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Given the rapidly growing scale and resource requirements of machine learning applications, the idea of
building more efficient learning machines much closer to the laws of physics is an attractive proposition. One
central question for identifying promising candidates for such neuromorphic platforms is whether not only infer-
ence but also training can exploit the physical dynamics. In this work, we show that it is possible to successfully
train a system of coupled phase oscillators—one of the most widely investigated nonlinear dynamical systems
with a multitude of physical implementations, comprising laser arrays, coupled mechanical limit cycles, super-
fluids, and exciton-polaritons. To this end, we apply the approach of equilibrium propagation, which permits to
extract training gradients via a physical realization of backpropagation, based only on local interactions. The
complex energy landscape of the XY/ Kuramoto model leads to multistability, and we show how to address this
challenge. Our study identifies coupled phase oscillators as a new general-purpose neuromorphic platform and
opens the door towards future experimental implementations.

I. INTRODUCTION

We are witnessing the widespread adoption of machine
learning in all branches of science and technology. At the
same time, it becomes clear that the energy costs for both
training and inference are exploding in an unsustainable way.
This is especially apparent for the most powerful recent in-
novations like large-language models and diffusion models
for image generation, which contain billions of parameters.
Even the impressive advances in deploying specialized hard-
ware like graphical processing units or tensor processing units
are not able to keep up with the rapidly rising resource require-
ments. This makes it all the more urgent to explore alternative
means for computation in this domain. The hope that such al-
ternatives exist rests on several observations. First, machine
learning is inherently stochastic and it therefore seems waste-
ful to run implementations on digital hardware that was orig-
inally conceived for implementing mathematical algorithms
where precise answers matter. In addition, one can exploit
the specific structure of machine learning problems to design
new hardware platforms that are no longer general purpose.
In particular, one can overcome the inefficient separation be-
tween processing and memory, the so-called von-Neumann
bottleneck. Third, many physical platforms naturally allow
for highly parallel processing.

These are the motivations for the rapidly growing field
of neuromorphic computing [1, 2], which explores a large
variety of different physical platforms, with the aim of de-
signing more energy-efficient parallel processing devices, op-
erating much closer to the underlying physics than a typi-
cal digital processor. Neuromorphic implementations do in-
clude alternative digital electronic platforms that overcome
the von-Neumann bottleneck, but there is even more funda-
mental research to be done in the domain of analog, more di-
rectly physics-based approaches. These range from solid-state
physics (building on components like memristors [3], Joseph-
son junctions [4, 5], or spin oscillators [6]) and optics [7–12]

(free space or integrated photonics) to other domains, even
including soft-matter physics (e.g. [13–16]).
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FIG. 1. Equilibrium propagation for coupled phase oscillators.
(a) We train a neuromorphic system of coupled phase oscillators
(units), here represented by blue circles. In the free phase (left), the
input units (orange) are fixed and the system relaxes to its equilib-
rium via the standard overdamped dynamics of coupled phase os-
cillators. Output units are highlighted by a blue rim. In the nudge
phase (right), the output units are forced weakly towards the de-
sired target output (red arrows) and the the system evolves to a new,
slightly shifted equilibrium. The difference between these two equi-
libria allows to infer the gradients needed to train the system, accord-
ing to the fundamental rule of equilibrium propagation, see Eq. (7).
(b) Schematic representation of the evolution in the space of oscil-
lator phases ϕj , with open circles depicting initial conditions and
full circles depicting equilibria (ϕτ is the desired target configura-
tion). (c) Possible experimental platforms that can give rise to the dy-
namics of the XY/ Kuramoto model of coupled phase oscillators in-
clude superconducting circuits, nonlinear electrical circuits, exciton-
polariton systems, mechanical-oscillator limit cycles, coupled laser
arrays and superfluids.
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A neuromorphic platform usually has to exhibit nonlinear
dynamics to be powerful enough in terms of its expressivity,
i.e., its ability to approximate arbitrary input-output relations.
Arguably one of the strongest generic classical nonlinearities
is found in phase oscillators. These are systems where a com-
bination of energy pump and nonlinearity establishes a limit
cycle, with the phase of the oscillation as the resulting contin-
uous degree of freedom. The laser is the most prominent ex-
ample. When several such phase oscillators are coupled, they
exhibit the dynamics of phase locking and synchronization.
Theoretically, these systems are described by the so-called
Kuramoto model [17], which is equivalent to the relaxation
dynamics of an XY model [18], one of the most widely stud-
ied models in statistical physics. Coupled phase oscillators
have been explored in a variety of platforms, including laser
arrays [19, 20], coupled mechanical limit cycles in optome-
chanical [21, 22] and nano-electromechanical [23] systems,
cold atoms [24], Josephson arrays in superconducting circuits
[25], spin oscillators [26, 27], and exciton-polaritons [28–30].

In this article, we explore how a system of coupled phase
oscillators can serve as a neuromorphic platform. Most impor-
tantly, we will investigate how it can be trained in a physics-
based approach.

An array of coupled phase oscillators was first considered
as a neuromorphic platform already in [31, 32]. In that case,
the system was proposed as an associative Hopfield memory,
where couplings can be determined in a single step based on
a simple Hebbian rule. In contrast, in our case, we will be
interested in the more general setting of supervised learning,
where the goal is to learn a prescribed input-output relation,
for regression or classification tasks – the most wide-spread
application in machine learning. That such a goal might be
achievable is indicated by the results in [33], where certain
small architectures of coupled phase oscillators were hand-
crafted to address simple tasks. More generally, coupled os-
cillators have been proposed in various forms as computing
platforms (see the review in [34]), and the training of cou-
pled digital oscillators has also been investigated recently in
simulations [35]. From the neuromorphic perspective, oscil-
lators seem like a natural choice for machine learning, since
the brain is based on spiking neurons that can also show be-
haviour such as synchronization.

One particular challenge in neuromorphic physical plat-
forms is the question of efficient training. The conceptually
easiest, general approach that can be adopted in every case is
the parameter shift method, where internal trainable param-
eters of the physical device are adjusted in a feedback loop
based on the distance to the desired output (e.g. [36, 37] and
many others). However, this scales very unfavourably, requir-
ing for a single training step a number of evaluations rising
linearly in the number of parameters. Another popular ap-
proach is reservoir computing [38–41], where the fixed (non-
adjustable) nonlinear dynamics of a system is used to map the
input to a higher-dimensional space which is then turned into
the output via a trainable simple (possibly even linear) neural
network, similar to kernel methods in machine learning. This
has been very successful, but still relies on a digital neural
network. One major goal in the field is to find ways to impli-

ment variants of backpropagation for neuromorphic devices,
since this efficient method to find the gradients needed for
training is the cornerstone of virtually all machine learning.
One possibility consists in doing this via simulations (“digital
twins”). This method suffers from the lower speed of simu-
lations and the potential inaccuracy of the adopted model, al-
though the latter constraint has recently been overcome via an
ingenious hybrid method [42], where backpropagation hap-
pens in the simulation but the forward pass is performed on
the real device. Physical implementations of backpropaga-
tion, exploiting the physical dynamics itself, are a concep-
tually very attractive goal. They have been occasionally put
forward starting even in the 80s. The first ideas involved ap-
proaches that were not general purpose but relied on specific
properties of specially engineered platforms, especially in op-
tics [7, 43–45]. A more general type of physical backprop-
agation for an integrated-photonics platform was introduced
and eventually implemented recently in [12, 46]. In certain
cases, gradients can also be extracted directly from scattering
experiments, as shown for the recently introduced nonlinear
neuromorphic processing in linear wave scattering platforms
[47]. However, only two generic methods exist for physi-
cally performing backpropagation in a wide class of systems.
One of them is Hamiltonian Echo Backpropagation, which re-
lies on the Hamiltonian dynamics of arbitrary time-reversal-
invariant systems [48]. The other is Equilibrium Propagation
[49], which encompasses arbitrary energy-based systems that
relax to some equilibrium. Since coupled phase oscillators
display relaxation-type phase dynamics, in this work we will
employ Equilibrium Propagation.

We start by explaining how Equilibrium Propagation (EP)
can be applied to systems of coupled phase oscillators. We
then explore in numerical experiments the EP-based training
of networks of oscillators in two illustrative examples (XOR
and handwritten-digit recognition). We specifically point out
the effects of multistability on training and how to account for
them. Our results establish coupled phase oscillators as a vi-
able neuromorphic platform for supervised training, although
the choice of network architecture plays an important role.

II. THE XY MODEL AND EQUILIBRIUM PROPAGATION

In this section, we first describe our model and then briefly
review the theory of EP and how to apply it in our setting. We
address the problem of multistability, which arises especially
in the very nonconvex energy landscape of coupled oscilla-
tors.

A. XY model of coupled phase oscillators

The dynamics of coupled phase oscillators can be described
by some variant of the Kuramoto model, and this can be un-
derstood (in many cases) as overdamped relaxation dynamics
in the energy landscape of an XY model. An XY model con-
sists of interacting classical 2D spins (in our case, the phase
oscillators), which are described by a set of phase angles ϕi.
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Anticipating the neuromorphic application, we refer to the
coupling between the spins as weights and assume that all
weights are trainable. We adopt the following energy function

E(ϕ;W,h, ψ) = −1

2

∑
ij

Wij cos(ϕi−ϕj)−
∑
i

hi cos(ϕi−ψi).

(1)
The first term describes coupling between arbitrary oscilla-
tors, with coupling constants (weights) Wij . The second term
describes a tendency towards phase locking to some external
oscillatory drives, where hi is set by the amplitude of the re-
spective drive and ψi is the phase of the drive. In the machine-
learning context, these could be understood in analogy to the
bias terms of a neural network. Beyond that, we remark that,
in the synchronization context, one would normally expect to
have another set of terms, of the type Ωiϕi. This would de-
note the fact that different oscillators are running at different
intrinsic frequencies. When these terms are large, a transition
towards desynchronization will take place. However, for the
neuromorphic application we are interested in, we find that
such terms – and the associated tendency towards desynchro-
nization – are not helpful, as they may lead to the absence of
stable fixed points. We therefore envisage a situation where
all the oscillators’ intrinsic frequencies are the same. Small
deviations from this ideal scenario can be tolerated, since the
coupling terms would help to generate stable fixed points.

In this article, we focus on the deterministic dynamics of
the system. We obtain the equilibrium by solving the follow-
ing ODE, assuming that the phase angles are driven by the
negative energy gradient

ϕ̇i = − ∂E

∂ϕi
(ϕ; θ)

= −
∑
j

Wij sin(ϕi − ϕj)− hi sin(ϕi − ψi).
(2)

It is obvious from this equation that we took E (as well as
the couplings and the biases) to have the dimensions of a fre-
quency, to avoid having to introduce a separate mobility con-
stant in front of the gradient. These are the equations of mo-
tion for a standard Kuramoto model [17] modified by the bias
term

∑
i hi cos(ϕi − ψi). In this sense, Eq. (2) describes the

dynamics of a perfectly synchronized network of oscillators
with the same intrinsic frequency. Here and in the following,
θ denotes the set of all the trainable parameters—in our case,
θ = (W,h, ψ). As explained in the introduction, such a sys-
tem can be realized in many physical platforms.

B. Equilibrium Propagation

EP was introduced in [49, 50] as a way to perform physical
backpropagation, i.e., to extract training gradients based on
the physical dynamics of a system undergoing relaxation to-
wards a minimum-energy state. In a nutshell, it involves relax-
ing the system under two different choices of boundary con-
ditions (“free” and “nudge”), comparing the resulting states
locally and performing parameter updates via some feedback

mechanism (see below). As such, EP stands in the tradition
of contrastive learning approaches which have been a well-
known part of machine learning since the 80s [51], but im-
portantly EP offers an implementation of those general math-
ematical ideas in terms of local physical interactions. In re-
cent years, EP has been explored further in various directions.
A variant termed “coupled learning” has been introduced [52]
(see [53] for a very useful comparison of the different versions
of such energy-based training approaches). EP has been pro-
posed for the training of nonlinear resistor networks [54], and
it has also been extended to deal with spiking networks [55].
The effects of the EP/ coupled-learning training dynamics on
the response behaviour of a neuromorphic system was ana-
lyzed carefully in [56]. In addition, for EP, it was realized
that it is possible to implement continual parameter updates
already during the second phase of the equilibration dynam-
ics, leading to an approach that is local in time [57]. Going
an important step further, recently, a dynamical version of EP
has been proposed [58] (see also [59]), where in addition to
gradient extraction via physical dynamics there is also a way
to perform the parameter update itself via physical dynamics,
rather than via measurement and feedback. This development
can be seen in the conceptual tradition of Hamiltonian Echo
Backpropagation [48], where a general way to perform train-
ing updates via physical dynamics in neuromorphic systems
was first introduced.

On the experimental side, EP and its variants have been im-
plemented so far in only a few devices—almost all of them
electronic systems. One set of demonstrations investigated
linear and nonlinear resistor networks in a platform using two
copies of the network working in tandem, trained using cou-
pled learning [60–63]. An experimental application to elastic
networks was recently presented in [16]. Furthermore, a clas-
sical Ising model has been trained using the ideas of EP and
making use of a quantum annealer to efficiently reach equilib-
rium [64]. Probably the most technically advanced platform
consists of a memristor crossbar array trained using a con-
trastive learning approach closely related to EP [65, 66].

In general, EP is applied to energy-based models, i.e., sys-
tems with an energy function. We will now describe its work-
ings, already keeping in mind the system of coupled phase os-
cillators. During evaluation (inference), the input is injected
by fixing the phases of some selected oscillators to the compo-
nents of the input vector, e.g., representing the color values of
a picture. This could as well be done by (sufficiently strong)
external driving, which will generate the same tendency to-
wards phase locking already present in the bias terms. The
system then equilibrates via its natural dynamics, i.e., it re-
laxes to the lowest-energy state. The output is finally read
off by observing a selected set of oscillators and taking their
phases to represent the output vector.

We call the vector of input phases ϕin, while the phase an-
gles of the output units and the hidden units are denoted as
ϕout and ϕhidden, respectively. The energy function can then
be written as E(ϕin, ϕhidden, ϕout; θ). In the context of EP,
we call this the internal energy.

During training, we want to measure the deviation of the
actual output to the desired output (the target). In the con-
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text of phase oscillators, a simple possibility is the following
distance function. It simply compares the normalized spin
vectors s, leading to a cosine-similarity measure, with the de-
sired output values (target) denoted as ϕτi :

D(ϕ, ϕτ ) ≡
∑
i∈O

1

2
|si − sτi |2 =

∑
i∈O

1− cos(ϕi − ϕτi ). (3)

Training via EP requires the system to have another weak con-
tribution to the energy function which can be switched on
when needed. This component describes the interaction be-
tween the output and the desired target. It plays the role of
a cost function in supervised learning and is called external
energy. The most straightforward ansatz for the cost function
would be to employ the distance function introduced above.
However, we found that this generates problems, since even
incorrect solutions (for which phases differ by π) are fixed
points—albeit unstable. Empirically, the following cost func-
tion works much better, as it eliminates these undesired un-
stable fixed points and quickly drives the system away from
incorrect solutions

C(ϕ, ϕτ ) =
∑

i∈Sout

− ln(1 + cos(ϕi − ϕτi )). (4)

We define Sin, Sh and Sout as the sets of input, hidden and
output units, respectively. Although the logarithm appearing
here was introduced empirically, it can be motivated by the
connection to the categorical cross-entropy (Kullback-Leibler
divergence) found for classification tasks. Interestingly, the
cost function adopted here can also be related to fidelities oc-
curing when comparing different quantum states, despite the
classical setting we are working in, as shown in Appendix A.

Once a cost function has been assigned, EP introduces a
small parameter β which quantifies the strength of the inter-
action between the output units and the target. This leads to
the total energy of the system

F (ϕ, θ, β) = E(ϕin, ϕhidden, ϕout; θ) + βC(ϕout, ϕ
τ ). (5)

The process of EP [49] contains the following steps:

1. Initialize the system such that the input units are fixed
to the provided input values.

2. Set β = 0 and obtain a stable fixed point/ equilibrium
by following the relaxation dynamics

ϕ̇i = − ∂F

∂ϕi
(ϕ, θ, β = 0) (6)

towards the fixed point. This state is called the free
equilibrium and this step is called the free phase of
EP.

3. Switch on a small value of β and again follow the dy-
namics towards a new fixed point. This state is called
nudge equilibrium and this step is called the nudge
phase of EP.

4. Repeat the process 1-3 for all the input data from the
given batch of training samples. The central insight of
EP [49] is that the gradient of the cost function with
respect to the trainable parameters can be approximated
as

∂C

∂θα
=

d

dβ

(
∂F

∂θα

)
β=0

≈ 1

β

(〈
∂E

∂θα

〉nudge

ϕin

−
〈
∂E

∂θα

〉free

ϕin

)
.

(7)

in which, in our case, ∂E
∂θα

are given by the following
analytical expressions

∂E

∂Wij
= − cos(ϕi − ϕj)

∂E

∂hi
= − cos(ϕi − ψi)

∂E

∂ψi
= −hi sin(ϕi − ψi).

(8)

It has been discovered that EP gradients may benefit from
nudging the system away from the desired target state, i.e.
β < 0, or even estimating the gradient in a symmetric way
from positive and negative nudging [67]. However, it was not
possible to use this trick in our work due to the fact that our
cost function can become large quickly when nudged in the
’wrong’ direction. We implement the dynamics of the equili-
bration numberically using the 4th order Runge-Kutta method
with adaptive step size, implemented in python/ jax on a GPU.

ϕτ ϕτ

1
2

1
2

2’

1’

ϕ1

ϕ2ϕ2

ϕ1

(a) (b)

FIG. 2. The problem of multi-stability. (a) A case with only one
stable fixed point. The circles refer to the initial states and the ar-
rows refer to the relaxation to the stable fixed points (equilibria; solid
dots). The arrows with dashed lines refer the evolution of the equi-
libria during the training. The dark red dot refers to the target output,
assuming that the two phase coordinates shown here both refer to
output units, i.e., hidden phases and input phases are suppressed in
this depiction. Different colors refer to different iterations during the
training. (b) Multistability. Different equilibria can be reached at the
same training iteration (same color), starting from different random
initial conditions.

As we focus on the deterministic dynamics of a system with
a complicated non-convex energy landscape, a discussion of
multistability is inevitable. Apparently such a discussion was
not needed in earlier applications of EP, due to the simpler
nature of the energy landscape encountered there (e.g. [54]).
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An XY model with random couplings can be viewed as a spin
glass, for which [68] shows that the number of fixed points
grows exponentially with the size of the network. Although
only a small fraction of these fixed points are stable, the effect
of possible multistability in this energy landscape cannot be
neglected, as it can undermine the training if it is not properly
handled. We emphasize that on top of this multistability of
the energy landscape (peculiar to energy-based models) which
hinders equilibration for each training step, there can also be
multistability in the cost function training landscape (similar
to neural networks), which is a distinct aspect.

The effect of multi-stability is shown schematically in
Fig. 2. In panel (a), we assume that the system has only
one stable fixed point. The fixed point then moves along the
dashed arrows and approaches the desired result (the target)
by adjusting the trainable parameters with EP. However, if
there are multiple stable fixed points, the situation becomes
more complicated, as shown in panel (b). Depending on the
arbitrarily chosen initial phase configuration one may end up
in different fixed points. Depending on which training updates
are performed in which fixed points, this may even result in
situations where some of the fixed points move away from the
target during training, at least temporarily. Sometimes there
are even more drastic cases as a stable fixed point may be-
come unstable after the parameters have been adjusted. These
cases can reduce the efficiency of the training.

In principle, the multistability problem can be solved by
introducing noise into the system and rewriting Eq. (7) with
a Boltzmann distribution (the theory is briefly discussed in
Ref. [50]). However, we note here that the challenge of mul-
tistability can also be solved within the framework of deter-
ministic dynamics. We propose to randomly initialize the hid-
den (and output) units for each new training step. The system
will correspondingly end up in different fixed points, depend-
ing on the location of the randomly selected initial conditions
with respect to the basins of attraction of those fixed points.
Then, in the spirit of Stochastic Gradient Descent (SGD), we
average the learning gradient over both the random initial con-
figurations and the training samples. Based on the success of
SGD in other contexts, we expect that all stable fixed points
can be trained simultaneously (and our numerical experiments
confirm this).

In practice, in each iteration we randomly initialize the sys-
tem many times and average the approximate gradient given
by EP over both the training sample batch and the initial states.
We denote the number of random initial values by Minit and
the size of the training batch by Mdata, and we update the
trainable parameters accordingly

δθα =− η

β

1

Mdata

Mdata∑
i=1

1

Minit

Minit∑
j=1(

∂E

∂θα
(ϕi,j,nudge; θ)− ∂E

∂θα
(ϕi,j,free; θ)

)
.

(9)

Here ϕi,j,nudge/free refers to the nudge/ free equilibrium for
the ith input attained from the jth initial state, and η refers to
the learning rate.

III. RESULTS

A. Learning the XOR function

We first test EP-based training of a coupled-oscillator net-
work for the simple case of the XOR function. For artificial
neural networks, the XOR problem is historically important,
because it was the first task to require at least one hidden layer.
Due to its simplicity, the XOR task allows us to investigate
the dynamical properties of the network in great detail. We
are able to explore the effects of the network size, the evo-
lution of equilibria when the network is multi-stable, and the
influence of random initial configurations.

We encode “True” and “False” with ϕ = π/2 and ϕ =
−π/2, respectively. For XOR, if the two inputs are same, the
output unit should give us a “False” and vice versa.

At the beginning of training, the weights are initialized in-
dependently according to a standard Gaussian distribution,
while the strength and the angle of the bias are initialized
according to the uniform distribution over [−0.5, 0.5) and
[−π, π), respectively. During the training, we repeatedly up-
date the parameters according to Eq. (9). In each iteration,
the system is exposed to all 4 input-output pairs (Mdata = 4).
For each such pair, we repeat the following process for Minit

times: the units of the network are initialized so that the phase
angles of the hidden and output units independently follow the
uniform distribution over [−π, π); then we solve Eq. (2) for a
fixed time interval T which is sufficiently long to ensure that
the coupled phase oscillators approximately reach their equi-
librium; finally, we calculate the average parameter gradient
and update the trainable parameters using Eq. (9). In this sec-
tion, we fix T = 100 and η = 0.1.

All our numerical results for the XOR task are collected
in Fig. 3. We first set the number of initial configurations to
Minit = 1 and train a 5-unit XY network with all-to-all con-
nectivity for 1000 iterations. In each iteration, the mean dis-
tance ⟨D⟩ averaged over the 4 input-output pairs (computed
with Eq. (3)) is recorded. In addition, we perform averages
over different training runs with random initial weight config-
urations. The average distance is shown in panel (a) of Fig.3.
The white line depicts the average mean distance, which we
define to be ⟨D⟩ = 1

Ntrain

∑Ntrain

i=1 ⟨D(ϕ, ϕτ )⟩, where the av-
erage is taken over training runs. We find that the distance
almost always converges to 0, which proves the ability of XY
networks to learn XOR via EP training.

The effect of sizeN on learning speed is shown in panel (b).
For different N , we initialize and train an all-to-all network
100 times and plot the evolution of the mean distance func-
tion ⟨D⟩. The results in (b) show that an increasing size ini-
tially accelerates the learning process. The speed of learning
reaches its maximum at a certain number of phase oscillators
and then decreases. The initial increase in speed can be ex-
plained by the increasing number of parameters, which makes
the network more flexible. However, when the size becomes
excessively large, the large number of parameters and multi-
ple stable fixed points (all of which have to be trained) will
reduce the efficiency of the training. According to the result
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FIG. 3. Results of training an XY model on the XOR task.
(a) Statistics of the training progress of 5-unit XY networks of all-
to-all connectivity (the structure is shown in the upper right corner).
Evolution of mean distance function ⟨D⟩ (white line, average over
1000 training runs). The density plot indicates the histogram of
log10 D over these runs. (b)The dependence of the learning speed
on the size N . For a given N , we randomly initialize the trainable
parameters and train them for 1000 iterations, repeating this whole
process 100 times. The curves show the evolution of ⟨D⟩ during
the training. (c) Evolution of equilibria during a single training run.
For each of the four input configurations, the possible stable fixed
points at each training iteration are found by running the system with
random initialization for 100 times. For each of these fixed points
the state of the output unit (upper row) and one of the hidden units
(lower low) are recorded. Output units for all fixed points converge
to a unique, deterministic function of the input at the end of training.
(d) Dependency of learning speed on the number of random initial
configurations, Minit For each N and Minit we show the evolution
of ⟨D⟩ averaged over 100 training runs. (e) Upper panel: the learn-
ing speed of training measured by the average slope of the first 300
steps shown in (d) and its dependence on Minit. Lower panel: the
“physical training speed”, measured by the slope divided by Minit.

in (b), the training becomes slower again when the number of
units exceeds 8.

We now turn to a more detailed investigation of multistabil-
ity [panel (c) of Fig.3]. We train a network of 30 units with
2000 iterations and record the parameters for each iteration.
After training, for each iteration and each input-output pair,
we search for all the possible equilibria by randomly initializ-
ing and running the network 100 times. We then inspect the
phase angles for each of these equilibria. In the top row of
panel (c), we show the evolution of the set of phase angles for
an output unit. Importantly, training converges in the sense
that the output unit phase angle becomes a deterministic func-
tion of the input, with no remaining scatter. At the same time
however, multistability in the energy landscape remains. We
can see this by observing the evolution of one selected hidden
unit (bottom row), which shows scatter even after conclusion
of the training. Overall, we confirm that despite the persis-
tence of multistability, it is still possible to adjust all of the
equilibria simultaneously to perfectly attain the training ob-
jective.

Finally, we study the effect of the number of random initial
configurations, Minit, considered during each training itera-
tion. First, for a fixed number of units N and Minit, we train
an XY network with 100 different sets of initial trainable pa-
rameters and record the average mean distance function ⟨D⟩.
The results are shown in panels (d) and (e). From panel (d),
we observe that the learning speed increases with increasing
Minit and saturates at large Minit. The effect of Minit is not
obvious for networks of 5 units, as multi-stability is rare for
small networks.

Another observation is that the average mean distance func-
tion ⟨D⟩ always decays approximately exponentially in the
early stages of training. Therefore, we perform a linear regres-
sion to log ⟨D⟩ on the first 300 iterations and use the negative
slope to measure the speed of learning. The results are shown
in the upper graph of panel (e). An increase in the learning
speed and a saturation at large Minit are evident. However, a
larger Minit physically means more equilibration runs. This
results in larger time consumption in the physical world. To
take this into account, we divide the learning speed extracted
above by Minit and use this ratio to measure the physical
speed of learning (“normalized convergence speed” in the fig-
ure). The results are shown in the bottom graph. We observe
that the physical learning speed reaches its maximum at a rela-
tively small value ofMinit. This indicates that a small number
of different initial configurations can already sufficiently ac-
celerate the learning process in terms of reducing the physical
time consumption.

B. Handwritten-Digits Recognition

In the previous section we showed the ability of XY net-
works to learn the simple XOR task via EP. In this section,
we will analyse the performance on the recognition of written
digits, a more complex task which has long been considered a
benchmark for neural networks.

To keep the numerical effort in our simulations manageable,
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FIG. 4. Handwritten-digit recognition in a network of coupled
phase oscillators. (a): We consider both all-to-all and layered con-
nectivity networks, where the recognized digit is one-hot encoded in
the phase configuration of the 10 output units. (b): Training curves
for networks of different sizes with all-to-all connectivity and layer
structure. The sizes of the networks are selected such that the number
of trainable parameters for them are approximately the same (shown
in I) (d): Training evolution of confusion matrices, for different struc-
tures and different network sizes.

we use a scaled-down version of the MNIST dataset. Specif-
ically, we use the dataset provided by ScikitLearn which is
a copy of the test set for the Optical Recognition of Hand-
written Digits from the UCI ML hand-written digits datasets

[69]. It consists of 1797 8×8-pixel greyscale images of writ-
ten digits, approximately 180 for each. A sample figure is
shown in the left of panel (a) of Fig 4. The size of the data
set and the dimension of the pictures are all smaller than the
commonly used MNIST, which allows us to do training via
EP in smaller coupled-oscillator networks and test various ar-
chitectures more easily. The structure of the networks and the
results are shown in Fig 4.

As shown in Fig 4(a), we train XY networks with both all-
to-all connectivity and a layered structure. In each such net-
work, there are 64 input units and 10 output units. The in-
put data (image pixels) are linearly rescaled into the range
[−π/2, π/2]. As usual for classification tasks, the outputs
are interpreted as a probabilities, such that pi ∝ 1 + sinϕi,
as shown in the right side of panel (a), where pi denotes the
probability that “the input digit is i”. The inference result is
given by taking the index of the highest probability. We note
that in our setting these probabilities are not normalized, i.e.
they do not sum up to one. This is different from usual ar-
tificial neural networks, where one uses a softmax activation
function in the last layer to ensure normalization. The label
for each input image is encoded in a “one-hot” configuration,
giving a phase of π/2 at the output unit (phase oscillator) cor-
responding to the correct label of the digit seen in the image
and −π/2 otherwise. We use the same cost function as for the
XOR task.

For neural networks of large size, the influence of weight
initialization on training can be crucial[70]. In this section,
we initialize out networks as following:

1. For all-to-all networks, the weights are initialized ac-
cording to N (0, 1/

√
N), where N refers to a normal

Gaussian distribution andN is the total number of units
in the network. The strength of the initial bias field is set
to be 0 everywhere, while the initial bias directions are
randomly set according to a uniform distribution over
[−π, π].

2. For layered networks, the initial weights connecting the
ith and the i + 1th layers are initialized according to
N (0, 1/

√
Ni +Ni+1), whereNi andNi+1 are the size

of the ith and the i+1th layer. The biases are initialized
in the same way as for all-to-all networks.

In order to evaluate the effect of the architecture, we compare
the training process of all-to-all and layered XY networks with
a similar number of parameters. For an all-to-all network of
N units containing Nin input units and Nout output units, the
number of trainable parameters (weights, strength and direc-
tion of bias) is 1

2N(N − 1)− 1
2Nin(Nin − 1)+ 2(N −Nin).

For a network of layered structure, the number of trainable
parameters is

∑L−1
i=0 NiNi+1 + 2

∑L
i=1Ni, where L here de-

notes the depth of the network (number of layers). The focus
of our work is on the performance of all-to-all networks and
layered networks with one hidden layer. The sizes and param-
eters of the tested networks are displayed in Tab. I.

The results are shown in panels (b) and (c) of Fig. 4. The
data set is split into a training set and a test set. The training
set consists of the first 100 images for each of the 10 digits
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Layered All-to-All
Layer Structure # Parameters # Units # Parameters
64, 20, 10 1540 85 1596
64, 100, 10 7620 139 7725
64, 200, 10 15220 185 15246
64, 300, 10 22820 222 22831

TABLE I. Sizes and parameters of tested networks

(1000 images in total), while the test set consists of the next
70 images for each digit. All networks are trained for 1000
iterations. In each iteration, we randomly select 30 images
from the training set for each digit (so the total batch size is
300). We take the number of random initial phase configura-
tions for each sample, Minit, to be one. This can be justified
by our insights from the XOR task [panel (f) in Fig. 3] and the
fact that a large batch size, such as the one adopted here, auto-
matically leads to a variety of different initial configurations.
Every 5 iterations, we test the accuracy of the inference with
all the images in the test set.

The evolution of the test errors is shown in Fig. 4 (b) and
we list the best attained test accuracy for each architecture in
Tab. II of Appendix B in comparison to results we obtained
with artificial neural networks (ANNs) and linear classifiers.
Increasing the number of parameters (by increasing the num-
ber of hidden units) seems to improve the test accuracy for the
layer architecture although the accuracy again seems to drop
as we increase the number of hidden units from 200 to 300.
The best test accuracy we obtained with the layer architecture
(at 200 hidden units) was 94.1% which is above the accuracy
of 90.7% achieved by a linear classifier with the same number
of parameters but below the accuracy of 95.0% achieved by
an ANN with one hidden layer (see Appendix B for further de-
tails). In contrast, the performance of a network with all-to-all
connectivity remains approximately constant as we increase
the number of parameters with a slight drop as the number of
hidden units increases from 11 to 75. The best accuracy we
achieved with all-to-all connectivity was 93.3% with 11 hid-
den units. The comparable linear classifier achieves 90.4%
accuracy, while the ANN attains 94.3%. This indicates that
EP can be used successfully to train a network of coupled
phase oscillators to perform standard classification tasks. The
performance does not reach the state-of-the-art values of arti-
ficial neural networks, which have been highly optimized over
the past two decades for the MNIST task (reaching accura-
cies close to 100% on the larger 28 × 28 images) , but this
was to be expected – further optimization and evolution of the
neuromorphic platform (as well as the details of the training
procedure) would certainly yield improved accuracy. In addi-
tion, we recall that the motivation for adopting neuromorphic
platforms is to achieve gains in energy efficiency and other as-
pects like inference speed. Therefore, one may be willing to
pay the price of reduced accuracy in certain applications.

The influence of the network architecture on convergence
is also evident. For all-to-all networks, the curves depicting
the training evolution of the test error almost overlap for the
different choices of network size. In contrast, for layered net-
works, convergence speed increases significantly as the size

of the hidden layer increases. However, as the size of the hid-
den layer increases above 200, the speed of convergence tends
to saturate. This difference suggests that the speed of learn-
ing is more sensitive to the size of the networks when they are
layered.

Finally, we visualize the training evolution via the confu-
sion matrix, which measures the probability that a given true
digit is classified as one of the ten possible digits (correct clas-
sifications are on the diagonal). For different network sizes,
we plot the confusion matrix after 0, 10, 50, 100 and 1000
iterations during training. Comparing the results of the same
network architecture, we see a clear influence of size on the
learning speed for layered networks, which is negligible for
all-to-all networks. Comparing the the results for the a similar
number of trainable parameters, we find that the learning pro-
cess of layered networks is slower at smaller sizes, but faster
when the size is sufficiently large.

In terms of network architectures, it is a natural question to
ask whether a locally coupled network can also yield good
training performance. This is an important question, since
physical interactions are naturally local, so a neuromorphic
device based on such an architecture would require less physi-
cal resources. We have explored this question and investigated
nearest-neighbor-coupled square lattices of phase oscillators.
In that setting, there are various choices to be made, e.g. as to
how the input and output units are distributed over the lattice.
In any case, despite our best efforts, we could not make that
architecture train successfully on the MNIST task. Intuitively,
we believe this is due to the difficulty for the system to find
ways to effectively process different parts of the input that are
spatially removed from each other (and from the output units).
This difficulty may also be related to the physics of localiza-
tion in disordered systems. More detailed investigations here
would be needed in the future, since the performance of lo-
cally coupled neuromorphic devices in non-trivial tasks is an
important question, even beyond the coupled phase oscillator
platform discussed here.

IV. CONCLUSIONS

Our results confirm that it is possible to employ equilibrium
propagation for training systems of coupled phase oscillators.
As an important aspect, we observed that the complex energy
landscape of the XY model leads to multistability. We showed
that it is possible to address that challenge via stochastic ini-
tialization, leading to a simultaneous adjustment of all fixed
points and eventually stable convergence of the training. In
terms of physical implementations, we feel the most promis-
ing route might be based on coupled laser arrays of the type
shown in [19], possibly combined with the flexibility of spa-
tial light modulators or similar devices for setting the cou-
pling weights, as shown for photonic neural networks in [9].
However, many other platforms are conceivable as well, with
the main requirements that it is possible to read out phases,
drive individual oscillators externally (for input injection and
biases), as well as implement tuneable couplings between ar-
bitrary oscillators.
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Appendix A: Interpretation of the Cost Function

In Eq. (4) we introduced a cost function different from the
straightforward distance function in Eq. (3). Here we com-
ment further on the problems posed by the distance function.
In addition, we point out an interesting connection between
the adopted cost function and the overlap of quantum states.

From Eq. (3), we find that the training reaches its fixed
points when

sin(ϕi − ϕτi ) = 0 (A1)

holds for the output units. The distance function D reaches it
minimum when ϕi = ϕTi and maximum when ϕi = ϕTi + π.
Theoretically, the maxima are unstable and therefore should
be avoided. However, practically they can still cause a long
stay on some plateaus during training (with ϕi = ϕTi + π
for some output unit) and seriously increase the time cost for
training. In contrast to this behaviour of D, the only fixed
point for the adopted cost function C is the case when ϕi =
ϕTi holds for all the output units. We find that this makes the
training much more efficient.

Although C was initially chosen simply to provide a strong
repulsion from the unstable fixed points (maxima), we can
draw an interesting connection to quantum physics. Assume
that we have an array of independent two-level quantum sys-
tems and prepare the state of the system based on the output
units by letting

|Φi⟩ =
1√
2
(|0⟩+ eiϕi |1⟩) (A2)

which is exactly an eigenstate of cosϕiX + sinϕiY of eigen-
value +1 (HereX = |0⟩⟨1|+|1⟩⟨0| and Y = i|0⟩⟨1|−i|1⟩⟨0|).

We prepare another set of two-level systems based on the
state of the target in the same way. Then we have two product
states, corresponding to the actual output |S⟩ and the target
|T ⟩

|S⟩ =
∏

i∈Sout

|Φi⟩ =
1

2|Sout|/2

∏
i∈Sout

(|0⟩+ eiϕi |1⟩)

|T ⟩ =
∏

i∈Sout

|Φτ
i ⟩ =

1

2|Sout|/2

∏
i∈Sout

(|0⟩+ eiϕ
τ
i |1⟩).

(A3)

Then the task is to minimize the distance between |S⟩ and |T ⟩
by maximizing |⟨T |S⟩|2. This is equivalent to minimizing

L = − log |⟨T |S⟩|2

= −
∑

i∈Sout

log

(
1

4
|1 + ei(ϕ

τ
i −ϕi)|2

)
= −

∑
i∈Sout

log

(
1

2
(1 + cos(ϕi − ϕτi ))

) (A4)

which has the form of C expressed in Eq. (4). We note that
|⟨T |S⟩|2 is the probability of measuring the quantum state
|T ⟩ after preparing the state |S⟩ (if measurements are per-
formed with respect to a basis containing |T ⟩ as one of the
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states). Thus, L can also be seen as a categorical cross-
entropy −

∑
Pj lnQj , for the case where P1 = 1 is the de-

sired probability of outcome “T” in such a measurement, and
Q1 = |⟨T |S⟩|2 is the probability of actually observing this
outcome.

Appendix B: Digit recognition performance and benchmarks

We compared the performance of the neuromorphic sys-
tem to artificial neural networks (ANNs) and linear classifiers
which we implemented with tensorflow. The architecture of
the models we implemented as well as the number of param-
eters matched those of the layered structure of our neuromor-
phic systems. We used a categorical cross-entropy loss func-
tion for the ANNs and a mean-squared-error loss function for
the linear classifiers and trained both models using Adam op-
timization for 100 epochs dividing the training data into ran-
domised mini-batches of 10 images. The maximum test accu-
racy is reported in Tab. II and compared to the performance
of the corresponding neuromorphic systems with either layer
structure or with all-to-all connectivity.
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Layered All-to-All Benchmark
# hidden units # parameters test accuracy # hidden units # parameters test accuracy ANN linear classifier

20 1540 91.9% 11 1596 93.3% 94.3% 90.4%
100 7620 92.7% 75 7725 92.7% 95.0% 90.3%
200 15220 94.1% 115 15246 92.4% 95.0% 90.7%
300 22820 93.7% 148 22831 92.9% 95.1% 90.7%

TABLE II. Digit recognition test accuracy and benchmarks. Benchmarks were obtained with networks of the same structure as the layered
neuromorphic system. For the linear classifier, we used linear activations and a mean-squared-error cost function; for the artifical neural
network, we used a sigmoid activation function in the second layer, a softmax in the last layer and a categorical cross-entropy activation
function.
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