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Flexible and cost-effective genomic
surveillance of P. falciparum malaria
with targeted nanopore sequencing
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Genomic surveillance of Plasmodium falciparum malaria can provide policy-
relevant information about antimalarial drug resistance, diagnostic test failure,
and the evolution of vaccine targets. Yet the large and low complexity genome
of P. falciparum complicates the development of genomic methods, while
resource constraints in malaria endemic regions can limit their deployment.
Here, we demonstrate an approach for targeted nanopore sequencing of P.
falciparum from dried blood spots (DBS) that enables cost-effective genomic
surveillance of malaria in low-resource settings. We release software that
facilitates flexible design of amplicon sequencing panels and use this software
to design two target panels for P. falciparum. The panels generate 3–4 kbp
reads for eight and sixteen targets respectively, covering key drug-resistance
associated genes, diagnostic test antigens, polymorphic markers and the
vaccine target csp. We validate our approach on mock and field samples,
demonstrating robust sequencing coverage, accurate variant calls within
coding sequences, the ability to explore P. falciparum within-sample diversity
and to detect deletions underlying rapid diagnostic test failure.

The malaria parasite species Plasmodium falciparum is an example of
both the potential value of genomic surveillance and the obstacles that
can impede its implementation. Although a variety of antimalarial
drugs exist, the evolution of resistance has compromised their
efficacy1,2. Most critical is resistance to artemisinin, the dominant
chemotherapeutic agent in artemisinin-based combination therapy
(ACT) and the foundation of global guidelines for the treatment of
malaria3. Formerly confined to the Greater Mekong Subregion4–6,
geneticmutations associatedwith artemisinin resistance have recently

been detected in Uganda7 and Rwanda8, escalating the risk of ACT
failure in sub-Saharan Africa. Additionally, P. falciparum parasites with
deletions causing false negative rapid diagnostic test (RDT) results
have been detected at high frequency in Eritrea9,10 and Ethiopia11,12. The
causal mutations underlying these phenotypes12–16 and resistance to
other common antimalarials are well characterised. By informing on
the frequency and distribution of these mutations, genomic surveil-
lance could play a crucial role crafting evidence-based policies to limit
their spread and improve malaria control.
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Despite its potential value, multiple challenges limit widespread
genomic surveillance of P. falciparum malaria. First, the nuclear gen-
ome is 23Mbp17—considerably larger than typical bacterial
(~3–5Mbp)18,19 or viral genomes (~10–100 kbp)20. At present, this ren-
derswhole-genome sequencing strategies prohibitively costly to scale.
Second, although targeted sequencing strategies—such as those
employing multiplex polymerase chain reaction (PCR)21–23, molecular-
inversion probes24,25 or hybrid capture — can be potentially more cost-
effective, the genome of P. falciparum is extremely (A+T)-rich17 and
often there is little unique and biochemically-suitable sequence (e.g.,
for primer or probe design)within proximity of targets. Thismakes the
development of these approaches particularly difficult for P. falci-
parum. Third, many regions with a high unmet need for P. falciparum
genomic surveillance are in sub-Saharan Africa, yet most existing tar-
geted sequencing approaches have been developed for Illumina
platforms21–23,25. Due to their complexity, costs and maintenance
requirements, these platforms are concentrated in centralised
sequencing facilities—few of which are in sub-Saharan Africa. Although
this situation is improving26, deficits in local sequencing capacity still
impel many small- and medium-sized labs to ship samples inter-
nationally for sequencing. This reduces country engagement, intro-
duces ethical and logistical issues around sample export, and
inevitably increases time to result, potentially delaying evidence-based
policy decisions.

At the same time, there has been growing use of nanopore
sequencing for pathogen genomic surveillance, facilitated by the
small and portable MinION sequencing device (Oxford Nanopore
Technologies). The MinION can be deployed in low resource set-
tings, requires no maintenance, and permits real-time data
analysis27. It has been successfully deployed during Ebola28, Zika29,
and SARS-CoV-2 outbreaks26. A key advantage of nanopore-based
sequencing is the generation of long reads (kbps toMbps)30 that can
improve mapping and structural variant detection31, while a dis-
advantage is a higher base-level error rate compared to instruments
from Illumina or Pacific Biosciences (PacBio). Although important
proof-of-principle studies have demonstrated the feasibility of
nanopore-based sequencing of P. falciparum, and investigated the
consequences of its higher error rate32–34, comparatively little effort
has been made to develop methods for routine nanopore-based
genomic surveillance of malaria.

In this study, we developed a flexible and cost-effective approach
to targeted P. falciparum sequencing using the MinION. Flexibility is
created through the development of open-source software, called
multiply, that enables multiplex PCR design for a user-defined set of
target genes and/or regions across the P. falciparum genome. We use
this software to create eight- and sixteen-target amplicon sequencing
panels, which encompass genes associated with antimalarial drug
resistance, RDT failure, complexity of infection (COI) inference and
malaria vaccine target csp35,36. To sequence these panels we devised an
optimised protocol that utilises dried blood spots (DBS) as input and
costs approximately USD$25per sample.We validate this approach on
mock samples and Zambian field samples collected as DBS, and
demonstrate adequate sequencing coverage of target genes, a high
SNP calling accuracy within coding sequence (CDS), and how P. falci-
parumwithin-sample diversity is detectable in long-read data through
analysis of the surface antigen genemsp2. Finally, we perform a proof-
of-principle experiment demonstrating that our assay can identify
hrp2/3 deletions that cause false-negative RDT results, presenting a
novel statistical model for deletion calling from amplicon sequen-
cing data.

Results
Designing amplicon panels for P. falciparum with multiply
New amplicon sequencing panels require the development of a mul-
tiplex PCR which, even for a moderate number of targets, entails

evaluating vast combinations of primers for off-target binding, primer
dimers, or polymorphic sites in the study population. To facilitate this
process for amplicon panels where the targets are distributed across
larger genomes (i.e., in contrast to tiling PCR of smaller pathogen
genomes37), we developed software called multiply (Fig. 1a). multiply
provides a rapid and flexible approach tomultiplex PCR design given a
user-supplied list of target genes and/or regions. Briefly,multiply first
generates a diverse set of candidate primers for each target using
primer338. It then searches for polymorphic sites within primer binding
locations by intersecting them with user-supplied Variant Call Format
(VCF) files; computes primer-dimer scores for all candidate primer
pairs using an algorithm similar to that described by Johnston et al.39;
and identifies potential off-target binding sites using blastn against the
P. falciparum reference genome40,41. At present, multiply does not
check for potential off-target binding sites in the human genome, or in
the genomes of other blood-borne pathogens. Results from these
three steps are combined into a cost-function that scores multiplex
PCR primer combinations, with a lower score indicating a better pre-
dicted performance. Finally, the cost-function is minimised using a
greedy search algorithm to identify optimal combinations of primers
for the specified targets.

We used multiply to develop a multiplex PCR for P. falciparum
malaria, selecting eight target genes that wouldmaximise the public
health utility of our data (Table 1). To leverage the long-read cap-
ability of nanopore sequencing, we restricted candidate amplicons
to 3–4 kbp; aiming to produce CDS-spanning amplicons that would
still being feasible for PCR. In the design process, multiply con-
sidered a total of 194 candidate primers across the eight targets. For
these candidate primers, it identified 383 high scoring off-target
complementary matches in the 3D7 reference genome (>12 bp
aligned from the 3’ end). Overall, 209 matches involved candidate
forward primers for dhps; a candidate reverse primer for plasmepsin
I (pmI) had 35 matches; a candidate reverse primer for kelch13 had
24 matches; and most other candidate primers had 5 or less mat-
ches. By comparing to the variant calls from 7113 P. falciparum
whole genome sequences in the Pf6 data release42, multiply identi-
fied 11 common SNPs (set to minor allele frequency >5% in any Pf6
population) within binding locations of candidate primers, which
were excluded. Of the 18,915 unique pairwise alignments multiply
computed between candidate primers, 585 had potentially proble-
matic dimer scores (score < − 6). Using a greedy search algorithm,
multiply heuristically minimised these factors to suggest a multi-
plex PCRprimer combination from the over 370million possibilities
given the candidate primer set.

We call the amplicons produced from this multiplex PCR the
NOMADS8 (NMEC-Oxford Malaria Amplicon Drug-resistance
Sequencing) panel. In total, the amplicons cover 28.8 kbp with an
(A+T)-composition of 79%. The full coding sequences for 7 of 8 gene
targets are captured completely within their amplicons. mdr1 has a
coding sequence covering 4259 bp; our amplicon is only 3773 bp but
includes important drug-resistance mutations (e.g., N86Y to
D1246Y)43. Using PCR conditions with reduced annealing and
extension temperatures44, we were able to obtain robust amplifica-
tion of all individual targets and produce bands consistent with
expectation for the multiplex, as assessed by agarose gel electro-
phoresis (Supplementary Fig. 1).

We used multiply to expand the NOMADS8 panel to include an
additional eight targets. These were ama1, a highly polymorphic gene
used in COI estimation45; the RTS,S and R21 vaccine target csp35,36; and
the RDT antigen genes hrp2 and hrp316, as well as their flanking genes.
To incorporate these eight targets, multiply considered an additional
214 candidate primers and, keeping the 16 primers of the NOMADS8
panel fixed, repeated the selection process described above. The
resulting amplicon panel, called NOMADS16, covers a total of 54.7 kbp
(Table 1).
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Minimising P. falciparum amplicon sequencing costs on
the MinION
We combined existing and novel optimisations to minimise the costs
of P. falciparum target amplification and sequencing on the MinION
(Fig. 1b). Briefly, our protocol starts with DBS as input for DNA
extraction, which are relatively non-invasive and easy to collect. Bulk P.
falciparum DNA is enriched with a reduced-volume selective-whole
genome amplification (sWGA) step, saving approximately USD $4 per
samplewhile still maintaining sufficient yield for subsequentmultiplex
PCR (Supplementary Fig. 2). Amplicons are barcoded andpooled using
a modified version of a simple and cost-effective one-pot protocol46.
Overall, the protocol from sample to sequence can be completed in
2–3 days at USD $25 per sample, assuming 96 samples are run on a
R9.4.1 (FLO-MIN106D) or R10.4.1 (FLO-MIN114) MinION Flow Cell
without washing (Supplementary Table 1). Smaller batches of 24 sam-
ples run on a Flongle Flow Cell (FLO-FLG001) add a negligible extra
USD $1 per sample.

Producing long-read data for policy-relevant P. falciparum genes
We explored the read lengths that are generated with our amplicon
panels and protocol by sequencing a mock sample, created by com-
bining P. falciparum 3D7 and human DNA in vitro, on a Flongle Flow
Cell (Methods, Fig. 1c, d, e). For the NOMADS8 panel, the median
length of reads that mapped to the P. falciparum reference genome
and overlapped a target genewas 3.59 kbp. All eight target genes had a
median read length greater than 3.04 kbp and, excluding mdr1, on
average 91.7% of reads that overlapped a target gene spanned its entire
CDS. This included reads spanning all 13 exons of crt1 and the entire
CDSof the artemisinin-resistanceassociatedgene kelch13 (Fig. 1c, d). In
several cases, longer amplicons enabledmultiply to select primers that
bind to regions with more moderate (A+T) compositions in adjacent
genes, and this was the case for the forward primer used to amplify
kelch13 (Fig. 1d). Similarly, the median length of target-overlapping
reads for the NOMADS16 panel was 3.37 kbp, with an average of 88.2%
of these completely spanning their target’s CDS (excluding mdr1).
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Fig. 1 | Design of long-range multiplex PCRs for the low-complexity P. falci-
parum genome using multiply. a Multiplex PCR primer design workflow by mul-
tiply. An optimal set of primers is selected from a large candidate pool; minimising
SNPs in primer binding sites, primer dimers, and off-target primer binding with a
cost function. b Schematic of a cost-effective protocol for targeted nanopore
sequencing of P. falciparummalaria from dried blood spots (DBS) that takes three
days and costs ~ USD $25 per sample. c Histograms of crt and (d) kelch13 coverage
stratified by read length. (A+T) percentage in 20bp sliding widows (blue) and

homopolymer run length (red) are shown, as well as a heatmap of nucleotide
composition. For both genes the entire coding sequence (CDS) is covered in the
majority of reads. e Read length distributions for NOMADS8 (left, 28.8 kbp total)
and NOMADS16 (right, 54.7 kbp total) amplicon panels. Grey triangle indicates
coding sequence (CDS) length. Amplicons were designed to be 3–4 kbp. Marginal
distribution for all amplicons displayed at top. Data for (c–e) are from a mock
sample created from P. falciparum 3D7 and human DNA (Methods).
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Characterising sequencing efficiency and coverage across mock
and field samples
Sufficient coverage over target regions is a precondition for accurate
variant calling and other downstream analyses. Whether this is
achieved depends on the total sequencing throughput, the proportion
of that throughput that is on-target (i.e., maps to the intended
organism and regions), and how uniformly on-target throughput is
distributed across the target regions and samples.

We characterised the coverage generated by our protocol by
running experiments with both the NOMADS8 and NOMADS16 panels
on two different sample sets. The first set included 24 mock samples,
created in vitro from standard laboratory or cultured strains of P. fal-
ciparummalaria (Methods, Supplementary Table 2). The second was a
set of 28 DBS assessed as P. falciparum positive by RDT, and collected
from a clinical setting in Kaoma, Zambia (Methods).

We sequenced themock samples with the NOMADS8 panel on a
Flongle Flow Cell, generating 345 thousand reads or 1.08 Gbp
(Fig. 2a). Of these reads, 80.0% passed the Guppy quality control
filter and had identifiable sample barcodes on at least one end. We
mapped these reads to the P. falciparum 3D7 reference genome and
found that 76.2% (61.4% of the total reads) mapped successfully. To
understand the causes of mapping failure, all unmapped reads were
subsequently mapped to the human reference genome. Nearly all of
the reads failing to map to the P. falciparum genome mapped suc-
cessfully to the human reference (99.5%). These reads tended be
shorter and of lower quality than those mapping to P. falciparum,
and in optimisation experiments we were able to reduce them by
using a higher stringency DNA size selection step after adapter
ligation (Supplementary Fig. 3, Methods). The human-mapped
reads remaining in this experiment (18.5% of total) were not
removed by size selection, despite being shorter. Of the reads
mapping to P. falciparum, 93.5% mapped to target regions, sug-
gesting that multiply largely avoided the production of off-target
amplicons. In the end, 57.4% of total sequencing reads were on-
target for this experiment. A similar percentage was found to be on-
target for the NOMADS8 panel when sequencing field samples using
a standard MinION Flow Cell (62.1%).

Next, we interrogated how uniformly on-target sequencing
coverage was distributed across the amplicons of the NOMADS8

panel by quantifying the number of reads that overlapped each of
our targets. For the mock and field samples, the median fold-
difference in coverage between the highest and lowest abundance
amplicons were 9.3 and 16.2, respectively (Fig. 2b, c). With both the
mock and field sample sequencing runs, the rank-order of ampli-
cons by abundance was consistent (mock samples, Spearman’s
ρ = 0.77; field samples, Spearman’s ρ = 0.85; Supplementary Fig. 4a,
b). This indicates that coverage variation across amplicons is largely
systematic, and likely a function of differences in PCR efficiency,
rather than stochastic. However, comparing mock and field sample
sets, the order of amplicon abundances differed slightly, indicating
sample-set dependent effects. For example, mdr1 was lower abun-
dance and dhfr was higher abundance in field samples; but notably,
mdr1 is present in multiple copies in the laboratory strain Dd2,
which is used in 8 of 24 of our mock samples (Supplementary
Table 2). crt1 was the lowest abundance for both mock and field
samples; also being the longest amplicon in the NOMADS8 panel
(3874 bp) with the second highest (A+T) composition (81.62%,
behind pmIII with 81.66%) and most bases in long homopolymers
(605 bp in homopolymers length 4 or greater). Despite this, crt1 still
had a median of 230-fold coverage in the mock sample experiment
and 508-fold coverage with the field samples (Supplementary
Fig. 4a, b).

The NOMADS16 panel had less uniform coverage across ampli-
cons in comparison to the NOMADS8 panel (Supplementary Fig. 5). In
particular, the fold-difference between the highest and lowest abun-
dance amplicons was 141 for the mock samples and 324 for the field
samples. This was driven in part by the hrp3 upstream amplicon pro-
ducing very low median coverage relative to other amplicons in both
experiments (mock samples, median of 28-fold coverage; field sam-
ples, median of 30-fold coverage; Supplementary Fig. 4c, d); with the
hrp3 upstream amplicon excluded, the fold-differences between the
highest and lowest abundance amplicons was substantially reduced,
but still higher than with the NOMADS8 panel (mock samples, 43.8;
field samples, 51.5). As with the NOMADS8 panel, amplicons in the
NOMADS16 panel had consistent relative abundances (mock samples,
Spearman’s ρ =0.85; field samples, Spearman’s ρ =0.84 and Supple-
mentary Fig. 4c, d), but again the specific ordered varied somewhat
between mock and field samples.

Table 1 | Target genes for the NOMADS8 and NOMADS16 amplicon sequencing panels

No. Reference ID Gene Name CDS Amplicon Relevance Panel(s)

1 PF3D7_0709000 crt 3095 3874 Chloroquine77,78 N8, N16

2 PF3D7_0417200 dhfr 1826 3463 Pyrimethamine64,66,79 N8, N16

3 PF3D7_0810800 dhps 2416 3656 Sulfadoxine64,80,81 N8, N16

4 PF3D7_1343700 kelch13 2180 3826 Artemisinin13,14 N8, N16

5 PF3D7_0523000 mdr1 4259 3773 Mefloquine82 N8, N16

6 PF3D7_0206800 msp2 818 3720 COI, recrudescence50 N8, N16

7 PF3D7_1407900 pmI 1358 3101 Piperaquine83,84 N8, N16

8 PF3D7_1408100 pmIII 1355 3468 Piperaquine83,84 N8, N16

9 PF3D7_1133400 ama1 1868 3138 COI45 N16

10 PF3D7_0304600 csp 1193 3107 Vaccine Target35,36 N16

11 PF3D7_0831700 hsp70x (hrp2 up) 2039 3366 RDT16 N16

12 PF3D7_0831800 hrp2 1063 3097 RDT16 N16

13 PF3D7_0832200 None (hrp2 down) 1323 3333 RDT16 N16

14 PF3D7_1372000 None (hrp3 up) 1370 3066 RDT16 N16

15 PF3D7_1372200 hrp3 976 3444 RDT16 N16

16 PF3D7_1372300 None (hrp3 down) 771 3303 RDT16 N16

For each target, columns give information about the coding-sequence (CDS) and amplicon lengths in base pairs (bp), the epidemiological relevance (COI, complexity of infection) andwhether the
target is in both the NOMADS8 (N8) and/or the NOMADS16 (N16) panel. TheCDS length ismeasured as the distance between the start and stop codon, including intronic regions if present. ’hrp2 up’
and ’hrp3 up’ refer to targets upstream of hrp2 and hrp3, respectively; wheres ’hrp2 down’ and ’hrp3 down’ refer to downstream targets.
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Effect of parasitemia on sequencing performance
We examined the effect that sample parasitemia had on three
measures of sequencing performance: the number of reads gener-
ated per sample, normalised to the mean for the sequencing run;
the percentage of those reads thatmapped to P. falciparum; and the
fold-difference in coverage between the highest and lowest abun-
dance amplicons for the sample (Fig. 3). We jointly analysed data
from across six different sequencing experiments to take into
account batch effects caused by technical factors or variation in
sample quality. These experiments used both NOMADS8 and

NOMADS16 and included three different types of sample sets: 120
mock samples created by combining P. falciparum and human
genomic DNA at different ratios to replicate varying parasitemia; 28
field samples sequenced in Oxford, UK as part of a training; and 41
field samples sequenced from a governmental container lab in
Lusaka, Zambia (Methods). Both sets of field samples were collected
as DBS. Jointly these sample sets had parasitemia values ranging
from 10 parasites per microlitre (p/μL) to over 100,000 p/μL.
Unfortunately, we note that parasitemia data was missing for 12/28
field samples sequenced in Oxford.
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Fig. 2 | Sequencing throughput and coverage across samples and target genes
for theNOMADS8panel. aDiagramof reads producedona Flongle FlowCell (FLO-
FLG001) sequencing 24mock samples comprised of P. falciparum and humanDNA.
The leftmost bar represents all reads (n = 345, 457; 100%) generated during the
sequencing run that are sequentially subdivided in the data analysis process to the
reads of interest, i.e., thosemapped to target genes (n = 198, 030; 57.4%).b Bar plot
(left pane) displays the total number of reads generated for each sample stratified
by mapping outcome: mapped to P. falciparum (P.f.) (blue), human (H.s.) (red), or

failing tomap (grey, too few to be visible). P.f. mapping percentages indicated with
text. Scatter plot (right pane) displays the number of reads overlapping each target
gene (labelled by colours) aftermapping for each sample. Note number of reads (x-
axis) is displayed in log-scale. For most samples, all target genes have > 100x cov-
erage. Number at right (e.g., 8x for 3D7) gives the fold-difference between the
highest coverage and lowest coverage target. c Same as (b) but for 28 field samples
collected as DBS from Kaoma, Zambia.
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We did not perform any sample input normalisation and found
that the number of reads per sample had only a weak positive corre-
lation with parasitemia for both the NOMADS8 (Pearson’s r =0.23) and
NOMADS16 panels (Pearson’s r = 0.39). The P. falciparum mapping
percentages had a stronger positive correlation with parasitemia
(NOMADS8, Pearson’s r = 0.59; NOMADS16 Pearson’s r =0.64); values
were markedly lower below approximately 1000p/μL.

The coverage fold-difference across amplicons was higher at
lower parasitemia values, producing a negative correlation that was
more pronounced for the NOMADS8 (Pearson’s r = −0.41) than the
NOMADS16 panel (Pearson’s r = −0.24). With the hrp2/3 targets and
their flanking genes removed, the fold-difference in coverage across
the NOMADS16 panel was 5-fold less and the negative trend with
parasitemia stronger (Pearson’s r = −0.37). In addition to the hrp3
upstream target being low abundance, several of the titrated mock
samples contained P. falciparum laboratory strains Dd2 and HB3,
whichhavehrp2 andhrp3deletions, respectively. This partiallymasked
the effect of parasitemia and increased variation in coverage. For both
NOMADS8 and NOMADS16 panels, roughly 1000p/μL was the
threshold belowwhich coverage variation across amplicons increased.

SNPs are called accurately within coding sequences for clonal
infections
We sought to assess how accurately molecular markers of antimalarial
drug resistancecouldbedetectedwith ourmethod.UsingClair3 to call
variants47, we examined SNP calls for set of substitution mutations
associated with drug resistance (documented by the World Health
Organisation43) across seven of our clonal mock samples that were
sequenced on anR10.4.1 FlowCell with aMinIONMk1bdevice (Fig. 4a).
For the three mock samples containing P. falciparum laboratory
strains, we identified all expected mutations and no false positives.
Similarly, for the four mock samples created from cultured P. falci-
parum strains from Cambodia with documented artemisinin resis-
tance, we identified the expected kelch13 mutations and no false
positives.

We expanded our analysis to examine SNP calling performance
beyond known drug-resistance associated mutations and also char-
acterised the effect read depth had on accuracy. We focused on the
laboratory strains Dd2 and HB3, for which high-quality whole-genome
assemblies exist48. For these two mock samples we randomly down-
sampled the reads mapping to each target to sets ranging from 100 to
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Fig. 3 | Effect ofparasitemiaonsequencingperformancemeasures.Scatterplots
display the effect that parasitemia (x-axis) has on the NOMADS8 (left), NOMADS16
(middle) and NOMADS16 amplicon panel with hrp genes ignored (right). Three
measures of sequencing performance are shown (y-axis): “Normalised Sample
Throughput", which is the number of reads generated for a sample, divided by the
mean number of reads per sample for the sequencing run (top row); “P.f. Mapping
Percentage", which is the percentage of all reads from a sample that mapped to P.
falciparum (middle row); and the “AmpliconCoverage Fold-difference" which, for a

given sample, is the ratio of the number of reads overlapping the highest abun-
dance amplicon, dividedby the numberof readsoverlapping the lowest abundance
amplicon (bottom row). Each point is either an mock sample (grey), or a field
sample sequenced in Oxford (green) or Zambia (orange). Samples sequenced on a
R9.4.1 Flongle Flow Cell (FLG001) are indicated with triangles; R9.4.1 MinION Flow
Cell (MIN106D), with circles; R10.4.1 MinION Flow Cell (MIN114D), with squares.
Median values are shown as horizontal lines and Pearson correlation coefficient is
given in top left. Note that parasitemia data is missing for 16 field samples.
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10 reads. We created replicates by repeating this procedure 10 times,
thereby producing a total of 100 mock samples in silico with varying
read depths for both Dd2 and HB3 (Methods). For these replicates we
called variants using Clair3 and treating the whole-genome assemblies
as truth, evaluated accuracy using the haplotype comparison tool
hap.py49 (Methods). In Fig. 4b we show the mean F1-scores (the har-
monicmean of the precision and recall) for each target at a given read
depth. The target msp2 has been excluded as its very high sequence
divergence from the reference genomemakes it a case that should be
handled separately, with a reference-free approach.

First we examined the coding sequences (CDS) of our targets
(totalling 14.4 kbp, excluding msp2), as these are higher complexity
and are also expected to capture the overwhelming majority of pos-
sible functional mutations. Overall, increasing from 10 to 30 reads
resulted in a substantial improvement in themean F1 score (F1 = 0.72 at
10 reads, to F1 = 0.98 at 30 reads).With 40 reads or greater, SNPswithin
the CDS were called perfectly for all targets and replicates (F1 = 1.0),
aside from in a single replicate ofmdr1. This error was in a Dd2 in silico

replicate at theN86 codonposition. Clones ofDd2havebeenobserved
to carry multiple copies of mdr1, inducing heterozygosity at codon
N86 (AAT), as different copies carry N86Y (TAT) or N86F (TTT). In the
complete set of reads overlapping mdr1 in our Dd2 mock sample, the
N86F mutation had a within-sample allele frequency of 67.4% (5451/
8078 reads), most consistent with themutation being carried by 2 of 3
mdr1 copies.Clair3 assumes a diploid genome, and this deviation from
a 50% within-sample allele frequency likely led to the error. We
observed similar errors, but at a higher frequency, in a previous ana-
lysis using an R9.4.1. Flow Cell (Supplementary Fig. 6).

We next expanded the analysis to the entire region spanned by
our amplicons (totalling 25.2 kbp, excluding msp2), which includes
10.8 kbp of very low complexity (86% A+T) intergenic sequence. Here,
SNP calling accuracy across our targets improved considerably with
increasing numbers of reads, from an F1-score of 0.63 overall with 10
reads, to a final F1-score of 0.89 with 100 reads. We observed con-
siderable variation in F1-score across targets, which we hypothesised
was due to differing amounts of low-complexity intergenic sequence.
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Fig. 4 | SNP calling accuracy for a set of clonal mock samples. a Genotyping
results from Clair3 for seven clonal mock samples and across 41 antimalarial
resistance-associated mutations. Samples were sequenced with a R10.4.1 Flow Cell
on aMinIONMk1bdevice.bMean F1-Score (harmonicmeanof precision and recall)
of SNP calling compared to PacBio data from for Dd2 and HB3 mock samples
randomly downsampled to different read depths. Each square gives the mean F1-
Score across twenty in silico replicates (ten replicates for each of Dd2 and HB3) at
the indicated read depth (columns) and across the indicated region (rows). In total,
there are 200 in silico replicates across all depths. Top panel is limited to coding
sequence ("CDS") and bottompanel the entire span of the amplicons ("Amplicon").
c Visualisation of true positive and false positive rate of sites spanning the crt
amplicon in chromosome 7. From top to bottom, panels show an exon diagram of

crt; the true positive rate (green) and false positive rate (red) of each site across
twenty replicates at a given read depth (indicated by circle size); A+T% in 20bp
sliding windows (blue shade) and homopolymer length (red line); and heatmap of
nucleotide composition. d Same as (c) but for dhps amplicon. eHeatmaps showing
measuresof sequence complexity in 20bpwindows surrounding siteswhere errors
were observed. Rows indicate A+T% of the 20bp window, columns indicate length
of the longest hompolymer within the 20bp window and colour gives number of
errors. Top panel shows errors which were corrected with additional read depth
(i.e., exist at depth < 100); bottom panel shows errors that persist at a depth of 100
reads. Selected sequences are shown; asterisk (*) marks sequences that are an
example from a bin with greater than one sequence.
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To evaluate this further, we visualised the genomic positions of erro-
neous SNP calls at different read depths across our target panel
(Fig. 4c, d). Consistent with our hypothesis, we observed that areas
with a high false positive rate, or diminished true positive rate, tended
to be in very low complexity intergenic sequence. For example,
between exons 3 and 4 of crt there is a homopolymer of 41 A nucleo-
tides, around which SNP errors clustered (Fig. 4c). Similarly, upstream
of dhps there is a 50bp AT dinucleotide repeat region in which SNP
errors were concentrated (Fig. 4d).

Finally, we systematically evaluated the sequence context of all
unique sites where a SNP calling error was observed in any of the 200
in silico replicates in our analysis. These error-producing sites were
divided into two groups: those in which the error was corrected with
additional reads (n = 198), and those in which the error remained even
in replicates with 100 reads (n = 17). We then computed the (A+T)-
content and maximum homopolymer length in a 21 bp window
centred on each of the sites (+/-10 bp). We found that sites where the
SNP calling error could be corrected with additional read depth had
lower (A+T)-content (mean 82.5% vs 94.4%) and shorter homo-
polymers in their flanking bases (mean 5.7 bp vs 8.3 bp) than the
uncorrected SNP calling errors (Fig. 4e). Of the uncorrected SNP call-
ing errors, 11/17 (65%) were situated in 21 bp windows consisting of

only A or T nucleotides and 6 of these contained homopolymers of
length 10 or greater.

Long-read sequencing of the surface antigen gene msp2 pro-
vides insights into within-sample diversity
Long reads can facilitate interrogation ofmore complex regions of the
genome. Both the NOMADS8 and NOMADS16 panel include the highly
diverse surface antigen gene msp2, canonically used both for COI
estimation and for distinguishing recrudescence from reinfection50.
Critically,msp2 genetic variation induces length polymorphism across
a set of known repeat-containing alleles, enabling allele typing via
capillary or gel electrophoresis.

We analysed reads deriving from msp2 across our mock samples
and observed length polymorphism analogous to that detected with
electrophoresis approaches (Fig. 5a). To further characterise msp2-
derived reads, we mapped them to each of the four P. falciparum
laboratory strains used in our mock samples and labelled them by the
strain to which they had the highest identity alignment (Methods).
With this basic approach to allele classification, we could both confirm
that the observed length polymorphism was driven by different
underlying alleles of the expected types, and identify mock samples
carrying multiple alleles. Next, we sought to explore an approach to
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Fig. 5 | Analysis of length polymorphism and nucleotide identity ofmsp2-
derived reads. a Read length distributions ofmsp2 alleles across 24mock samples.
Each dot represents the length of a single read that was trimmed to the extent of
msp2 coding-sequence (CDS) after mapping. Individual reads are coloured by the
laboratory strain to which they have the highest identity alignment. Multi-modal
distributions are indicative of mixed infections. b Hierarchically clustered heat-
maps ofmsp2-derived reads showing pairwise alignment scores. Each cell is
coloured by the global pairwise alignment score between twomsp2-derived reads,
which have been hierarchically clustered along both rows and columns. Colours of

rows and columns indicate the laboratory strain to which each read has the highest
identity alignment, as in (a). Heatmaps are shown for two different mock samples:
clonal 3D7 (top); mixture of 3D7 and Dd2 (middle); and mixture of 3D7, Dd2 and
GB4 (bottom). Note how reads cluster based on allele type. GB4 reads are under-
represented in the bottom heatmap, likely due to lower DNA quality. c, d are the
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likely clonal infection (top); two-strain infection (middle); and three-strain infection
(bottom).
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read classification that avoided using a priori information about allele
types. To this end, we implemented a global alignment algorithm for
pairs of reads that used base-level quality scores to assess the like-
lihood that both reads derived from the same underlying haplotype
sequence (Methods). Using this algorithm, we performed pairwise
global alignment of all msp2-derived reads for each sample and hier-
archically clustered the resulting pairwise alignment score matrices
(Fig. 5b). In cases where a single P. falciparum strain was used to pro-
duce a mock sample, the pairwise alignment score matrices had little
structure, consistent with a single msp2 allele being present. In cases
where multiple P. falciparum strains were combined to produce a
mock sample, structure within the pairwise alignment matrices was
consistent with multiple msp2 alleles being present.

The analysis using mock samples highlighted two limitations of
these approaches. First, a general limitation of using only a single locus
to learn about COI is that strains within a mixed/polyclonal infection
may share the same allele at that locus, leading to underestimation of
COI. We observed this with mock samples of COI = 2 created by com-
bining CamWT and CamC580Y cultured P. falciparum strains. Second,
reads identified as deriving fromGB4wereunderrepresented in higher
COI mock samples (Fig. 5b). This may be due to the GB4 genomic DNA
we obtained being lower quality. Consistent with this, the clonal mock
sample created from GB4 genomic DNA produced less reads com-
pared with the other laboratory strains (Fig. 2b).

We applied these approaches to characterise the msp2-derived
reads in our field sample set and observed a variety of patterns
reflecting clonal and mixed infections (Fig. 5c, d).

Detecting hrp2/3 deletions with the NOMADS16 amplicon panel
To characterise the ability of the NOMADS16 panel to detect hrp2 and
hrp3deletions that cause false-negativeRDT results,we created a set of
45 clonalmock sampleswith a range of parasitemia levels (625−10,000
parasites per μL) from the lab strains 3D7 (hrp2 + /hrp3 + ), Dd2
(hrp2 − /hrp3 + ) andHB3 (hrp2 + /hrp3 − ).We included threemockP.f.-
negative samples as negative controls, yielding 48mock samples total.
We sequenced all 48 samples on a single R10.4.1. Flow Cell using a
MinION Mk1b device, generating 4.85 million reads or 11.52 Gbp of
sequencing data, and resulting in a mean of 39,602 reads mapping to
P. f. per sample after quality filtering and demultiplexing (range
15,352−96,892; excluding negative controls).

As with previous experiments, we observed considerable varia-
tion in the mean abundance of the different amplicons in the
NOMADS16 panel. We standardised this variation by converting the
amplicon abundance for each sample to a proportion with respect to
the total abundance of that amplicon across all samples. In a heatmap
of these proportions, the expected hrp2 and hrp3 deletions were
clearly visible in Dd2 and HB3 mock samples, respectively (Fig. 6c).
More specifically, the Dd2 mock samples displayed a reduced abun-
dance of the hrp2 upstream and hrp2 amplicons relative to 3D7 and
HB3. For the hrp2 downstream amplicon, both Dd2 and HB3 had
reduced coverage relative to 3D7; which is consistent with other stu-
dies that have observed a deletion inHB3 near the end of chromosome
8, but not affecting the hrp2 gene12. In the HB3 mock samples, we
observed a reduced relative abundance of the hrp3 upstream, hrp3,
and hrp3 downstream amplicons (Fig. 6c). Interestingly, despite the
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Fig. 6 | Validation of hrp2/3 deletion detection using the NOMADS16 panel.
a Diagram showing the location of the hrp2, hrp2 upstream and hrp2 downstream
amplicons in the NOMADS16 panel, within a 50kbpwindow of chromosome 8. The
chromosome is represented by a dark grey horizontal line, on which thicker seg-
ments demarcate genes (labelled above) and their exons. The genomic extent of
documented hrp2deletions is displayed above the chromosome for lab strains Dd2
andHB3, and for a selection of three field strains12,67. Amplicon positions are shown
below inorange.b Sameas in (a) but forhrp3 upstream, hrp3 and hrp3downstream
amplicons, shown in purple. Note Dd2 does not have a deletion within this wind-
now. c Heatmap displaying the normalised abundance of NOMADS16 panel
amplicons (rows) across 48 mock samples (columns). The P. f. strain used in the
mock sample (3D7, blue; Dd2, green; HB3, red; P. f. -negative, grey) and its para-
sitemia is indicated above the heatmap. The bottom six rows of the heatmap show

amplicons designed for detectionofhrp2 andhrp3deletions.d Scatterplot showing
the relationship between amplicon abundance (y-axis, in number of reads) and
parasitemia (x-axis) for the hrp2 amplicon across all 48mock samples. As in (c) the
colour of points indicates the P. f. strain used in themock sample. e Same as (d) but
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the six amplicons designed to support hrp2/3 deletion detection (rows) across the
48 mock samples (columns) indicated in (c). Probabilities were calculated using a
statistical model (Methods) that leverages all sixteen amplicons in NOMADS16 and
estimates barcode misclassification/contamination rates from P. f. -negative sam-
ples. The expected deletions are detected with a very high degree of certainty
(black squares). Uncertainty about P. f. -negative samples (deletion probability
between 0.2 and 0.8) is expected as they have very few reads.
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mean abundance of the hrp3 upstream amplicon (20 reads,n = 45) and
hrp3 downstream amplicon (51 reads, n = 45) being much lower than
the average across all amplicons (2156 reads, n = 720), these experi-
mental results suggest they are still informative for deletion detection.

Next, we examined in more detailed the abundance of the two
amplicons that span the full-length hrp2 and hrp3 genes (Fig. 6d, e).
Themeanabundanceof thehrp2 amplicon inhrp2 +mock sampleswas
669 reads (range 237–1229, n = 30), compared to amean abundanceof
14 reads (range 6–26, n = 15) in hrp2 −mock samples, and 20 reads in
the P. f. -negative controls (range 15–25, n = 3). For the hrp3 amplicon,
the mean abundance was 1362 reads in hrp3 +mock samples (range
310-3401, n = 30), 28 reads in hrp3 −mock samples(range 12–43,
n = 15), and 28 reads in P. f. - negative controls (range 23–32, n = 3). The
mean abundance for both hrp2 and hrp3 declined with parasitemia,
but we still observed order of magnitude differences in abundance
between deleted and wild-type parasite strains at 625 p/μL. We note
that reads observed in the P. f. -negative samples and those expected
to carry deletions are likely the result of barcodemisclassification and/
or contamination, and has been observed by others34.

Finally, as proof-of-concept, we developed a statistical model for
hrp2/3 deletion detection from data generated by the NOMADS16
panel. Importantly, we devised a model that can be calibrated to an
individual sequencing run, leverages information across all amplicons
in the NOMADS16 panel, and takes into account barcode mis-
classification and/or contamination; ultimately providing a probability
of hrp2/3 deletion for each sample within a rigorous statistical frame-
work (Methods). Applied to the data described above, our model
detected all of the expected hrp2 and hrp3 deletions with complete
certainty to a precision of four decimal places (p = 1.0000) (Fig. 6f).

Discussion
Thoughwidelydeployed for genomic surveillanceof viral andbacterial
pathogens, nanopore sequencing of P. falciparummalaria is relatively
rare32–34. Here, we have developed an approach to targeted nanopore
sequencing of P. falciparum malaria that is flexible and cost-effective.
Our approach begins with DBS as input and can produce genomic data
of public health significance in 2 to 3 days at approximately USD $25
per sample. Importantly, DBS collection requires only a finger prick
and is done routinely by malaria control programs. A major challenge
with using DBS is that the modest amount of DNA extracted is pri-
marily derived from the human host51. Here we use selective-whole
genome amplification (sWGA) to enrich for bulk P. falciparum DNA
prior to multiplex PCR, a strategy that has been adopted in several
other P.f. amplicon sequencing workflows21,23, to improve PCR perfor-
mance and consistency from DBS. Simultaneously, we have demon-
strated that the cost of sWGA can be substantially reduced when
combined with targeted sequencing, allowing for a protocol that is
both robust and affordable.

In developingmultiply, we have provided a general and principled
solution to the design ofmultiplex PCRs for targeted sequencing. This
will enable rapid creation and updating of amplicon panels for P. fal-
ciparum, as well as accelerate the creation of panels for other organ-
isms in the future. The software is open-source and freely available,
allowing teams to design panels addressing their specific research or
surveillance questions. Using multiply, we produced two amplicon
sequencing panels containing eight- and sixteen-targets, reflecting the
major public health uses of genomic data: tracking resistance to var-
ious antimalarial drugs, monitoring the sensitivity of RDTs, under-
standing the diversity of malaria vaccine targets and assessing within-
sample diversity (which can help discriminate recrudescence from
reinfection, and gives some indication of local transmission intensity).
In contrast to all existing P. falciparum targeted sequencing approa-
ches, our panels generate amplicons between 3 and 4 kbp, thereby
producing individual reads that span the entire CDS of nearly all of our
target genes.

A current priority ofP. falciparumgenomic surveillance is tracking
the hrp2 and hrp3 deletions that can cause false-negative RDT results
and are jeopardising the over 300million RDTs distributed annually52.
While several well-validated PCR-based methods exist to these
deletions16,53–55, there are only a few examples of detection by amplicon
sequencing34, or incorporation into amplicon sequencing panels. A set
of best-practices for detecting these deletions by PCR recommended
that an assay should: (i) target full-length hrp2 exon 2 and the exon 1/2
boundary, to ensure both complete and partial deletions of hrp2 are
detected; (ii) target at least two single-copy genes, to ensure sufficient
amplifiable DNA is present; and (iii) target one or both of the flanking
genes, which are also lost in most deletions observed to date16. The
NOMADS16 multiplex PCR was designed to meet all of these recom-
mendations, and here we have shown it is able to accurately detect
deletions across a set of mock samples of varying parasitemia. In
addition, we have developed a novel statistical model for deletion
detection that rigorously handles contamination and variation in
sample quality, two issues that can complicate interpretation of
amplicon sequencing data34. Although further validation on field
samples is necessary, this work represents an important initial proof-
of-principle for this approach.

A limitation of our current method is that it has weaker perfor-
mance on low parasitemia samples in comparison with other P. falci-
parum amplicon-based methods designed for short-read
sequencing21–23,56. Parasitemia and DBS sample quality (characterised
by factors like age, storage conditions, number of blood spots and spot
size) will influence the maximum amplicon length above which PCR
performance will suffer due to an insufficient concentration of tem-
plate DNA molecules of an adequate length. In addition, PCRs with
longer amplicons typically have reduced efficiency in comparisonwith
shorter alternatives. The 3 to 4 kbp, CDS-spanning amplicons in our
panel exhibited robust assay performance on mock and field samples
with above ~1000 parasites per microlitre. Additional experiments,
especially with field samples, are necessary to more confidently
establish this threshold and determine the requirements our long-read
amplicon panels put on DBS collection procedures and quality. It is
likely the NOMADS panels are best suited to higher parasitemia,
symptomatic or clinical cases, rather than lower parasitemia asymp-
tomatic cases. An advantage of developingmultiply is that, should it be
necessary, we will be able to rapidly design new amplicon panels with
shorter lengths (e.g., 1–2 kbp). Moreover, work on adaptive sampling
of reads during nanopore sequencing has recently been applied to P.
falciparummalaria57, and variations of this approachmay help recover
better data from low parasitemia samples.

An important question not directly addressed by this study is how
sensitively our assay can detect minor clones, and the mutations they
carry, in mixed/polyclonal P. falciparum infections58. The extent to
which a sequencing method can detect minor clones depends on two
sequential processes. The first is the reliability with which the labora-
tory protocol recapitulates, in the sequencing reads, the number and
proportions of P. falciparum strains that existed in the cognate sample.
This is fundamentally a sampling process, with higher variation and
lower sensitivity expected in low parasitemia and low coverage sam-
ples; but it is also influenced by the non-linear dynamics of any
amplification procedures that may be employed. Our approach uses
sWGA, which has been shown to weaken correlations between strain
proportions in a mixed infection and within-sample allele
frequencies23. Once reads from different clones have been generated,
the second process is to identify them by variant calling and/or hap-
lotype inference, simultaneously distinguishing true variation from
error or contamination. In clonal samples we determined that 30- to
50-fold coverage is sufficient for high accuracy SNP calling across all
but the most extreme low complexity stretches of the genome (i.e.,
100% (A+T)-content and/or hompolymers > 10bp). The fact that cov-
erage levels tens- to hundreds- of times higher than this can be readily
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attained gives some indication that detection of minor clones com-
prising ~ 5 to 10% of the sample may be feasible. Critically, we used
Clair3 to perform variant calling, which was designed for diploid
human or haploid genomes47, but not for samples with varying and
unknown ploidy as is the case with P. falciparum. In order to properly
investigate the limits of minor clone detection, haplotype inference
tools that can handle complex P. falciparum infections in conjunction
with the greater length and higher error rate of nanopore reads must
be developed. Going forward, these may be built by adapting existing
short-read haplotype inference tools, such as DADA259, for nanopore;
by adapting nanopore-based tools such as Clair347 orWhatsHap60, for
malaria; or be developed as new fit-to-purpose tools. SeekDeep61, an
algorithm that has been successfully optimized for PacBio reads62,may
be more readily adaptable to nanopore.

Long-read amplicon sequencing of P. falciparum malaria brings
benefits for malaria genomic surveillance. There are three immediate
examples. First, long reads, especially those spanning entire CDS, are
better suited for the detection of rare and novel mutations. Approa-
ches using smaller reads typically focus on ~ 250bp regions around
known, commonmutations, and have primer binding locations within
the target gene. Therefore, novelmutations can emerge undetected or
disrupt primer annealing, ultimately requiring the redesign or expan-
sion of an amplicon panel. For P. falciparum a critical surveillance
region is the propeller domain of kelch1363, which harbours an
expanding list ofmutations conferring artemisinin resistance4,43, but at
855bp is too long to capture with a single amplicon in short-read
sequencing. Second, once suitable computational tools aredeveloped,
long reads will enable epidemiologically relevant read-based phasing
of variants within target genes60. For example, pyrimethamine treat-
ment failure is predicted on the basis of a triple mutation within dhfr
including N51I, C59R and S108N64; however, in some geographies sin-
gle, double, and triplemutations exist, complicating this prediction for
mixed infections65–67. Third, longer reads allow for better mapping in
structurally complex or repetitive regions of the genome, and can
assist with structural variant detection31. The investigation of several
control-relevant regions of P. falciparum, includingmsp2, the histidine-
rich proteins hrp2 and hrp3, and the vaccine target csp; will all benefit
from long-read sequencing.

Over 95% of all P.falciparummalaria cases occur in Africa3, and yet
the vastmajority of P.falciparum genomic data is generated elsewhere.
This discrepancy has resulted, in part, due to a preponderance of
protocolsmakinguseof second-generation sequencingplatformswith
inaccessibly high capital and maintenance costs. A flexible and cost-
effective protocol for nanopore sequencing of P.falciparum malaria
that uses the MinION significantly expands the settings in which
genomic data collection is possible. While on-site or clinical sequen-
cing remains impractical, there exists a multitude of research and
public health laboratories across Sub-Saharan Africa with interest in
generating P.falciparum genomic data who can benefit from our
approach. It is important to highlight that challenges still exist for
widespread implementation, in particular establishing timely, reliable,
and affordable procurement processes for scientific reagents and
equipment in Sub-Saharan Africa. Notwithstanding, the over 100,000
SARS-CoV-2 genomes sequenced on the African continent during the
pandemicdemonstrate that these challenges canbeovercome26. Given
the rapid ongoing spread and, in some cases even, confluence68, of
P.falciparumdrug anddiagnostic resistancemutations in Africa, now is
a critical time to expand P.falciparum genomic surveillance on the
continent.

Methods
Development of multiplex PCR panels
The NOMADS8 and NOMADS16 panels were generated using a beta
version ofmultiply, called pf-multiply, available at: https://github.com/
JasonAHendry/pf-multiply(design file for NOMADS8 and NOMADS16).

Both use a BED (*.bed) file to delineate the mdr1 amplicon. NOMADS8
was generated first using the command:

python multiply.py -d designs/pf-nomads8-mdr1part.ini

NOMADS16 was created by using the augment command of pf-
multiply. The NOMADS8 multiplex PCR primers were combined at
equimolar amounts for total primer concentration of 0.6μM; after an
initial sequencing runwithmock samples on a R9.4.1 Flongle FlowCell,
primer concentrations were crudely adjusted (doubled or halved)
based on observed amplicon abundances, keeping the total primer
concentration fixed. The same procedure was repeated with
NOMADS16; i.e., one round of primer concentration adjustment was
performed.

Creating mock samples of P. falciparum and human DNA
We ordered P. falciparum genomic DNA for laboratory strains 3D7, Dd2,
GB4 and HB3 and Cambodian field derived strains IPC 5202 (kelch13
R539T); IPC 4912 (kelch13 I543T), IPC 3445 (kelch13 C580Y); and IPC
3663 (kelch13 WT)63 from BEI resources (www.beiresources.org). To
create 10,000p/μl in vitro DNA mixtures we diluted these stocks to
0.25ng/μl in 25ng/μL human genomic DNA from a pool of 36 HapMap
cell lines69. DNAmixtures were then combined at different numbers and
ratios to replicatemixed infections of different proportions or COI, and/
or serial diluted in additional human genomic DNA to replicate lower
parasitemia infections (Supplementary Table 2). For validation of hrp2/3
deletions, parasite lines 3D7 (NF54), Dd2 and HB3 were cultured a 5%
hematocrit in commerical red blood cells obtained from DRK Blut-
spendedienst Nord-Ost gemeinnützige Gmb, as previously described70.
Genomic DNA from all lines was extracted using a Qiagen Blood and
Tissue Kit on parasite pellets lysed with 0.15% saponin. Extracted DNA
was combined with human genomic DNA (Roche, 11691112001) to pro-
duce a 10,000p/μl stock, as described above. Lower parasitemia strains
were produced by 2-fold serial dilution of the 10,000p/μl stock into
human genomic DNA.

Collection of field samples
Samples from Zambia are from two studies. The first were collected
under an ethical waiver granted by the National Health Research
Authority, Zambia under the Laboratory Quality Improvement
Research In Ministry of Health Laboratories (NHRA000004/16/11/
2021). Symptomatic patients visiting a clinic in Kaoma, Western
Province, Zambia were diagnosed with an RDT while a microscopy
slide and DBS (on Whatmann No3 filter paper) were also collected.
All samples were de-identified and no demographic or clinicial data
was recorded. Bulk DNA was extracted from DBS using a Qiagen
QIAamp Kit following manufacturers instructions. Parasitemia was
quantified by light microscopy from thin film blood slides. The
second set were collected during a Therapeutic Efficacy Study (TES)
conducted by the Ministry of Health through the National
Malaria Elimination Centre under ERES Converge IRB under Ther-
apeutic Efficacy Testing for Artemether-Lumefantrine, Artesunate-
Amodiaquine and Dihydroartemisinin-Piperaquine in Selected Sites
in Zambia. The TES study is routinely conducted to assess the effi-
cacy of three ACT antimalarial drugs used to treat uncomplicated
malaria. Symptomatic patients visiting a clinic in Solwezi district,
North-Western Zambia, were diagnosed for malaria using an RDT
while a microscopy slide and DBS were collected. Parasitemia was
quantified for every positive RDT, and any patient with parasitemia
of 1000 parasites/μl or higher was given the option to enrol in the
study through the written consent process. Additional clinical
information such as fever status and demographic data (i.e., age,
height, weight) were collected. The patient’s home address was
recorded for study follow-up purposes, but the DBS were de-
identified prior to any analysis being conducted.
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Laboratory protocol and sequencing
The complete laboratory protocol, including materials and primer
sequences, is available online at protocols.io (https://www.protocols.
io/) as "Cost-effective targeted nanopore sequencing of P. falciparum
malaria". In brief, for each sample 10–40 ng of extracted genomicDNA
was used as template in a 50μl sWGA reaction51, but with reduced
phi29 DNA polymerase (NEB #M0269S) tominimise costs. Afterwards,
2μl of sWGA product was used as template in a 25μl multiplex PCR
with KAPAHiFi Polymerase (Roche #KK2101) and either the NOMADS8
or NOMADS16 primer pools. Multiplex PCR products were cleaned
using a 0.5X ratio of NEBNext Sample Purification Beads (NEB #E7103)
and eluted in 15μl nuclease-free water. DNA elute was quantified using
the Qubit (ThermoFisher #Q32854) and between 100 and 600 ng of
DNA was taken forward for barcoding and sequencing. We ligate
unique barcodes from an Oxford Nanopore Technologies (ONT)
Native Barcode Ligation Sequencing Kit (SQK-LSK109 with EXP-
NBD104, EXPNBD114 for R9.4.1 Flow Cells; SQK-NBD114.96 for R10.4.1
Flow Cells) to each sample using a modified one-pot barcoding
protocol46. Samples are then pooled before adapter ligation and
sequencing, where we follow ONT protocol recommendations.

Bioinformatics pipeline
For experiments using R9.4.1 Flow Cells, FAST5 files generated by the
MinKNOW software were basecalled using Guppy (v5.0.11) with a
minimum quality score threshold of 8. For the Flongle experiment, we
used the super-accurate (SUP) basecalling model and for all other
experiments we used the high accuracy (HAC) basecalling model. For
experiments using R10.4.1 Flow Cells, POD5 files were basecalled using
dorado (v0.34; https://github.com/nanoporetech/dorado) using the
super-accurate (SUP) model. FASTQ files were then demultiplexed
using Guppy (v5.0.11), without setting the ––require_both_ends
flag, i.e., with single-end demultiplexing. Demultiplexed FASTQ files
were mapped to release 52 of the P. falciparum 3D7 reference genome
downloaded from PlasmoDB71 (https://plasmodb.org) using
minimap272 (v2.24-r1122) and the -ax-ont parameter setting. In the
resultant BAM (*.bam) file, reads failing to map to the 3D7 reference
were identified using samtools73 (v1.16), with the command samtools
view -f 0x904. These unmapped reads were converted back to
FASTQ files using samtools fastq before being remapped to the
GRCh38 human reference genome downloaded from NCBI’s Genome
Database (https://www.ncbi.nlm.nih.gov/genome) and subsequently
excluded fromdownstreamanalyses. Readsderiving from targetswere
defined as those that overlapped the coding-sequence defined in the
Gene Feature Format (GFF) (*.gff) for release 52 of the P. falciparum
3D7 reference genome downloaded from PlasmoDB71. Variant calling
of reads mapping to the 3D7 reference genome was performed using
the using the singularity image of Clair347 (v1.0.4; https://github.com/
HKU-BAL/Clair3) in diploid mode with the flags ––platform='ont'
––include_all_ctgs ––enable_phasing set. For the SNP calling
analysis in Fig. 4, we sent all variants to the alignmentmodel by setting
––var_pct_full=1.0 and –ref_pct_full=1.0.

SNP calling accuracy analysis
Downsampling reads. We partitioned reads mapped to the 3D7
reference into those overlapping each of our target genes using
samtools73 (v1.16), thereby producing BAM files for each of our targets.
For each target BAM, we downsampled reads using the samtools view
command and -s/––subsample flag to achieve the desired number of
reads. This procedure was repeated for the Dd2 and HB3 samples;
downsampling to 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 reads for
each target, and ten times for each number of reads. As a result, for each
given depth and target, we produced 10 randomly downsampled BAM
files for Dd2 and Hb3; for 20 replicates total. In Fig. 4b the ’All’ category
was created be concatenating the BAM files generated in this way for all
targets in the NOMADS8 panel, excluding msp2.

Creating a set of true variants. Dd2 and HB3 have been sequenced to
highdepthon thePacificBioscienceSequencing SMRT technology and
assembled, with resulting FASTA (*.fasta) sequences available on
PlasmoDB71. To identify variants in these assemblies with respect to the
3D7 reference genome, we simulated high-quality (Phred 60) error-
free reads in silico from the FASTA files, mapped them to the 3D7
reference genome with minimap2 (v2.24-r1122), and then identified
variants using the bcftools74 (v1.16) mpileup and call commands. In
particular, we simulated 60 error-free reads, half forward and half
reverse strand, for each target in our NOMADS8 panel by extracting
the FASTA sequence spanning +/-4kbp of the target, based onGFF files
for Dd2 and HB3.

Stratified variant call comparisons. We used the tool
hap.py49(https://github.com/Illumina/hap.py) from a Docker image
(jmcdani20/hap.py:v0.3.12) to compute measures of variant calling
accuracy across different target regions in comparison to the true
variant set described above. To restrict accuracy measure analysis to
coding sequence, we subset the 3D7 GFF to only CDS features, iden-
tified the rows pertaining to our targets, and output the chromosome,
start, and stop positions as a BED (*.bed) file. We used then used the
––stratifications flag of hap.py to compute measures over these
intervals. We used the annotated VCF (*.vcf) files produced by hap.py
to generate positional plots of false- and true-positive rate across tar-
gets in Python.

Analysis of msp2 reads
Computing coding sequence lengths. After mapping reads to the
3D7 reference genome with minimap272 (v2.24-r1122), we extracted
reads that completely overlapped themsp2 (PF3D7_0206800) coding
sequence using bedtools74 (v2.31.0) with the intersect -F 1.0 com-
mand. From the resultant BAM file, we trimmed these reads to the
extent of the msp2 coding sequencing by keeping only the section of
each read that aligned within the interval [273689, 274507] of chro-
mosome 2 (Pf3D7_02_v3); indels were retained if the bases on either
sideof themalignedwithin the interval. Unusually short trimmed reads
(< 400bp) were removed as likely artefacts. Trimmed reads were used
to create length distribution plots. They were independently mapped,
usingminimap272 (v2.24-r1122), to release 52 of the reference genomes
for 3D7, Dd2, GB4, and HB3 downloaded from PlasmoDB71. We let
minimap2 output a PAF (*.paf) file and computed the identity of the
mapping alignment by dividing column 10 (number of matches in
alignment) by column 11 (total alignment length).

Global pairwise alignment. We implemented a banded version of the
Needleman-Wunsch algorithm to compute global alignment scores
between pairs of trimmed msp2 reads. We parameterised the scoring
model such that scores reflect the log-probability that the two
observed reads derived from the same underlying haplotype
sequence; i.e., that all alignment differences were caused by sequen-
cing error. Assuming an indel rate of 5%, which is broadly consistent
with observed error rates,weused a lineargap scoreof log10ð0:05Þ. For
substitution scores, we took into account the base quality scores
generated by Guppy as follows. Defining x and y as the two observed
bases in the match, the likelihood that they were generated from the
same haplotype base h is

Pðx,yjh,px ,pyÞ=
ð1� pxÞð1� pyÞ+

pxpy

3 if x = y

pxð1� pyÞ+pyð1� pxÞ+
2pxpy

3 if x≠y

8>><
>>: ð1Þ

where px = 10
Qx
�10 and py = 10

Qy
�10, with Qx and Qy being the Phred-scaled

base quality scores for x and y. The substitution score is then
computed as log10(P(x, y∣h, px, py)). For all alignments in this study, a
band width of 80 bp centred on the diagonal of the global alignment
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matrix was used. Hierarchical clustering of the resulting scores was
performed using the scipy.cluster.hierachy.linkage function
from the SciPy75 (v1.4.1) Python package.

Statistical model for hrp2/3 deletion detection
Data and notation. We first describe the data and notation used by
our model (Table 2). Amplicon sequencing data is represented as a
two-dimensional matrix of positive integers, X, which holds read
counts after quality filtering, demultiplexing and mapping. The
matrix X has rows representing samples, which are indexed by i ∈
{1, 2, . . . , n}, and columns representing target genes, which are
indexed by j ∈ {1, 2, . . . ,m}; each element, xij, represents the number
of reads from sample i that mapped to the target gene j. We define a
corresponding binarymatrix, C, where each element cij indicates that
the given target gene j is either present (cij = 1) or deleted (cij = 0) in
sample i. We define a vector a of size n such that ai ∈ [0, 1], which
represents the relative abundance of each sample in the sequencing
library. Finally, we define two scalar parameters: a read mis-
classification rate, ϵ ∈ [0, 1], which represents the rate at which reads
derived from sample k contribute to another sample’s read counts
(i.e., to xi≠k,j), whether by contamination or incorrect sample
assignment during demultiplexing; and a read count dispersion term
ν 2 R+ , which is given a precise mathematical definition below.

Model. Each column of the read count matrix, xj = {x1j, x2j, . . . xnj},
contains the read counts for a given target gene j across all n samples.
We model xj with a Dirichlet-multinomial distribution:

Pðxj ;Nj ,αjÞ=
ΓðPn

i= 1 αijÞΓðNj + 1Þ

ΓðNj +
Pn
i = 1

αijÞ

Yn
i = 1

Γðxij +αijÞ
ΓðαijÞΓðxij + 1Þ

, ð2Þ

where Nj =
Pn

i= 1 xij is the total read counts for target j across all sam-
ples; and αj = {α1j, α2j, . . . , αnj} is a vector of compound parameters, αij,
for the target gene j. Theseαijdetermine the expected number of reads
for each sample for a given target gene and are computed in three
steps. First, we use the relative abundance of a sample, ai, and its
deletion status for target gene j, cij, to compute the expected pro-
portion of reads generated for target gene j that should derive from
sample i:

pij =
cijaiPn

k = 1
ckjak

: ð3Þ

Note that pij either equals zero, if target gene j is deleted in sample
i; or theproportion of sample i in the sequencing library, but relative to
only the samples where the gene is present. In the process of gen-
erating these reads, these expected proportions are altered through
readmisclassification and sample contamination, such that a different
set of expected proportions,πij, are reflected in the final data. Here, we
make the assumption that read misclassification happens at a fixed
rate, ϵ, and uniformly across samples, resulting in the expression:

πij =pijð1� ϵÞ+ ð1� pijÞϵ: ð4Þ

Both pij and πij sum to one for a given j. Finally, we parameterise
the Dirichlet-multinomial with αij = νπij. The effect is that the expected
read counts, xij, equals the product of the total number of reads for
target gene j, Nj, multiplied by the deletion-status and error-adjusted
sample proportion, πij:

E½xij �=Nj

αijPn
k = 1 αkj

=Nj

νπijPn
k = 1 νπkj

=Njπij : ð5Þ

The variance of xij equals:

V ½xij �=Njπijð1� πijÞ
Nj + ν

1 + ν

� �
, ð6Þ

which increases as ν shrinks towards zero, or asymptotically approa-
ches the variance of a binomial distribution, as ν grows towards infi-
nity; ν controls read count overdispersion relative to a binomial
distribution. In summary, the αij incorporate information about the
deletion status of the target gene, the relative abundance of each
sample in the library, the rate of misclassification in the sequencing
run, and the amount of overdispersion in read counts across samples.

Inference. Our aim is to infer whether a target gene of interest is
present (cij = 1) or absent (cij =0) in a given sample, using all of the
salient information in the read countmatrixX. We approach thiswith a
Bayesian formulation: treating the Dirichlet-multinomial distribution,
described above, as the likelihood and computing the posterior
probability over cj = (c1j, c2j, . . . , cnj) as:

Pðcjjxj; ϵ,v,aÞ / Pðxjjcj ; ϵ,v,aÞPðcjÞ: ð7Þ

A natural choice of prior for each cij would be a Bernoulli dis-
tribution, cij ~ Bern(θ), with 1 − θ giving the expected probability of
deletion. Here, for simplicity, we have chosen a uniform prior
equivalent to θ =0.5, although in principle this could be adjusted
based on previous knowledge about deletion prevalence of target
gene j in the regions from which the samples were collected.

Also for simplicity, we have chosen to treat ϵ, v, and a as fixed
parameters and we fit them using point estimation. Let δ be a set
containing the indices of all the negative control samples included in
the sequencing run, such that ∣δ∣ represents number negative controls.
We first make a simple point estimate of the misclassification rate by
taking the empirical mean of the xij’s for all these negative controls:

ϵ=
1

jδjm
X
i2δ

Xm
j = 1

xij=Nj: ð8Þ

This uses the fact that E[xij]/Nj = ϵ for cases where ai = 0, which is
true by definition for negative controls. Next we compute point esti-
mates of the a and ν parameters. Tomake these estimates, we define a
subset ϕ ⊂ {1, 2, . . . ,m} representing the indices of the target genes
with no known deletions. In the context of the NOMADS16 panel, this
includes ten target genes excluding hrp2, hrp2, up., hrp2, down., hrp3,
hrp3, up., and hrp3, down. Closed form maximum-likelihood estima-
tors of the parameters of a Dirichlet or Dirichlet-multinomial do not

Table 2 | Notation for hrp2/3 deletion detection model

Symbol Description

i Sample index i∈ {1, 2, . . . , n}

j Target gene index j∈ {1, 2, . . . ,m}

Xn×m Read count matrix xij 2 Z +

Cn×m Copy-number matrix cij∈ {0, 1}

δ Indices of negative control samples δ⊂ {1, 2, . . . , n}

ϕ Indices of target genes without known deletions (i.e.,
non-hrp)

ϕ⊂ {1, 2, . . . ,m}

an Sample abundances ai∈ [0, 1]

ϵ Read misclassification / contamination rate ϵ∈ [0, 1]

ν Read count overdispersion term ν 2 R+

pij Unadjusted library proportion of sample i and target j pij∈ [0, 1]

πij Adjusted library proportion of sample i and target j πij∈ [0, 1]
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exist76, and so instead we estimate ai using the empirical mean of xij/Nj

for the target genes in set ϕ:

ai =
1
jϕj
X
j2ϕ

xij=Nj: ð9Þ

Then, following Minka (2012)76, we estimate ν using:

logðνÞ= 1
jϕj � 1

X
j2ðjϕj�1Þ

log
aið1� aiÞ
varðxij=NjÞ

� 1

 !
: ð10Þ

With point estimates of ϵ, ν and a, we compute the posterior dis-
tribution of cj using Markov Chain Monte Carlo (MCMC). For each
target gene j, we run an independentMetropolis-Hastings algorithm to
compute the posterior cj. We initialise the MCMC with cij= 1 for all
i∈ {1, 2, . . . , n}. In each iteration, we propose a new c0j by choosing
uniformly from i, and then switching the deletion status of the
corresponding cij by computing c0ij = 1� cij . As this proposal is
symmetrical, the Hastings Ratio is 1 and we accept the update with
probability:

min 1,
Pðxj ;Nj ,c

0
j,ϵ,v,aÞPðc0jÞ

Pðxj ;Nj ,cj,ϵ,v,aÞPðcjÞ

" #
ð11Þ

In total we conducted 10,000 iterations of the MCMC for each
target gene, discarding the first 500 as burn-in. Finally, the posterior
probability that a given sample i is carrying a deletion of target gene j is
equal to the fraction of the iterations in which cij =0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Reads were mapped to release 52 of the P. falciparum reference gen-
ome for strains 3D7 (PlasmoDB-52_Pfalciparum3D7), Dd2 (PlasmoDB-
52_PfalciparumDd2), GB4 (PlasmoDB-52_PfalciparumGB4) and HB3
(PlasmoDB-52_PfalciparumHB3) downloaded from PlasmoDB71; and to
the GRCh38 human reference genome (GRCh38) downloaded from
NCBI. Sequence data is available for download from NCBI’s Sequence
Read Archive (https://www.ncbi.nlm.nih.gov/sra) under the accession
PRJNA956048.

Code availability
multiply is available at: https://github.com/JasonAHendry/multiply.
Bioinformatics pipeline, SNP calling accuracy, andmsp2 analysis code
is available at: https://github.com/JasonAHendry/nomadic2.
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