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Quantum-electrodynamical density-functional theory (QEDFT) provides a promising avenue for
exploring complex light-matter interactions in optical cavities for real materials. Similar to conven-
tional density-functional theory, the Kohn-Sham formulation of QEDFT needs approximations for
the generally unknown exchange-correlation functional. In addition to the usual electron-electron
exchange-correlation potential, an approximation for the electron-photon exchange-correlation po-
tential is needed. A recent electron-photon exchange functional [C. Schäfer et al., Proc. Natl. Acad.
Sci. USA 118, e2110464118 (2021)], derived from the equation of motion of the non-relativistic
Pauli-Fierz Hamiltonian, shows robust performance in one-dimensional systems across weak- and
strong-coupling regimes. Yet, its performance in reproducing electron densities in higher dimensions
remains unexplored. Here we consider this QEDFT functional approximation from one to three-
dimensional finite systems and across weak to strong light-matter couplings. The electron-photon
exchange approximation provides excellent results in the ultra-strong-coupling regime. However, to
ensure accuracy also in the weak-coupling regime across higher dimensions, we introduce a computa-
tionally efficient renormalization factor for the electron-photon exchange functional, which accounts
for part of the electron-photon correlation contribution. These findings extend the applicability of
photon-exchange-based functionals to realistic cavity-matter systems, fostering the field of cavity
QED (quantum electrodynamics) materials engineering.

I. INTRODUCTION

Optical cavities can, under specific conditions, enhance
light-matter interaction without strong lasers or exter-
nal pumping [1–5], enabling precise control over mate-
rials properties [6–12]. Recent experimental advance-
ments have allowed researchers to explore the strong,
ultra-strong, or even deep-strong light-matter coupling
regime [13, 14]. On the other hand, in the realm of theo-
retical techniques for light-matter interactions [1, 2, 15–
17], quantum-electrodynamical density-functional theory
(QEDFT) stands out as an efficient and accurate ap-
proach for realistic materials [1, 18]. Exact QEDFT
treats electrons and photons equally, addressing complex
computational challenges posed by the large degrees of
freedom, in contrast to simpler models that focus on a
subset of electronic states.

In practice, a primary challenge of QEDFT is deter-
mining, in addition to the standard electron-electron
(arising from the longitudinal Coulomb interaction),
the electron-photon (transverse interaction) exchange-
correlation potential for the non-interacting Kohn-Sham
(KS) system to reproduce the electron and photon den-
sity of the interacting and coupled system [19]. Vari-
ous perturbative approximations have emerged [20, 21]
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to obtain the electron-photon exchange potential, includ-
ing an optimized-effective potential (OEP) method [20]
and a recently-developed density-based method within
first-order perturbation theory [21], which are suitable
for realistic molecules [22, 23]. Yet, these perturbative
approaches lose accuracy in strongly and ultra-strongly
coupled systems [22]. To overcome these limitations,
non-perturbative methods need to be developed. For in-
stance, a recent method based on the photon-random-
phase approximation shows promise for strong coupling
in the generalized Dicke model, but its suitability for re-
alistic systems awaits further exploration [24].

Another non-perturbative technique [25], based on
the local-force equation of the non-relativistic Pauli-
Fierz (PF) Hamiltonian, approximates electron-photon
exchange-correlation potentials by expressing quantum-
photon fluctuations in the PF Hamiltonian through the
paramagnetic current of the matter system, simplify-
ing the intricate photon Fock-space computations. This
technique has been studied for a simple one-dimensional
system (e.g., one-dimensional hydrogen with a soft-core
Coulomb potential) and accurately reproduces the static
total energy, dipole moment, and polariton spectrum,
covering the whole range from weak to deep-strong light-
matter coupling scenarios. In its simplest form, this ap-
proximation strategy results in the electron-photon ex-
change (px) potential and, in the homogeneous limit,
gives a local-density version known as the electron-
photon-exchange local-density approximation (pxLDA)
functional. Thanks to its density-based pxLDA poten-
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tial and construction in the velocity gauge, this method
is adaptable for both large finite and extended systems.
However, its effectiveness in replicating electron densities
coupled to optical cavities in higher-dimensional systems
remains unexplored.

In this work, we demonstrate the efficacy of the px
functional, derived from the local-force equation of the
PF Hamiltonian within the long-wavelength approxima-
tion, in accurately reproducing the electron density of
one-, two-, and three-dimensional finite systems in the
ultra-strong-coupling regime. However, as we approach
the weak-coupling regime, accounting for the electron-
photon correlation becomes essential to ensure accurate
qualitative and quantitative electron density predictions.
To address this, we propose the inclusion of a renormal-
ization factor in the electron-photon functional. We fo-
cus on three finite one-electron systems coupled to the
photon vacuum of a perfect cavity—a one-dimensional
harmonic-oscillator (HO), a two-dimensional quantum
ring, and a three-dimensional hydrogen atom. All these
systems are coupled to a single effective photon mode [26]
for simplicity, but it is straightforward to extend the px
potential to many photon modes due to the additive na-
ture of the functional approximation. Emphasizing the
electron-photon interaction, our findings provide insights
into the performance of the proposed px functional and
highlight its importance in predicting light-matter inter-
actions across different materials and scenarios. We note
that the electron-photon functional is not limited to but
can be beyond the long-wavelength approximation and
that the extension to the time-dependent case for driven
cavities will require developing functionals depending on
the time-dependent current operator, which we will show
in follow-up work.

II. METHODOLOGY

A. Non-relativistic Paul-Fierz Hamiltonian in the
long-wavelength approximation

We start with the non-relativistic PF Hamiltonian
ĤPF for Ne electrons interacting with Mp bare linearly-
polarized photon modes within the Coulomb gauge and
in long-wavelength approximation [26], i.e., the vector po-

tential operator is Â(r) → Â. In Hartree atomic units,
it is given as

ĤPF(t) =
1

2

Ne∑
l=1

(
−i∇l +

1

c
Â

)2

+
1

2

Ne∑
l ̸=k

w(rl, rk)

+

Ne∑
l=1

vext(rl, t) +

Mp∑
α=1

ωα

(
â†αâα +

1

2

)
.

(1)

Here l (α) is the index for electrons (photon modes),
w(rl, rk) the longitudinal Coulomb interaction among
electrons, vext(rl, t) an external (potentially time-
dependent) scalar external potential due to, e.g., the

nuclei, and ωα and âα (â†α) the bare photon frequency
and annihilation (creation) operator for the α-th photon
mode, respectively. The vector potential operator is

Â =

Mp∑
α=1

Âαεα = c

Mp∑
α=1

λαεα
1√
2ωα

(
â†α + âα

)
,

where Âα = (cλα/
√
2ωα)(â

†
α + âα), and c is the speed of

light and εα the polarization of the α-th bare linearly-
polarized photon mode with the light-matter coupling
parameter (or mode strength) λα, which is proportional

to the mode volume Vα via
√
1/Vα [27]. Note that to es-

tablish the full mapping underlying QEDFT in the long-
wavelength approximation [26], one also adds a mode-
resolved external current as a control field for the pho-
tonic subsystem [1, 18, 28, 29]. It is straightforward
to include the corresponding external and KS currents.
Yet, since their effects are mostly important in the time-
dependent case we disregard these contributions in the
following.
After the expansion of the kinetic term in Eq. (1), the

diamagnetic term Â2 can be absorbed by re-defining the
bare photon modes, which become the so-called dressed
photon modes. The relationship between the bare and
dressed photon modes can be found in Appendix A. The
PF Hamiltonian in terms of the dressed photon modes
becomes

ˆ̃HPF(t) =−
1

2

Ne∑
l=1

∇2
l +

1

2

Ne∑
l ̸=k

w(rl, rk) +

Ne∑
l=1

vext(rl, t)

+
1

c
ˆ̃A · Ĵp +

Mp∑
α=1

ω̃α

(
ˆ̃a†αˆ̃aα +

1

2

)
,

(2)

where ˆ̃a† (ˆ̃a) is the creation (annihilation) operator , ω̃α
photon frequency, ε̃α polarization, and λ̃α light-matter
coupling for the dressed photon modes. The vector po-
tential operator in terms of the dressed photon modes
is

ˆ̃A =

Mp∑
α=1

ˆ̃Aαε̃α = c

Mp∑
α=1

λ̃αε̃α
1√
2ω̃α

(
ˆ̃a†α + ˆ̃aα

)
.

Here ˆ̃Aα = (cλ̃α/
√
2ω̃α)(ˆ̃a

†
α+ˆ̃aα), and Ĵp =

∑Ne

l=1(−i∇l)
is the paramagnetic current operator.

B. Construction of the Kohn-Sham system in the
long-wavelength approximation

The many-body PF Hamiltonian with the dressed
photon modes [Eq. (2)] is our starting point for con-
structing an auxiliary non-interacting KS system within
the QEDFT framework [1, 18, 30], which aims to re-
produce the electron density (or current density if we
go beyond the long-wavelength approximation and con-
sider full minimal-coupling between light and matter) of
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the original interacting physical system. The auxiliary
Hamiltonian we start with is

Ĥs(t) =
1

2

Ne∑
l=1

(
−i∇l +

1

c
Ãs(t)

)2

+

Ne∑
l=1

vs(rl, t), (3)

where vs(r, t) is an auxiliary potential and Ãs(t) =∑Mp

α=1 Ãs,α(t)ε̃α is an auxiliary classical vector potential
(not an operator), constant over space, with [25]

Ãs,α(t) = −c
ˆ t

−∞

λ̃2α
ω̃α

sin [ω̃α(t− t′)] ε̃α · Jp(t
′)dt′,

where Jp(t
′) is the expectation value of the paramagnetic

current operator Ĵp computed with the wave function

from the auxiliary Hamiltonian Ĥs(t
′) at time t′. This

vector potential corresponds to the mean-field contribu-
tion from the transverse photon modes, and the t→ −∞
can be replaced by the appropriate initial conditions that
solve the mode-resolved Maxwell equation. We note that
if we keep the (discretized) continuum of modes, we can
also describe the radiative dissipation (openness) of a
photonic environment from first principles [17, 23].

To define the exchange-correlation potential of KS
QEDFT, we can use the local-force equation [31, 32],
which avoids the differentiability issue for energy func-
tionals, the causality issue for action functionals in the
time-dependent cases, and the numerical cost of the OEP
procedure of orbital-dependent functionals. The local-
force equation can be obtained from the equation of mo-

tion (EOM) of the paramagnetic current density ĵp(r) =
1
2i

∑Ne

l=1

(
δ(r− rl)

−→
∇ l −

←−
∇ lδ(r− rl)

)
. For ground-state

(static) wave functions, the local-force equation for the
PF Hamiltonian is

ρ(r)∇vext(r) = ⟨F̂T (r)⟩Ψ+⟨F̂W (r)⟩Ψ−
1

c
⟨( ˆ̃A ·∇)̂jp(r)⟩Ψ,

(4)
where ρ(r) is the electron density of the cou-

pled light-matter ground state |Ψ⟩, F̂T (r) =
i
2

[̂
jp(r),

∑Ne

l=1∇2
l

]
the kinetic-force density, and

F̂W (r) = − i
2

[̂
jp(r),

∑Ne

l ̸=k w(rl, rk)
]

the interaction-

force density. Here the expectation value ⟨.⟩ is evaluated
at the exact ground state |Ψ⟩ of the PF Hamiltonian.
Similarly, we can find the local-force equation for the
auxiliary Hamiltonian [Eq. (3)]

ρs(r)∇vs(r) = ⟨F̂T (r)⟩Φ −
1

c
(Ãs · ∇)⟨̂jp(r)⟩Φ, (5)

where |Φ⟩ is a Slater determinant for the ground state of

the non-interacting auxiliary Hamiltonian Ĥs and ρs(r)
is the corresponding ground-state density.

If we now assume that both the PF and the auxiliary
Hamiltonian have the same ground-state density ρ(r) =

ρs(r), the difference between the two local-force equa-
tions [Eqs. (4) and (5)] defines the mean-field exchange-
correlation (Mxc) potential vMxc(r) = vs(r)− vext(r) as

ρ(r)∇vMxc(r) = ⟨F̂T (r)⟩Φ − ⟨F̂T (r)⟩Ψ − ⟨F̂W (r)⟩Ψ

+
1

c
⟨( ˆ̃A · ∇)̂jp(r)⟩Ψ −

1

c
(Ãs · ∇)⟨̂jp(r)⟩Φ.

(6)
For the ground-state (or static) scenarios, the constant

classical vector potential Ãs in the auxiliary Hamilto-
nian Eq. (3) can be eliminated through a gauge trans-
formation on the ground-state wave function. This oper-
ation removes the last term in Eq. (6). Equation (6)
allows us to define the electron-electron and electron-
photon exchange-correlation potentials. For instance, the
Hartree-exchange potential vHx(r) for the (longitudinal)
electron-electron interaction can be defined as [31, 32]

ρ(r)∇vHx(r) = −⟨F̂W (r)⟩Φ, (7)

where we replace the the exact ground-state wave
function |Ψ⟩ with the Slater-determinant |Φ⟩. For
the electron-photon interaction, we define the electron-
photon exchange-correlation (pxc) potential vpxc(r) as

ρ(r)∇vpxc(r) =
1

c
⟨( ˆ̃A · ∇)̂jp(r)⟩Ψ, (8)

where we do not know, in general, the exact wave func-
tion |Ψ⟩ to obtain the pxc potential. Nevertheless, we
can use a similar trick as for the Hatree-exchange poten-
tial to define the (transverse) electron-photon exchange

potential from the light-matter interaction term 1
c ⟨(

ˆ̃A ·
∇)̂jp(r)⟩Ψ, together with the Breit-type approximation
Eq. (9) introduced in Ref. [25] for the quantum fluctua-
tions of the vector potential operator. This approxima-

tion for ∆ ˆ̃A =
∑Mp

α=1 ∆
ˆ̃Aαε̃α, where ∆Ô = Ô − ⟨Ô⟩,

is

∆ ˆ̃Aα ≈ −c
λ̃2α
ω̃2
α

ε̃α ·∆Ĵp. (9)

We can then construct the px potential vpx(r) from

1

c
⟨( ˆ̃A · ∇)̂jp(r)⟩Ψ =

1

c
⟨[(⟨ ˆ̃A⟩Ψ +∆ ˆ̃A) · ∇]̂jp(r)⟩Ψ

→ 1

2c
⟨[(Ãs +

Mp∑
α=1

−cλ̃2α
ω̃2
α

(ε̃α ·∆Ĵp)ε̃α) · ∇]̂jp(r)⟩Φ + c.c.

= −1

2

Mp∑
α=1

λ̃2α
ω̃2
α

[
⟨(ε̃α · Ĵp)(ε̃α · ∇)̂jp(r)⟩Φ + c.c.

]
,

where we use ˆ̃A = ⟨ ˆ̃A⟩Ψ +∆Â. In the above relation we

have replaced the mean-field vector potential ⟨ ˆ̃A⟩Ψ with

the auxiliary classical vector potential Ãs [Eq. (3)] and

employed the Breit-type approximation for ∆Â [Eq. (9)].
Since it is then not guaranteed anymore that this gives a
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real number, it is necessary to take only the real part of
the expression with c.c. meaning the complex conjugate.

Note that, in general, ⟨ ˆ̃A⟩Ψ ̸= Ãs, which could be con-
trolled with an exchange-correlation current [28, 29]. Al-
ternatively, we can perform a gauge transformation such

that ⟨ ˆ̃A⟩Ψ = Ãs and we obtain in this way also the full
knowledge of the photonic part. In the last line, the clas-
sical vector potential Ãs and the contribution from the
mean-field paramagnetic current Jp = ⟨Ĵp⟩Φ cancel each
other. We thus define the electron-photon exchange po-
tential vpx(r) as

ρ(r)∇vpx(r) = −
1

2

Mp∑
α=1

λ̃2α
ω̃2
α

(ε̃α · ∇)(fα,px(r) + c.c.), (10)

where

fα,px(r) = ⟨(ε̃α · Ĵp)̂jp(r)⟩Φ. (11)

Next, the electron-photon correlation (pc) potential
vpc(r) is defined as vpc(r) = vpxc(r) − vpx(r) and can
be solved, if the exact wave function |Ψ⟩ is known, using

ρ(r)∇vpc(r) =

1

c
⟨( ˆ̃A · ∇)̂jp(r)⟩Ψ +

1

2

Mp∑
α=1

λ̃2α
ω̃2
α

(ε̃α · ∇)(fα,px(r) + c.c.),

which is obtained from the difference between Eqs. (8)
and (10). The remaining correlation potential from both
the electron-electron and electron-photon interaction, de-
noted as vc(r), is defined as vMxc(r)−vHx(r)−vpxc(r) and
can, in principle, be obtained from Eqs. (6), (7), and (8)
as

ρ(r)∇vc(r) =(
⟨F̂T (r)⟩Φ − ⟨F̂T (r)⟩Ψ

)
+
(
⟨F̂W (r)⟩Φ − ⟨F̂W (r)⟩Ψ

)
.

(12)
Note that in principle we also have an equation of mo-
tion for the photonic part of the coupled system [28, 29].
However, in the static long-wavelength case this equation

becomes equivalent to ⟨ ˆ̃A⟩Ψ = Ãs. For a fixed gauge in
the physical as well as auxiliary KS system this can be
achieved via an exchange-correlation current. This aux-
iliary current can become important to model more in-
volved photonic observables and in the time-dependent
case. Nevertheless, the photon-exchange approximation
provides already access to information of the photon field
as discussed Ref. [25]. A detailed discussion of the pho-
tonic aspects is beyond the scope of this work.

After defining the exchange-correlation potentials,
we notice that the formulas for the Hartree-exchange,
electron-photon exchange, and correlation potentials all
have the following form:

ρ(r)∇v(r) = h(r),

where v(r) represents a potential and h(r) a vector-
valued function. The potential v(r) can be solved using
the Poisson equation

∇2v(r) = ∇ ·
(
h(r)

ρ(r)

)
.

This approach has been implemented in the Octopus
code [33] to obtain the Hartree-exchange potential [32].
Similarly, the px potential vpx(r) can be obtained by solv-
ing the following Poisson equation, which is derived from
Eq. (10),

∇2vpx(r) = −∇ ·

Mp∑
α=1

λ̃2α
2ω̃2

α

(ε̃α · ∇) (fα,px(r) + c.c.)

ρ(r)

 .
(13)

For one-electron systems coupled to one single dressed
photon mode with the frequency ω̃, light-matter coupling
λ̃, and polarization direction ε̃, the px potential vpx(r)
can be obtained directly from the electron density (for
details see Appendix B) using

vpx(r) =
λ̃2

2ω̃2

(ε̃ · ∇)2ρ 1
2 (r)

ρ
1
2 (r)

. (14)

In the homogeneous density limit, which leads to
the local-density approximation (LDA), the expectation
value in Eq. (11) can be evaluated in terms of a Slater
determinant of plane waves and leads to [25]

fα,px(r)→ fα,pxLDA(r) =
2Vd
(2π)d

kd+2
F (r)

d+ 2
ε̃α, (15)

where kF(r) = 2π(ρ(r)/2Vd)
1/d and Vd is the volume of

the d-dimensional unit sphere (i.e., V1 = 2, V2 = π, and
V3 = 4π/3). It can be shown that the force fα,px(r) satis-
fies the zero-force condition [see Eq. (C2) in Appendix C].
The px potential within the homogeneous limit then be-
comes an explicit density functional and can be calcu-
lated by solving

∇2vpxLDA(r) = −
Mp∑
α=1

2π2λ̃2α
ω̃2
α

[
(ε̃α · ∇)2

(
ρ(r)

2Vd

) 2
d

]
.

(16)
In one dimension and for isotropic problems, the pxLDA
potential has an explicit form respectively,

vpxLDA(x) = −
π2

8

Mp∑
α=1

λ̃2α
ω̃2
α

ρ2(x),

visopxLDA(r) = −
2π2

d

Mp∑
α=1

λ̃2α
ω̃2
α

(
ρ(r)

2Vd

) 2
d

.

For two and three dimensions one needs to solve the Pois-
son equation [Eq. (16)], using either the conjugate gradi-
ent or the Poisson-kernel method [33]. Yet, the correla-
tion potential vc(r) remains unknown in general, as it de-
pends on the exact ground-state wave function [Eq. (12)],
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necessitating the use of alternative numerical methods
like quantum Monte Carlo [34, 35]. Nevertheless, we in-
troduce a method in Sec. II C to explore one aspect of the
correlation potential, namely, the electron-photon corre-
lation potential, in the context of weak coupling in the
light-matter interaction.

After obtaining the px potential from the local-force
equation, we explore the associated px energy below. We
note that when employing Eq. (9) in the PF Hamiltonian
[Eq. (2)], we need to consistently also take the contribu-
tion of the photonic energy into account [25]. That is, the
replacement of the photonic operator with the paramag-
netic current operator in the last term of Eq. (2) gives
a counteracting contribution to the light-matter interac-

tion term ˆ̃A · Ĵp. A comparison with the EOM of a cor-
respondingly defined Breit-type Hamiltonian [25] reveals
that the substitution leads to

1

c
⟨ ˆ̃A · Ĵp⟩Ψ +

Mp∑
α=1

ω̃α⟨ˆ̃a†αˆ̃aα⟩Ψ → Epx[ρ],

where the electron-photon exchange energy is defined as

Epx[ρ] = −
Mp∑
α=1

λ̃2α
2ω̃2

α

〈
(ε̃α · Ĵp)Φ[ρ]

∣∣∣(ε̃α · Ĵp)Φ[ρ]
〉
. (17)

Here the factor of 1/2 results from the counteracting pho-
tonic energy contribution. In the homogeneous limit, the
px energy becomes (for details see Appendix C)

EpxLDA[ρ] =
−2π2

(d+ 2)(2Vd)
2
d

Mp∑
α=1

λ̃2α
ω̃2
α

ˆ
dr ρ

2+d
d (r). (18)

This form can be derived either through applying the
LDA on the energy functional of Eq. (17) or via the ex-
change virial relation using the LDA for the force from
Eq. (15) (see Appendix C for details). We note that
the exchange force, which in general has transverse com-
ponents, needs to be taken into account to fulfill the ex-
change virial relation [32]. When determining the pxLDA
potential from the functional derivative of the pxLDA en-
ergy [Eq. (18)], we end up with the isotropic pxLDA po-
tential visopxLDA(r). However, this isotropic potential lacks
information about the polarization of photon modes. To
preserve this information, it is essential to use the pxLDA
potential obtained from the local-force equation in the
KS equations and subsequently compute the pxLDA en-
ergy after obtaining the electron density.

In practice, the KS Hamiltonian, which is designed
to reproduce the electron density of the PF Hamilto-
nian [Eq. (2)], has to be solved in a self-consistent way
for ground-state calculations similar to standard density-
functional theory (DFT) [36, 37]:

1. Calculate the Mxc potential vMxc(r) using either
the KS orbitals or the electron density;

2. Construct the KS Hamiltonian ĤKS using the
Hamiltonian of Eq. (3) with vKS(r) = vext(r) +
vMxc(r) and without the vector potential in the
time-independent cases;

3. Solve the resulting KS Hamiltonian and obtain the
KS orbitals and electron density, which are used in
Step 1 to get the associated Mxc potentials;

4. Loop through Step 1 to 3 until the electron density
converges within a desired threshold.

For time-dependent calculations, once the ground state
of the KS Hamiltonian |ΦKS⟩ is obtained, the time
propagation of the ground state is determined by solv-
ing the non-linear Schrödinger-type evolution equation
i∂t |ΦKS(t)⟩ = ĤKS(t) |ΦKS(t)⟩ with the time-dependent
Hamiltonian from Eq. (3), together with the auxiliary

classical vector potential Ãs(t), and replacing vs(r, t) →
vKS(r, t) [1, 19, 38, 39]. Note that the Mxc potential
based on the local-force equation of Eq. (6) is strictly
speaking only for the static case, making it an adiabatic
approximation when used in time-dependent simulations.
Although it is possible to derive non-adiabatic potentials
(see Refs. [25, 31, 32] for details), this is beyond the scope
of our paper. Below we thus use the adiabatic approxi-
mation to obtain associated spectra [38, 39].

C. The weak-coupling limit: perturbation-theory
analysis

The px potential has been derived from the PF Hamil-
tonian using the photon-coupled homogeneous electron-
gas basis [25, 40]. In the limit λα →∞ and ωα →∞, the
px potential becomes the sole contribution. While it van-
ishes for λα → 0 (as it should), its behavior in this limit
has not been extensively studied. For simplicity, we focus
on one effective mode [26], as simulations with numerous
modes pose numerical challenges for exact reference cal-
culations. This is the focus of this section. However, the
explored approximate electron-photon functionals can be
easily extended to accommodate any number of photon
modes without significant numerical overhead.
To better understand the applicability of the px and

pxLDA approximation for the PF Hamiltonian, we com-
pare it with static perturbation theory. Our starting
Hamiltonian with one dressed photon mode, i.e., Eq. (2)
with one mode, is rewritten as

ˆ̃HPF = ĤM +
1

c
ˆ̃A · Ĵp + Ĥγ , (19)

where the Hamiltonian for the matter subsystem is

ĤM = −1

2

Ne∑
l=1

∇2
l +

Ne∑
l=1

vext(rl) +
1

2

Ne∑
l ̸=k

w(rl, rk), (20)

and the Hamiltonian for the dressed photon mode is

Ĥγ = ω̃

(
ˆ̃a†ˆ̃a+

1

2

)
.
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In this section we overload the notation ˆ̃HPF for one pho-
ton mode [26], compared to Eq. (2). If we mention one-
mode cases, we refer to Eq. (19); otherwise, we refer to
the more general multi-mode form of Eq. (2).

We denote ĤM

∣∣m(0)
〉
= ϵ

(0)
m

∣∣m(0)
〉
, where ϵ

(0)
m is the

energy for them-th unperturbed many-body matter state∣∣m(0)
〉
. Furthermore, we have Ĥγ |ñ⟩ = ω̃(ñ + 1/2) |ñ⟩,

where ω̃ and ñ are the dressed photon frequency and
photon number for the photon mode |ñ⟩, respectively.

The vector potential for the dressed cavity is ˆ̃A = ˆ̃Aε̃ =
(cλ̃/
√
2ω̃)(ˆ̃a† + ˆ̃a), where λ̃ = λ and ω̃2 = ω2 + Neλ

2

(see Appendix A). Next, we assume weak light-matter
coupling such that the light-matter interaction can be
considered as a perturbation to the matter Hamiltonian
[Eq. (20)],

∆V̂ =
1

c
ˆ̃A · Ĵp =

λ̃√
2ω̃

(ˆ̃a† + ˆ̃a)(ε̃ · Ĵp).

The unperturbed system is the composite system that
consists of the ground state of the matter

∣∣0(0)〉 and that

of the one-dressed-photon-mode subsystem
∣∣0̃〉. We write

the ground state of the unperturbed composite system as

a direct tensor product state |Ψ(0)
0 ⟩ =

∣∣00̃〉 = ∣∣0(0)〉⊗ ∣∣0̃〉.
In the weak light-matter coupling regime, the modi-

fied ground-state wave function |Ψ0⟩ up to the 1st-order
correction is

|Ψ0⟩ ≈ |Ψ(0)
0 ⟩+ |Ψ

(1)
0 ⟩,

where |Ψ(1)
0 ⟩ is the 1st-order correction to the ground-

state wave function, which only involves the contribution
from the 1st photon sector

∣∣1̃〉,
|Ψ(1)

0 ⟩ = −
λ̃√
2ω̃3/2

∞∑
m=0

〈
m(0)

∣∣(ε̃ · Ĵp)
∣∣0(0)〉

1 + ∆ϵ
(0)
m0/ω̃

∣∣m1̃
〉
,

where ∆ϵ
(0)
m0 = ϵ

(0)
m − ϵ

(0)
0 and

∣∣m1̃
〉

=
∣∣m(0)

〉
⊗

∣∣1̃〉.
The modified ground-state wave function is an entan-
gled state, which cannot be rewritten as a single tensor
product state of the matter and photonic state.

Using the modified ground-state wave function |Ψ0⟩
and Eq. (8), we evaluate the pxc potential up to the low-
est order of the light-matter coupling,

ρ(r)∇vpxc(r) ≈
1

c
⟨Ψ(1)

0 |(
ˆ̃A · ∇)̂jp(r)|Ψ(0)

0 ⟩+ c.c.

= − λ̃2

2ω̃2

∞∑
m=0

⟨0(0)|(ε̃ · Ĵp)|m(0)⟩⟨m(0)|(ε̃ · ∇)̂jp(r)|0(0)⟩
1 + ∆ϵ

(0)
m0/ω̃

+ c.c.

= − λ̃2

2ω̃2
⟨(ε̃ · Ĵp)(ε̃ · ∇)̂jp(r)⟩Ψ(0)

0

+
λ̃2

2ω̃2

∞∑
m=1

⟨0(0)|(ε̃ · Ĵp)|m(0)⟩⟨m(0)|(ε̃ · ∇)̂jp(r)|0(0)⟩
1 + ω̃/∆ϵ

(0)
m0

+ c.c.,

where we have only the contribution between |Ψ(0)
0 ⟩

and |Ψ(1)
0 ⟩ due to the orthogonality of the photonic

states. In the last line we separate a px-like contribu-

tion, where we use |Ψ(0)
0 ⟩ instead of |Φ⟩ in Eq. (11),

from the pxc potential with the help of the identity
1 =

∑∞
m=0

∣∣m(0)
〉 〈
m(0)

∣∣. Then, the pc potential in the
weak-coupling regime is

ρ(r)∇vpc(r) ≈

λ̃2

2ω̃2

∞∑
m=1

⟨0(0)|(ε̃ · Ĵp)|m(0)⟩⟨m(0)|(ε̃ · ∇)̂jp(r)|0(0)⟩
1 + ω̃/∆ϵ

(0)
m0

+ c.c.

(21)
When ω̃ →∞ (i.e., in the strong-coupling regime or large
photon frequency regime), the pc potential vanishes, and
the pxc becomes a px-like potential, consistent with the
results obtained from the analysis of the photon-coupled
homogeneous electron-gas basis [25].
Computing the pc potential in the weak coupling

[Eq. (21)] requires all the information of the many-body
matter states, which poses numerical challenges. Al-
ternatively, the light-matter interaction in the weak-
coupling regime can be accurately obtained using the
OEP approach [22, 23]. Instead of solving Eq. (21),
we here propose the following formula with a correlation
factor ξc to approximate the pc potential in the weak-
coupling regime for one photon mode [41],

ρ(r)∇vpc(r) ≈
ξcλ̃

2

2ω̃2
⟨(ε̃ · Ĵp)(ε̃ · ∇)̂jp(r)⟩Ψ(0)

0
+ c.c.

This formula is obtained by assuming ∆ϵ
(0)
m0 ≫ ω̃ in the

second line of Eq. (21) such that the dependence of the
denominator on the index m can be neglected. The (pos-
itive) correlation factor ξc depends on the light-matter
coupling and photon frequency, and vanishes when ω̃ →
∞, i.e., in the strong-coupling or large photon frequency
regime. Thus, we use the following formula for the pxc
potential when exploring the weak-coupling regime,

ρ(r)∇vpxc(r) ≈ −
ηcλ̃

2

2ω̃2
⟨(ε̃ · Ĵp)(ε̃ · ∇)̂jp(r)⟩Φ + c.c.,

where we replace |Ψ(0)
0 ⟩ with |Φ⟩ and use Eq. (10), and

we define a renormalization factor ηc = 1− ξc for the px
potential to take the electron-photon correlation contri-
bution into account. We denote this formula as the ηc-
px approach here and below. The renormalization factor
ηc is determined by perturbation theory, e.g., compar-
ing the results with the exact or OEP approach. Here-
after, we apply the approximated pxc potential to vari-
ous one-electron systems. It is anticipated that the out-
comes may differ from the exact results, as the corre-
lation potential from the kinetic- and interaction-force
density [Eq. (12)], and the electron-photon correlation
potential arising from employing the Slater determinant
in the pxc potential instead of the exact wave function,
are neglected.
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III. RESULTS AND DISCUSSION

We analyze the performance of the different function-
als derived in the previous section by applying them to
three different one-electron systems coupled to an effec-
tive single mode of a perfect cavity, e.g., Fabry-Perot
cavity [42]. Specifically, we consider electron-photon in-
teraction in a one-dimensional HO, a two-dimensional
quantum ring, and a three-dimensional hydrogen atom.
In one- and two-dimensional systems, we can directly
solve the corresponding PF Hamiltonians using exact di-
agonalization, which serves as a benchmark for approx-
imate QEDFT results. We focus the analysis and com-
parison on the electron density, since this is the fun-
damental quantity of QEDFT in the long-wavelength
limit. For the three-dimensional hydrogen atom, we ex-
amine the ground-state electron density by comparing
the OEP approach to the px and pxLDA approxima-
tions. Additionally, for the hydrogen atom, we explore
its optical absorption spectra through time-dependent
QEDFT [1, 18, 19] (see Appendix D for all computa-
tional details). Though our main focus is on investigating
the behavior of electron-photon interaction without com-
plicating the study with (approximate) electron-electron
interaction, in Appendix E we also present a He atom
to showcase that the approach is directly applicable to
multi-electron problems.

A. Harmonic oscillator coupled to a photon mode

We first consider a one-dimensional HO with the exter-
nal potential vSHO(x) = x2/2 coupled to a photon mode
(see the computational details in Appendix D). We ex-
plore both weak- and strong-coupling regimes by using
two different light-matter couplings, λ = 0.005 and 4.0,
along with two photon frequencies, ω = 1.0 and 5.1. Fig-
ure 1 shows the electron density differences between in-
side and outside the cavity, ∆ρ(x) = ρλ(x)−ρλ=0(x). In
the weak-coupling (λ = 0.005) and low-photon-frequency
(ω = 1.0, i.e., on resonance with the 1st excited state of
the HO) scenario, both px and pxLDA approximations
overestimate the effect of the mode on the electron den-
sity. Following the discussion in Sec. II C, we can rectify
this by introducing the perturbation-based renormaliza-
tion factor (ηc = 1/4) for the px potential. In the weak-
coupling but high-photon-frequency (ωα = 5.1) case, the
px functional slightly overestimates the electron density,
while the pxLDA approximation slightly underestimates
it. The ηc-px functional reproduces the exact result, and
the ηc factor becomes close to 1.0.

In the strong-coupling regime (λ = 4.0 and λ/ω ≥ 0.1)
both, the px and pxLDA approximations, exhibit small
deviations from the exact electron density, similar to the
scenario seen in the weak coupling but with a large pho-
ton frequency (λ = 0.005 and ω = 5.1). The ηc-px func-
tional can be used to restore the exact results, and the
ηc factor approaches 1.0 in this context, implying that

FIG. 1. Electron-density differences between the inside and
outside cavity, ∆ρ(x) = ρλ(x) − ρλ=0(x), in the weak- and
strong-coupling regimes. The results are computed via the ex-
act diagonalization and different approximate QEDFT func-
tionals.

the electron-photon correlation becomes small. These
numerical findings demonstrate yet again that both the
px and pxLDA approximate functionals perform well in
the strong-coupling regime. While the pxLDA func-
tional tends to underestimate the effect of the cavity
on the electron density compared to the px approxi-
mation, it captures the changes qualitatively correct for
one-dimensional problems. The presented approximation
strategy also gives an intuitive understanding of the effect
of the cavity in the strong-coupling regime. Expressing
the photon fluctuation operator via the current opera-
tor [Eq. (9)] leads to a renormalization of the electron
mass (along the polarization direction), a feature that is
also predicted for the homogeneous electron gas (HEG)
coupled to an optical cavity [40]. Since this increases
the effective mass of the electron, i.e., the kinetic con-
tribution in the Schrödinger equation is decreased, the
electron becomes more localized.

B. Quantum ring coupled to a photon mode

When the photon mode is in resonance with the 1st

excited state of a quantum ring (∆ϵ
(0)
10 = 0.125 for a

confining potential vQR(r) = ξ1|r|2/2+ξ2 exp
(
−|r|2/ξ23

)
,

with ξ1 = 0.7827, ξ2 = 17.7, and ξ3 = 0.997 [43]) in the
weak-coupling regime, the electron density accumulates
perpendicular to the polarization direction, which is set
to x here, while in the strong-coupling regime, the density
aligns along the polarization direction [see Fig. 2(a)] (for
the computational details see Appendix D). This shift in
behavior makes the quantum ring an excellent case to test
if the approximate QEDFT functionals can reproduce the
correct feature of the electron density from the weak- to
strong-coupling regimes.
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FIG. 2. The photon mode is polarized along the x di-
rection (the solid right arrow) and has a frequency of ω =
0.125, in resonance with the 1st excited state of the two-
dimensional quantum ring. a) The electron-density differ-
ence inside and outside the cavity for the exact and various
approximate QEDFT functionals in both strong- and weak-
coupling regimes. b) The electron-density difference along
the x (solid lines) and y (dashed lines) directions (the cut
through the center of the quantum ring) in both strong- and
weak-coupling scenarios. The renormalization factor ηc are
0.27 and −5× 10−3 in the strong- and weak-coupling regime,
respectively.

Figure 2(a) shows electron density differences within
and outside the cavity under both strong- and weak-
coupling conditions, considering the different approx-
imate QEDFT functionals. In the strong-coupling
regime (λ = 0.5), the OEP functional in exchange-
approximation fails to qualitatively replicate the exact
electron density [22], whereas the px functional, while
providing a qualitative match, tends to overestimate the
effect of the cavity. The pxLDA functional yields an im-
proved agreement with the exact result in the strong-
coupling regime. Additionally, we see that the ηc-px
functional helps to recover quantitatively the exact re-
sults for this case. Figure 2(b) provides a comparison
of electron-density differences along the x and y direc-
tions for the exact, pxLDA, and ηc-px methods. In the
strong-coupling regime, the electron accumulates and be-
haves more classically along the polarization, similar to
the one-dimensional HO case.
In the weak-coupling regime (λ = 0.005), neither the

px nor the pxLDA approximations capture the desired
feature [Fig.2(a)]. In contrast, the ηc-px approach man-
ages to capture the weak-coupling feature, even though
small deviations still exist [Fig. 2(b)] due to the approx-
imation we made for the ηc-px potential developed in
Sec. II C and the neglect of other correlation potentials.
These observations highlight the electron-photon corre-
lation contribution in the weak-coupling regime. Con-
versely, in the strong-coupling regime, we can use approx-
imate px potentials alone to capture the strong-coupling
features because the pc potential quickly vanishes with
ω̃α as discussed in Sec. II C.

C. Hydrogen atom coupled to a photon mode

We now turn our attention to a more realistic system,
a hydrogen atom coupled to a photon mode (see Ap-
pendix D for the computational details). While this sys-
tem might seem simple with one atom and one electron
coupled to one photon mode, the exact diagonalization of
the PF Hamiltonian in real space to obtain the electron
density poses already computational challenges, demand-
ing significant memory resources to converge the results
with respect to the real-space grid size and the number
of photon Fock states. As an alternative, we rely on the
results obtained from the OEP functional in exchange-
approximation as our reference, especially, in the weak-
coupling regime, where the OEP approach works well.
Figure 3(a) compares the electron-density difference

between inside and outside the cavity, with a frequency
that is in resonance with the 1st excited state of the bare
hydrogen atom and the polarization along the x direc-
tion. We evaluate this using OEP, pxLDA, and ηc-px
functionals. Similar to the HO case, both px and pxLDA
approximations overestimate electron-density changes in
the weak-coupling regime (λ = 5×10−5), with px results
(not shown) an order of magnitude higher. Applying
a renormalization factor ηc = 0.1 to px reproduces the
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OEP results. In the strong-coupling regime (λ = 0.5),
we provide the OEP, px, and pxLDA results. Although
OEP may not provide accurate results due to its pertur-
bative nature in this regime, we anticipate that px and
pxLDA offer upper and lower bounds for the electron-
density difference based on our experience with the other
test systems.

After analyzing the ground-state electron density, we
proceed to compute the linear-response optical absorp-
tion spectra for the hydrogen atom inside the cavity us-
ing the pxLDA functional. While the OEP functional
in exchange-approximation is suitable for weak-coupling
spectra [23], exploring strong coupling with approximate
QEDFT functionals for realistic materials remains un-
charted territory. Figure 3(b) shows the optical absorp-
tion spectrum (or cross-section) of the hydrogen atom
interacting with a photon mode in the strong-coupling
regime. The polarization is along the x direction, and
the photon frequency is in resonance with the atom’s 1st
excitation, i.e., ωα = 0.3745. Outside the cavity, the first
peak corresponds to three dipole transitions: 1s → 2px,
1s → 2py, and 1s → 2pz. These 2p orbitals have de-
generate energy levels. However, inside the cavity with a
light-matter coupling of λ = 0.05, part of the first peak
splits into two peaks. These are the lower and upper
polaritons arising from the hybridization between the
1s → 2px transition and the photon mode. The other
two transitions, 1s → 2py and 1s → 2pz, remain largely
unchanged since the photon mode is polarized along the
x direction. As the light-matter coupling increases from
0.05 to 0.1, the Rabi splitting between the lower and up-
per polariton doubles. Notably, other peak positions are
also influenced, even when the photon mode is not in
resonance with them.

Here we compare our QEDFT results with the widely-
used Jaynes-Cummings (JC) model, which describes
light-matter coupled two-level systems well in the weak
coupling regime. The JC Hamiltonian within the rotat-
ing wave approximation, describing a two-level system
with energy difference ω0 coupled to a photon mode with
photon frequency ω and polarization ε, is given by (in
Hartree atomic units):

ĤJC = ωâ†â+ ω0
σ̂z
2

+ g(âσ̂+ + â†σ̂−) +
ω0

2
,

where σ̂z is the Pauli matrix representing the two energy
levels, g = λ

√
ω/2(d · ε) [44] where d is the dipole ma-

trix element between the two levels, and the last term
(ω0/2) is used to reset the energy of the lowest state of
the two levels system to zero. The polaritonic eigenval-
ues for the photon vacuum state (n = 0) are given by

E±(n = 0, δ) = ω+ω0

2 ± 1
2

√
4g2 + δ where δ = ω0 − ω.

For the 1s and 2px orbitals of the hydrogen atom coupled
to a photon mode with δ = 0, the polariton energies are
E±(n = 0, δ = 0) = ω0 ± g. The dipole matrix element

between the 1s and 2px orbital is ⟨2p|x|1s⟩ = (23 )
54
√
2,

given the analytical functions of the two orbitals, lead-
ing to g = ( 23 )

54
√
2λ
√
ω0 in the resonance condition. For

FIG. 3. The photon mode is polarized along the x direction
and a photon frequency of 0.3745 Hartree (10.19 eV), in reso-
nance with the 1st excited state of the hydrogen atom. a) The
electron-density differences ∆ρ along the x (solid lines) and
y (dashed lines) directions in the weak- and strong-coupling
regimes, computed using various QEDFT approximations. b)
The optical spectrum of the hydrogen atom inside and outside
of the cavity. The results for inside the cavity are obtained
using the pxLDA functional. The dashed lines represent the
photon frequency of the photon mode, while the vertical solid
black lines in both inside-cavity cases are the eigenvalues from
the JC model (please see the main text).

λ = 0.05, g = 0.01613 (= 0.4389 eV). The polaritonic en-
ergies obtained from the JC model for this scenario are
also shown in Fig. 3(b). Our QEDFT results at a cou-
pling parameter of 0.05 align with those derived from the
JC model. However, discrepancies emerge in the strong
coupling regime (λ = 0.1), where our QEDFT results
show an asymmetric Rabi splitting, a feature absent in
the JC model. Asymmetric Rabi splitting in the strong-
coupling regime naturally arises also in other ab initio
spectra [45, 46], and can also be observed and studied
experimentally [47].

IV. CONCLUSION AND OUTLOOK

In summary, we have explored the reliability of px and
pxLDA approximations, which are based on expressing
the quantum fluctuations of the photons by the quantum-
matter fluctuations, across various dimensional systems,
coupling parameters, and frequency regimes. While de-
signed for ultra-strong coupling, these non-perturbative
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approximations can achieve accuracy in weak-coupling
situations by incorporating renormalization factors that
take electron-photon correlation contributions into ac-
count. We demonstrated the efficiency of these meth-
ods in recovering both qualitative and quantitative ex-
act results. Moreover, we established connections be-
tween changes in optical spectra and modifications in
the ground state of strongly coupled light-matter sys-
tems. Accessing both static and time-dependent observ-
ables, such as changes in ground-state densities and opti-
cal spectra, within a unified theoretical framework opens
up a lot of intriguing possibilities to explore in more de-
tail the modifications of chemical and material equilib-
rium properties as uncovered by seminal experimental
investigations in polaritonic chemistry and materials sci-
ence [5, 6, 10, 14, 48, 49]. This underscores the potential
of ab initio QED methods, particularly QEDFT, for fu-
ture applications to the control of chemical and materials
processes in cavities of tailored quantum environments.
Our study demonstrates that even simple approximate
functionals yield qualitatively correct results and can be
systematically improved, not only qualitatively but also
quantitatively, through comparative analysis.

Here we concentrated on simple finite systems to
thoroughly examine the reliability of various approxi-
mate functionals. Unlike the often-employed unitarily-
equivalent length-form of the PF Hamiltonian [17, 50–
52], the presented approximations, grounded in the ve-
locity gauge, offer direct applicability to extended sys-
tems, setting the stage for their application to solids.
The velocity gauge provides a direct connection to
full minimal-coupling considerations, with a complete
minimal-coupling form of the px potential already es-
tablished in the literature [25]. Exploring this approach
for the full minimal-coupling PF Hamiltonian within the
Maxwell-Pauli-Kohn-Sham framework [30] and consider-
ing functionals for chiral cavities [3, 16] represent promis-
ing future directions.

Beyond ground-state scenarios, the development of
non-adiabatic (current-)density functionals is crucial.
Leveraging the local-force equation, similar to (electron-
only) time-dependent DFT, offers a viable strategy [31,
32]. Future research will also involve extensive bench-
marking of existing approximate QEDFT function-
als. While benchmarks for standard electronic-structure
methods are well-established, reliable reference results
for polaritonic systems, especially in realistic contexts,
are still in progress. This challenge extends beyond
single molecules and atoms to collectively-coupled sys-
tems [17, 52–56], where the non-perturbative interplay
between electronic and ro-vibrational degrees of free-
dom in large ensembles presents intriguing possibili-
ties [10, 57, 58]. Exploring these interactions could unveil
novel avenues for electronic-structure methods by bridg-
ing disparate energy and length scales.
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APPENDIX A: Derivation for the Pauli-Fierz
Hamiltonian with the dressed photon modes

After the expansion of the kinetic energy term in
Eq. (1), the PF Hamiltonian can be written as the sum

of 1) the Hamiltonian for the matter ĤM, 2) the Hamil-

tonian for the photon system Ĥγ , and 3) the interaction

between the two systems 1
c Â · Ĵp with the paramagnetic

current operator Ĵp =
∑Ne

l=1(−i∇l):

ĤPF = ĤM +
1

c
Â · Ĵp + Ĥγ ,

where the Hamiltonian for the matter system is defined
as

ĤM = −1

2

Ne∑
l=1

∇2
l +

Ne∑
l=1

vext(rl) +
1

2

Ne∑
l ̸=k

w(rl, rk),

while that for the photon system is

Ĥγ =

Mp∑
α=1

ωα

(
â†αâα +

1

2

)
+
Ne
2c2

Â2,

where only in this appendix we overload the notation Ĥγ

for many modes, compared to the one in the main text.
Here we introduce a pair of harmonic coordinates for the
bare photons:

q̂α =
1√
2ωα

(
â†α + âα

)
,

p̂α = i

√
ωα
2

(
â†α − âα

)
,



11

and rewrite Ĥγ in terms of the harmonic coordinates as

Ĥγ =
1

2

Mp∑
α=1

p̂2α + q̂α

Mp∑
α′=1

Wαα′ q̂α′


=

1

2

(
P̂⊺P̂+ Q̂⊺WQ̂

)
,

(A1)

where we introduce a few notations to simplify the Hamil-
tonian: P̂ = (p̂1, ..., p̂Mp

)⊺ (⊺ means transpose), Q̂ =

(q̂1, ..., q̂Mp
)⊺ , andWαα′ = ω2

αδαα′+Neλαλα′εα·εα′ . The
matrixW is real and symmetric, and can be diagonalized
using an orthonormal matrix U, such that Ω̃ = UWUT

with eigenvalues ω̃2
α, where ω̃α is the dressed frequency

for the α-th photon mode. Next, we use a pair of trans-

formed harmonic coordinates ˆ̃P = UP̂ and ˆ̃Q = UQ̂,

that is, ˆ̃pα =
∑Mp

β=1 Uαβ p̂β and ˆ̃qα =
∑Mp

β=1 Uαβ q̂β ,
respectively. The Hamiltonian for the photon system
Ĥγ [Eq. (A1)] becomes, with the help of the identity
I = U⊺U,

Ĥγ =
1

2

Mp∑
α=1

(
ˆ̃p2α + ω̃2

α
ˆ̃q2α

)
=

Mp∑
α=1

ω̃α

(
ˆ̃a†αˆ̃aα +

1

2

)
,

where in the second equality we define the annihilation
ˆ̃aα and creation operator ˆ̃a†α for the dressed photons as

ˆ̃aα =
1√
2ω̃α

(
ω̃α ˆ̃qα + i ˆ̃pα

)
,

ˆ̃a†α =
1√
2ω̃α

(
ω̃α ˆ̃qα − i ˆ̃pα

)
.

Since we now use the dressed photons instead of the
bare photons, the vector potential operator Â needs to
be rewritten in terms of the dressed photons as well:

Â = c

Mp∑
α=1

λαεαq̂α = c

Mp∑
α=1

λαεα

Mp∑
β=1

Uβα ˆ̃qβ

= c

Mp∑
α=1

Mp∑
β=1

Uαβλβεβ

 ˆ̃qα = c

Mp∑
α=1

λ̃αε̃α ˆ̃qα = ˆ̃A,

where we define the coupling λ̃α and polarization ε̃α for
each dressed photon mode using the relation:

λ̃αε̃α =

Mp∑
β=1

Uαβλβεβ . (A2)

The polarizations for each bare and each dressed photon
mode, εα and ε̃α, are normalized, i.e., |εα| = |ε̃α| = 1.

Using this property, one can obtain the coupling λ̃α for
the α-th dressed photon mode. If we assume that all
the photon modes have the same coupling parameter,
then the polarization for each dressed photon mode be-

comes ε̃α =
∑Mp

β=1 Uαβεβ , which reproduces the results

in Ref. [59]. However, if the coupling parameters are

different, then one should use Eq. (A2) to get the cor-
rect polarization instead. Note that the vector potential
operator does not transform via the unitary matrix but
expresses itself in terms of the dressed photon modes.
Therefore, the PF Hamiltonian [Eq. (1)] in terms of the
dressed photon modes becomes Eq. (2).

APPENDIX B: Electron-photon exchange potential
for one electron coupled to one photon mode

Here we focus on the px potential for one effective pho-
ton mode. For many cavity-modes cases, we can add sim-
ilar px potentials together with the corresponding light-
matter coupling λ̃α and dressed photon frequency ω̃α,

i.e., vpx(r) =
∑Mp

α=1 vpx,α(r), where vpx,α(r) is the px po-
tential for the αth photon mode.
Assume that the wave function of the ground state

ψ0(r) = ρ1/2(r) is real, the px potential for one-electron
cases can be obtained analytically from the Poisson equa-
tion Eq. (13), together with the definition of the param-

agnetic current operator Ĵp, the paramagnetic current

density ĵp(r), and Ne = 1:

∇2vpx(r) = −
λ̃2

ω̃2
∇ ·

[
(ε̃ · ∇)⟨(ε̃ · Ĵp)̂jp(r)⟩ψ0

ρ(r)

]

=
λ̃2

2ω̃2
∇2

[
(ε̃ · ∇)2ψ0(r)

ψ0(r)

]
.

Thus, the px potential is

vpx(r) =
λ̃2

2ω̃2

(ε̃ · ∇)2ρ 1
2 (r)

ρ
1
2 (r)

.

APPENDIX C: Electron-photon exchange energy
within the local density approximation

Here we derive the px energy within the local density
approximation [Eq. (18)] from two approaches, the re-
duced density matrix (RDM) and the virial relation.

1. Derivation from the reduced density matrix

We follow a similar strategy to derive the px energy
within the local-density approximation as the pxLDA
force derived in Ref. [25]. First, we define the 1-
particle and 2-particle RDM for the Slater-determinant
Φ(r1, r2, r3, ..., rNe) = Φ(r1, r) = Φ(r1, r2, r), where we
use r = (r2, r3, ..., rNe) and r = (r3, r4, ..., rNe). The
1-particle RDM (1RDM) is defined as

ρ(1)(r1, r
′
1) = Ne

ˆ
dr Φ(r1, r)Φ

∗(r′1, r),
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while the 2-particle RDM (2RDM) is defined as

ρ(2)(r1, r2; r
′
1, r

′
2) =

Ne(Ne − 1)

2
×
ˆ
dr Φ(r1, r2, r)Φ

∗(r′1, r
′
2, r).

Using the above formula for the 1RDM and 2RDM (with
the closed-shell assumption), we can write the expecta-
tion value of the current-current correlation in Eq. (17)
as

〈
(ε̃α · Ĵp)Φ

∣∣∣(ε̃α · Ĵp)Φ
〉
= Ne

ˆ
dr1

ˆ
dr [(ε̃α · ∇1)Φ(r1, r)]

∗
[(ε̃α · ∇1)Φ(r1, r)]

+Ne(Ne − 1)

ˆ
dr1

ˆ
dr2

ˆ
dr

[
(ε̃α · ∇2)Φ(r1, r2, r)

]∗ [
(ε̃α · ∇1)Φ(r1, r2, r)

]
=

ˆ
dr1(ε̃α · ∇1′)(ε̃α · ∇1)ρ(1)(r1, r

′
1)
∣∣∣
r′1=r1

+ 2

ˆ
dr1

ˆ
dr2(ε̃α · ∇2′)(ε̃α · ∇1)ρ(2)(r1, r2; r

′
1, r

′
2)
∣∣∣
r′1=r1,r′2=r2

.

For closed-shell Slater-determinant states, which we
assume here and below, the 2RDM can be written in
terms of the 1RDM as

ρ(2)(r1, r2; r
′
1, r

′
2) =

1

2

[
ρ(1)(r1, r

′
1)ρ(1)(r2, r

′
2)

− 1

2
ρ(1)(r1, r

′
2)ρ(1)(r2, r

′
1)
]
.

The 1RDM for the HEG, which we assume here, is given
as

ρ(1)(r1, r
′
1) =

2

(2π)d

ˆ
|k|<kF

dk eik·(r1−r′1),

where kF(r) = 2π[ρ(r)/2Vd]
1/d. Within the HEG ap-

proximation, we have

∇1ρ(1)(r1, r
′
1)
∣∣∣
r1,r′1

=
2i

(2π)d

ˆ
|k|<kF

dk k = 0.

Therefore, the expectation value within LDA becomes

⟨(ε̃α · Ĵp)
2⟩ =

ˆ
dr1

2

(2π)d

ˆ
|k|<kF

dk (ε̃α · k)2

−
ˆ
dr1

2

(2π)d

ˆ
|k|<min(kF,k′F)

dk (ε̃α · k)2.

For the HEG, k′F = kF, the expectation value van-
ishes as expected. For an inhomogeneous medium,
min(kF, k

′
F) approaches zero because k′F can possibly get

small. Therefore, we propose the following formula for
the px energy within the LDA approximation:

EpxLDA =

ˆ
dr

Mp∑
α=1

−ω̃2
α

2ω̃2
α

[
2κ

(2π)d

ˆ
|k|<kF

dk (ε̃α · k)2
]
,

where we introduce a factor κ ∈ [0, 1] where κ = 0 for the
HEG and κ = 1 for the maximally inhomogeneous limit
to take all situations into account. We use the max-
imally inhomogeneous limit (κ = 1) in this work. One
can recover other scenarios by including the factor κ. The

square bracket in the formula for the pxLDA energy can
be evaluated in the polar coordinates in d-dimension:

2

(2π)d

ˆ
|k|<kF

dk (ε̃α · k)2 =
2Vd
(2π)d

kd+2
F (r)

d+ 2
.

The px energy within the LDA becomes

EpxLDA =

Mp∑
α=1

−λ̃2α
ω̃2
α

 2π2

d+ 2

(
1

2Vd

) 2
d
ˆ
dr ρ

2+d
d (r).

(C1)
Using the above pxLDA energy, we can obtain the
isotropic pxLDA potential via the functional derivative
with respect to the density as

visopxLDA(r) =

Mp∑
α=1

−2π2λ̃2α
dω̃2

α

[
ρ(r)

2Vd

] 2
d

.

Note that if we take the above isotropic pxLDA poten-
tial into the KS equations, we would lose the informa-
tion of the polarization direction of those photon modes
when solving the KS equations. However, if we take the
pxLDA potential obtained from the force balance equa-
tion to compute the density, then we compute the pxLDA
energy using Eq. (C1), which implicitly contains the in-
formation of the polarizations of those photon modes.

2. Derivation from the virial relation

The electron-photon exchange force (and its LDA ver-
sion) is

Fpx(LDA)(r) =

Mp∑
α=1

λ̃2α
ω̃2
α

(ε̃α · ∇)fα,px(LDA)(r),

where fα,pxLDA(r) [Eq. (15)] is rewritten in terms of elec-
tron density:

fα,pxLDA(r) =
(2π)2

d+ 2
ρ(r)

[
ρ(r)

2Vd

] 2
d

ε̃α.
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The pxLDA energy can be obtained using the virial re-
lation (with a factor of 1/2 due to the photon-energy
counter term) as

EpxLDA =
1

2

ˆ
dr r · FpxLDA(r)

=
1

2

(2π)2

d+ 2

Mp∑
α=1

λ̃2α
ω̃2
α

ˆ
dr (ε̃α · r)(ε̃α · ∇)

[
ρ(r)

(
ρ(r)

2Vd

) 2
d

]

=

Mp∑
α=1

−λ̃2α
ω̃2
α

 2π2

d+ 2

(
1

2Vd

) 2
d
ˆ
dr ρ

2+d
d (r),

where we use integration by parts in the last line. The
px energy obtained from the virial relation is the same
as the one obtained from the RDM approach.

Here is a side note regarding the total px force (and its
LDA version): it satisfies the zero-force condition, i.e.,

ˆ
Ω

dr Fpx(r) =

Mp∑
α=1

λ̃2α
ω̃2
α

ˆ
Ω

dr (ε̃α · ∇)fα,px(r)

=

Mp∑
α=1

λ̃2α
ω̃2
α

ˆ
Ω

dr [∇(ε̃α · fα,px(r))− ε̃α × (∇× fα,px(r))]

=

Mp∑
α=1

λ̃2α
ω̃2
α

[ˆ
∂Ω

dS ε̃α · fα,px(r)− ε̃α ×
ˆ
∂Ω

dS× fα,px(r)

]
= 0,

(C2)
where Ω is the volume of interest and its surface ∂Ω. In
the second line of Eq. (C2), we use the vector calculus
identity ∇(A · B) = (A · ∇)B + (B · ∇)A +A× (∇×
B) + B × (∇ × A) where A = ε̃α and B = fα,px(r).
In the third line of Eq. (C2), we use the following two
identities: 1)

´
Ω
dr ∇ϕ(r) =

´
∂Ω
dS ϕ(r), where ϕ(r) is a

scalar function, and 2)
´
Ω
dr ∇×A(r) =

´
∂Ω
dS×A(r),

where A is a vector-valued function. In the last line
Eq. (C2), the surface integrals vanish in both finite and
periodic systems. More detailed discussions on subtle
virial-relation issues can be found in works addressing
force-based functionals in standard electron-only density-
functional theory, such as Ref [32].

APPENDIX D: Computational details

For the exact diagonalization method, the
ground-state electron density ρexact(r) is ob-
tained by tracing out the photon-Fock space,
ρexact(r) =

∑nmax

n=1 Ψ∗
0(r, n)Ψ0(r, n), where Ψ0(r, n)

is the ground-state wave function of the PF Hamiltonian
with one photon mode [Eq. (19)], n the number of
photon-Fock states, and nmax the maximum number of
Fock states we choose to converge the energies of the
ground state and a few excited states for tunable light-
matter couplings λ. For the HO, we use a 301-point grid
centered at the origin with a grid spacing of ∆x = 0.07

Bohr. In the case of the quantum ring, we use a 61× 61
grid centered at the origin with a step size of ∆x = 0.2
Bohr. To achieve convergence, we use nmax = 20
and apply a fourth-order finite difference scheme for
the real-space derivatives on the grid, including the
Laplacian operator for kinetic energy.
The pxLDA functional [Eq. (16)], together with the

one-electron px [Eq. (14)] and the renormalization fac-
tors ηc, are implemented in the open-source code, Oc-
topus [33]. In QEDFT approaches, we use specific real-
space grid sizes and box dimensions for different systems:
HO (grid size ∆x = 0.07 Bohr, length 21 Bohr), quan-
tum ring (grid size ∆x = 0.2 Bohr, length 20 Bohr), and
the hydrogen atom (grid size ∆x = 0.24 Bohr, radius
20 Bohr). For the OEP functional in exchange approx-
imation, we solve the KS equation with the potential
obtained from solving the full OEP equation [22].
In QEDFT, we self-consistently solve the KS equa-

tion for the ground state. To calculate the optical
spectrum for the hydrogen case using Octopus, we em-
ploy time-dependent techniques, propagating the ground-
state wave function with the KS Hamiltonian, i.e., Eq. (3)
with the adiabatic KS potential approximations. The
optical spectrum is obtained by Fourier-transforming the
time-dependent dipole moment, which is computed using
the delta-kick method with a kick strength of 0.01/Å.
The time propagation extends for 50 fs (2067 atomic
units) with a time step of approximately 0.0019 fs (0.08
atomic unit).

APPENDIX E: A many-electron case: He atom
inside a cavity

To simulate a system with many electrons inside a cav-
ity using the QEDFT approach, we require an approx-
imate mean-field exchange-correlation potential for the
KS potential, given by vKS(r) = vext(r) + vMxc(r). The
approximated mean-field exchange-correlation potential
vMxc(r) consists of the Hartree potential vH(r), the
electron-electron exchange-correlation potential vxc(r),
and the electron-photon exchange potential vpx(r), that
is, vMxc(r) ≈ vH(r) + vxc(r) + vpx(r). Various meth-
ods [36, 37], such as LDA, generalized gradient approx-
imation, and OEP, can be used to approximate and
compute vxc(r), while vpx(r) can be approximated using
OEP [22] or the method developed in this work. The ex-
ternal potential vext(r), representing the interaction be-
tween nuclei and electrons, is typically modeled using
pseudopotentials [37].
We illustrate our approach using a helium (He) atom

as a representative example of many-electron systems
within an optical cavity. The He atom is treated with
the Octopus open-source code [33], using a radius of
30 Bohr and a real-space grid size of 0.24 Bohr. The
Hartwigsen-Goedecker-Hutter LDA pseudopotential [60]
models the interaction of the valence electrons with the
nuclei, while the electron-electron interaction among the
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FIG. 4. The photon mode is polarized along the x direction
and a photon frequency of 0.83927 Hartree, in resonance with
the transition between the 1s and 2p orbitals of the He atom
outside the cavity. a) and b) The electron-density differences
∆ρ along the x (solid lines) and y (dashed lines) directions
in the weak- and strong-coupling regimes, computed using
the OEP-KLI and pxLDA approximations for the electron-
photon interaction. The electron-electron exchange potential
is approximated and solved using the OEP-KLI approach,
while the electron-electron correlation potential is approxi-
mated and obtained using the LDA approach.

valence electrons is handled using the OEP method with
the Krieger-Li-Iafrate (KLI) approximation for the ex-
change potential [61] and LDA for the correlation po-
tential [62]. Our primary focus is on the electron-photon
interaction, specifically the electron-photon exchange po-
tential. We use the OEP within the KLI approximation
as a reference [63] for realistic systems in the weak cou-
pling regime [22], comparing it with our pxLDA poten-
tial. Figure 4 shows the electron-density difference of the
He atom inside and outside the cavity for both small and
large light-matter coupling. In the weak coupling regime,
our pxLDA results show an overestimation of electron
density compared to the OEP method, akin to the hydro-
gen case. This example underscores the versatility of our
pxLDA approach in extending to many-electron systems,
incorporating the electron-electron exchange-correlation
potential in the KS potential.
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[3] H. Hübener, U. De Giovannini, C. Schäfer, J. Andberger,
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[51] C. Schäfer, M. Ruggenthaler, V. Rokaj, and A. Rubio,
ACS Photonics 7, 975 (2020).

[52] A. Mandal, M. A. Taylor, B. M. Weight, E. R. Koessler,
X. Li, and P. Huo, Chem. Rev. 123, 9786 (2023).

[53] J. Feist, J. Galego, and F. J. Garcia-Vidal, ACS Photon-
ics 5, 205 (2018).

[54] T. E. Li, B. Cui, J. E. Subotnik, and A. Nitzan, Annu.
Rev. Phys. Chem. 73, 43 (2022).

[55] D. Sidler, M. Ruggenthaler, C. Schäfer, E. Ronca, and
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