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Quantum-electrodynamical density-functional theory (QEDFT) provides a promising avenue for exploring
complex light-matter interactions in optical cavities for real materials. Similar to conventional density-
functional theory, the Kohn-Sham formulation of QEDFT needs approximations for the generally unknown
exchange-correlation functional. In addition to the usual electron-electron exchange-correlation potential, an
approximation for the electron-photon exchange-correlation potential is needed. A recent electron-photon ex-
change functional [C. Schäfer et al., Proc. Natl. Acad. Sci. USA 118, e2110464118 (2021)], derived from the
equation of motion of the nonrelativistic Pauli-Fierz Hamiltonian, shows robust performance in one-dimensional
systems across weak- and strong-coupling regimes. Yet, its performance in reproducing electron densities in
higher dimensions remains unexplored. Here we consider this QEDFT functional approximation from one- to
three-dimensional finite systems and across weak to strong light-matter couplings. The electron-photon exchange
approximation provides excellent results in the ultrastrong-coupling regime. However, to ensure accuracy also in
the weak-coupling regime across higher dimensions, we introduce a computationally efficient renormalization
factor for the electron-photon exchange functional, which accounts for part of the electron-photon correlation
contribution. These findings extend the applicability of photon-exchange-based functionals to realistic cavity-
matter systems, fostering the field of cavity QED (quantum-electrodynamics) materials engineering.

DOI: 10.1103/PhysRevA.109.052823

I. INTRODUCTION

Optical cavities can, under specific conditions, enhance
light-matter interaction without strong lasers or external
pumping [1–5], enabling precise control over materials
properties [6–12]. Recent experimental advancements have
allowed researchers to explore the strong, ultrastrong, or
even deep-strong light-matter coupling regime [13,14]. On the
other hand, in the realm of theoretical techniques for light-
matter interactions [1,2,15–17], quantum-electrodynamical
density-functional theory (QEDFT) stands out as an efficient
and accurate approach for realistic materials [1,18]. Exact
QEDFT treats electrons and photons equally, addressing com-
plex computational challenges posed by the large degrees of
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freedom, in contrast to simpler models that focus on a subset
of electronic states.

In practice, a primary challenge of QEDFT is determining,
in addition to the standard electron-electron (arising from
the longitudinal Coulomb interaction), the electron-photon
(transverse interaction) exchange-correlation potential for the
noninteracting Kohn-Sham (KS) system to reproduce the
electron and photon density of the interacting and coupled sys-
tem [19]. Various perturbative approximations have emerged
[20,21] to obtain the electron-photon exchange potential, in-
cluding an optimized-effective potential (OEP) method [20]
and a recently developed density-based method within first-
order perturbation theory [21], which are suitable for realistic
molecules [22,23]. Yet, these perturbative approaches lose
accuracy in strongly and ultrastrongly coupled systems [22].
To overcome these limitations, nonperturbative methods need
to be developed. For instance, a recent method based on
the photon-random-phase approximation shows promise for
strong coupling in the generalized Dicke model, but its suit-
ability for realistic systems awaits further exploration [24].

Another nonperturbative technique [25], based on the
local-force equation of the nonrelativistic Pauli-Fierz (PF)
Hamiltonian, approximates electron-photon exchange-
correlation potentials by expressing quantum-photon
fluctuations in the PF Hamiltonian through the paramagnetic
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current of the matter system, simplifying the intricate photon
Fock-space computations. This technique has been studied
for a simple one-dimensional system (e.g., one-dimensional
hydrogen with a soft-core Coulomb potential) and accurately
reproduces the static total energy, dipole moment, and
polariton spectrum, covering the whole range from weak to
deep-strong light-matter coupling scenarios. In its simplest
form, this approximation strategy results in the electron-
photon exchange (px) potential and, in the homogeneous
limit, gives a local-density version known as the electron-
photon-exchange local-density approximation (pxLDA)
functional. Thanks to its density-based pxLDA potential and
construction in the velocity gauge, this method is adaptable
for both large finite and extended systems. However, its ef-
fectiveness in replicating electron densities coupled to optical
cavities in higher-dimensional systems remains unexplored.

In this work, we demonstrate the efficacy of the px
functional, derived from the local-force equation of the PF
Hamiltonian within the long-wavelength approximation, in
accurately reproducing the electron density of one-, two-, and
three-dimensional finite systems in the ultrastrong-coupling
regime. However, as we approach the weak-coupling regime,
accounting for the electron-photon correlation becomes es-
sential to ensure accurate qualitative and quantitative electron
density predictions. To address this, we propose the inclusion
of a renormalization factor in the electron-photon functional.
We focus on three finite one-electron systems coupled to
the photon vacuum of a perfect cavity: a one-dimensional
harmonic oscillator (HO), a two-dimensional quantum ring,
and a three-dimensional hydrogen atom. All these systems are
coupled to a single effective photon mode [26] for simplicity,
but it is straightforward to extend the px potential to many
photon modes due to the additive nature of the functional
approximation. Emphasizing the electron-photon interaction,
our findings provide insights into the performance of the
proposed px functional and highlight its importance in pre-
dicting light-matter interactions across different materials and
scenarios. We note that the electron-photon functional is not
limited to, but can be beyond, the long-wavelength approxi-
mation and that the extension to the time-dependent case for
driven cavities will require developing functionals depending
on the time-dependent current operator, which we will show
in followup work.

II. METHODOLOGY

A. Nonrelativistic Paul-Fierz Hamiltonian
in the long-wavelength approximation

We start with the nonrelativistic PF Hamiltonian ĤPF for Ne

electrons interacting with Mp bare linearly polarized photon
modes within the Coulomb gauge and in long-wavelength ap-
proximation [26], i.e., the vector potential operator is Â(r) →
Â. In Hartree atomic units, it is given as

ĤPF(t ) = 1

2

Ne∑
l=1

(
−i∇l + 1

c
Â

)2

+ 1

2

Ne∑
l �=k

w(rl , rk )

+
Ne∑

l=1

vext (rl , t ) +
Mp∑
α=1

ωα

(
â†

α âα + 1

2

)
. (1)

Here l (α) is the index for electrons (photon modes),
w(rl , rk ) the longitudinal Coulomb interaction among elec-
trons, vext (rl , t ) an external (potentially time-dependent)
scalar external potential due to, e.g., the nuclei, and ωα and
âα (â†

α) the bare photon frequency and annihilation (creation)
operator for the αth photon mode, respectively. The vector
potential operator is

Â =
Mp∑
α=1

Âαεα = c
Mp∑
α=1

λαεα

1√
2ωα

(â†
α + âα ),

where Âα = (cλα/
√

2ωα )(â†
α + âα ), and c is the speed of light

and εα the polarization of the αth bare linearly polarized pho-
ton mode with the light-matter coupling parameter (or mode
strength) λα , which is proportional to the mode volume Vα via√

1/Vα .1 Note that to establish the full mapping underlying
QEDFT in the long-wavelength approximation [26], one also
adds a mode-resolved external current as a control field for
the photonic subsystem [1,18,27,28]. It is straightforward to
include the corresponding external and KS currents. Yet, since
their effects are mostly important in the time-dependent case
we disregard these contributions in the following.

After the expansion of the kinetic term in Eq. (1), the
diamagnetic term Â2 can be absorbed by redefining the bare
photon modes, which become the so-called dressed photon
modes. The relationship between the bare and dressed photon
modes can be found in Appendix A. The PF Hamiltonian in
terms of the dressed photon modes becomes

ˆ̃HPF(t ) = − 1

2

Ne∑
l=1

∇2
l + 1

2

Ne∑
l �=k

w(rl , rk ) +
Ne∑

l=1

vext (rl , t )

+ 1

c
ˆ̃A · Ĵp +

Mp∑
α=1

ω̃α

(
ˆ̃a†
α

ˆ̃aα + 1

2

)
, (2)

where ˆ̃a† ( ˆ̃a) is the creation (annihilation) operator, ω̃α photon
frequency, ε̃α polarization, and λ̃α light-matter coupling for
the dressed photon modes. The vector potential operator in
terms of the dressed photon modes is

ˆ̃A =
Mp∑
α=1

ˆ̃Aα ε̃α = c
Mp∑
α=1

λ̃α ε̃α

1√
2ω̃α

( ˆ̃a†
α + ˆ̃aα ).

Here ˆ̃Aα = (cλ̃α/
√

2ω̃α )( ˆ̃a†
α + ˆ̃aα ), and Ĵp = ∑Ne

l=1(−i∇l ) is
the paramagnetic current operator. The light-matter coupling,
denoted by λα , encodes information about the electromagnetic
environment, such as the photon mode volume, and is treated
as a free parameter here. To determine whether a system
exhibits weak or strong coupling depends on considering
both the electronic system and the electromagnetic environ-
ment [14,29,30]. Here, we call a system weakly coupled if
λα/ωα � 1.0 and strongly coupled if λα/ωα ∼ 1.0.

1In SI units, λα is proportional to
√

h̄/Vαε0 where h̄ and ε0 are the
reduced Planck constant and the vacuum permittivity, respectively.
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B. Construction of the Kohn-Sham system
in the long-wavelength approximation

The many-body PF Hamiltonian with the dressed photon
modes [Eq. (2)] in the long-wavelength (dipole) approxi-
mation is our starting point for constructing an auxiliary
noninteracting KS system within the QEDFT framework
[1,18,31], which aims to reproduce the electron density (or
current density if we go beyond the long-wavelength approx-
imation and consider full minimal coupling between light
and matter) of the original interacting physical system. The
auxiliary Hamiltonian we start with is

Ĥs(t ) = 1

2

Ne∑
l=1

(
−i∇l + 1

c
Ãs(t )

)2

+
Ne∑

l=1

vs(rl , t ), (3)

where vs(r, t ) is an auxiliary potential and Ãs(t ) =∑Mp

α=1 Ãs,α (t )ε̃α is an auxiliary classical vector potential (not
an operator), constant over space, with [25]

Ãs,α (t ) = −c
∫ t

−∞

λ̃2
α

ω̃α

sin[ω̃α (t − t ′)]ε̃α · Jp(t ′)dt ′,

where Jp(t ′) is the expectation value of the paramagnetic
current operator Ĵp computed with the wave function from the
auxiliary Hamiltonian Ĥs(t ′) at time t ′. This vector potential
corresponds to the mean-field contribution from the transverse
photon modes, and the t → −∞ can be replaced by the appro-
priate initial conditions that solve the mode-resolved Maxwell
equation. We note that if we keep the (discretized) continuum
of modes, we can also describe the radiative dissipation (open-
ness) of a photonic environment from first principles [17,23].

To define the exchange-correlation potential of KS
QEDFT, we can use the local-force equation [32,33], which
avoids the differentiability issue for energy functionals, the
causality issue for action functionals in the time-dependent
cases, and the numerical cost of the OEP procedure of
orbital-dependent functionals. The local-force equation can
be obtained from the equation of motion (EOM) of the
paramagnetic current density ĵp(r) = 1

2i

∑Ne
l=1(δ(r − rl )

−→∇ l −←−∇ lδ(r − rl )). For ground-state (static) wave functions, the
local-force equation for the PF Hamiltonian is

ρ(r)∇vext (r) = 〈F̂T (r)〉� + 〈F̂W (r)〉� − 1

c
〈( ˆ̃A · ∇)ĵp(r)〉�,

(4)
where ρ(r) is the electron density of the coupled light-matter
ground state |�〉, F̂T (r) = i

2 [ĵp(r),
∑Ne

l=1 ∇2
l ] the kinetic-

force density, and F̂W (r) = − i
2 [ĵp(r),

∑Ne
l �=k w(rl , rk )] the

interaction-force density. Here the expectation value 〈. . . 〉 is
evaluated at the exact ground state |�〉 of the PF Hamiltonian.
Similarly, we can find the local-force equation for the auxil-
iary Hamiltonian [Eq. (3)]

ρs(r)∇vs(r) = 〈F̂T (r)〉	 − 1

c
(Ãs · ∇)〈ĵp(r)〉	, (5)

where |	〉 is a Slater determinant for the ground state of
the noninteracting auxiliary Hamiltonian Ĥs and ρs(r) is the
corresponding ground-state density.

If we now assume that both the PF and the auxiliary Hamil-
tonian have the same ground-state density ρ(r) = ρs(r), the

difference between the two local-force equations [Eqs. (4)
and (5)] defines the mean-field exchange-correlation (Mxc)
potential vMxc(r) = vs(r) − vext (r) as

ρ(r)∇vMxc(r) = 〈F̂T (r)〉	 − 〈F̂T (r)〉� − 〈F̂W (r)〉�
+ 1

c
〈( ˆ̃A · ∇)ĵp(r)〉� − 1

c
(Ãs · ∇)〈ĵp(r)〉	.

(6)

For the ground-state (or static) scenarios, the constant classi-
cal vector potential Ãs in the auxiliary Hamiltonian (3) can be
eliminated through a gauge transformation on the ground-state
wave function. This operation removes the last term in Eq. (6).
To restore also the vector potential (photon density) of the
original system, we need to include an exchange-correlation
current in the Maxwell equation for the vector potential and
solve it with the auxiliary system in a self-consistent way
[27]. However, the vector potential becomes most relevant for
beyond-dipole or time-dependent situations and will hence be
investigated in dedicated manuscripts. Equation (6) allows us
to define the electron-electron and electron-photon exchange-
correlation potentials. For instance, the Hartree-exchange
potential vHx(r) for the (longitudinal) electron-electron inter-
action can be defined as [32,33]

∇2vHx(r) = −∇ ·
[

〈F̂W (r)〉	
ρ(r)

]
, (7)

where we replace the the exact ground-state wave function
|�〉 with the Slater determinant |	〉. For the electron-
photon interaction, we define the electron-photon exchange-
correlation (pxc) potential vpxc(r) as

∇2vpxc(r) = 1

c
∇ ·

[
〈( ˆ̃A · ∇)ĵp(r)〉�

ρ(r)

]
, (8)

where we do not know, in general, the exact wave function
|�〉 to obtain the pxc potential. Nevertheless, we can use a
similar trick as for the Hartree-exchange potential to define
the (transverse) electron-photon exchange potential from the
light-matter interaction term 1

c 〈( ˆ̃A · ∇)ĵp(r)〉� , together with
the Breit-type approximation (9) introduced in Ref. [25] for
the quantum fluctuations of the vector potential operator.
This approximation for 
 ˆ̃A = ∑Mp

α=1 
 ˆ̃Aα ε̃α , where 
Ô =
Ô − 〈Ô〉, is


 ˆ̃Aα ≈ −c
λ̃2

α

ω̃2
α

ε̃α · 
Ĵp. (9)

We can then construct the px potential vpx(r) from

1

c
〈( ˆ̃A · ∇)ĵp(r)〉� = 1

c
〈[(〈 ˆ̃A〉� + 
 ˆ̃A) · ∇]ĵp(r)〉�

→ 1

2c

〈⎡
⎣

⎛
⎝Ãs +

Mp∑
α=1

−cλ̃2
α

ω̃2
α

(ε̃α · 
Ĵp)ε̃α

⎞
⎠ · ∇

⎤
⎦ĵp(r)

〉
	

+ c.c.

= −1

2

Mp∑
α=1

λ̃2
α

ω̃2
α

[〈(ε̃α · Ĵp)(ε̃α · ∇)ĵp(r)〉	 + c.c.],
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where we use ˆ̃A = 〈 ˆ̃A〉� + 
Â. In the above relation we
have replaced the mean-field vector potential 〈 ˆ̃A〉� with the
auxiliary classical vector potential Ãs [Eq. (3)] and employed
the Breit-type approximation for 
Â [Eq. (9)]. Since it is then
not guaranteed anymore that this gives a real number, it is
necessary to take only the real part of the expression with
c.c. meaning the complex conjugate. Note that, in general,
〈 ˆ̃A〉� �= Ãs, which could be controlled with an exchange-
correlation current [27,28]. Alternatively, we can perform a
gauge transformation such that 〈 ˆ̃A〉� = Ãs and we obtain in
this way also the full knowledge of the photonic part. In the
last line, the classical vector potential Ãs and the contribution
from the mean-field paramagnetic current Jp = 〈Ĵp〉	 cancel
each other. We thus define the electron-photon exchange po-
tential vpx(r) as

∇2vpx(r) = −∇ ·
⎡
⎣ Mp∑

α=1

λ̃2
α

2ω̃2
α

(ε̃α · ∇)[fα,px(r) + c.c.]

ρ(r)

⎤
⎦,

(10)

where

fα,px(r) = 〈(ε̃α · Ĵp)ĵp(r)〉	. (11)

Next, the electron-photon correlation (pc) potential vpc(r) is
defined as vpc(r) = vpxc(r) − vpx(r) and can be solved, if the
exact wave function |�〉 is known, using

∇2vpc(r) = 1

c
∇ ·

[
〈( ˆ̃A · ∇)ĵp(r)〉�

ρ(r)

]
− ∇2vpx(r),

which is obtained from the difference between Eqs. (8)
and (10). The remaining correlation potential from both the
electron-electron and electron-photon interaction, denoted as
vc(r), is defined as vMxc(r) − vHx(r) − vpxc(r) and can, in
principle, be obtained from Eqs. (6)–(8) as

∇2vc(r)

= ∇ ·
[

〈F̂T (r)〉	 − 〈F̂T (r)〉� + 〈F̂W (r)〉	 − 〈F̂W (r)〉�
ρ(r)

]
.

(12)

Note that, in principle, we also have an equation of motion
for the photonic part of the coupled system [27,28]. How-
ever, in the static long-wavelength case this equation becomes
equivalent to 〈 ˆ̃A〉� = Ãs. For a fixed gauge in the phys-
ical as well as auxiliary KS system this can be achieved
via an exchange-correlation current. This auxiliary current
can become important to model more involved photonic ob-
servables and in the time-dependent case. Nevertheless, the
photon-exchange approximation provides already access to
information of the photon field as discussed Ref. [25]. A
detailed discussion of the photonic aspects is beyond the scope
of this work.

After defining the exchange-correlation potentials, we
notice that the formulas for the Hartree-exchange, electron-
photon exchange, and correlation potentials all have the form

of the Poisson equation, which can be solved numerically:

∇2v(r) = ∇ ·
(

h(r)

ρ(r)

)
,

where v(r) represents a potential and h(r) a vector-valued
function. This approach has been implemented in the OCTO-
PUS code [34] to obtain the Hartree-exchange potential [33].
Similarly, the px potential vpx(r) can be obtained by solving
the corresponding Poisson equation (10). For one-electron
systems coupled to one single dressed photon mode with the
frequency ω̃, light-matter coupling λ̃, and polarization direc-
tion ε̃, the px potential vpx(r) can be obtained directly from
the electron density (for details see Appendix B) using

vpx(r) = λ̃2

2ω̃2

(ε̃ · ∇)2ρ
1
2 (r)

ρ
1
2 (r)

. (13)

In the homogeneous density limit, which leads to the
local-density approximation (LDA), the expectation value in
Eq. (11) can be evaluated in terms of a Slater determinant of
plane waves and leads to [25]

fα,px(r) → fα,pxLDA(r) = 2Vd

(2π )d

kd+2
F (r)

d + 2
ε̃α, (14)

where kF(r) = 2π [ρ(r)/2Vd ]1/d and Vd is the volume of the
d-dimensional unit sphere (i.e., V1 = 2, V2 = π , and V3 =
4π/3). It can be shown that the force fα,px(r) satisfies the
zero-force condition [see Eq. (C2) in Appendix C]. The px
potential within the homogeneous limit then becomes an ex-
plicit density functional and can be calculated by solving

∇2vpxLDA(r) = −
Mp∑
α=1

2π2λ̃2
α

ω̃2
α

[
(ε̃α · ∇)2

(
ρ(r)

2Vd

) 2
d

]
. (15)

In one dimension and for isotropic problems, the pxLDA
potential has an explicit form, respectively,

vpxLDA(x) = −π2

8

Mp∑
α=1

λ̃2
α

ω̃2
α

ρ2(x),

viso
pxLDA(r) = −2π2

d

Mp∑
α=1

λ̃2
α

ω̃2
α

(
ρ(r)

2Vd

) 2
d

.

For two and three dimensions one needs to solve the Poisson
equation [Eq. (15)], using either the conjugate gradient or
the Poisson-kernel method [34]. Yet, the correlation potential
vc(r) remains unknown in general, as it depends on the exact
ground-state wave function [Eq. (12)], necessitating the use
of alternative numerical methods like quantum Monte Carlo
[35,36]. Nevertheless, we introduce a method in Sec. II C to
explore one aspect of the correlation potential, namely, the
electron-photon correlation potential, in the context of weak
coupling in the light-matter interaction.

After obtaining the px potential from the local-force equa-
tion, we explore the associated px energy below. We note that
when employing Eq. (9) in the PF Hamiltonian [Eq. (2)], we
need to consistently also take the contribution of the photonic
energy into account [25]. That is, the replacement of the
photonic operator with the paramagnetic current operator in
the last term of Eq. (2) gives a counteracting contribution to
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the light-matter interaction term ˆ̃A · Ĵp. A comparison with
the EOM of a correspondingly defined Breit-type Hamiltonian
[25] reveals that the substitution leads to

1

c
〈 ˆ̃A · Ĵp〉� +

Mp∑
α=1

ω̃α〈 ˆ̃a†
α

ˆ̃aα〉� → Epx[ρ],

where the electron-photon exchange energy is defined as

Epx[ρ] = −
Mp∑
α=1

λ̃2
α

2ω̃2
α

〈(ε̃α · Ĵp)	[ρ]|(ε̃α · Ĵp)	[ρ]〉. (16)

Here the factor of 1
2 results from the counteracting photonic

energy contribution. In the homogeneous limit, the px energy
becomes (for details see Appendix C)

EpxLDA[ρ] = −2π2

(d + 2)(2Vd )
2
d

Mp∑
α=1

λ̃2
α

ω̃2
α

∫
dr ρ

2+d
d (r). (17)

This form can be derived either through applying the
LDA on the energy functional of Eq. (16) or via
the exchange virial relation using the LDA for the force from
Eq. (14) (see Appendix C for details). We note that the ex-
change force, which in general has transverse components,
needs to be taken into account to fulfill the exchange virial
relation [33]. When determining the pxLDA potential from
the functional derivative of the pxLDA energy [Eq. (17)],
we end up with the isotropic pxLDA potential viso

pxLDA(r).
However, this isotropic potential lacks information about the
polarization of photon modes. To preserve this information,
it is essential to use the pxLDA potential obtained from the
local-force equation in the KS equations and subsequently
compute the pxLDA energy after obtaining the electron den-
sity. Nevertheless, reproducing the total energy of the original
system in our approach requires the inclusion and tracking
of the vector potential (photon density), which is eliminated
by the gauge chosen during the construction of the auxiliary
system. Benchmarking the total energy from our approach is
planned for future work.

In practice, the KS Hamiltonian, which is designed to re-
produce the electron density of the PF Hamiltonian [Eq. (2)],
has to be solved in a self-consistent way for ground-state cal-
culations similar to standard density functional theory (DFT)
[37,38]:

(1) Calculate the Mxc potential vMxc(r) using either the
KS orbitals or the electron density.

(2) Construct the KS Hamiltonian ĤKS using the Hamilto-
nian of Eq. (3) with vKS(r) = vext (r) + vMxc(r) and without
the vector potential in the time-independent cases.

(3) Solve the resulting KS Hamiltonian and obtain the KS
orbitals and electron density, which are used in step 1 to get
the associated Mxc potentials.

(4) Loop through steps 1 to 3 until the electron density
converges within a desired threshold.

For time-dependent calculations, once the ground state
of the KS Hamiltonian |	KS〉 is obtained, the time prop-
agation of the ground state is determined by solving the

nonlinear Schrödinger-type evolution equation i∂t |	KS(t )〉 =
ĤKS(t )|	KS(t )〉 with the time-dependent Hamiltonian from
Eq. (3), together with the auxiliary classical vector potential
Ãs(t ), and replacing vs(r, t ) → vKS(r, t ) [1,19,39,40]. Note
that the Mxc potential based on the local-force equation of
Eq. (6) is strictly speaking only for the static case, making
it an adiabatic approximation when used in time-dependent
simulations. Although it is possible to derive nonadiabatic
potentials (see Refs. [25,32,33] for details), this is beyond the
scope of our paper. Below we thus use the adiabatic approxi-
mation to obtain associated spectra [39,40]. When it comes to
observables beyond the density and the ground-state energy of
the original system, the KS method offers no straightforward
way on how to achieve them. Nevertheless, as in standard
(time-dependent) DFT, the theorems of QEDFT [1,27] show
that in principle all observables can be determined. The task of
finding valid approaches to other quantities, like entanglement
entropy between light and matter [41], poses a challenge that
goes beyond the scope of our work.

C. Weak-coupling limit: Perturbation-theory analysis

The px potential has been derived from the PF Hamiltonian
using the photon-coupled homogeneous electron-gas basis
[25,42]. In the limit λα → ∞ and ωα → ∞, the px potential
becomes the sole contribution. While it vanishes for λα → 0
(as it should), its behavior in this limit has not been exten-
sively studied. For simplicity, we focus on one effective mode
[26], as simulations with numerous modes pose numerical
challenges for exact reference calculations. This is the focus
of this section. However, the explored approximate electron-
photon functionals can be easily extended to accommodate
any number of photon modes without significant numerical
overhead.

To better understand the applicability of the px and pxLDA
approximations for the PF Hamiltonian, we compare it with
static perturbation theory. Our starting Hamiltonian with
one dressed photon mode, i.e., Eq. (2) with one mode, is
rewritten as

ˆ̃HPF = ĤM + 1

c
ˆ̃A · Ĵp + Ĥγ , (18)

where the Hamiltonian for the matter subsystem is

ĤM = −1

2

Ne∑
l=1

∇2
l +

Ne∑
l=1

vext (rl ) + 1

2

Ne∑
l �=k

w(rl , rk ), (19)

and the Hamiltonian for the dressed photon mode is

Ĥγ = ω̃

(
ˆ̃a† ˆ̃a + 1

2

)
.

In this section we overload the notation ˆ̃HPF for one photon
mode [26], compared to Eq. (2). If we mention one-mode
cases, we refer to Eq. (18); otherwise, we refer to the more
general multimode form of Eq. (2).

We denote ĤM|m(0)〉 = ε (0)
m |m(0)〉, where ε (0)

m is the en-
ergy for the mth unperturbed many-body matter state |m(0)〉.
Furthermore, we have Ĥγ |ñ〉 = ω̃(ñ + 1/2)|ñ〉, where ω̃ and
ñ are the dressed photon frequency and photon number for
the photon mode |ñ〉, respectively. The vector potential for
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the dressed cavity is ˆ̃A = ˆ̃Aε̃ = (cλ̃/
√

2ω̃)( ˆ̃a† + ˆ̃a), where
λ̃ = λ and ω̃2 = ω2 + Neλ

2 (see Appendix A). Next, we
assume weak light-matter coupling such that the light-matter
interaction can be considered as a perturbation to the matter
Hamiltonian [Eq. (19)],


V̂ = 1

c
ˆ̃A · Ĵp = λ̃√

2ω̃
( ˆ̃a† + ˆ̃a)(ε̃ · Ĵp).

The unperturbed system is the composite system that con-
sists of the ground state of the matter |0(0)〉 and that of the
one-dressed-photon-mode subsystem |0̃〉. We write the ground
state of the unperturbed composite system as a direct tensor
product state |� (0)

0 〉 = |00̃〉 = |0(0)〉 ⊗ |0̃〉.
In the weak light-matter coupling regime, the modi-

fied ground-state wave function |�0〉 up to the first-order

correction is

|�0〉 ≈ ∣∣� (0)
0

〉 + ∣∣� (1)
0

〉
,

where |� (1)
0 〉 is the first-order correction to the ground-state

wave function, which only involves the contribution from the
first photon sector |1̃〉,

∣∣� (1)
0

〉 = − λ̃√
2ω̃3/2

∞∑
m=0

〈m(0)|(ε̃ · Ĵp)|0(0)〉
1 + 
ε

(0)
m0/ω̃

|m1̃〉,

where 
ε
(0)
m0 = ε (0)

m − ε
(0)
0 and |m1̃〉 = |m(0)〉 ⊗ |1̃〉. The mod-

ified ground-state wave function is an entangled state, which
cannot be rewritten as a single tensor product state of the
matter and photonic state.

Using the modified ground-state wave function |�0〉 and
Eq. (8), we evaluate the pxc potential up to the lowest order of
the light-matter coupling,

∇2vpxc(r) ≈ 1

c
∇ ·

[〈
�

(1)
0

∣∣( ˆ̃A · ∇)ĵp(r)
∣∣� (0)

0

〉
ρ(r)

]
+ c.c. = ∇ ·

[
−λ̃2

2ω̃2ρ(r)

∞∑
m=0

〈0(0)|ε̃ · Ĵp|m(0)〉〈m(0)|ε̃ · ∇ĵp(r)|0(0)〉
1 + 
ε

(0)
m0/ω̃

]
+ c.c.

= −∇ ·
[

λ̃2

2ω̃2

〈(ε̃ · Ĵp)(ε̃ · ∇)ĵp(r)〉
�

(0)
0

ρ(r)

]
+ ∇ ·

[
λ̃2

2ω̃2ρ(r)

∞∑
m=1

〈0(0)|ε̃ · Ĵp|m(0)〉〈m(0)|ε̃ · ∇ĵp(r)|0(0)〉
1 + ω̃/
ε

(0)
m0

]
+ c.c.,

where we have only the contribution between |� (0)
0 〉 and |� (1)

0 〉 due to the orthogonality of the photonic states. In the last line
we separate a px-like contribution, where we use |� (0)

0 〉 instead of |	〉 in Eq. (11), from the pxc potential with the help of the
identity 1 = ∑∞

m=0 |m(0)〉〈m(0)|. Then, the pc potential in the weak-coupling regime is

∇2vpc(r) ≈∇ ·
[

λ̃2

2ω̃2ρ(r)

∞∑
m=1

〈0(0)|ε̃ · Ĵp|m(0)〉〈m(0)|ε̃ · ∇ĵp(r)|0(0)〉
1 + ω̃/
ε

(0)
m0

]
+ c.c. (20)

When ω̃ → ∞ (i.e., in the strong-coupling regime or large
photon frequency regime), the pc potential vanishes, and the
pxc becomes a px-like potential, consistent with the results
obtained from the analysis of the photon-coupled homoge-
neous electron-gas basis [25].

Computing the pc potential in the weak coupling [Eq. (20)]
requires all the information of the many-body matter states,
which poses numerical challenges. Alternatively, the light-
matter interaction in the weak-coupling regime can be
accurately obtained using the OEP approach [22,23]. Instead
of solving Eq. (20), we here propose the following formula
with a correlation factor ξc to approximate the pc potential in
the weak-coupling regime for one photon mode,2

∇2vpc(r) ≈ ξc∇ ·
[

λ̃2

2ω̃2

〈(ε̃ · Ĵp)(ε̃ · ∇)ĵp(r)〉
�

(0)
0

+ c.c.

ρ(r)

]
.

This formula is obtained by assuming 
ε
(0)
m0 � ω̃ in the

second line of Eq. (20) such that the dependence of the

2For multimode cases, each photon mode has its correlation factor
ξc,α . The correlation factor ξc,α = ξc,α ({λα}, {ωα}) for each photon
mode α is a function of the light-matter coupling as well as the
photon frequency.

denominator on the index m can be neglected. The (positive)
correlation factor ξc depends on the light-matter coupling and
photon frequency, and vanishes when ω̃ → ∞, i.e., in the
strong-coupling or large photon frequency regime. Thus, we
use the following formula for the pxc potential when explor-
ing the weak-coupling regime:

∇2vpxc(r) ≈ −ηc∇ ·
[

λ̃2

2ω̃2

〈(ε̃ · Ĵp)(ε̃ · ∇)ĵp(r)〉	 + c.c.

ρ(r)

]
,

where we replace |� (0)
0 〉 with |	〉 and use Eq. (10), and we

define a renormalization factor ηc = 1 − ξc for the px poten-
tial to take the electron-photon correlation contribution into
account. We denote this formula as the ηc-px approach here
and below. The renormalization factor ηc is determined by
perturbation theory, e.g., comparing the results with the exact
or OEP approach. Hereafter, we apply the approximated pxc
potential to various one-electron systems. It is anticipated that
the outcomes may differ from the exact results, as the corre-
lation potential from the kinetic- and interaction-force density
[Eq. (12)], and the electron-photon correlation potential aris-
ing from employing the Slater determinant in the pxc potential
instead of the exact wave function, are neglected. Below we
determine the renormalization factor by comparing it with the
electron density obtained from the exact (or OEP) approach.
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This factor relies on the electron-photon correlation poten-
tial, which is based on the (unknown) exact wave function.
This process resembles the construction of the electron-
electron correlation potential in standard DFT [38], which is
numerically determined and parametrized from the solution of
the homogeneous electron gas using the quantum Monte Carlo
method. However, systematically identifying and parametriz-
ing the renormalization factor or electron-photon correlation
potential poses another challenging numerical task [36].

III. RESULTS AND DISCUSSION

We analyze the performance of the different function-
als derived in the previous section by applying them to
three different one-electron systems coupled to an effective
single mode of a perfect cavity, e.g., Fabry-Pérot cav-
ity.3 Specifically, we consider electron-photon interaction in
a one-dimensional HO, a two-dimensional quantum ring,
and a three-dimensional hydrogen atom. In one- and two-
dimensional systems, we can directly solve the corresponding
PF Hamiltonians using exact diagonalization, which serves as
a benchmark for approximate QEDFT results. We focus the
analysis and comparison on the electron density since this is
the fundamental quantity of QEDFT in the long-wavelength
limit. For the three-dimensional hydrogen atom, we examine
the ground-state electron density by comparing the OEP ap-
proach to the px and pxLDA approximations. Additionally, for
the hydrogen atom, we explore its optical absorption spectra
through time-dependent QEDFT [1,18,19] (see Appendix D
for all computational details). Although our main focus is
on investigating the behavior of electron-photon interaction
without complicating the study with (approximate) electron-
electron interaction, in Appendix E we also present a He
atom to showcase that the approach is directly applicable to
multielectron problems.

A. Harmonic oscillator coupled to a photon mode

We first consider a one-dimensional HO with the ex-
ternal potential vSHO(x) = x2/2 coupled to a photon mode
(see the computational details in Appendix D). We explore
both weak- and strong-coupling regimes by using two dif-
ferent light-matter couplings, λ = 0.005 and 4.0, along with
two photon frequencies ω = 1.0 and 5.1. Figure 1 shows
the electron density differences between inside and outside
the cavity, 
ρ(x) = ρλ(x) − ρλ=0(x). Here and below, when
we mention the outside-cavity case, we mean zero light-
matter coupling, i.e., λ = 0. In the weak-coupling (λ = 0.005)
and low-photon-frequency (ω = 1.0, i.e., on resonance with
the first excited state of the HO) scenario, both px and
pxLDA approximations overestimate the effect of the mode
on the electron density. Following the discussion in Sec. II C,
we can rectify this by introducing the perturbation-based
renormalization factor (ηc = 1

4 ) for the px potential. In the
weak-coupling but high-photon-frequency (ωα = 5.1) case,
the px functional slightly overestimates the electron density,

3For single-cavity-mode cases, the px and pc potentials depend
only on the ratio between the light-matter coupling and bare photon
frequency, i.e., λα/ωα .

FIG. 1. Electron-density differences between the inside and
outside cavity, 
ρ(x) = ρλ(x) − ρλ=0(x), in the weak- and strong-
coupling regimes. The results are computed via the exact diagonal-
ization and different approximate QEDFT functionals.

while the pxLDA approximation slightly underestimates it.
The ηc-px functional reproduces the exact result, and the ηc

factor becomes close to 1.0.
In the strong-coupling regime (λ = 4.0 and λ/ω � 0.1)

both the px and pxLDA approximations exhibit small devi-
ations from the exact electron density, similar to the scenario
seen in the weak coupling but with a large photon frequency
(λ = 0.005 and ω = 5.1). The ηc-px functional can be used
to restore the exact results, and the ηc factor approaches 1.0
in this context, implying that the electron-photon correlation
becomes small. These numerical findings demonstrate yet
again that both the px and pxLDA approximate functionals
perform well in the strong-coupling regime. While the pxLDA
functional tends to underestimate the effect of the cavity on
the electron density compared to the px approximation, it
captures the changes qualitatively correct for one-dimensional
problems. The presented approximation strategy also gives an
intuitive understanding of the effect of the cavity in the strong-
coupling regime. Expressing the photon fluctuation operator
via the current operator [Eq. (9)] leads to a renormalization of
the electron mass (along the polarization direction), a feature
that is also predicted for the homogeneous electron gas (HEG)
coupled to an optical cavity [42]. Since this increases the
effective mass of the electron, i.e., the kinetic contribution in
the Schrödinger equation is decreased, the electron becomes
more localized.

B. Quantum ring coupled to a photon mode

When the photon mode is in resonance with the first excited
state of a quantum ring [
ε

(0)
10 = 0.125 for a confining poten-

tial vQR(r) = ξ1|r|2/2 + ξ2 exp(−|r|2/ξ 2
3 ), with ξ1 = 0.7827,

ξ2 = 17.7, and ξ3 = 0.997 [43]] in the weak-coupling regime,
the electron density accumulates perpendicular to the po-
larization direction, which is set to x here, while in the
strong-coupling regime, the density aligns along the polar-
ization direction [see Fig. 2(a)] (for the computational details
see Appendix D). This shift in behavior makes the quantum
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FIG. 2. The photon mode is polarized along the x direction (the
solid right arrow) and has a frequency of ω = 0.125, in resonance
with the first excited state of the two-dimensional quantum ring.
(a) The electron-density difference inside and outside the cavity
for the exact and various approximate QEDFT functionals in both
strong- and weak-coupling regimes. (b) The electron-density differ-
ence along the x (solid lines) and y (dashed lines) directions (the
cut through the center of the quantum ring) in both strong- and
weak-coupling scenarios. The renormalization factors ηc are 0.27 and
−5 × 10−3 in the strong- and weak-coupling regime, respectively.

ring an excellent case to test if the approximate QEDFT
functionals can reproduce the correct feature of the electron
density from the weak- to strong-coupling regimes.

Figure 2(a) shows electron density differences within and
outside the cavity under both strong- and weak-coupling
conditions, considering the different approximate QEDFT
functionals. In the strong-coupling regime (λ = 0.5), the
OEP functional in exchange-approximation fails to qualita-
tively replicate the exact electron density [22], whereas the
px functional, while providing a qualitative match, tends to
overestimate the effect of the cavity. The pxLDA functional
yields an improved agreement with the exact result in the
strong-coupling regime. Additionally, we see that the ηc-px
functional helps to recover quantitatively the exact results
for this case. Figure 2(b) provides a comparison of electron-
density differences along the x and y directions for the exact,
pxLDA, and ηc-px methods. In the strong-coupling regime,
the electron accumulates and behaves more classically along
the polarization, similar to the one-dimensional HO case.

In the weak-coupling regime (λ = 0.005), neither the px
nor the pxLDA approximations capture the desired feature
[Fig. 2(a)]. In contrast, the ηc-px approach manages to cap-
ture the weak-coupling feature, even though small deviations
still exist [Fig. 2(b)] due to the approximation we made for
the ηc-px potential developed in Sec. II C and the neglect of
other correlation potentials. These observations highlight the
electron-photon correlation contribution in the weak-coupling
regime. Conversely, in the strong-coupling regime, we can
use approximate px potentials alone to capture the strong-
coupling features because the pc potential quickly vanishes
with ω̃α as discussed in Sec. II C.

C. Hydrogen atom coupled to a photon mode

We now turn our attention to a more realistic system, a
hydrogen atom coupled to a photon mode (see Appendix D
for the computational details). While this system might seem
simple with one atom and one electron coupled to one photon
mode, the exact diagonalization of the PF Hamiltonian in real
space to obtain the electron density poses already computa-
tional challenges, demanding significant memory resources
to converge the results with respect to the real-space grid
size and the number of photon Fock states. As an alternative,
we rely on the results obtained from the OEP functional in
exchange approximation as our reference, especially, in the
weak-coupling regime, where the OEP approach works well.

Figure 3(a) compares the electron-density difference be-
tween inside and outside the cavity, with a frequency that is
in resonance with the first excited state of the bare hydrogen
atom and the polarization along the x direction. We evaluate
this using OEP, pxLDA, and ηc-px functionals. Similar to the
HO case, both px and pxLDA approximations overestimate
electron-density changes in the weak-coupling regime (λ =
5 × 10−5), with px results (not shown) an order of magnitude
higher. Applying a renormalization factor ηc = 0.1 to px re-
produces the OEP results. In the strong-coupling regime (λ =
0.5), we provide the OEP, px, and pxLDA results. Although
OEP may not provide accurate results due to its perturbative
nature in this regime, we anticipate that px and pxLDA offer
upper and lower bounds for the electron-density difference
based on our experience with the other test systems.

After analyzing the ground-state electron density, we
proceed to compute the linear-response optical absorption
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FIG. 3. The photon mode is polarized along the x direction and a
photon frequency of 0.3745 hartree (10.19 eV), in resonance with the
first excited state of the hydrogen atom. (a) The electron-density dif-
ferences 
ρ along the x (solid lines) and y (dashed lines) directions
in the weak- and strong-coupling regimes, computed using various
QEDFT approximations. (b) The optical spectrum of the hydrogen
atom inside and outside of the cavity. The results for inside the cavity
are obtained using the pxLDA functional. The dashed lines represent
the photon frequency of the photon mode, while the vertical solid
black lines in both inside-cavity cases are the eigenvalues from the
JC model (please see the main text).

spectra for the hydrogen atom inside the cavity using the
pxLDA functional. While the OEP functional in exchange
approximation is suitable for weak-coupling spectra [23], ex-
ploring strong coupling with approximate QEDFT functionals
for realistic materials remains uncharted territory. Figure 3(b)
shows the optical absorption spectrum (or cross section) of the
hydrogen atom interacting with a photon mode in the strong-
coupling regime. The polarization is along the x direction,
and the photon frequency is in resonance with the atom’s first
excitation, i.e., ωα = 0.3745. Outside the cavity, the first peak
corresponds to three dipole transitions: 1s → 2px, 1s → 2py,
and 1s → 2pz. These 2p orbitals have degenerate energy lev-
els. However, inside the cavity with a light-matter coupling of
λ = 0.05, part of the first peak splits into two peaks. These are
the lower and upper polaritons arising from the hybridization
between the 1s → 2px transition and the photon mode. The
other two transitions, 1s → 2py and 1s → 2pz, remain largely
unchanged since the photon mode is polarized along the x
direction. As the light-matter coupling increases from 0.05 to
0.1, the Rabi splitting between the lower and upper polariton
doubles. Notably, other peak positions are also influenced,
even when the photon mode is not in resonance with them.

Here we compare our QEDFT results with the widely used
Jaynes-Cummings (JC) model, which describes light-matter
coupled two-level systems well in the weak-coupling regime.
The JC Hamiltonian within the rotating-wave approxima-
tion, describing a two-level system with energy difference
ω0 coupled to a photon mode with photon frequency ω and
polarization ε, is given by (in Hartree atomic units)

ĤJC = ωâ†â + ω0
σ̂z

2
+ g(âσ̂+ + â†σ̂−) + ω0

2
,

where σ̂z is the Pauli matrix representing the two energy
levels, g = λ

√
ω/2(d · ε),4 where d is the dipole matrix el-

ement between the two levels, and the last term (ω0/2) is
used to reset the energy of the lowest state of the two levels
system to zero. The polaritonic eigenvalues for the photon
vacuum state (n = 0) are given by E±(n = 0, δ) = ω+ω0

2 ±
1
2

√
4g2 + δ where δ = ω0 − ω. For the 1s and 2px orbitals

of the hydrogen atom coupled to a photon mode with δ = 0,
the polariton energies are E±(n = 0, δ = 0) = ω0 ± g. The
dipole matrix element between the 1s and 2px orbitals is
〈2p|x|1s〉 = ( 2

3 )54
√

2, given the analytical functions of the
two orbitals, leading to g = ( 2

3 )54
√

2λ
√

ω0 in the resonance
condition. For λ = 0.05, g = 0.01613 (= 0.4389 eV). The po-
laritonic energies obtained from the JC model for this scenario
are also shown in Fig. 3(b). Our QEDFT results at a coupling
parameter of 0.05 align with those derived from the JC model.
However, discrepancies emerge in the strong-coupling regime
(λ = 0.1), where our QEDFT results show an asymmetric
Rabi splitting, a feature absent in the JC model. Asymmetric
Rabi splitting in the strong-coupling regime naturally arises
also in other ab initio spectra [44,45], and can also be observed
and studied experimentally [46].

IV. CONCLUSION AND OUTLOOK

In summary, we have explored the reliability of px and
pxLDA approximations, which are based on expressing the
quantum fluctuations of the photons by the quantum-matter
fluctuations, across various dimensional systems, coupling
parameters, and frequency regimes. While designed for
ultrastrong coupling, these nonperturbative approximations
can achieve accuracy in weak-coupling situations by incor-
porating renormalization factors that take electron-photon
correlation contributions into account. We demonstrated the
efficiency of these methods in recovering both qualitative and
quantitative exact results. Moreover, we established connec-
tions between changes in optical spectra and modifications
in the ground state of strongly coupled light-matter sys-
tems. Accessing both static and time-dependent observables,
such as changes in ground-state densities and optical spec-
tra, within a unified theoretical framework opens up a lot of
intriguing possibilities to explore in more detail the modi-
fications of chemical and material equilibrium properties as
uncovered by seminal experimental investigations in polari-
tonic chemistry and materials science [5,6,10,14,47,48]. This

4In SI units, g = d · ε
√

ω/2h̄ε0V = d · ε(λ/h̄)
√

ω/2, where λ =√
h̄/ε0V and V the mode volume.
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underscores the potential of ab initio QED methods, par-
ticularly QEDFT, for future applications to the control of
chemical and materials processes in cavities of tailored quan-
tum environments. Our study demonstrates that even simple
approximate functionals yield qualitatively correct results and
can be systematically improved, not only qualitatively but also
quantitatively, through comparative analysis.

Here we concentrated on simple finite systems to thor-
oughly examine the reliability of various approximate func-
tionals. Unlike the often-employed unitarily equivalent length
form of the PF Hamiltonian [17,49–51], the presented ap-
proximations, grounded in the velocity gauge, offer direct
applicability to extended systems, setting the stage for their
application to solids. The velocity gauge provides a direct
connection to full minimal-coupling considerations, with a
complete minimal-coupling form of the px potential already
established in the literature [25]. Exploring this approach
for the full minimal-coupling PF Hamiltonian within the
Maxwell-Pauli-Kohn-Sham framework [31] and considering
functionals for chiral cavities [3,16] represent promising
future directions.

Beyond ground-state scenarios, the development of nona-
diabatic (current-)density functionals is crucial. Leveraging
the local-force equation, similar to (electron-only) time-
dependent DFT, offers a viable strategy [32,33]. Future
research will also involve extensive benchmarking of exist-
ing approximate QEDFT functionals. While benchmarks for
standard electronic-structure methods are well established,
reliable reference results for polaritonic systems, especially in
realistic contexts, are still in progress. This challenge extends
beyond single molecules and atoms to collectively coupled
systems [17,51–55], where the nonperturbative interplay be-
tween electronic and rovibrational degrees of freedom in
large ensembles presents intriguing possibilities [10,56,57].
Exploring these interactions could unveil novel avenues for
electronic-structure methods by bridging disparate energy and
length scales.
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APPENDIX A: DERIVATION FOR THE PAULI-FIERZ
HAMILTONIAN WITH THE DRESSED PHOTON MODES

After the expansion of the kinetic energy term in Eq. (1),
the PF Hamiltonian can be written as the sum of (1) the

Hamiltonian for the matter ĤM, (2) the Hamiltonian for
the photon system Ĥγ , and (3) the interaction between the
two systems 1

c Â · Ĵp with the paramagnetic current operator
Ĵp = ∑Ne

l=1(−i∇l ):

ĤPF = ĤM + 1

c
Â · Ĵp + Ĥγ ,

where the Hamiltonian for the matter system is defined as

ĤM = −1

2

Ne∑
l=1

∇2
l +

Ne∑
l=1

vext (rl ) + 1

2

Ne∑
l �=k

w(rl , rk ),

while that for the photon system is

Ĥγ =
Mp∑
α=1

ωα

(
â†

α âα + 1

2

)
+ Ne

2c2
Â2,

where only in this Appendix we overload the notation Ĥγ for
many modes, compared to the one in the main text. Here we
introduce a pair of harmonic coordinates for the bare photons:

q̂α = 1√
2ωα

(â†
α + âα ),

p̂α = i

√
ωα

2
(â†

α − âα ),

and rewrite Ĥγ in terms of the harmonic coordinates as

Ĥγ = 1

2

Mp∑
α=1

⎛
⎝p̂2

α + q̂α

Mp∑
α′=1

Wαα′ q̂α′

⎞
⎠

= 1

2
(P̂ᵀP̂ + Q̂ᵀWQ̂), (A1)

where we introduce a few notations to simplify the
Hamiltonian: P̂ = ( p̂1, . . . , p̂Mp )ᵀ (ᵀ means transpose), Q̂ =
(q̂1, . . . , q̂Mp )ᵀ, and Wαα′ = ω2

αδαα′ + Neλαλα′εα · εα′ . The
matrix W is real and symmetric, and can be diagonalized
using an orthonormal matrix U, such that �̃ = UWUT with
eigenvalues ω̃2

α , where ω̃α is the dressed frequency for the αth
photon mode. Next, we use a pair of transformed harmonic
coordinates ˆ̃P = UP̂ and ˆ̃Q = UQ̂, that is, ˆ̃pα = ∑Mp

β=1 Uαβ p̂β

and ˆ̃qα = ∑Mp

β=1 Uαβ q̂β , respectively. The Hamiltonian for the

photon system Ĥγ [Eq. (A1)] becomes, with the help of the
identity I = UᵀU,

Ĥγ = 1

2

Mp∑
α=1

(
ˆ̃p2
α + ω̃2

α
ˆ̃q2
α

) =
Mp∑
α=1

ω̃α

(
ˆ̃a†
α

ˆ̃aα + 1

2

)
,

where in the second equality we define the annihilation ˆ̃aα and
creation operator ˆ̃a†

α for the dressed photons as

ˆ̃aα = 1√
2ω̃α

(ω̃α
ˆ̃qα + i ˆ̃pα ),

ˆ̃a†
α = 1√

2ω̃α

(ω̃α
ˆ̃qα − i ˆ̃pα ).

Since we now use the dressed photons instead of the bare
photons, the vector potential operator Â needs to be rewritten
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in terms of the dressed photons as well:

Â = c
Mp∑
α=1

λαεα q̂α = c
Mp∑
α=1

λαεα

Mp∑
β=1

Uβα
ˆ̃qβ

= c
Mp∑
α=1

⎡
⎣ Mp∑

β=1

Uαβλβεβ

⎤
⎦ ˆ̃qα = c

Mp∑
α=1

λ̃α ε̃α
ˆ̃qα = ˆ̃A,

where we define the coupling λ̃α and polarization ε̃α for each
dressed photon mode using the relation

λ̃α ε̃α =
Mp∑
β=1

Uαβλβεβ. (A2)

The polarizations for each bare and each dressed photon
mode, εα and ε̃α , are normalized, i.e., |εα| = |ε̃α| = 1. Using
this property, one can obtain the coupling λ̃α for the αth
dressed photon mode. If we assume that all the photon modes
have the same coupling parameter, then the polarization
for each dressed photon mode becomes ε̃α = ∑Mp

β=1 Uαβεβ ,
which reproduces the results in Ref. [58]. However, if the cou-
pling parameters are different, then one should use Eq. (A2)
to get the correct polarization instead. Note that the vector po-
tential operator does not transform via the unitary matrix but
expresses itself in terms of the dressed photon modes. There-
fore, the PF Hamiltonian [Eq. (1)] in terms of the dressed
photon modes becomes Eq. (2).

APPENDIX B: ELECTRON-PHOTON EXCHANGE
POTENTIAL FOR ONE ELECTRON COUPLED TO ONE

PHOTON MODE

Here we focus on the px potential for one effective photon
mode. For many cavity-modes cases, we can add similar px
potentials together with the corresponding light-matter cou-
pling λ̃α and dressed photon frequency ω̃α , i.e., vpx(r) =∑Mp

α=1 vpx,α (r), where vpx,α (r) is the px potential for the αth
photon mode.

Assume that the wave function of the ground state ψ0(r) =
ρ1/2(r) is real, the px potential for one-electron cases can be
obtained analytically from the Poisson equation (10), together

with the definition of the paramagnetic current operator Ĵp,
the paramagnetic current density ĵp(r), and Ne = 1:

∇2vpx(r) = − λ̃2

ω̃2
∇ ·

[
(ε̃ · ∇)〈(ε̃ · Ĵp)ĵp(r)〉ψ0

ρ(r)

]

= λ̃2

2ω̃2
∇2

[
(ε̃ · ∇)2ψ0(r)

ψ0(r)

]
.

Thus, the px potential is

vpx(r) = λ̃2

2ω̃2

(ε̃ · ∇)2ρ
1
2 (r)

ρ
1
2 (r)

.

APPENDIX C: ELECTRON-PHOTON EXCHANGE
ENERGY WITHIN THE LOCAL-DENSITY

APPROXIMATION

Here we derive the px energy within the local-density
approximation [Eq. (17)] from two approaches, the reduced
density matrix (RDM) and the virial relation.

1. Derivation from the reduced density matrix

We follow a similar strategy to derive the px energy within
the local-density approximation as the pxLDA force derived
in Ref. [25]. First, we define the one-particle and two-particle
RDM for the Slater determinant 	(r1, r2, r3, . . . , rNe ) =
	(r1, r) = 	(r1, r2, r), where we use r = (r2, r3, . . . , rNe )
and r = (r3, r4, . . . , rNe ). The one-particle RDM (1RDM) is
defined as

ρ(1)(r1, r′
1) = Ne

∫
dr 	(r1, r)	∗(r′

1, r),

while the two-particle RDM (2RDM) is defined as

ρ(2)(r1, r2; r′
1, r′

2)

= Ne(Ne − 1)

2

∫
dr 	(r1, r2, r)	∗(r′

1, r′
2, r).

Using the above formula for the 1RDM and 2RDM (with the
closed-shell assumption), we can write the expectation value
of the current-current correlation in Eq. (16) as

〈(ε̃α · Ĵp)	|(ε̃α · Ĵp)	〉 = Ne

∫
dr1

∫
dr[(ε̃α · ∇1)	(r1, r)]∗[(ε̃α · ∇1)	(r1, r)]

+ Ne(Ne − 1)
∫

dr1

∫
dr2

∫
dr[(ε̃α · ∇2)	(r1, r2, r)]∗[(ε̃α · ∇1)	(r1, r2, r)]

=
∫

dr1(ε̃α · ∇1′ )(ε̃α · ∇1)ρ(1)(r1, r′
1)|r′

1=r1

+ 2
∫

dr1

∫
dr2(ε̃α · ∇2′ )(ε̃α · ∇1)ρ(2)(r1, r2; r′

1, r′
2)|r′

1=r1,r′
2=r2 .

For closed-shell Slater-determinant states, which we assume here and below, the 2RDM can be written in terms of the
1RDM as

ρ(2)(r1, r2; r′
1, r′

2) = 1
2

[
ρ(1)(r1, r′

1)ρ(1)(r2, r′
2) − 1

2ρ(1)(r1, r′
2)ρ(1)(r2, r′

1)
]
.
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The 1RDM for the HEG, which we assume here, is given as

ρ(1)(r1, r′
1) = 2

(2π )d

∫
|k|<kF

dk eik·(r1−r′
1 ),

where kF(r) = 2π [ρ(r)/2Vd ]1/d . Within the HEG approxima-
tion, we have

∇1ρ(1)(r1, r′
1)|r1,r′

1
= 2i

(2π )d

∫
|k|<kF

dk k = 0.

Therefore, the expectation value within LDA becomes

〈(ε̃α · Ĵp)2〉 =
∫

dr1
2

(2π )d

∫
|k|<kF

dk(ε̃α · k)2

−
∫

dr1
2

(2π )d

∫
|k|<min(kF,k′

F )
dk(ε̃α · k)2.

For the HEG, k′
F = kF, the expectation value vanishes as

expected. For an inhomogeneous medium, min(kF, k′
F) ap-

proaches zero because k′
F can possibly get small. Therefore,

we propose the following formula for the px energy within
the LDA approximation:

EpxLDA =
∫

dr

⎛
⎝ Mp∑

α=1

−λ̃2
α

2ω̃2
α

⎞
⎠[

2κ

(2π )d

∫
|k|<kF

dk(ε̃α · k)2

]
,

where we introduce a factor κ ∈ [0, 1] where κ = 0 for the
HEG and κ = 1 for the maximally inhomogeneous limit to
take all situations into account. We use the maximally inho-
mogeneous limit (κ = 1) in this work. One can recover other
scenarios by including the factor κ . The square brackets in the
formula for the pxLDA energy can be evaluated in the polar
coordinates in d dimension:

2

(2π )d

∫
|k|<kF

dk(ε̃α · k)2 = 2Vd

(2π )d

kd+2
F (r)

d + 2
.

The px energy within the LDA becomes

EpxLDA =
⎛
⎝ Mp∑

α=1

−λ̃2
α

ω̃2
α

⎞
⎠ 2π2

d + 2

(
1

2Vd

) 2
d
∫

dr ρ
2+d

d (r). (C1)

Using the above pxLDA energy, we can obtain the isotropic
pxLDA potential via the functional derivative with respect to
the density as

viso
pxLDA(r) =

⎛
⎝ Mp∑

α=1

−2π2λ̃2
α

dω̃2
α

⎞
⎠[

ρ(r)

2Vd

] 2
d

.

Note that if we take the above isotropic pxLDA potential
into the KS equations, we would lose the information of the
polarization direction of those photon modes when solving
the KS equations. However, if we take the pxLDA potential
obtained from the force balance equation to compute the
density, then we compute the pxLDA energy using Eq. (C1),
which implicitly contains the information of the polarizations
of those photon modes.

2. Derivation from the virial relation

The electron-photon exchange force (and its LDA version)
is

Fpx(LDA)(r) =
Mp∑
α=1

λ̃2
α

ω̃2
α

(ε̃α · ∇)fα,px(LDA)(r),

where fα,pxLDA(r) [Eq. (14)] is rewritten in terms of electron
density:

fα,pxLDA(r) = (2π )2

d + 2
ρ(r)

[
ρ(r)

2Vd

] 2
d

ε̃α.

The pxLDA energy can be obtained using the virial relation
(with a factor of 1

2 due to the photon-energy counterterm) as

EpxLDA = 1

2

∫
dr r · FpxLDA(r)

= 1

2

(2π )2

d + 2

Mp∑
α=1

λ̃2
α

ω̃2
α

∫
dr(ε̃α · r)(ε̃α · ∇)

×
[
ρ(r)

(
ρ(r)

2Vd

) 2
d

]

=
⎛
⎝ Mp∑

α=1

−λ̃2
α

ω̃2
α

⎞
⎠ 2π2

d + 2

(
1

2Vd

) 2
d
∫

dr ρ
2+d

d (r),

where we use integration by parts in the last line. The px
energy obtained from the virial relation is the same as the one
obtained from the RDM approach.

Here is a side note regarding the total px force (and its LDA
version): it satisfies the zero-force condition, i.e.,∫

�

dr Fpx(r)

=
Mp∑
α=1

λ̃2
α

ω̃2
α

∫
�

dr(ε̃α · ∇)fα,px(r)

=
Mp∑
α=1

λ̃2
α

ω̃2
α

∫
�

dr{∇[ε̃α · fα,px(r)] − ε̃α[∇ × fα,px(r)]}

=
Mp∑
α=1

λ̃2
α

ω̃2
α

[∫
∂�

dS ε̃α · fα,px(r) − ε̃α

∫
∂�

dS × fα,px(r)

]

= 0, (C2)

where � is the volume of interest and its surface ∂�. In
the second line of Eq. (C2), we use the vector calculus
identity ∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) +
B × (∇ × A) where A = ε̃α and B = fα,px(r). In the third
line of Eq. (C2), we use the following two identities: (1)∫
�

dr ∇φ(r) = ∫
∂�

dS φ(r), where φ(r) is a scalar func-
tion, and (2)

∫
�

dr ∇ × A(r) = ∫
∂�

dS × A(r), where A is a
vector-valued function. In the last line of Eq. (C2), the surface
integrals vanish in both finite and periodic systems. More
detailed discussions on subtle virial-relation issues can be
found in works addressing force-based functionals in standard
electron-only density-functional theory, such as Ref. [33].
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APPENDIX D: COMPUTATIONAL DETAILS

For the exact diagonalization method, the ground-
state electron density ρexact (r) is obtained by tracing out
the photon-Fock space ρexact (r) = ∑nmax

n=1 �∗
0 (r, n)�0(r, n),

where �0(r, n) is the ground-state wave function of the PF
Hamiltonian with one-photon mode [Eq. (18)], n the number
of photon-Fock states, and nmax the maximum number of Fock
states we choose to converge the energies of the ground state
and a few excited states for tunable light-matter couplings λ.
For the HO, we use a 301-point grid centered at the origin
with a grid spacing of 
x = 0.07 bohrs. In the case of the
quantum ring, we use a 61 × 61 grid centered at the origin
with a step size of 
x = 0.2 bohrs. To achieve convergence,
we use nmax = 20 and apply a fourth-order finite-difference
scheme for the real-space derivatives on the grid, including
the Laplacian operator for kinetic energy.

The pxLDA functional [Eq. (15)], together with the
one-electron px [Eq. (13)] and the renormalization fac-
tors ηc, are implemented in the open-source code OCTOPUS

[34]. In QEDFT approaches, we use specific real-space
grid sizes and box dimensions for different systems: HO
(grid size 
x = 0.07 bohrs, length 21 bohrs), quantum ring
(grid size 
x = 0.2 bohrs, length 20 bohrs), and the hydrogen
atom (grid size 
x = 0.24 bohrs, radius 20 bohrs). For the
OEP functional in exchange approximation, we solve the KS
equation with the potential obtained from solving the full OEP
equation [22].

In QEDFT, we self-consistently solve the KS equation for
the ground state. To calculate the optical spectrum for the
hydrogen case using OCTOPUS, we employ time-dependent
techniques, propagating the ground-state wave function with
the KS Hamiltonian, i.e., Eq. (3) with the adiabatic KS
potential approximations. The optical spectrum is obtained
by Fourier transforming the time-dependent dipole moment,
which is computed using the delta-kick method with a kick
strength of 0.01 Å. The time propagation extends for 50 fs
(2067 atomic units) with a time step of approximately 0.0019
fs (0.08 atomic unit).

APPENDIX E: A MANY-ELECTRON CASE: THE ATOM
INSIDE A CAVITY

To simulate a system with many electrons inside a cav-
ity using the QEDFT approach, we require an approximate
mean-field exchange-correlation potential for the KS poten-
tial, given by vKS(r) = vext (r) + vMxc(r). The approximated
mean-field exchange-correlation potential vMxc(r) consists of
the Hartree potential vH(r), the electron-electron exchange-
correlation potential vxc(r), and the electron-photon exchange
potential vpx(r), that is, vMxc(r) ≈ vH(r) + vxc(r) + vpx(r).
Various methods [37,38], such as LDA, generalized gradient
approximation, and OEP, can be used to approximate and

FIG. 4. The photon mode is polarized along the x direction and a
photon frequency of 0.839 27 hartree, in resonance with the transition
between the 1s and 2p orbitals of the He atom outside the cavity.
(a), (b) The electron-density differences 
ρ along the x (solid lines)
and y (dashed lines) directions in the weak- and strong-coupling
regimes, computed using the OEP-KLI and pxLDA approximations
for the electron-photon interaction. The electron-electron exchange
potential is approximated and solved using the OEP-KLI approach,
while the electron-electron correlation potential is approximated and
obtained using the LDA approach.

compute vxc(r), while vpx(r) can be approximated using OEP
[22] or the method developed in this work. The external
potential vext (r), representing the interaction between nuclei
and electrons, is typically modeled using pseudopotentials
[38].

We illustrate our approach using a helium (He) atom as
a representative example of many-electron systems within an
optical cavity. The He atom is treated with the OCTOPUS open-
source code [34], using a radius of 30 bohrs and a real-space
grid size of 0.24 bohrs. The Hartwigsen-Goedecker-Hutter
LDA pseudopotential [59] models the interaction of the va-
lence electrons with the nuclei, while the electron-electron
interaction among the valence electrons is handled using the
OEP method with the Krieger-Li-Iafrate (KLI) approximation
for the exchange potential [60] and LDA for the correlation
potential [61]. Our primary focus is on the electron-photon
interaction, specifically the electron-photon exchange poten-
tial. We use the OEP within the KLI approximation as a
reference5 for realistic systems in the weak-coupling regime
[22], comparing it with our pxLDA potential. Figure 4 shows
the electron-density difference of the He atom inside and
outside the cavity for both small and large light-matter cou-
plings. In the weak-coupling regime, our pxLDA results show
an overestimation of electron density compared to the OEP
method, akin to the hydrogen case. This example under-
scores the versatility of our pxLDA approach in extending
to many-electron systems, incorporating the electron-electron
exchange-correlation potential in the KS potential.

5The OEP-KLI results are close to the OEP results.
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