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ABSTRACT: Single-stranded RNA (ssRNA) plays a major role in the flow of
genetic information−most notably, in the form of messenger RNA (mRNA)−
and in the regulation of biological processes. The highly dynamic nature of
chains of unpaired nucleobases challenges structural characterizations of ssRNA
by experiments or molecular dynamics (MD) simulations alike. Here, we use
hierarchical chain growth (HCG) to construct ensembles of ssRNA chains.
HCG assembles the structures of protein and nucleic acid chains from fragment
libraries created by MD simulations. Applied to homo- and heteropolymeric
ssRNAs of different lengths, we find that HCG produces structural ensembles
that overall are in good agreement with diverse experiments, including nuclear
magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET).
The agreement can be further improved by ensemble refinement using Bayesian inference of ensembles (BioEn). HCG can also be
used to assemble RNA structures that combine base-paired and base-unpaired regions, as illustrated for the 5′ untranslated region
(UTR) of SARS-CoV-2 RNA.

1. INTRODUCTION
Single-stranded RNAs (ssRNAs) play important roles in many
cellular processes, in particular, in the transmission of genetic
information in the form of messenger RNA (mRNA).
Noncoding stretches in mRNA or fully noncoding ssRNAs
have key roles in the regulation of transcription and
translation,1 e.g., by acting as riboswitches2 or by regulating
the nuclear export of mRNA, and its stability and translation
via polyadenylation.3 In solution, ssRNAs can remain
dynamically fully flexible and unstructured, transiently adopt
secondary structures with paired bases, or form more stable
secondary structures in complex with a binding partner.4,5

mRNA in rapidly dividing cells was found to be substantially
less structured than in vitro.6 Therapeutics based on mRNA
have long been explored,7 which has recently led to the
development of vaccines based on mRNA. In addition,
nonbase-paired regions in RNA have emerged as promising
drug targets.8

To improve our understanding of ssRNA and their
functional mechanisms, we need to characterize their structural
and dynamical features. However, experimentally investigating
disordered ssRNA remains a challenging task. Nuclear
magnetic resonance (NMR) techniques provide powerful
tools to investigate local structure and dynamics with high-
resolution in short disordered stretches of ssRNA shifts.9−15

Small-angle X-ray scattering (SAXS) studies16−18 or Förster
resonance energy transfer (FRET) techniques16,19−21 yield
insight into the global structure of flexible biomolecules. The
negatively charged ssRNA molecules have been shown to be
strongly dependent on environmental buffer conditions,

including ion concentration and type,11,16−18 an effect seen
also in molecular dynamics (MD) simulations.9,21

Structural ensembles of ssRNA that capture the hetero-
geneity of these highly dynamic systems in atomic detail help
the interpretation of data from experiments. Most experiments
report ensemble averages. Such ensembles can, in principle, be
obtained by performing MD simulations. However, MD
simulations suffer from inaccuracies in the available force
fields.22,23 For RNA, special care has to be taken in setting the
buffer conditions and choosing the ion force field parame-
ters.24,25 For biopolymers, small systematic errors in, say,
backbone torsion potentials add up and result in major
structural imbalances.26 Inaccuracies in the energetics are
amplified by the broad and shallow energy landscape of flexible
biomolecules,13,21,27,28 which requires extensive sampling. The
sampling of ssRNA structural ensembles by MD simulations
thus suffers both from systematic uncertainties due to
inaccuracies in the force field and from statistical uncertainties
due to the slow structural dynamics.
Fragment assembly is a promising approach to model RNA

3D structures. In early applications of RNA fragment assembly,
Das et al. used FARFAR, a Rosetta-like fragment assembly
approach to model noncanonical double-stranded (dsRNA)
structure with atomistic detail.29 Their fragment structures
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were drawn from a library based on RNA structure in the large
ribosomal subunit.29 The more recent FARFAR2 approach30

has been used to generate ensembles of short ssRNA
polymers.14 Chojnowski et al. developed a method to model
3D structures of short RNA polymers featuring base-paired
strands as well as unpaired strands involved in loops by
assembling RNA fragments from the PDB with the option to
include experimental restraints.31

Ensembles of flexible biopolymers can be improved by
integrating available experimental data. Approaches such as
Bayesian/Maximum Entropy (BME)32−35 and Bayesian
inference36−40 have been shown to work well in applications
to ensembles of disordered biomolecules. For instance, Bottaro
and co-workers refined tetrameric fragments according to
NMR data using a BME approach, to improve their structural
ensembles obtained via MD simulation, resulting in a more
accurate description of the thermodynamic states.13 In another
example, Bergonzo et al. showed that a BME approach helped
to improve conformational ensembles of a heteropolymeric
oligonucleotide by integrating NMR and SAXS experimental
data.14 Alternatively, integration of experimental information
can help to build models of observed molecules.18,41,42

In previous work, we have introduced the hierarchical chain
growth (HCG) method for disordered proteins.28,40,43 We
found that HCG is a robust approach well suited to efficiently
growing broad structural ensembles of disordered proteins
with atomic detail that are consistent with experimental
findings. Here, we adapted HCG to model structural
ensembles of disordered ssRNA. We focus on systems for
which experimental data are available as reference:14,18,21

homopolymeric adenosine monophosphate multimers (rAn
with n = 19, 30), homopolymeric uridine monophosphate
30mer (rU30), and the short disordered heteropolymeric
ssRNA rUCAAUC. We implemented ssRNA fragment
assembly in the form of a Monte Carlo chain growth

algorithm, which we then used to assemble structural
ensembles of conformations with atomic detail. We validated
the modeled ensembles against diverse experimental data and
could establish good agreement on average without refinement.
We further improved the agreement with experimental
observations by integrating experimental data using Bayesian
inference of ensembles (BioEn) as a gentle ensemble
refinement method.37 As a proof of principle, we demonstrate
that ssRNA chains grown with HCG can be combined with
models of dsRNA, paving the way toward modeling short
unstructured linkers, terminal untranslated regions (UTRs), or
loops.

2. METHODS
2.1. MD Fragment Library. For poly adenine (A) RNA,

an rA4 tetramer was modeled using the AMBER suite of
programs.44 The oxygen atoms of the terminal ribose groups at
the 5′ and 3′ ends were protonated (Figure S1). For
heteropolymeric ssRNA, we used heterotetrameric fragments
rGXYZ. The nucleotide at the 5′ position was fixed as guanine
(G). We chose guanine as the headgroup, first, to mimic the
interior of the ssRNA by providing a purine platform for
stacking and, second, to facilitate the alignment with a
relatively large base. For the following three nucleotides
“XYZ”, we used all 43 = 64 combinations of G, A, cytosine (C),
and uracil (U). Each RNA fragment was placed in a
dodecahedral box and solvated in TIP4P-D water45 with 150
mM NaCl.46 Charge neutrality was established with excess
sodium ions. On average, the resulting systems contained
about 6600 atoms in total. The RNA fragments were modeled
with the DESRES23 force field. We thus performed the
fragment MD simulations using the same force field, water
model, and ion parameters as described before.21

MD simulations were performed with GROMACS/
2018.8.47 Bonds including hydrogen atoms were constrained

Figure 1. Fragment alignment. Aligned heavy atoms are highlighted by blue shading. Heavy atoms within the dashed dark green boxes were
excluded from the clash search. The purple lines indicate the regions of the two fragments that are included in the assembled chain.
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using the P-LINCS algorithm.48 To maintain the pressure at a
constant value of 1 bar, the Parrinello−Rahman barostat49 was
used. The cutoff distances for van der Waals and real-space
electrostatic interactions were set to 1.2 nm. Electrostatic
interactions were calculated using the particle mesh Ewald
method50 with the Fourier spacing set to 0.16 nm. The system
was first energy minimized, followed by 400 ps of MD
equilibration. The production REMD simulation was run in
the NPT ensemble for 100 ns, with structures saved every 10
ps. For all tetramer fragments, we used 25 replicas that
collectively spanned a temperature range of 300−431 K, as
calculated using the algorithm by Patriksson and van der
Spoel.51 For each system, 10000 different structures collected
at equally spaced time points from the replica simulated at 300
K were used for the respective fragment library.

2.2. Hierarchical Chain Growth. We adapted HCG40,43

to grow full-length models of disordered homo- and
heteropolymeric ssRNA chains from MD rA4 and rGXYZ
fragments. HCG was previously implemented and validated to
model extensive ensembles of intrinsically disordered proteins
(IDPs), displaying average properties that are in line with
experimental observables.28,40,43 HCG performs fragment
assembly; i.e., a pool of fragment structures is combined at
random into long polymers. The structural alignment of
individual fragments and the rejection of poorly aligned or
sterically clashing fragment pairs are critical for the quality of
the resulting ensembles in terms of both local and global
structural properties. We note that besides the root-mean-
square distance (RMSD) alignment criterion and the steric
exclusion we did not include any kind of attractive or repulsive
interfragment interaction during the assembly. Thus, only

Figure 2. Snapshots of ssRNA polymers grown with HCG. Representative renders of structures drawn at random from ensembles of (top) rA30,
(center) rU30, and (bottom) rUCAAUC sampled by fragment assembly. The nucleic backbone is shown in light gray, and nucleobases are colored
according to their base stacking factor55 qstacking (top: color code). Hydrogen atoms are omitted for clarity.
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intrafragment electrostatic interactions are considered in HCG,
as sampled in the fragment MD simulations. However, we
integrate experimental data on a global level to account for
possible discrepancies in assembled polymers.
We used a fragment alignment strategy that not only focuses

on the nucleic acid backbone but also accounts for the position
of the base. For two conformations of fragments adjacent in
sequence and drawn at random from the respective pool, we
performed a rigid-body superimposition of the O3′ atom,
phosphate atom, and O5′ atom connecting nucleotides −2 and
−1 in fragment 1 and nucleotides 1 and 2 in fragment 2, and all
atoms of the nucleobase as well as the C1 atom of nucleotide
−1 in fragment 1 and of nucleotide 2 in fragment 2 (Figure 1,
light blue shaded area). For a successful alignment, we required
the RMSD of the superimposed atoms to be below a given
threshold, RMSD < 0.64 Å. In the superimposition, we
doubled the weights of the aligned backbone atoms relative to
the aligned atoms of the nucleobase to produce atom distances
within the expected range.52

Alignment was followed by a search for steric clashes,
defined as heavy atom distances below a cutoff of 2 Å. Note
that we did not consider hydrogen atoms in clash detection.
Atoms in the fragment-overlap region were excluded from the
heavy atom clash search (Figure 1, dark green dashed boxes).
Any steric clash resulted in the rejection of the fragment pair.
Otherwise, the two fragments were merged. In merged
fragments, nucleotide −1 from the first and nucleotide 1
from the second fragment were removed. In this way, the
assembled chain featured only nucleotides sampled at the
second and third positions (X and Y) of the rGXYZ fragments.
The terminal nucleotides (G and Z) were treated as capping
groups. We repeated this procedure in each hierarchical level
of HCG until we reached the full-length sequence. For each
polymer investigated in the present work, we grew ensembles
with 10000 members. The RNA structure libraries (i.e., the
MD fragment library as well as exemplary structures from the
HCG ensembles discussed in this work) are available at
https://zenodo.org/record/8369324. The HCG code to
assemble ssRNA to the hierarchical chain growth is available
at the GitHub repository https://github.com/bio-phys/
hierarchical-chain-growth/.
We note that the ribose atoms are not included in the

superimposition. We found that by not enforcing the sugar
pucker configuration, we increased the diversity of grown
structures and benefitted from diverse sugar pucker config-
urations sampled in fragment MD simulations. By including
the nucleobase in the alignment, we improved the config-
uration of stacked bases, which is important to produce
reasonable stacking also for longer sequences (Figure 2). The
extent of base stacking in the assembled structures will to a
significant degree be predetermined by the fragment library
entering HCG and thus the MD simulation force field used to
create the library.11

2.3. Modeling the 5′ UTR of SARS-CoV-2 RNA. To
build a structural ensemble of the 5′ UTR of SARS-CoV-2
RNA by HCG, we combined fragments for the ssRNA
segments with structural models for the stem loops using the
secondary structure as input. The conformations of the
structured stem-loop regions were randomly drawn from
libraries filled with structures from MD trajectories published
previously.53 The connected disordered regions were grown
using HCG as described above according to the sequence in
ref 53. For the assembly, the same scheme as implemented in

HCG was used. In particular, the adjacent regions (fragments)
were assembled in a hierarchical manner in subsequent levels.
In the final level, the full-length model was assembled with a
total of 233 nucleotides (sequence and secondary structure in
Supplementary Figure S2). For the heavy atom super-
imposition, we set the RMSD cutoff to 1 Å, and the clash
radius was kept at 2 Å. We grew only a small ensemble of 50
full-length chains. We note that the region spanned by
nucleotides 162−200 was predicted to be structured and a
part of stem-loop SL5.54 However, to our knowledge for this
region, there has been no structure solved so far. Therefore, we
here modeled this region as a single-stranded region with
HCG.
2.4. Mapping of FRET Labels. HCG is naturally suited to

the inclusion of molecular labels, such as covalently attached
fluorophores. To build a pool of dye-labeled rA4 fragments, we
used an MD library for the dyes Alexa Fluor 594 and Alexa
Fluor 488 attached to dideoxyadenosinemonophosphate
(dA2). The use of dA2-dye fragments to model fluorophores
attached to both DNA and RNA chains has been validated by
Grotz et al.21 A random structure was drawn from the pool of
rA4 fragments and from the Alexa Fluor 594 or Alexa Fluor 488
MD library, to either label the 5′ or 3′ end, respectively, of the
rA4 fragments. We performed a rigid body alignment of heavy
atoms of the sugar moiety and nucleobase from the terminal
nucleotides. In particular, to attach Alexa Fluor 594 to rA4, we
aligned the respective atoms from the terminal nucleotide at
the 5′ end of the rA4 fragment with the respective atoms from
the terminal nucleotide at the 3′ end from the dA2-dye
fragment. For Alexa Fluor 488, the same alignment was
performed but at the 3′ end of the rA4 fragment and at the 5′
end from the dA2-dye fragment. The RMSD cutoff for heavy
atom distances was set to 0.8 Å. If the RMSD value was below
the cutoff, we searched for clashing heavy atoms within a pair
distance of 2.0 Å. If no clashing atoms were detected, then the
dye molecules and the rA4 fragment were assembled such that
all atoms from the dA2 fragment and terminal oxygens of rA4
were excluded. In this way, we sampled a library of the FRET
dyes mapped onto rA4 fragments with 10000 conformations
for each fluorophore, Alexa Fluor 594 and Alexa Fluor 488.
The fragment libraries used here for the fluorescent dyes

contain only a short nucleic acid segment. Attractive
interactions between dyes and nucleic acids are thus limited
to the terminal bases. With more distant bases, only steric
interactions are considered. However, MD simulations can
result in excessive sticking of the dye to the nucleic acid with
some force fields.21 By contrast, experimentalists tend to
exclude dyes that stick to the attached RNA or proteins, based
on measurements for instance of the fluorescence anisotropy
decay.21,40 The fragment-based approach to modeling dyes
taken here and by Grotz et al.21 takes advantage of this
strategy, being aimed at the modeling of experiments with
nonsticky dyes.
2.5. Ensemble Reweighting Using BioEn. We refined

the HCG ensembles of the ssRNA polymers investigated here
against experimental SAXS or single-molecule FRET data by
reweighting using BioEn.37,38 We used uniform reference
weights w0,i = const. for the unbiased ensembles produced by
HCG. The reference weights of the individual chains were then
minimally adjusted such that the ensemble average better
agrees with the experimental observable, while making sure
that the refined ensemble was well-defined and converged. The
confidence parameter θ in BioEn37,38 was chosen by L-curve
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analysis. As a measure of the extent of reweighting, we used the
Kullback−Leibler divergence SKL = ∑iwi ln(wi/w0,i) between
the reference weights w0,i and the refined weights wi, both
normalized, ∑iw0,i = ∑iwi = 1. In addition, we inspected the
cumulative distribution function (CDF) of rank-ordered
weights wi. A rapid initial rise indicates that few ensemble
members carry a large fraction of the weight, which in turn
indicates poor overlap between reference and refined
ensembles.
2.6. Analysis of ssRNA Conformations. The python

packages Barnaba,55 MDTraj,56 and MDAnalysis57,58 were
used to perform analyses of the ssRNA conformations.
A cluster analysis was performed using the Barnaba

software55 exemplary of the rA4 fragment conformations as
sampled in 100 ns MD simulation trajectory. The sampled
conformations within 10000 frames were assigned to 6
different clusters. In the cluster analysis, we first calculated
the g-vectors describing the relative positions of the nucleotide
pairs in each structure. We then performed a principal
component analysis (PCA) of the g-vectors, projecting the
data points onto the plane of the first and second principal
component axes. The clustering was performed via a Barnaba
wrapper of the DBSCAN function from the scikit-learn
package. Here, we set the minimum distance for nearest
neighbors to eps = 0.35 and the minimum number of samples
per cluster to 50.
Quantification of Base Stacking. We used the Barnaba

software55 to screen the assembled structures for stacked bases.
For each base, we quantified the stacking by a factor qstacking.
For nucleobases not involved in any stack, we set qstacking = 0.
For stacks of nstacked = 2 and 3, we set qstacking = 0.25c and
qstacking = 0.5c, respectively, where c = n/(n − 1) with n the
total number of nucleobases in the ssRNA. For longer
consecutive stacks with nstacked ≥ 4 bases, we set qstacking = c
− c/(nstacked − 1). We then used qstacking to color the bases in
the structural visualizations (Figure 2).
2.7. Calculation of Experimental Observables. FRET.

We calculated FRET efficiencies for the rA19 ssRNA ensembles
obtained by HCG with explicit dyes attached at the 5′ and 3′
ends. The interdye distance r was calculated as the geometric
distance between the central oxygen atoms of the two FRET
dye labels,21 as determined using MDAnalysis.57,58 For the
orientational factor κ2 in the Förster theory, we considered
three models that differed in their assumptions on the dye
dynamics. A similar approach has been employed before.59

In model 1, we set κ2 = 2/3,40,60 assuming implicitly that dye
rotation is isotropic and fast61,62 compared to the fluorescence
lifetime of the donor, which in the absence of the acceptor is τD
≈ 4 ns.21 The transfer efficiency E of an individual ssRNA
conformation labeled with fluorophores at each end was then
calculated as

=
+

E
r R
1

1 ( / )0
6 (1)

The Förster radius R0 was set to the experimentally determined
value of R0 = 5.4 nm.

21 In model 2, we assumed also the dye
linker dynamics to be fast and accordingly attached ≈20
conformers for the dye pairs to a given ssRNA conformation,
averaged the interdye distance r over these conformers, and
then calculated the FRET intensity according to eq 1 with the
average r. By contrast, in model 3, we assumed the dye
dynamics to be slow. Accordingly, we determined both r and κ2

explicitly for each dye-labeled ensemble member. We
calculated κ2 as

= · · ·r r( 3( )( ))D A A D
2 2

(2)

where D and A are unit vectors in the direction of the
transition dipole moments of donor and acceptor, respectively,
and r ̂ is a unit vector pointing in the direction between the
central oxygen atoms of the two dyes. We then calculated the
rate of energy transfer as =k k R r(3/2) ( / )T D

2
0

6 and the
FRET efficiency of each ssRNA conformation in the ensemble
as63

=
+

E
k

1
1 1/( )T D (3)

For all three models, the efficiency E was then averaged over
the ssRNA conformations in the ensemble with their respective
weights. The three models can be considered as extremes with
respect to the assumed dye dynamics. Importantly, in all
models, we assumed the ssRNA dynamics to be slow compared
to the fluorescence lifetime τD.
For model 2, we mapped FRET labels onto the full-length

rA19 grown for analysis with model 1, with labels integrated in
the models at the fragment level. Particularly, we randomly
picked an rA19 conformation i and attempted to simultaneously
replace both labels with randomly picked label conformations
of Alexa Fluor 594 j and Alexa Fluor 488 k. Here, we followed
the procedure for the heavy atom alignment and clash search
as described above for the dye mapping on the fragments. In
case of a steric clash or if the RMSD exceeded 0.8 Å in the
alignment, both dye conformations were discarded, and a new
pair of dyes was drawn. We attempted to replace the dye
conformations 1000 times for each of the 10000 randomly
drawn rA19 conformations. The normalized acceptance rate for
dye replacements determined for conformation i was then used
as the weight for ⟨ri⟩ for each conformation in the ensemble.

SAXS. For each ensemble member i of either the rA30, rU30,
or rUCAAUC HCG ensembles, we calculated the SAXS
scattering intensity Ii(q) at scattering vector q using Crysol

64

following ref 14. The calculated scattering intensities Ii(q) with
normalized weights wi (i.e., ∑iwi = 1) were averaged over the
ensemble as Isim(q) = ∑iwiIi(q). In the limit of q → 0, the
Guinier approximation becomes exact, Ii(q) ≈ I0,i exp(−q2RG,i

2 /
3), where I0,i is the intensity at q = 0, and RG,i is the radius of
gyration of ensemble member i. Accordingly, we calculated RG,i
from the slope of ln Ii(q) with respect to q2 at q = 0 as

=
=

R
d I q

d q
3

ln ( )
( )G i

i

q
,

2
2

0 (4)

We evaluated the slope as a numerical first difference. With
Ii(q) ≈ I0,i exp(−q2RG,i

2 /3) at small q, Isim(q) = ∑iwiIi(q), and
I0,i being nearly constant, we determined the root-mean-square
(RMS) RG by averaging over the ensemble

=R
wI R

wI
wRG

i i i G i

i i i i
i G i

2 0, ,
2

0,
,

2

(5)

We related the calculated intensity Isim(q) to the measured
intensity I(q) by performing a least-squares fit of I(q) =
aIsim(q) + b with an intensity scaling factor a and a constant
background correction factor b as fit parameters. To assess the
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quality of the fit, we calculated the reduced chi-squared
normalized by the number M of data points

=
| + |

=M

aI q b I q1 ( ) ( )

j

M
j j

j

2

1

sim
2

2
(6)

with σj the reported experimental standard error of I(qj).
Values of χ2 ≲ 1 indicate agreement within the experimental
uncertainty. We used an implementation of BioEn specific for
SAXS data that fits nuisance parameters globally for the
ensemble average during the refinement, with the code
available at https://github.com/bio-phys/SAXS_BioEn/. In
brief, we performed an initial fit of the intensity scale factor a
and background correction b, which were then updated using
the refined weights until convergence was achieved.
We assessed the quality of the ensembles with the χ2 statistic

for the squared residuals and the hplusminus statistic for the
sign-order of the residuals, calculating p-values for both tests
individually and in combination.65

3. RESULTS AND DISCUSSION
HCG Produces Broad Structural Ensembles of ssRNA.

We used HCG to sample structural ensembles of ssRNA
polymers with four different sequences: rA30, rA19, rU30, and
rUCAAUC. For all four systems, we observed a combination of
extended and compact conformations, as shown representa-
tively in Figures 2 and S3. Compactness is associated with
kinks in the ssRNA backbone (see, e.g., bottom center rA30
structure in Figure 2). In the more extended structures, the
chains retained features of the A-form helix (e.g., rA30 top left
in Figure 2). In particular, we observed stretches of
continuously stacked nucleobases.

The ssRNA structure in the HCG ensembles depends on the
nucleotide sequence. Whereas the poly purine rA30 tends to
form relatively straight segments of stacked adenines, poly
pyrimidine rU30 is visually rather distorted with stretches of
unstacked uridines (Figure 2). A stacking analysis using
Barnaba showed about four fewer stacks in rU30 than rA30 on
average (Figure S4A). Here, a single stack was defined as two
nucleobases with particular distances and orientation to each
other.55 We further looked at consecutively stacked nucleo-
bases, which we defined as four or more stacked nucleobases in
a row and colored the nucleobases accordingly (Figures 2 and
S4B). Key to retaining base stacking in the fragment assembly
was the inclusion of the atoms of the nucleobase in the RMSD
alignment, which ensured that the relative base−base
orientation of the fragments was retained in the HCG
assembly (Figure 1). The observed sequence dependence is
in line with the behavior previously reported for the ssRNA
polymers investigated here.14,16,18,21,66

The structure in long ssRNA chains is reflected in the
fragment libraries used for HCG. We clustered the rA4
fragment library according to their structure. In the largest
clusters, stacked A-form like conformations dominate, either
with perfectly stacked nucleobases (cluster 0 with 42%) or with
nucleotide 4 inverted (cluster 1 with 39%; see Supplementary
Figure S1). NMR studies support the presence of a substantial
fraction of A-form like conformations for short single stranded
RNA fragments.9,10,67 The next largest clusters 2 and 3 are
sparsely populated (≈1%), containing structures with A3
unstacked and A4 inverted (cluster 2), and all bases being
unstacked (cluster 3).
HCG assembly also largely preserves the distribution of

torsion angles in the fragment libraries, as shown for rA19 in
Figure S5. In the HCG assembly, the central two nucleotides at

Figure 3. Comparison of the rA30 and rU30 HCG structural ensemble to SAXS measurements18 (left and right columns, respectively). (A) Top:
Experimental SAXS profiles measured at 100 mM NaCl in gray and the average profile calculated using Crysol64 for the unrefined HCG ensembles
(blue), 10000 structures each, and the refined HCG* ensembles (orange) with weights for θ = 100 and θ = 46 for rA30 and rU30, respectively.
Intensity scale factors a and background correction constants b determined by least-squares fitting are shown in the plots. Bottom: Residuals. (B)
Distribution of RG in the unrefined HCG and reweighted HCG* ensembles (blue and orange, respectively). Vertical lines indicate the RMS RG
value of the HCG ensemble (solid blue) and the weighted RMS RG value (HCG*, dotted orange). The gray shaded area highlights the area
spanned by the RG value inferred from the SAXS profiles measured at 100 mM and 200 mM NaCl including the error range.
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positions 2 and 3 of the tetrameric fragments were retained.
Figure S5 compares the distributions of the backbone torsions
averaged over the 19 bases in each A2 and A3 as sampled in
rA19 chains to the respective distributions in the fragments.
First, we found that the distributions are essentially
independent of the position in the HCG assembly, as would
be expected for a long homopolymer. Second, we found that
HCG largely retained the torsion angle distributions of the
fragments. However, we observed that some populations were
altered or completely vanished. The small differences reflect in
part actual incompatibilities with longer chains yet also choices
in HCG, in particular of the atoms to align and of the clash
criteria. Differences as, e.g., in α for A3 or ϵ and ζ for both A2
and A3 may be amplified by the different nature of the
preceding nucleotide at the 5′ position and the following
nucleotide at the 3′ position of A2 or A3, respectively. In
particular, in the MD fragments these nucleotides were
attached to terminal nucleotides, which may impact the
distribution of torsional angles at the P - O5′ bond (α), C3′ -
O3′ bond (ϵ), and the O3′ - P(+1) bond (ζ).
The recovery of the torsional distributions after assembly

suggests that the local and global structural features observed
in the assembled full-length chain arose from the local
structure sampled in the fragments, as found before for tau
K18.40 In particular, rA4 fragments sampled in the DESRES
force fields mostly exhibited an A-form helix-like conformation
with a considerable population of conformations with one or
two of the 4 nucleotides being unstacked (see Figure S1
clusters 1 and 3). In turn, this resulted in either pseudo A-form
helix-like populations as well as populations of kinked or
looplike structures for ssRNA polymers sampled with HCG,
with some of the chains even featuring patterns with bulging
nucleobases (Figure 2 and Figure S3).
ssRNA from HCG Reproduces SAXS Data. We

compared the calculated SAXS intensity profiles obtained by
averaging across the rA30 and rU30 HCG ensembles to
experimental profiles measured at 100 mM NaCl18 (Figure
3A). The rA30 and rU30 ensembles were assembled from rA4
and rGUUU fragment libraries, respectively (see Methods).
Overall, the agreement was good, with reduced χ2 errors
(mean-squared residuals divided by the experimental error) of
2.7 and 3.6, respectively. However, the residuals revealed small
but systematic deviations for both polymers. In the relatively

featureless intensity profiles, the residuals pointed to somewhat
too extended structures for rA30 and too compact structures for
rU30.
Considering the fact that HCG does not account for long-

range electrostatic interactions and salt screening effects
beyond the scale of the fragments, the agreement between
measured and calculated SAXS intensities at ∼100 mM NaCl
is remarkably good. Solvent and, in particular, ions affect the
global structure of the negatively charged nucleic acids
polymers.9,11,16,17,21,24,68 At the high concentrations of the
SAXS experiments, interchain interactions may also be
relevant.18,69

Gentle Ensemble Reweighting Further Improves
Agreement with SAXS Data. We refined the HCG
ensembles of rA30 and rU30 by performing BioEn reweight-
ing37,38 against the experimental scattering profile measured at
100 mM. Using a rather gentle bias, we adjusted the weights of
the ensemble members to agree with the experimental profile
with reduced χ2 values of ≈1.1 for both polymers (HCG*
ensemble in Figures 3A, S6 light orange, and S7).
We also found good agreement between the measured and

calculated values of the radius of gyration, RG. We calculated
the RMS RG = ⟨RG,i

2 ⟩1/2 as an average over members i of the
ensemble with their respective weights. For rA30, the RMS
average RG over the HCG ensemble was within the uncertainty
of the RG measured by SAXS at 100 and 200 mM NaCl;18 for
rU30, it was just below the expected range (Figure 3B). In this
range, salt concentration was found to have only a small effect
on RG.

18,69 Reweighting by BioEn to match SAXS intensities
I(q) also improved the agreement of the calculated and
measured RG values. Overall, HCG captured the global
dimensions of rA30 and rU30, and a gentle BioEn reweighting
resulted in near-perfect agreement at higher NaCl concen-
trations for rA30 (see below).
Dependence on Fragment Library. For homopolymeric

ssRNA, using a homopolymeric fragment (here: rA4) is a
natural choice that facilitates the combination of fragments
into longer chains, as the base overhangs at the 5′ and 3′ ends
of the fragments to be combined are then identical. By
contrast, to assemble generic ssRNA sequences by HCG, it is
advantageous to fix the base at the 5′ end to minimize the
number of required fragment sequences. For the tetramer
fragments used here, with sequence rGXYZ, we then have only

Figure 4. SAXS measurements of rA30 at different salt concentrations. (A) SAXS profiles from the rA30 HCG ensemble refined against experimental
profiles measured at 20, 100, 200, 400, and 600 mM NaCl. HCG* is shown in yellow to dark red. Experimental profiles are shown in gray; errors
are shown in light gray. (B) Cumulative distribution of RG as predicted for HCG using Crysol64 in blue and the weighted distributions using the
refined weights.
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43 = 64 sequences to consider. Here, having built both rA4 and
rGA3 libraries, we can directly compare the two approaches to
identify possible issues in HCG. We found that the
distributions of RG for rA30 chains grown by HCG with rA4
fragments and with rGA3 fragments show negligible differences
(Kullback−Leibler divergence SKL(rGA3∥rA4) = 0.01; see
Figure S8), indicating that both libraries produce very similar
results.
rA30 HCG Ensemble Reproduces SAXS Profiles

Measured at Different Salt Concentrations after Gentle
BioEn Refinement. In their study on the salt dependence of
ssRNA rA30 and rU30, Plumridge et al.

18 have shown that the
global structure of these highly charged polymers depends on
(i) the concentration of ions in the solvent and (ii) the ion
type. Here, we compared the rA30 HCG ensemble, grown from
rA4 fragments simulated at 150 mM NaCl, to their SAXS
profiles measured at 20, 100, 200, 400, and 600 mM NaCl
concentrations. Despite the fact that we grew the polymer via
HCG without taking into account long-range electrostatics
beyond the fragment level, the HCG profile matched
experimental SAXS profiles recorded at different salt
concentrations reasonably well even without reweighting
(Figures S9−S13A blue). For reference, we least-squares fitted
the unrefined SAXS profile of the rU30 produced by HCG to
the salt dependent experimental SAXS profiles of rA30,
adjusting only the intensity scale factors a and the background
corrections b. For all salt concentrations, the HCG profiles for
rA30 gave a better fit to the rA30 experiments than the HCG
profiles for rU30, albeit with only small differences in χ2 (Figure

S14 and Supporting Table S1). Plumridge et al.18 reported on
the rather small differences in the global shape found for both
polymers for salt concentrations > 20 mM. For 100 mM NaCl,
for instance, we found the experimental profiles of rU30 and
rA30 to agree with reduced χ2 ≈ 0.91 after fitting a and b
(Supporting Table S1).
BioEn reweighting of the HCG ensemble against the

scattering profiles measured at the respective salt concentration
established nearly perfect agreement with the experimental
profiles (Figure 4A, Figures S9−S13A orange). For each salt
concentration, we chose a set of weights for the regularization
parameter θ = 100 resulting in reduced χ2 < 2. According to
the L-curve analysis, with Kullback−Leibler divergences close
to zero and the cumulative distribution functions (CDF) of
rank-ordered weights staying close to uniform reference
weights, all BioEn reweightings placed a rather gentle bias on
the initial ensemble (Figure S6).
The reweighted RMS RG values for the rA30 ensemble were

shifted toward the experimental values for each concentration
(Figures S9−S13C). The shape of the RG distributions was
minimally modified when we applied the refined weights for
20, 100, and 200 mM (Figures 4B left column and S9, S10, and
S11C). In fact, for 100 and 200 mM NaCl, the RNA
conformations of rA30 with RG < 20 Å lost weight against
conformations with 20 Å < RG < 25 Å (Figures 3B left column
and S11C). For the highest salt concentrations of 400 and 600
mM NaCl, a distinct shoulder developed in the reweighted RG
distribution at RG ≈ 20 Å (Figures S12 and S13C). The
diminished role of electrostatic repulsion between ssRNA

Figure 5. Characterization of structural ensembles of heteropolymeric rUCAAUC sampled with MD and FARFAR2 from ref 14 and HCG. (A)
Distribution of the eRMSD to ideal A-form. (B) Top: Average SAXS profile calculated for the HCG ensemble before (blue) and after ensemble
refinement (HCG* with weights for θ = 100 in orange) fitted to the experimental profile14 (orange and gray, respectively). The intensity scale
factors a and the background correction constants b as calculated by least-squares fitting are shown in the plot. Bottom: Residuals calculated for
scattering profiles. (C) Distribution of RG values in sampled ensembles, the refined HCG* ensemble, experimental average as determined from
SAXS, and for typical A-form. (D) Correlation plot of experimentally measured 3J couplings of the backbone and sugar moiety66 and calculated
values for HCG. Vertical bars indicate the estimated uncertainty of ±2 Hz (one standard error) in calculating the 3J-couplings from RNA structures
using approximate Karplus relations.13,66
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phosphate groups at high salt concentration may explain this
trend to compaction.
We further assessed the quality of the I(q) fits using the

hplusminus test statistic for ordered data.65 Applied to the
scattering intensities I(q), it tends to pick up indications for
systematic errors, e.g., as a result of deviations in the global size
and shape of the ensemble members. Here, going in the HCG*
ensembles from low to high salt concentration, we found that
systematic deviations at small q values decreased, as judged by
the residuals and a screening of their signs. In return, we found
improved p-values for the reweighted ensembles at higher salt
concentrations (Figures S9−S13A and B).
Despite the overall efficient reweighting of the HCG

ensemble resulting in almost perfect agreement with experi-
ment, we emphasize that the refined ensemble lacks
information about electrostatics and other interaction. For a
more detailed assessment, one could perform additional MD
simulations at the respective salt condition using a small subset
of the models sampled in the HCG ensemble as start structure
and choosing a reasonable force-field.28,43 Such simulations
would provide information about electrostatic interactions and
the solvent layer.
HCG Ensembles of rUCAAUC Capture SAXS and NMR

Experiments. Using the heterotetramer fragment library for
HCG, we are able to grow heteropolymeric ssRNAs of an
arbitrary sequence. In the following, we show results for the
rUCAAUC hexamer, which has been investigated previously
by experiments and MD simulations.14,66 Visually, the
structures appeared rather extended, albeit with populations
of structures in which one or two nucleotides were unstacked,
similar to what was observed by Bergonzo et al.14 (Figures 2
and 5A).
Judging from the comparison to the published SAXS data,14

the HCG ensemble of rUCAAUC chains captured the global
dimensions without any refinement. The average SAXS profile
calculated for the HCG ensemble was in good agreement with
the experimental profile, with a reduced χ2 of about 3.0 and
small deviations at small q (Figure 5B). For reference,
Bergonzo et al.14 found profiles of similar quality in their
MD simulations of full-length rUCAAUC. For the LJbb force
field, their agreement with the SAXS experiments was slightly
better, with χ2 ≈ 2.4 and the deviations at small q being less
pronounced.
The distribution of RG in the HCG ensemble was in line

with the distribution in the MD ensemble sampled with the
LJbb force field (FFLJbb) by Bergonzo et al.14 (Figure 5C).
The RMS RG as calculated for the HCG ensemble was slightly
closer to the experimentally determined value than that of the
ensemble from full MD simulations. Interestingly, the RMS RG
is close to that of an rUCAAUC polymer in an ideal A-form
helix conformation. Overall, the conformations sampled with
HCG seemed to resemble a typical A-form to a larger extent
than conformations sampled with the other approaches shown
here, with the eRMSD from a typical A-form being smaller on
average (Figure 5A).
The analysis of NMR 3J couplings of the backbone and sugar

moiety revealed that overall HCG sampled local properties, as
reflected in the torsion angles of the sugar moiety as well as the
nucleic acid backbone, in excellent agreement with the
experiments (Figure 5D). Small deviations in the calculated
3J couplings were within their predicted uncertainty (≈2 Hz for
the Karplus relation used to calculate the scalar coupling55),
resulting in a reduced χ2 value of ≈0.54. Thus, we found our

ensemble to agree with experiment as good as the MD
ensemble (LJbb force field) from Bergonzo et al.14 We note
that for the experimental values, Zhao et al. suggested an error
of 2 Hz as well due to the deviations of measured values in
multiple independent measurements (see ref 66 and Table S4),
which we did not consider here.
We reweighted the SAXS profiles calculated for HCG

against the experimentally measured scattering profile. Using a
small bias with weights for θ = 100, we found almost perfect
agreement with the experimental profile with reduced χ2 ≈ 1.1
and SKL ≪ 1 (Figure S15A, B). Deviations we observed for the
refined profile were within the experimental error range, and
only very small deviations for q < 0.1 nm. The refined weights
were used to calculate weighted distributions and averages for
properties we analyzed here. The weighted distribution of RG
values was shifted toward larger values with the weighted RMS
RG value being in perfect agreement with the experimental
value. Interestingly, we observed only small deviations from
ideal A-form and scalar couplings close to experiment (Figure
S15C, D).
HCG Produces Ensembles with a Large Conforma-

tional Variability. We observed a high diversity of global
dimensions (e.g., for rU30 in Figure 3, right panel). Using larger
fragment sizes to prepare a fragment library, e.g., pentamers
with the central trimers and the 3′ terminal capping nucleotide
being flexible and the 5′ terminal cap fixed, would still be
computationally feasible, with 44 = 256 fragments. It is
interesting to speculate if we may be able to sample a higher
population of structures that feature important local motifs, by
sampling more local interactions within the input MD
fragments.
We compared the sampled structural diversity in HCG and

MD ensembles in terms of pairwise RMSDs, calculated by
using all heavy atoms within a polymer. For short chains
(tetramers and hexamers), the distribution of the pairwise
RMSD within MD ensembles was slightly larger than within
the HCG ensemble. This suggests that a slightly larger
conformational variability was sampled with MD (Figure S16),
at least in terms of the pairwise RMSD. The pairwise RMSDs
between MD and HCG were distributed around 4 nm (Figure
S16, rose), similar to what we observed for two independent
HCG ensembles of the same polymer (Figure S16C, dashed
gray). For rA4, all distributions were shifted toward smaller
pairwise RMSDs, probably due to the large population of A-
form like helix conformations (Figures S1 and S16A).
Importantly, we do not know the actual extent of structural

variability or the expected distribution of pairwise RMSDs for a
native ssRNA ensemble. For ensemble refinement, however, it
is advantageous to have a broad sampling that covers the
relevant conformation space. By integrating experimental
information, ensemble refinement methods such as
BioEn37,38 then down-weight conformations with low
statistical relevance. By contrast, if the starting ensemble
does not cover the relevant conformation space, conformations
in this region would have to be added by biased sampling for a
proper ensemble refinement.
In general, efficient comparisons of structurally heteroge-

neous ensembles are difficult.27 Several algorithms exist to
cluster ensemble members according to different properties,
often accompanied by machine learning techniques. However,
finding appropriate collective variables that really capture the
important properties needed to display the differences between
ensembles is not straightforward. Recently, a tool to compare
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structural ensembles of IDPs by determining differences in
distributions of local and global properties of the conforma-
tions based on a Wasserstein metric was introduced.70

ssRNA Polymers Grown with HCG Can Be Combined
with dsRNA. Conformations sampled with HCG can be easily
combined with structured dsRNA or other ordered structures.
Here, we exemplarily modeled a region of the 5′ UTR of the
SARS-CoV-2 genomic RNA (sequence shown in Figure S2).
Structured stem-loops were taken from earlier studies using
FARFAR253,71 and from NMR studies.54 To model the 5′
UTR, we used MD trajectories of five stem-loops provided by
Bottaro et. al53 as input ensembles for the structured parts (see
Methods). The stem-loop, highlighted in red, was then
connected by single-stranded regions grown with HCG,
highlighted in blue, resulting in a model containing 233
nucleotides in total. The final ensemble with about 44 different
conformations features models with more extended and more
compact single-stranded regions, dictating the overall global
dimensions of the modeled 5′ UTR (see Figure 6A). For
illustration, we randomly chose two structures (Figure 6B and
C, respectively).

We demonstrated here a possible application of HCG to
model structures of RNA molecules that combined structured
and unstructured regions, such as mRNA molecules. More
generally, a similar scheme may be applied to model any kind
of biomolecule featuring unstructured parts, e.g., by adding a
polyA tail to mRNA. Importantly, since HCG is modular, we
can either add additional assembly steps and assemble the
different regions after the initial growth or grow the flexible
chain with HCG directly at the structured biomolecule. In
particular, such models can be used for further analysis, e.g., as
an initial structure for MD simulations.
HCG Ensembles of rA19 with Mapped Dyes Are

Somewhat too Extended on Average as Judged by

Experimental FRET Efficiencies. We calculated FRET
efficiencies for the HCG ensemble of rA19 and compared
them to the measured mean FRET efficiency ⟨E⟩ = 0.56 ± 0.03
obtained in single-molecule FRET experiments at 150 mM
NaCl concentration.21 For model 1 with fast and isotropic
averaging for the dye orientations about fixed dye positions (eq
1), we obtained a mean efficiency of ⟨E⟩ ≈ 0.41. In model 2,
we start from the ensemble in model 1 but with multiple dye
pair conformations placed onto every conformation i in the
rA19 ensemble. By averaging the FRET efficiency over these
dye pairs and their orientations, we effectively assumed
dynamic dyes in model 2, which we consider to be more
realistic than model 1. We observed a mean FRET efficiency of
⟨E⟩ ≈ 0.42. In the less realistic model 3 with fully static dyes,
we fixed interdye distances and determined κ2 explicitly from
the dye conformations (eq 3). For model 3, we obtained ⟨E⟩ ≈
0.32 with a high population of conformations having E < 0.1.
By comparison, MD simulations of full-length rA19 using the
same force field as in our fragment MD simulation gave FRET
efficiencies of ⟨E⟩ ≈ 0.3,21 calculated with explicit dyes
mapped onto the sampled conformers and κ2 = 2/3 fixed, as in
our model 1. Differences we observed for FRET efficiencies
calculated from the MD and the HCG ensemble using model 1
may indicate that the MD simulation was too short, with 7 μs
of sampling in aggregate. Alternatively, we may have a
favorable compensation of errors in chain growth by
accounting primarily for the local structure.
Using BioEn,37,38 we then gently reweighted the ensembles

of models 1, 2, and 3 to match the experimental mean FRET
efficiency. For model 1 and model 2, we obtained reduced χ2 ≈
1.4 for a BioEn confidence parameter θ = 40, and for model 3,
we obtained χ2 ≈ 2.3 for θ = 60 (see Figure 7A orange top row,
middle row, and bottom row, respectively). The ensemble
refinement assigned higher weights to the tail of the ensemble,
i.e., to more compact chains with E > 0.6. In turn, the weighted
distributions and the average interdye distance were shifted to
shorter distances within the range inferred from the single-
molecule FRET experiment using a worm-like chain polymer
model (see Figure 7B). Here, either the structures were more
compact, the mapped dyes featured less extended linkers, and/
or the mapped dyes pointed toward each other (Figure S3).
This shift in population toward more compact structures is
qualitatively consistent with what we found in the BioEn
reweighting for rA30 according to the SAXS data (Figure 3B).
However, the shift there was considerably smaller, as the RG
value had already agreed with the measurements within the
uncertainty. We note that the r distributions in the HCG*
ensembles for models 1 and 3 are nearly identical (Figure 7B).
For model 2, the distance distribution in HCG was narrower,
and for HCG*, the peak of the distribution was slightly shifted
toward larger interdye distances. A small shoulder at around 4
nm dye−dye distance, present in HCG* for all models, was
more pronounced.
The shape of the reweighted distributions of the FRET

efficiency may indicate slight overfitting. However, judging
from the L-curve analysis and the CDF of rank-ordered
weights (Figure S17, orange, dark green, and dark red), the set
of weights we chose seemed to impose a rather gentle bias with
SKL < 0.2 for all three models. An important point to consider
is how to properly perform the ensemble reweighting for
polymers with attached labels.39,72 In approaches such as
FRETpredict,73 dyes are placed onto proteins using a rotamer
library approach (RLA) to predict FRET efficiencies with

Figure 6.Model of the 5′ UTR region of SARS-CoV-2 genomic RNA
built by HCG. (A) Ensemble overview. (B) and (C) show two
representatives of extended and compact conformations, respectively,
with more detail. Structures of the five stem-loop regions drawn at
random from MD trajectories53 are shown in red. The connecting
single-stranded RNA is shown in blue. The structures are shown with
atomic detail. Hydrogen atoms are omitted for clarity. The backbone
atoms are shown in a cartoon representation except for the last stem-
loop at the 3′ end, which is highlighted as a surface. The full-length
structure shown here covers 233 nucleotides.
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individual statistical weights. In the present study, we
reweighted the whole molecule, i.e., polymer chain plus the
attached fluorophore molecules. As an alternative, one could
reweight the chain and dye separately.
HCG Compared to MD Simulations of rU40 Using the

Anton Supercomputer. We compared the distributions of
the radius of gyration RG and the O5′-O3′ distance in an HCG
ensemble of rU40 to those sampled in ∼100 μs MD simulation
runs of full-length rU40 with the DESRES (DES-Amber0.9)
force field23 at 0.05, 0.1, 0.5, and 1.0 M NaCl and a newer,
modified version DES-Amber3.274 at 0.05, 0.1, 0.2, 0.4, and 0.5
M NaCl. For both force fields, rU40 transitioned between an
extended state and a more compact state with folded-back
conformations.23,74 The population of the compact state
increased with increasing salt concentration. For the rU40
polymers assembled by HCG from MD fragments sampled
at 0.15 M NaCl with the DESRES force field, the distributions
of RG and the O5′-O3′ distance are intermediate between the
distributions in full MD simulations with the DES-Amber0.923
and DES-Amber3.274 at the closest NaCl concentrations below
(0.1 M) and above (1.0 M, 0.2, and 0.4 M, respectively; see
Figure S18). Overall, the HCG ensemble covers a range of RG

values similar to that of the MD simulations. Together with
our results for rU30 compared to the experimental SAXS data

18

(see Figure 3, right column), we conclude that HCG performs
well for polymeric rUn chains.
The HCG ensemble for rU40 also compares well to the

experiments without adjustments. Chen et al.16 have
determined mean end-to-end distances of ≈66 Å and ≈64 Å
for 100 and 200 mM NaCl, respectively, from FRET
measurements. The mean end-to-end distance in the HCG
ensemble of rU40 at 150 mM NaCl is ≈67 Å, very close to the
experimental values.
The consistency of HCG and full MD simulations for rU40

with state-of-the-art force fields is reassuring because there are
important differences between the two, even if they are
conducted with the same force field. Whereas HCG uses RNA
fragment libraries built by MD simulations, only steric
interactions are considered between distant fragments so that
ssRNA structures folding back onto themselves have no
stabilizing interactions. Structures such as the stem-loops in the
SARS-CoV-2 5′ UTR (Figure 6) can be included in HCG as
fragments, as shown here. However, folded-back structures of
ssRNA can also be an artifact of the MD simulation force field,

Figure 7. HCG ensembles of rA19 compared to single-molecule FRET experiments. (A) Distribution of FRET efficiencies in the HCG ensemble
(blue) and in the reweighted HCG* ensemble (orange) calculated with model 1 (top) with dynamic dye orientations and κ2 = 2/3, model 2
(middle) with dynamic dyes and κ2 = 2/3, and model 3 (bottom) with static dyes. For HCG*, we chose refined weights for θ = 40 (models 1 and
2) and θ = 60 (model 3). Vertical lines indicate the mean FRET efficiency measured in experiment (black, with gray shading indicating ± SEM),
sampled in MD simulations of full-length rA19 with the same force field as used here to build fragment libraries

21 (magenta), and calculated for the
HCG (blue) and HCG* ensembles (orange). (B) Distributions of the interdye distance as determined for the HCG ensemble (blue) and the
reweighted HCG* ensemble (orange) with models 1 (top), 2 (middle), and 3 (bottom). The mean distances for experiment (black), MD
simulation (magenta), HCG (blue), and HCG* (orange) are shown as vertical solid and dotted lines. The experimental mean interdye distance was
inferred from experimental single-molecule FRET efficiencies using a worm-like-chain model for the distance probability density function.21
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which was a major driver for the development of HCG
fragment-based methods, e.g., for the modeling of fluorophore
labeled ssRNA.21 In terms of sampling efficiency, HCG makes
it possible to build models of arbitrary sequence with prebuilt
fragment libraries, given the limited four-letter alphabet of
RNA sequences. For proteins, where sampling of full-length
chains is feasible in principle, HCG was found to provide
substantially larger coverage of configuration space than MD
simulations on an ≈2 μs time scale.43

4. CONCLUSIONS
Single-stranded RNA appears prominently in many cellular
regulation processes, e.g., in mRNA and its poly-A tail but also
in loops and linkers. The structural modeling of a flexible
nucleic acid with unpaired nucleobases poses formidable
challenges. Here, we showed that hierarchical chain growth,
previously introduced for disordered proteins,43 can be used to
produce structural ensembles of ssRNA with atomic detail,
starting from fragments sampled in MD simulations. The
resulting structural ensembles feature highly diverse con-
formations (Figures 2 and S3), in good agreement with NMR
experiments probing the local structure (Figure 5D). Also
SAXS and FRET experiments probing the global structure are
reproduced well. Overall, we found the HCG ensembles to
agree with experiments about as well or better than MD
simulations of full-length ssRNA (Figures 3−5, 7).
HCG relies on a number of simplifying assumptions. Most

importantly, it assumes that the relevant local structure of
disordered biopolymers is sampled properly in short fragments
and that these fragments can be assembled into full length
chains subject to only steric interactions. In particular, in its
simplest form, HCG does not account for long-range
electrostatic interactions. It is therefore remarkable that we
obtained excellent agreement for rA30 SAXS data over a wide
range of salt concentrations, in particular for 100−200 mM
NaCl (Figure 4).
The computational efficiency of HCG makes it possible to

construct large ensembles with diverse conformations,
sampling also significant populations of rare but relevant
conformations. This broad coverage of conformation space
enables ensemble reweighting schemes to match a wide range
of experiments within expected uncertainties (Figures 3−5, 7,
S6, S7, S9−S13, S15A and B, and S17).
HCG is implemented as a Monte Carlo chain growth

algorithm with a well-defined ensemble and partition
function.43 Therefore, HCG can easily be combined with
other Monte Carlo sampling techniques, e.g., to perform
importance sampling as in the reweighted hierarchical chain
growth (RHCG).40 In RHCG, one uses a fragment library that
is refined against experimental data prior to fragment assembly
to improve the sampling of local properties in the grown full-
length ensemble. An exciting perspective is to adopt an
RHCG-like sampling scheme to include information on
interfragment interactions during chain growth or to grow
loop structures. This task may be turned into a machine
learning problem. Methods based on artificial intelligence (AI)
have been proven to reliably predict tertiary structure of folded
double-stranded and also single-stranded RNA.30,71,75,76 Query
sequences that require modeling of both structured and
disordered regions may be excellent targets for AI-guided
applications of Monte Carlo techniques. We have shown that
HCG is suited to model segments of mRNA that feature
structured and unstructured regions (see Figure 6). HCG in

combination with machine learning approaches could prove
useful for modeling more complicated mRNA or long-
noncoding RNA (lncRNA) with internal short disordered
loops. To improve the grown structures, one can include
experimentally derived information40 and information from
secondary structure prediction tools. Fragment libraries for 3D
structures of RNA secondary structure motifs77 can be used as
input for HCG of more complex RNA folds. One could also
use coarse-grained RNA simulation models78 to build fragment
libraries for the assembly of large RNA structures.
HCG can also be combined with MD simulations to gain

insight on inter- and intramolecular interactions and the
dynamics of ssRNA. In previous work, we have shown that the
conformations of IDPs sampled with HCG are well-suited as
starting structures for parallel but independent MD simulations
with atomic detail.43 Similarly, this could be done with the
ssRNA conformations as modeled here, either the fully flexible
single chains or molecules with structured and flexible regions.
Starting from a multitude of reasonable initial structures will
facilitate exploration of the relevant conformational space and
dynamics.
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