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The recent discovery of a variety of intricate electronic order in kagome metals has sprouted
significant theoretical and experimental interest. From an electronic perspective on the potential
microscopic origin of these phases, the most basic model is given by a Hubbard model on the
kagome lattice. We employ functional renormalization group (FRG) to analyze the kagome Hubbard
model. Through our methodological refinement of FRG both within its N -patch and truncated unity
formulation, we resolve previous discrepancies of different FRG approaches (Wang et al., 2013 vs.
Kiesel et al., 2013), and analyze both the pure (p-type) and mixed (m-type) van Hove fillings of
the kagome lattice. We further study the RG flow into symmetry broken phases to identify the
energetically preferred linear combination of the respective order parameter without any need for
additional mean field analysis. Our findings suggest some consistency with recent experiments, and
underline the richness of electronic phases already found in the kagome Hubbard model. We also
provide a no-go theorem for a complex charge bond ordered phase in the single orbital kagome
Hubbard model, suggesting that this model cannot capture aspects of orbital current phases.

I. INTRODUCTION

The vanadium-based kagome metals AV3Sb5 (A =K,
Cs, Rb) are the most studied class of layered kagome
systems so far. A rich interplay between electronic corre-
lations, electron-phonon interactions, geometric frustra-
tion and topology is believed to be pivotal in determining
their properties [1–4]. At ∼ 100K [5], these compounds
undergo a charge-order (CO) phase transition leading to
a 2×2 in-plane reconstruction of the unit cell. The out-of-
plane component of the CO might depend on the cooling
rate and on the compound of the series analyzed [6]; it ei-
ther is ×1 [7], ×2 [8–10] or ×4 [11]. Muon-spin relaxation
[12, 13], magneto-optical Kerr measurements [14] and po-
lar Kerr results [15] observe a broken time reversal sym-
metry (TRS) in this phase, with no signatures of mag-
netic ordering observed. Therefore, this class of kagome
metals is a prime contender for realizing the long sought
after spontaneous orbital currents reminiscent of the Hal-
dane [16] and the Varma [17] models the latter of which
has previously been pursued in high-Tc cuprates [18–20].
Recent high resolution polar Kerr studies, however, do
not find any evidence of broken TRS in this state [21].

The controversy of early experimental findings seems
to be the rule rather than the exception for this class of
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compounds. Indeed, several experiments find indications
of a phase transition at ∼ 50K within the CO domain:
Some of them find the transition to a low-temperature
nematic phase which might be a zero-momentum charge
order [22–24], while others observe a one-dimensional
CO with 1 × 4 in-plane reconstruction [25–27]. Re-
cent investigations do not find any transition around
50K [28, 29], suggesting that the vanadium-based kagome
metals might be at the “tipping point” of correlated or-
ders [30], i.e., small perturbations such as strain or an ex-
ternal magnetic field might stabilize a state with slightly
higher energy than the ground state at pristine condi-
tions.
The properties of the CO state appear to be inter-

twined with the superconducting phase found below ∼
1K, rendering it unconventional in nature. Although
a recent experiment points towards conventional s-wave
symmetry for the superconducting gap function of the
kagome metals [31], several theoretical studies based on
the Hubbard model on the kagome lattice have sug-
gested d- [32], d+ id- [33] and f -wave symmetry [34] for
the gap function, which would follow earlier experiments
obtaining evidence for an unconventional superconduc-
tor [5, 35, 36]. Furthermore, recent theoretical investiga-
tions [37] highlight that the distinction between s and d
wave, based on their impurity response, is not as straight
forward, hence undermining the argumentation in [31].
Refined theoretical simulations might help to solve

some of the experimental controversies. Ab initio de-
scriptions of this class of compounds represent a reason-
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able starting point to tackle the problem, and they can
provide indications on the minimal models required to
describe the salient properties of kagome metals [38, 39].
Even if density functional theory seems unable to distin-
guish the driving force for the CO, which might be elec-
tronic or phononic [40–43], still it can provide important
indications regarding the Fermiology of the compounds.
In particular, two different kinds of van Hove singulari-
ties (VHS) [44] are found in the proximity of the Fermi
level, suggesting their relevant role for the stabilization
of symmetry-broken phases [45]. Despite the fact that
more than one orbital per site might be required [46] and
electron-phonon interaction might play an important role
[47–50] to properly describe the kagome metals, many of
the theoretical works consider the single orbital extended
Hubbard model to describe the main physical properties
of this class of materials. This assumption is based, inter
alia, on the correct replication of the experimentally ob-
served VHS and their distinct sublattice character, i.e.
pure (p-type) and mixed (m-type) sublattice occupation.
Further, even thou both kinds of VHS are close to the
Fermi level in the real systems, several works considered
just the p-type VHS, sometimes even neglecting the sub-
lattice character of the states at the Fermi level [51–55],
but the role of the m-type VHS has been taken into ac-
count in more recent investigations [56–59]. In this work,
we clarify the FRG phase diagram of the single orbital
extended Hubbard model on the kagome lattice, confirm-
ing earlier SMFRG results [32]. Given the relevance of
both p- and m-type VHS for the physics of the kagome
metals, we study the model at both fillings. We derive an
analytical condition for the absence of TRS breaking at
the phase transition, in agreement with results based on
point-group symmetry arguments derived for Ginzburg-
Landau theories at a continuous phase transition [60].

The paper is structured as follows. In Section II and
III we introduce the employed model and give a short in-
troduction to the methods used to examine this model
(FRG), respectively. This is followed by Section IV
where we discuss the phase diagram predicted by trun-
cated unity FRG (TUFRG) and relate it to prior re-
sults [32, 34]. In Section V we proceed by an in depth
analysis of three different phases found at the p-type
VHS, providing a no-go theorem for a perturbatively gen-
erated TRS breaking charge order. We then recalculate
the phase diagrams with N -patch FRG in Section VI,
highlighting that the two methods yield compatible re-
sults when using a state-of-the-art implementation [61].
In Section VII we conclude by summarizing the paper
and giving an outlook on possible next steps.

II. MODEL

The simplest model possibly describing the rich order-
ings observed in the AV3Sb5 group of kagome metals is
the kagome-Hubbard model. We visualize the lattice and
Hamiltonian terms in Fig 1 (d). The Hamiltonian is given

as

H = t
∑

⟨i,j⟩,σ

c†i,σcj,σ + U
∑
i,

ni,↑ni,↓

+ V
∑

⟨i,j⟩,σσ′

ni,σnj,σ′ , (1)

with c
(†)
i,σ the fermionic annihilation/creation operator

acting on site i and spin σ, t the nearest neighbor hop-
ping amplitude which we chose as t = 1 and measure
all energies in units of t from now on. U and V are the
on-site and nearest neighbor density-density interactions

and ni,σ = c†i,σci,σ is the electron density operator on site
i and spin σ.
In analog to experimental observations, two dissimilar

VHS placed at the M points appear in the band struc-
ture, see Fig. 1 (a) and (c). The difference between the
VHS is related to the presence of three sites in the unit
cell in the kagome lattice, i.e., three distinct sublattices
A, B and C. When the hopping integral t > 0, the up-
per (lower) VHS is called p-type (m-type) because the
Fermi surface at that filling is sublattice pure (mixed).
This means that the Fermi surface has a single (mixed)
sublattice character at each M -point, which prevents (fa-
vors) a nesting condition driven by the local Hubbard
interaction, the so called sublattice interference mecha-
nism [39, 62].

III. METHODS

In this work, we apply two different flavors of func-
tional renormalization group (FRG) [63, 64]. FRG is
based on integrating flow equations starting from a solv-
able theory to the full solution of the problem. These
equations are derived by introducing a cutoff function
R(Λ) in the single-particle propagator. At the starting
point Λ = Λ0 (here Λ0 = ∞), the action is rendered
solvable. From this starting point, we successively inte-
grate out the hierarchy of flow-equations until the cut-
off is removed, thus resulting in the exact solution. For
general models, we have to solve an infinite set of cou-
pled differential equations. As a consequence we have to
employ approximations that make the equations numeri-
cally tractable. In this paper, we utilize the sharp cutoff
R(Λ) = Θ(|Λ| − ν) allowing for an efficient implemen-
tation of the numerically most demanding parts of the
flow.

Due to the truncation of the hierarchy, the flow has
to be stopped once a coupling becomes too large — if
this divergence happens in a non-polynomial fashion, it
signalizes a divergence of a susceptibility and thereby a
phase transition. By analysing the interaction at the di-
vergence, we extract the leading order parameter and pre-
dict the expected ordered phase. Here the channels sig-
nalize different orderings, each associated with a different
fermionic bilinear. The particle-particle channel (P ) is



3

associated to cooper-pair bilinears, its divergence signal-
izes a superconducting transition. The crossed particle-
hole channel (C) is proportional to a spin-operator bilin-
ear, thus resulting in a magnetic order parameter. Lastly,
the direct-particle hole channel (D) is proportional to a
particle-number operator bilinear, indicating charge or-
dering, once the magnetic contribution is subtracted.

The two types of FRG we consider in the following
are both built upon a level-2 truncated formulation of
FRG (vertex-flow FRG or “RPA+”), i.e., we discard self-
energy feedback and frequency dependencies, but keep
the flow of the two particle interaction FΛ

1,2,3,4(k1,k2;k3).
Thereby we arrive at the following set of equations for the
three diagrammatic channels Φx, x ∈ {P,C,D},

dΦP,Λ
1,2,3,4(k1,k2;k3)

dΛ
=

1

2
FΛ
1,2,1′,2′(k1,k2;k

′)FΛ
3′,4′,3,4(k

′,k1 + k2 − k′;k3)L̇
Λ
1′,2′,3′,4′(k

′,k1 + k2 − k′) , (2)

dΦC,Λ
1,2,3,4(k1,k2;k3)

dΛ
= FΛ

1,4′,3,1′(k1,k
′;k3)F

Λ
3′,2,2′,4(k

′ + k3 − k1,k2;k
′)L̇Λ

1′,2′,3′,4′(k
′,k′ + k3 − k1) , (3)

dΦD,Λ
1,2,3,4(k1,k2;k3)

dΛ
= −FΛ

1,4′,1′4(k1,k
′ + k2 − k3;k

′)FΛ
3′,2,3,2′(k

′,k2;k3)L̇
Λ
1′,2′,3′,4′(k

′,k′ + k2 − k3) , (4)

where we defined the non-interacting two particle propagator as

L̇Λ
1,2,3,4(k1,k2,k3,k4) =

[
SΛ
1,3(k1)G

Λ
2,4(k2) +GΛ

1,3(k1)S
Λ
2,4(k2)

]
δk1,k3

δk2,k4
. (5)

The full vertex can then be restored by summing up the
three channel contributions and the irreducible vertex
contribution. Differences between truncated unity FRG
and N -patch FRG are detailed in Ref [65]. Importantly,
the two different variants should give consistent results,
which for the kagome Hubbard model has not been the
case [32, 34], a conundrum we resolve in this paper.

IV. PHASE DIAGRAM

We begin by discussing the phase diagram at the two
different van Hove types. The prior discussed change in
orbital makeup drastically changes the predicted phase
diagram, see Fig. 1 (d) and (e). In both we find the same
phases, but their phase space volume is vastly different.
We find a doubly degenerate q = 0 charge-density wave
order at low U and V , which will be discussed in detail in
section V. For small nearest-neighbor interactions we find
a large ferromagnetic region. This phase stems from the
divergent density of states, which fuels a divergence of the
particle-hole loop at low temperatures. In order to obtain
this phase, the model’s kinetics have to be finely resolved
as otherwise the divergence is smeared out by limited mo-
mentum resolution. At large V , we find a superconduct-
ing order with A1 symmetry (an s-wave) with uniform
orbital weight on the three sublattices. At large V the
effective on-site interaction becomes attractive, strongly
favoring double occupancy and a pair-formation to avoid
the penalty of having neighboring electrons. Upon low-
ering V , we enter the E2 superconducting state, which
is discussed in much detail in Refs. [46, 66] and briefly
revisited in section V. Notably, the on-site component
of this order parameter does not need to vanish, as we

analytically show in App. A. We find that the order pa-
rameter weight is approximately evenly split between on-
site and nearest neighbor bonds. The superconducting
phases found agree with prior RPA studies [56]. The
phase diagram we predict is in some sense complementary
to the one found in variational monte carlo studies [47]
making comparisons difficult.

All phases mentioned before are located roughly within
the same region of the phase diagram at the m and p type
VHS - however the spin bond order and charge bond or-
der are not. We name a phase spin or charge bond order
if the leading ordering has non-zero weight on a bond
and stems from either a crossed or direct particle-hole
contribution. Both orders belong to the A1 irreducible
representation with transfer momentum q = M (induc-
ing a 2 × 2 enlargement of the unit-cell). They consist
of on-site and bond components, mixing with different
weights at different points in the phase diagram. At the
p-type VHS, the charge bond-order makes up the largest
portion of the phase diagram, while the SBO is driven
by increased nearest neighbor interactions on top of the
CBO. In contrast, at the m-type VHS, the SBO makes
up most parts of the phase diagram, while the CBO is
restricted to a very small region at small U and interme-
diate V .

It should be noted, that these bond orders always mix
with the respective on-site density wave. The ratio be-
tween bond and on-site order strongly depends on the
chosen U and V . To understand the origin of the phases,
we examine the case V = 0 and unravel what drives the
order, by subsequently turning off channels in the FRG
calculation. At the m-type VHS the dominant phase is
an M -point SBO. The bond order character of the phase
is induced by the interplay with the other diagrammatic
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FIG. 1. Bandstructure, orbital makeup of the FS statesat the p and m-type VHS and schematic phase diagrams of the p
and m-type filled kagome-Hubbard model. Fig (a) visualizes the bandstructure with the p-VHS filling marked in red (dashed)
in red. The right panel admixture subfigure (a) depicts the orbital makeup at the Fermi level, with the colors encoding the
admixture of the different sublattices according to Figure (b), that contains the lattice structure with all relevant parameters
from the Hamiltonian. Fig. (c) is the same as Fig (a) but for the m-type VHS. Fig (d) shows the phase diagram in U -V space
at the p-type VHS. We find a Ferromagnetic region (FM), a charge density order (CDW), a charge bond order (CBO), a spin
bond order (SBO), an E2 superconductor (E2-SC) and an A1 superconductor (A1-SC). The phase diagram at the m-type VHS
in Fig (e) features the same phases as observed at p-type VHS.

channels: If we perform a flow for only the C-channel, we
find an M -point spin-density wave roughly agreeing with
the phase space of the spin-bond order. By inclusion of
the D channel, the critical scale changes by less than 1%
(at U = 3t), however now the observed order features
bond contributions. This indicates that the spin order is
primarily driven by RPA like diagrams, while the bond
weights are generated by the higher harmonics induced
from the feedback of the P - and D-channels. To under-
stand why these higher harmonics are amplified, we need
to consider the particle-hole loop at the M -point:

Lb1,b3
o1,o3(M) =

∫
dk e−ik(B1−B3)

(Go1,o3(k)Go3+b3,o1+b1(k −M) +G ↔ G). (6)

At low critical scales, the main contribution to the in-
tegral stems from the two nested Fermi surfaces (FSs)
connected by q = M . Since at each point along the FS
the weight is distributed between at least two orbitals,
we obtain non-zero values for all components containing
a suitable orbital combination—including the diagonal
component L0,0

o1,o1 and the on-site and bon mixing compo-

nent L0,bi
o1,o1 . Therefore, if the interaction contains a weak

bond-order contribution arising from the inter-channel

coupling it will get enhanced by the coupling present in
the particle-hole loop.

In contrast, the charge bond order at the p-type VHS
lacks a parental RPA-like phase, due to the sublattice in-
terference mechanism preventing such an order [62]. If we
only flow in the D channel, we encounter no divergence.
If we include the C channel, we encounter a divergence in
the C channel at critical scales that are larger by an or-
der of magnitude than for the full FRG flow. Therefore,
the P -channel is a crucial ingredient in suppressing the
ferromagnetic divergence. We can understand this again
from the loop above. At the p-type VHS the Green’s
function has weight on at most two of the three orbitals
at each point along the Fermi surface. Most importantly,
in the high density regions, its weight is concentrated on
a single orbital. This suppresses the on-site form factor
components of the loop (but they are not zero). So no
RPA like divergence at the M -point exists, since the high
density regions mainly drive contributions in non-trivial
form-factor sectors. Only once the bond components are
generated from the C and P channel, we find the bond
ordered phase. Note that this dependency on all chan-
nels renders the CBO less stable than the SBO. Further,
this exemplifies the necessity of numerical studies beyond
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RPA approximations.

V. ANALYSIS OF ORDERS

In the following we give a detailed analysis of the
charge orders as well as the E2 superconducting order
at the p-type VHS.

A. Flowing into the symmetry broken phase

After analyzing the leading instabilities from the
TUFRG flow two different routes can be taken to ex-
tract more information about the form of the symme-
try broken state. On the one hand, the FRG flow can
be combined with a mean-field analysis of the effective
model after the flow reached the critical scale Λc [67, 68].
Here, one needs to be careful in the construction of the
divergence free part of the interactions. On the other
hand, one can include self-energies and allow for broken
symmetries by insertion of a symmetry breaking pertur-
bation at the initial scale [69, 70]. With this procedure
one faces several challenges. First of all, the standard
FRG flow equations are not mean-field exact [70–72].
Only once the Katanin-substitution is introduced, the
fulfillment of the Ward-identities is restored and the flow
equations become mean-field exact [73]. This however is
an issue, as we strongly rely on the sharp cutoff removing
frequency integrals from our flow equations which is not
possible anymore in the Katanin flow. We can therefore
not assume a priori that divergences can be removed by
allowing broken symmetries. Past results for 1D mod-
els however do indicate that flowing into symmetry bro-
ken charge orders is possible without the inclusion of the
Katanin substitution [69].

Since the FRG flow is formulated in the grand canon-
ical ensemble, enabling self-energy feedback implies a
flowing particle number. A solution that is frequently
employed in self-consistent methods is to adapt the chem-
ical potential after each flow step in order to force a given
filling. In this pseudo-canonical picture, a counter term
is introduced to the diagonal part of the self-energy, ef-
fectively altering the system in each step of the iteration.
While there are heuristic arguments why this is valid in
self-consistent methods, it is known to break down in
FRG away from particle-hole symmetry if the Katanin
correction is not included [74]. To circumvent possible
issues arising from forcing an electron filling to the FRG
flow, we perform a search where we vary the initial chem-
ical potential to arrive at the right filling value when the
stopping condition is met.

(a) (b)

FIG. 2. Spectral function A(k, ω = 0) for the non-interacting
(a) and symmetry broken state (b) respectively. In the upper
left panels we visualize the occupation number in the two
states on the three different sublattices. From a first FRG
run, we found the CDW order to be in the E2 irreducible
representation. The two independent solutions are combined
such that all M -points are fully gapped.

B. Charge orders

1. Charge density wave

We first examine the simplest charge order: A charge
density wave (orbital order) at q = 0 that occurs for
small U and nonzero V . The peculiar nature of the
Kagome lattice allows for an on-site eigenvector that is
in the E2 irreducible representation. This order param-
eter hence acts as a site dependent chemical potential.
As the Hamiltonian has to be Hermitian, the two order
parameters must not be superimposed in a complex fash-
ion. Since nontrivial superpositions of the two eigenvec-
tors may occur nevertheless, we perform a flow into the
charge ordered state and visualize the resulting spectral
function in Fig. 2.
We observe a transition from a state in which all sites

are equally populated to one in which one site is less
populated. This charge reordering deforms the Fermi-
surface to avoid the van-Hove singularities at the M -
points, which effectively removes the divergence from the
FRG flow. The gap-opening breaks the C6v symmetry
down to a C2v symmetry, thus we find a Pomeranchuk
like instability from electronic repulsion. Notably, if the
flow did not open a gap at all VHS, we would expect
a divergent susceptibility even in the symmetry broken
phase.

2. Charge bond order

In experiments, a time reversal symmetry breaking
charge bond order has been observed [12–15]. Since this
observation is under current debate, it is desirable to un-
derstand whether such a state can be facilitated by purely
electronic effects in the single orbital model. To answer
this question with FRG, we set up a 2×2 supercell (with
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12 sites) that maps the q = M charge order to the Γ
point. In this larger system, we repeat the FRG flow with
varying random initial symmetry breaking strength, ini-
tialized according to the form of the leading eigenvector
of the instability in the symmetric phase. An exemplary
result of an FRG flow into the symmetry broken phase
is visualized in Fig. 3.

(a) (b)

FIG. 3. CBO flow into the symmetry broken phase. Left
we show the predicted charge and hopping modulation in
the symmetry broken phase, larger dots/connections indicate
higher occupation/hopping. The spectral function around the
M point on the right shows the formation of mini-bands at
the Fermi-level. The slight asymmetry in the minibands stems
from the non-fixing of the particle number during the FRG
flow.

In all simulations, we observe a locking between the
bond order and on-site components. The preferred
configuration features higher occupation on the central
hexagons and lower on the tips of the triangles. Further-
more, hopping between sites of the central hexagon is
stronger than hopping out of the central hexagon (such
a pattern was dubbed anti tri-hexagonal [55]). The en-
larged unit cell leads to the formation of mini-bands at
the M -point, see Fig. 3 (b). This gapping of the M -point
again removes the divergence of the susceptibility from
the flow allowing us to enter the symmetry broken phase.

As we have a phase locking between charge bond
and density order, no time-reversal symmetry breaking
can emerge in this state (as otherwise the Hamiltonian
becomes non-Hermitian). The locking stems from the
particle-hole loop at the M -point, see Eq. 6, which en-
ters the linearized (charge channel) gap equation in the
form-factor basis:

λ∆b1
o1 = Γ

b1,b
′
1

o1,o′1
L
b′1,b2
o′1,o2

∆b2
o2 , (7)

where λ is the eigenvalue and ∆ is the gap. Here, we
immediately observe that if we start with a pure bond

order gap, the first matrix multiplication L
b′1,b2
o′1,o2

∆b2
o2 will

result in a gap function mixing on-site and bond compo-
nents, due to the finite weight of the loop in the bond-on-
site mixing components mentioned above. Thus the real
bond order instability is a general feature of the Spin-1/2
kagome Hubbard model - in other words this is a no-go
theorem for a complex charge-density in the electronic
single orbital kagome model. To find a complex order,
we have to remove the on-site components of the inter-
action decoupling the bond from the density order. This

is for example achieved by considering a spinless model.
Alternatively, in more realistic models, this feature can
be avoided by the orbital structure of the model under
consideration.

C. Superconducting orders

We found that flowing into the superconducting state
is not possible without the Katanin substitution as the
divergence cannot be removed [71]. Therefore, to analyse
the preferred realization of the E2 superconducting state
we have to fall back to conventional methods. To find the
energetically favored superposition we extract the gap
functions from a linearized gap equation and feed them
back into a single step self-consistent mean field equation,
allowing us to track the free energy of every initial state,
see Fig 4.

(a) (b)

FIG. 4. Chiral superconductivity. In (a) we show the lead-
ing eigenvectors from the linearized gap equation, each for
one half of the Fermi-surface. We find two exactly degenerate
eigenfuctions which obey a C2 symmetry. The Gap equation
is solved on the Fermi-surface. With the obtained linearized
gap solutions, we calculate the free energy for different super-
positions cos(θ)ψ1 + sin(θ)eiϕψ2 resulting in (b). We see that
chiral superpositions are preferred.

We observe minima in the free energy landscape at the
d± id superposition. I.e. from this analysis the supercon-
ducting order is expected to be chiral [66, 75].

VI. N -PATCH RESULTS

N -patch FRG is based on solving the flow equations on
the Fermi-surface. This is motivated by a power count-
ing argument [63] which shows analytically, that only the
contributions of the Fermi-surface of the two-particle ver-
tex are not RG irrelevant. In practice, we represent the
two-particle interaction as

Γo1,o2,o3,o4(k1,k2,k3), (8)

where the three momenta are restricted to the Fermi-
surface. This however leads to a problem - in general k4 is
not localized on the Fermi-surface. Thereby we implicitly
break crossing symmetries, momentum conservation and
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FIG. 5. Schematic phase diagrams of the p and m-type filled kagome-Hubbard model calculated with N -patch. Fig a) shows
the phase diagram in U -V space at the p-type VHS. We find a Ferromagnetic region (FM), a charge density order (CDW), a
charge bond order(CBO), a spin bond order (SBO), an E2 superconductor (E2-SC) and an A1 superconductor (A1-SC). Fig b)
shows the phase diagram at the m-type VHS. The same phases as at the p-type VHS are observed, however the CBO is absent

all point group symmetries. Nonetheless, the application
of patching RG has been fruitful [76, 77].

To remedy these shortcomings partially, we can per-
form a resymmetrization of the vertex in each step of the
flow. This procedure is well defined on a formal level
since, as long as our patches are chosen according to the
symmetries, all momenta the vertex explicitly depends
on map correctly under symmetries. The fourth momen-
tum enters the symmetry transformation exclusively as
a phase prefactor, which we can calculate irrespective of
the vertex parametrization:

Γo1,o2,o3,o4(k1,k2,k3) =
1

|G|
∑
S∈G

S(Γo1,o2,o3,o4(k1,k2,k3)) , (9)

where S are the symmetry operations contained in the
point-group of the lattice G. This procedure effectively
removes the symmetry breaking and therefore allows us
to observe correctly the degeneracies between the eigen-
values in two-dimensional irreducible representations of
a point group.

Another subtlety necessitates the flow evaluation in
orbital/sublattice space instead of band space. This re-
quirement stems from missing gauge invariance of the
two-particle vertex under the orbital to band transfor-
mation. In orbital space the matrix element interference
is captured better (however still not completely as one
finds analogously to Ref. [78]). With these implemen-
tational advancements, we calculate the phase diagram,
see Fig 5. At the p-type VHS the phase diagram agrees
qualitatively with TUFRG and SMFRG, while at the m-
type VHS, we observe two main differences: The ferro-
magnetic phase is enlarged and the small area of charge
bond ordered phase is absent.

As discussed above, the transition from the ferromag-
netic to the spin bond order (and its on-site component)
is visible in RPA, thus both phases emerge upon the
fulfillment of the stoner criterion at either qC = 0 or
qC = M . On the RPA level, the transition is observed

in N -patch as well, only once the screening from the P -
channel is incorporated, the FM is enhanced, while incor-
porating the D channel leaves the phase diagram invari-
ant. This can be understood as follows: The D-channel
flow at qc = 0/M , k1 = k3 = 0 has no momentum
additions on the r.h.s. of Eq. (3). Therefore it can be
evaluated without approximations. On the other hand,
the P -channel has a momentum addition—thus the ver-
tex is evaluated at different parts of the Fermi-surface,
leading to an overestimation of the screening at the M
point suppressing the transition to the spin-density wave.
This highlights that for multi-site/multi-orbital systems
a pure N -patch approach is prone to approximation er-
rors at larger scales at which contributions away from the
Fermi-level are still relevant [78]. A possible remedy is to
switch from a truncated unity to an N -patch approach
during the flow thereby merging the strengths of each of
the methods.
To understand why our N -patch calculation does not

agree with the earlier work by Kiesel et al. [34], we em-
phasize the difference in the approach taken. Here we
stay in orbital space of the full three site model, while
the work by Kiesel et al. works in a projected band space
where the effective RG flow was reduced to the van Hove
point carrying band. This turns out to be a too dras-
tic approximation for some parts of the phase diagram,
in particular when FRG seeks to identify instabilities in
the particle-hole channel where the log2 divergence of
the particle-particle channel is only overcome through in-
termediate coupling strength. With our methodological
refinements which avoid the band projection altogether,
N -patch FRG works more reliably and matches with the
alternative truncated unity formulation.

VII. CONCLUSIONS

We examined the kagome Hubbard model with two
different flavors of FRG, N -patch and truncated unity.
Our results resolve the tension between earlier FRG re-
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sults [32, 34] by unifying the picture between TUFRG
and N -patch highlighting the challenges mutli-orbital
models pose in these approaches. Furthermore, we in-
clude static self-energy feedback and flow into the sym-
metry broken phases for both the charge density wave
and the charge bond order. Here we found both to be a
real superposition of the linearly independent order pa-
rameters. The CDW order leads to a deformed Fermi sur-
face which gaps out the Van Hove singularities. The CBO
realizes a 2×2 charge order that couples bond- with den-
sity sectors. Notably, this coupling is a general feature of
the single orbital kagome-Hubbard model and provides
the basis for the no-go theorem of a complex CBO. This
highlights that either the single orbital kagome Hubbard
model is not a suitable minimal model for the rich zoo
of orderings observed in experiments, or that time rever-
sal symmetry is not broken in the ground state of the
system [21, 30]. The lack of a flow to a charge ordered
state and then to a superconducting phase in our sim-
ulations suggests that the single-orbital Hubbard model
might not be the proper minimal model to describe the
phenomenology of the vanadium-based kagome metals.

In any case, it is of utmost importance to find a valid
minimal model describing the physics at play in the
kagome metals in order to unravel the puzzling experi-
mental findings. Using models closer to the real materials
and linking the FRG flow with ab-initio simulations [61]
seems to be the most promising route .

Note added Upon completing the manuscript we be-
came aware of a recent publication studying the V = 0
line at the m-type van Hove singularity utilizing both
SMFRG and variational monte carlo [79], the results they

obtained are in good agreement with our truncated unity
FRG results.
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Appendix A: S-wave in E2

In the triangular and honeycomb lattice it is common
knowledge that the E2 irreducible representation does
not allow for an on-site component of the order parame-
ter. This follows directly from the requirement, that the
mirror planes have character 0. In the kagome latttice we
will prove in the following that this is not true, by explic-
itly constructing the system of equations and solving it.
We label the three sites a,b and c and the corresponding
complex numbers α, β and γ. To calculate the character
we have to apply the point group symmetry and calculate
χ =

∑
i v

∗
iOvi where i runs over the subspace dimension

(v0 = v, v1 = w). For the mirror planes we have χ = 0.
The mirrors exchange two sites, while the third maps
onto itself. The C6 rotation maps a → c, c → b, b → a,
The C3 rotation maps a → b, b → c, c → a. We directly
observe that their inverse operations behave identically
to the other rotation therefore the rotations give us in-
stead of four conditions only two. The C2 maps every site
onto itself, and thus acts as an identity. We will assume
normalized three component vectors, thus the E/C2 con-
dition is trivially fulfilled. An additional requirement is
that the two vectors have to span a 2D space. The re-
sulting set of equations read:

0 = v∗ava + v∗bvc + v∗cvb + w∗
awa + w∗

bwc + w∗
cwb

0 = v∗bvb + v∗avc + v∗cva + w∗
bwb + w∗

awc + w∗
cwa

0 = v∗cvc + v∗bva + v∗avb + w∗
cwc + w∗

bwa + w∗
awb

−1 = v∗avb + v∗bvc + v∗cva + w∗
awb + w∗

bwc + w∗
cwa

−1 = v∗avc + v∗cvb + v∗bva + w∗
awc + w∗

cwb + w∗
bwa

0 = v∗awa + v∗bwb + v∗cwc

The equations are solved by va = 0, vb = 1/
√
2 ·ϕ, vc =

−vb, wa = −2wb, wb = 1/
√
6 · γ,wc = wb, where ϕ and γ

are global phases. As can be seen by insertion

2|vb|2 = 6|wb|2

|vb|2 = 3|wb|2

|vb|2 = 3|wb|2

−1 = −|vb|2 +−3|wb|2

−1 = −|vb|2 +−3|wb|2

0 = v∗bwb − v∗bwb.

The phases of v and w are free parameters.

Appendix B: Existence of a ferromagnetic state

In the following we will argue that the weak interaction
ferromagnet, which was not seen in some recent studies,
has to be present in the thermodynamic limit. Since we
are interested in the weak-coupling limit, RPA arguments
will suffice. In general we can rewrite the particle-hole
loop at zero momentum transfer as

L(0) =
∑
ω,k

G(ω, k)G(ω, k)

=
∑
k

nf (ϵ(k))(1− nf (ϵ(k)))

=

∫
dϵ ρ(ϵ)nf (ϵ)(1− nf (ϵ)), (B1)

where ρ(ϵ) is the density of states and nf (ϵ) is the Fermi
distribution. For a more general multi band model we
need to project this loop onto the eigenvector correspond-
ing to a FM, which has equal weight on all sites within
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the unit cell (we sum out all doubly occurring indices)

viLijvj = viG(ω, k)ijG(ω, k)jivj

=
1

3

∑
k,α,β

1

iω − ϵ(k, α)

1

iω − ϵ(k, β)∑
i

Ui,α(k)Ui,β(k)
∗
∑
j

Uj,β(k)Uj,α(k)
∗

=
1

3

∑
k,α

1

iω − ϵ(k, α)

1

iω − ϵ(k, α)

= − 1

3T

∑
k,α

nf

(
ϵ(k, α)

)[
1− nf

(
ϵ(k, α)

)]
(B2)

Where ϵ(k, α) is the dispersion of band α at momentum
k given as

ϵ(k, 1) = 2t

ϵ(k, 2/3) = t(−1±
√
4A(k)− 3)

with A(k) = cos2
(
k ·R1

2

)
+ cos2

(
k ·R2

2

)
+ cos2

(
k · (R2 −R1)

2

)
with R1 and R2 being the basis vectors of the kagome
lattice. At the p-type VHS the flat band plays no role.

Furthermore we can restrict the summation to an irre-
ducible BZ wedge in which only one band crosses the
Fermi level, here we pick for simplicity one in which band
2 crosses. Thus we obtain

viLijvj = − 4

T

∑
k

nf (ϵ(k, 2))(1− nf (ϵ(k, 2))) (B3)

We can now rewrite this in terms of the DOS of the band
as in Eq. (6):

viLijvj = − 4

3T

∫
dϵρ(ϵ)nf (ϵ)(1− nf (ϵ)). (B4)

We have nf (ϵ)(1 − nf (ϵ)) = δT (ϵ) where δT (ϵ) is a
smeared out Dirac delta distribution, thus we get

viLijvj ≈ − 4

T
ρ(0) (B5)

Since we are at the van Hove singularity, the density of
states is logarithmically diverging. This divergence is cut
off by finite size effects explaining its absence in some
earlier studies [47]. In the TDL the ferromagnetic phase
should be existent as long as no other phase gaps out the
system beforehand.
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