

for the scattering of 2.754 MeV photons off bare zinc, cerium and lead ions. The interest

to this energy and nuclear charge range arises from a series of experiments in which

gamma rays, emitted from radioactive sources, were elastically scattered by atomic

targets [4, 10–13]. In these experiments, the scattering cross section was measured for

a wide range of emission angles θ of the final-state photon. To investigate such an

angle-differential cross section, one needs to know the real and imaginary parts of the

Delbrück amplitude as a function of θ and for different polarizations of the scattered

photons. In Fig. 7, we present M̃
(D)
∥ (θ) (black solid line) and M̃

(D)
⊥ (θ) (red dashed line),

which describe the cases where the incoming and outgoing photons are linearly polarized

either within or perpendicular to the scattering plane spanned by wave vectors k1 and

k2. As known from symmetry considerations, these two independent amplitudes are

sufficient to predict all observables for the scattering of light off a spherically symmetric

system [24, 30].

In Fig. 7, moreover, we compare our numerical results with the predictions of the

lowest-order Born approximation (diamonds), which is described by the second Feynman

diagram on the right-hand side of Fig. 2 and is of the order (αZ)2. By comparing all-

order and Born calculations, we can investigate the role of the Coulomb corrections,

the first of which is displayed by the Feynman diagram in the second line of Fig. 2. As

seen from the left column of Fig. 7, the results for the all-order calculations match the

predictions by the lowest-order Born approximation in the low-Z regime, i.e. for the

Zn30+ ion. This is well expected as the higher-order Coulomb corrections are negligible

if αZ is small. These corrections, however, rapidly grow with increase of the nuclear

charge as (αZ)4 in the leading order. As seen from the middle and right panels, the

Coulomb corrections become visible for medium- and high-Z ions leading to a slight

reduction of the real part of the Delbrück amplitude and a strong enhancement of its

imaginary part. For θ = 45◦, for example, Im[M̃
(D)
⊥ ] is enhanced by a factor of 1.8 and

2.5 for the scattering off bare cerium and lead ions, respectively.
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Figure 7. Real (upper panels) and imaginary (lower panels) parts of the Delbrück

amplitude (8) for the scattering of 2.754 MeV photons by bare Zn30+ (left panels),

Ce58+ (middle panels) and Pb82+ (right panels) ions. For each scenario, calculations

have been performed for incoming/outgoing photons that are linearly polarized within

(black solid line) or perpendicular (red dashed line) to the scattering plane. Results

are given in units (αZ)2r0, where r0 = 2.818 fm is the classical electron radius.

To better understand the nuclear charge and angular behaviour of the Coulomb

corrections, we display in Fig. 8 the difference between the all-order and the lowest-

order Born calculations for the scattering off bare cerium, lead and plutonium ions. The

results for zinc are not presented here since the Coulomb corrections are very small for

the low-Z regime and, for this reason, their accurate evaluation is very cumbersome and

requires a huge computation time. As seen from the figure, the higher-order corrections

roughly scale as (αZ)4 which is well expected since the first term beyond the lowest-

order Born approximation obeys this scaling behaviour, see Fig. 2. However, one can also

observe a slight difference between the scaled Coulomb corrections for various elements

that originates from even higher-order contributions of the order (αZ)6 and beyond. As

seen from Fig. 8, these contributions lead to a remarkable enhancement of the absolute

value of the real part of the Coulomb corrections but only slightly affects the imaginary

part of M̃ (D).

5. Conclusion

In conclusion, we have presented a theoretical method for accurate and numerically

stable calculations of Delbrück scattering amplitudes for photon energies above the

electron-positron pair production threshold. This method takes into account the

interaction of the virtual e+e− pair with the Coulomb field of a nucleus to all orders in
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Figure 8. Real (upper panels) and imaginary (lower panels) parts of the Coulomb

corrections to the Delbrück amplitude (8) for the scattering of 2.754 MeV photons by

bare Ce58+ (left panels), Pb82+ (middle panels) and Pu94+ (right panels) ions. For

each scenario, calculations have been performed for incoming/outgoing photons that

are linearly polarized within (black solid line) or perpendicular (red dashed line) to

the scattering plane. Results are given in units (αZ)4r0, where r0 = 2.818 fm is the

classical electron radius.

the interaction strength parameter αZ. In order to perform such an all-order analysis,

we made use of the relativistic Coulomb Green’s function approach. The evaluation of

the resulting amplitude requires performing numerical integrations over the energy and

radial arguments of the Green functions which is a rather demanding task. We carry

out the integration over the loop energy by using a modified Wick rotated integration

contour and improve the numerical stability of our approach by solving the integrals

over the radial vertex coordinates analytically in the asymptotic regime.

For the illustration of the use of the proposed method, detailed calculations for the

scattering of 2.754 MeV photons off bare zinc, cerium, lead and plutonium ions were

performed. In these calculations, we paid special attention to the role of the Coulomb

corrections to the scattering amplitude beyond the first-order Born approximation. The

Coulomb corrections, whose leading order is (αZ)4, were found to affect mainly the

imaginary part of the Delbrück amplitude. In particular, Im[M̃ (D)] can be enhanced by

almost a factor of three in the high-Z regime. Our calculations clearly demonstrate that

the accurate treatment of the Coulomb corrections to Delbrück scattering are strongly

demanded for the guidance and planning of future gamma-ray scattering experiments

as planned using synchrotron facilities and radiative sources.
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Appendix A. Analytical solution of the radial integrals

In analogy to Ref. [22], we split the integral in Eq. (12) into parts that are close and far

away from the origin and insert the asymptotic expansion of the Whittaker functions in

the outer part. The expression that needs to be solved analytically reads

∫ ∞

R1

dr1
r1

Wν′+
p1
2
,λ′(2c′r1)jL1(ωr1)Wν+

p2
2
,λ(2cr1)

×
[
C+
∫ r1

R2

dr2
r2

Mν′+
p3
2
,λ′(2c′r2)jL2(ωr2)Mν+

p4
2
,λ(2cr2)

]

→ (2c′)ν
′+p1/2(2c)ν+p2/2

{
I× C +

4∑

j=1

αj [IIIj − I× IIj]

}
,

(A.1)

where

α1 =
Γ(1 + 2λ)Γ(1 + 2λ′)(2c′)−ν′−p3/2(2c)−ν−p4/2

Γ(1
2
+ λ− ν − p4

2
)Γ(1

2
+ λ′ − ν ′ − p3

2
)

α2 =
Γ(1 + 2λ)Γ(1 + 2λ′)(2c′)ν

′+p3/2(2c)ν+p4/2

Γ(1
2
+ λ+ ν + p4

2
)Γ(1

2
+ λ′ + ν ′ + p3

2
)

eq
′( 1

2
+λ′−ν′− p3

2
)πi+q( 1

2
+λ−ν− p4

2
)πi

α3 =
Γ(1 + 2λ)Γ(1 + 2λ′)(2c′)−ν′−p3/2(2c)ν+p4/2

Γ(1
2
+ λ+ ν + p4

2
)Γ(1

2
+ λ′ − ν ′ − p3

2
)

eq(
1
2
+λ−ν− p4

2
)πi

α4 =
Γ(1 + 2λ)Γ(1 + 2λ′)(2c′)ν

′+p3/2(2c)−ν−p4/2

Γ(1
2
+ λ′ + ν ′ + p3

2
)Γ(1

2
+ λ− ν − p4

2
)

eq
′( 1

2
+λ′−ν′− p3

2
)πi

(A.2)
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I =
∞∑

s′W ,sW=0

(−2c′)−s′WuW (s′W , ν ′ + p1
2
, λ′)(−2c)−sWuW (sW , ν + p2

2
, λ)

×
∫ ∞

R1

dr1 e−(c+c′)r1r
−1+ν′+ν+(p1+p2)/2−s′W−sW
1 jL1(ωr1) ,

IIj =
∞∑

s′M ,sM=0

β′
jβj

[ ∫
dr2 e(γjc+γ′

jc
′)r2r

−1−γ′
jν

′−γjν−(γ′
jp3+γjp4)/2−s′M−sM

2 jL2(ωr2)

]∣∣∣∣∣
r2=R2

,

IIIj =
∞∑

s′W ,sW ,s′M ,sM=0

(−2c′)−s′WuW (s′W , ν ′ + p1
2
, λ′)(−2c)−sWuW (sW , ν + p2

2
, λ)β′

jβj

×
∫ ∞

R1

dr1 e−(c+c′)r1r
−1+ν′+ν+(p1+p2)/2−s′W−sW
1 jL1(ωr1)

×
[ ∫

dr2 e(γjc+γ′
jc

′)r2r
−1−γ′

jν
′−γjν−(γ′

jp3+γjp4)/2−s′M−sM
2 jL2(ωr2)

]∣∣∣∣∣
r2=r1

,

(A.3)

β′
1 = (2c′)−s′MuM(s′M , ν ′ + p3

2
, λ′), β1 = (2c)−sMuM(sM , ν + p4

2
, λ) ,

β′
2 = (−2c′)−s′M ũM(s′M , ν ′ + p3

2
, λ′), β2 = (−2c)−sM ũM(sM , ν + p4

2
, λ) ,

β′
3 = (2c′)−s′MuM(s′M , ν ′ + p3

2
, λ′), β3 = (−2c)−sM ũM(sM , ν + p4

2
, λ) ,

β′
4 = (−2c′)−s′M ũM(s′M , ν ′ + p3

2
, λ′), β4 = (2c)−sMuM(sM , ν + p4

2
, λ) ,

(A.4)

γ′
1 = +1, γ1 = +1 ,

γ′
2 = −1, γ2 = −1 ,

γ′
3 = +1, γ3 = −1 ,

γ′
4 = −1, γ4 = +1 ,

(A.5)

and

C =

∫ R2

0

dr2
r2

Mν′+
p3
2
,λ′(2c′r2)jL2(ωr2)Mν+

p4
2
,λ(2cr2) . (A.6)

Solving the integrals in Eq. (A.3) is completely analogous to the case where just the

first term of the asymptotic expansion of the Whittaker function contributes. Following

the same steps as in Ref. [22], we obtain for the integral that occurs in IIIj
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∫ ∞

R1

dr1 e−(c+c′)r1r
−1+ν′+ν+(p1+p2)/2−s′W−sW
1 jL1(ωr1)

×
[ ∫

dr2 e(γjc+γ′
jc

′)r2r
−1−γ′

jν
′−γjν−(γ′

jp3+γjp4)/2−s′M−sM
2 jL2(ωr2)

]∣∣∣∣∣
r2=r1

=

L1∑

m1=0

L2∑

m2=0

(L1 +m1)!

m1!(L1 −m1)!

(L2 +m2)!

m2!(L2 −m2)!
iL1+L2+2−m1−m2(2ω)−m1−m2−2

× [(−1)L1+L2+2−m1−m2Nj,++ + (−1)L1+1−m1Nj,+− + (−1)L2+1−m2Nj,−+ +Nj,−−] ,
(A.7)

where

Nj,++ =
∞∑

sG=0

(2 + γ′
jν

′ + γjν + (γ′
jp3 + γjp4)/2 +m2 + s′M + sM)sG

(c− γjc+ c′ − γ′
jc

′ − 2iω)(γjc+ γ′
jc

′ + iω)sG+1

× (c−γjc+c′−γ′
jc

′−2iω)4−(p1+p2−γ′
jp3−γjp4)/2−ν+γjν−ν′+γ′

jν
′+m1+m2+s′M+sM+s′W+sW+sG

× Γ(−3 + (p1 + p2 − γ′
jp3 + γjp4)/2 + ν − γjν + ν ′ − γ′

jν
′

−m1 −m2 − s′M − sM − s′W − sW − sG, (c− γjc+ c′ − γ′
jc

′ − 2iω)R1) ,

Nj,−− =
∞∑

sG=0

(2 + γ′
jν

′ + γjν + (γ′
jp3 + γjp4)/2 +m2 + s′M + sM)sG

(c− γjc+ c′ − γ′
jc

′ + 2iω)(γjc+ γ′
jc

′ − iω)sG+1

× (c−γjc+c′−γ′
jc

′+2iω)4−(p1+p2−γ′
jp3−γjp4)/2−ν+γjν−ν′+γ′

jν
′+m1+m2+s′M+sM+s′W+sW+sG

× Γ(−3 + (p1 + p2 − γ′
jp3 − γjp4)/2 + ν − γjν + ν ′ − γ′

jν
′

−m1 −m2 − s′M − sM − s′W − sW − sG, (c− γjc+ c′ − γ′
jc

′ + 2iω)R1) ,

Nj,+− =
∞∑

sG=0

(2 + γ′
jν

′ + γjν + (γ′
jp3 + γjp4)/2 +m2 + s′M + sM)sG

(c− γjc+ c′ − γ′
jc

′)(γjc+ γ′
jc

′ − iω)sG+1

× (c−γjc+c′−γ′
jc

′)4−(p1+p2−γ′
jp3−γjp4)/2−ν+γjν−ν′+γ′

jν
′+m1+m2+s′M+sM+s′W+sW+sG

× Γ(−3 + (p1 + p2 − γ′
jp3 − γjp4)/2 + ν − γjν + ν ′ − γ′

jν
′

−m1 −m2 − s′M − sM − s′W − sW − sG, (c− γjc+ c′ − γ′
jc

′)R1) ,

Nj,−+ =
∞∑

sG=0

(2 + γ′
jν

′ + γjν + (γ′
jp3 + γjp4)/2 +m2 + s′M + sM)sG

(c− γjc+ c′ − γ′
jc

′)(γjc+ γ′
jc

′ + iω)sG+1

× (c−γjc+c′−γ′
jc

′)4−(p1+p2−γ′
jp3−γjp4)/2−ν+γjν−ν′+γ′

jν
′+m1+m2+s′M+sM+s′W+sW+sG

× Γ(−3 + (p1 + p2 − γ′
jp3 − γjp4)/2 + ν − γjν + ν ′ − γ′

jν
′

−m1 −m2 − s′M − sM − s′W − sW − sG, (c− γjc+ c′ − γ′
jc

′)R1) .
(A.8)

The case j = 1 has to be handled separately for Nj,−+ and Nj,−+. However, exactly

these integrals were already calculated in Ref. [22]. The integrals that occur in I and

IIj are given by
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∫ ∞

R1

dr1 e−(c+c′)r1r
−1+ν′+ν+(p1+p2)/2−s′W−sW
1 jL1(ωr1)

=

L1∑

m1=0

(L1 +m1)!

m1!(L1 −m1)!
iL1+1−m1(2ω)−m1−1[(−1)L1+1−m1O+ +O−] ,

(A.9)

where

O± =
(c+ c′ ∓ iω)2−ν−ν′−(p1+p2)/2+m1+s′W+sW

c+ c′ ∓ iω

× Γ(−1 + ν ′ + ν + (p1 + p2)/2−m1 − s′W − sW ,+(c+ c′ ∓ iω)R1) ,

(A.10)

and

∫
dr2 e+(γjc+γ′

jc
′)r2 r

−1−γ′
jν

′−γjν−(γ′
jp3+γjp4)/2−s′M−sM

2 jL2(ωr2)
∣∣∣
r2=R2

=

L2∑

m2=0

(L2 +m2)!

m2!(L2 −m2)!
iL2+1−m2(2ω)−m2−1[(−1)L2+1−m2N+ +N−] ,

(A.11)

where

N± =
(−γjc− γ′

jc
′ ∓ iω)2+γjν+γ′

jν
′+(γ′

jp3+γjp4)/2+m2+s′M+sM

γjc+ γ′
jc

′ ± iω

× Γ(−1− γ′
jν

′ − γjν − (γ′
jp3 + γjp4)/2−m2 − s′M − sM ,−(γjc+ γ′

jc
′ ± iω)R2) ,

(A.12)

respectively.
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