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The recent discovery of a variety of intricate electronic order in kagome metals has sprouted significant
theoretical and experimental interest. From an electronic perspective on the potential microscopic origin of
these phases, the most basic model is given by a Hubbard model on the kagome lattice. We employ a functional
renormalization group (FRG) to analyze the kagome Hubbard model. Through our methodological refinement of
FRG both within its N-patch and truncated unity formulation, we resolve previous discrepancies of different FRG
approaches [Wang et al., Phys. Rev. B 87, 115135 (2013) vs Kiesel et al., Phys. Rev. Lett. 110, 126405 (2013)],
and analyze both the pure (p-type) and mixed (m-type) van Hove fillings of the kagome lattice.

DOI: 10.1103/PhysRevResearch.6.043078

I. INTRODUCTION

The vanadium-based kagome metals AV3Sb5 (A = K, Cs,
Rb) are the most studied class of layered kagome systems so
far. A rich interplay between electronic correlations, electron-
phonon interactions, geometric frustration and topology is
believed to be pivotal in determining their properties [1–4]. At
∼100 K [5], these compounds undergo a charge-order (CO)
phase transition leading to a 2 × 2 in-plane reconstruction of
the unit cell. The out-of-plane component of the CO might
depend on the cooling rate and on the compound of the series
analyzed [6]; it either is ×1 [7], ×2 [8–10] or ×4 [11]. Muon-
spin relaxation [12,13], magneto-optical Kerr measurements
[14] and polar Kerr results [15] observe a broken time reversal
symmetry (TRS) in this phase, with no signatures of magnetic
ordering observed. Therefore, this class of kagome metals is
a prime contender for realizing the long sought after sponta-
neous orbital currents reminiscent of the Haldane [16] and the
Varma [17] models the latter of which has previously been
pursued in high-Tc cuprates [18–20]. Recent high resolution
polar Kerr studies, however, do not find any evidence of bro-
ken TRS in this state [21].
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The controversy of early experimental findings seems to
be the rule rather than the exception for this class of com-
pounds. Indeed, several experiments find indications of a
phase transition at ∼50 K within the CO domain: Some of
them find the transition to a low-temperature nematic phase
which might be a zero-momentum charge order [22–24],
while others observe a one-dimensional CO with 1 × 4 in-
plane reconstruction [25–27]. Recent investigations do not
find any transition around 50 K [28,29], suggesting that the
vanadium-based kagome metals might be at the “tipping
point” of correlated orders [30], i.e., small perturbations such
as strain or an external magnetic field might stabilize a state
with slightly higher energy than the ground state at pristine
conditions.

The properties of the CO state appear to be intertwined
with the superconducting phase found below ∼1K, rendering
it unconventional in nature. Although a recent experiment
points towards conventional s-wave symmetry for the super-
conducting gap function of the kagome metals [31], several
theoretical studies based on the Hubbard model on the kagome
lattice have suggested d- [32], d + id- [33] and f -wave
symmetry [34] for the gap function, which would follow
earlier experiments obtaining evidence for an unconventional
superconductor [5,35,36]. Furthermore, recent theoretical in-
vestigations [37] highlight that the distinction between s and
d wave, based on their impurity response, is not as straight
forward, hence undermining the argumentation in Ref. [31].

Refined theoretical simulations might help to solve some
of the experimental controversies. Ab initio descriptions of
this class of compounds represent a reasonable starting point
to tackle the problem, and they can provide indications on
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the minimal models required to describe the salient properties
of kagome metals [38,39]. Even if density functional theory
seems unable to distinguish the driving force for the CO,
which might be electronic or phononic [40–43], still it can
provide important indications regarding the Fermiology of the
compounds. In particular, two different kinds of van Hove
singularities (VHS) [44] are found in the proximity of the
Fermi level, suggesting their relevant role for the stabilization
of symmetry-broken phases [45]. Despite the fact that more
than one orbital per site might be required [46] and electron-
phonon interaction might play an important role [47–50] to
properly describe the kagome metals, many of the theoretical
works consider the single orbital extended Hubbard model to
describe the main physical properties of this class of materials.
This assumption is based, inter alia, on the correct replica-
tion of the experimentally observed VHS and their distinct
sublattice character, i.e., pure (p-type) and mixed (m-type)
sublattice occupation. Further, even though both kinds of VHS
are close to the Fermi level in the real systems, several works
considered just the p-type VHS, sometimes even neglecting
the sublattice character of the states at the Fermi level [51–55],
but the role of the m-type VHS has been taken into account in
more recent investigations [56–60]. In this work, we clarify
the functional renormalization group (FRG) phase diagram
of the single orbital extended Hubbard model on the kagome
lattice, confirming earlier singular mode FRG (SMFRG) re-
sults [32]. Given the relevance of both p- and m-type VHS
for the physics of the kagome metals, we study the model
at both fillings. We derive an analytical condition for the
absence of TRS breaking at the phase transition, in agree-
ment with results based on point-group symmetry arguments
derived for Ginzburg-Landau theories at a continuous phase
transition [61].

The paper is structured as follows. In Secs. II and III we
introduce the employed model and give a short introduction to
the methods used to examine this model (FRG), respectively.
This is followed by Sec. IV where we discuss the phase dia-
gram predicted by truncated unity FRG (TUFRG) and relate
it to prior results [32,34]. In Sec. IV A we proceed by an in
depth analysis of three different phases found at the p-type
VHS, providing an analytic argument to explain providing an
analytical argument establishing why a TRS broken charge
order is expected to be unstable in a FRG scheme. We then
recalculate the phase diagrams with N-patch FRG in Sec. V,
highlighting that the two methods yield compatible results
when using a state-of-the-art implementation [62]. In Sec. VI
we conclude by summarizing the paper and giving an outlook
on possible next steps.

II. MODEL

The simplest model possibly describing the rich order-
ings observed in the AV3Sb5 group of kagome metals is the
kagome-Hubbard model. We visualize the lattice and Hamil-
tonian terms in Fig. 1(d). The Hamiltonian is given as

H = t
∑

〈i, j〉,σ
c†

i,σ c j,σ + U
∑

i,

ni,↑ni,↓ + V
∑

〈i, j〉,σσ ′
ni,σ n j,σ ′ ,

(1)

with c(†)
i,σ the fermionic annihilation/creation operator acting

on site i and spin σ , t the nearest neighbor hopping amplitude
which we chose as t = 1 and measure all energies in units of
t from now on. U and V are the on-site and nearest neighbor
density-density interactions and ni,σ = c†

i,σ ci,σ is the electron
density operator on site i and spin σ .

In analog to experimental observations, two dissimilar
VHS placed at the M points appear in the band structure,
see Figs. 1(a) and 1(c). The difference between the VHS is
related to the presence of three sites in the unit cell in the
kagome lattice, i.e., three distinct sublattices A, B, and C.
When the hopping integral t > 0, the upper (lower) VHS is
called p-type (m-type) because the Fermi surface at that filling
is sublattice pure (mixed). This means that the Fermi surface
has a single (mixed) sublattice character at each M point,
which prevents (favors) a nesting condition driven by the
local Hubbard interaction, the so-called sublattice interference
mechanism [39,63].

III. METHODS

In this work, we apply two different flavors of FRG
[64,65], truncated unity FRG [66,67] and N-patch FRG [68].
FRG is based on integrating flow equations starting from a
solvable theory to the full solution of the problem. These
equations are derived by introducing a cutoff function R(�)
in the single-particle propagator. At the starting point � = �0

(here �0 = ∞), the action is rendered solvable. From this
starting point, we successively integrate out the hierarchy
of flow equations until the cutoff is removed, thus result-
ing in the exact solution. For general models, we have to
solve an infinite set of coupled differential equations. As a
consequence we have to employ approximations that make
the equations numerically tractable. In this paper, we utilize
the sharp cutoff R(�) = �(|�| − ν) allowing for an efficient
implementation of the numerically most demanding parts
of the flow. This choice of cutoff limits ourselves to zero
temperature, with the flowing cutoff scale taking the role of
the Matsubara frequency in the noninteracting Greens func-
tion. Thereby the critical temperature is related to the critical
scale.

Due to the truncation of the hierarchy, the flow has to be
stopped once a coupling becomes too large; if this divergence
happens in a nonpolynomial fashion, it signalizes a divergence
of a susceptibility and thereby a phase transition. By analyzing
the interaction at the divergence, we extract the leading order
parameter and predict the expected ordered phase. Here the
channels signalize different orderings, each associated with a
different fermionic bilinear. The particle-particle channel (P)
is associated to Cooper-pair bilinears, its divergence signal-
izes a superconducting transition. The crossed particle-hole
channel (C) is proportional to a spin-operator bilinear, thus
resulting in a magnetic order parameter. Lastly, the direct-
particle hole channel (D) is proportional to a particle-number
operator bilinear, indicating charge ordering, once the mag-
netic contribution is subtracted.

The two types of FRG we consider in the follow-
ing are both built upon a level-2 truncated formula-
tion of FRG (vertex-flow FRG), i.e., we discard self-
energy feedback and frequency dependences, but keep the
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FIG. 1. Band structure, orbital makeup of the FS states at the p and m-type VHS and schematic phase diagrams of the p and m-type filled
kagome-Hubbard model. (a) visualizes the band structure with the p-VHS filling marked in red (dashed line). The right panel in subfigure
(a) depicts the orbital makeup at the Fermi level, with the colors encoding the admixture of the different sublattices according to (b), that
contains the lattice structure with all relevant parameters from the Hamiltonian. (c) is the same as (a) but for the m-type VHS. (d) shows the
phase diagram in U -V space at the p-type VHS. We find a ferromagnetic region (FM), a charge density order (CDW), a charge bond order
(CBO), a spin bond order (SBO), an E2 superconductor (E2-SC), and an A1 superconductor (A1-SC). The phase diagram at the m-type VHS
in Fig (e) features the same phases as observed at p-type VHS.

flow of the one-particle irreducible two-particle interaction
F�

o1,o2,o3,o4
(k1, k2; k3), where ki label momenta and oi is a

site index. Here we already utilized that we have SU (2)
invariance in our model [69]. The two-particle interaction
vertex F describes any interaction which can take place in
between two electrons. All possible interaction processes

between two electrons comprised in F can be classified
into diagrammatic categories, where �P, �D, �C collects
all interactions of particle-particle, direct particle-hole and
crossed particle-hole type, respectively. Thereby we arrive
at the following set of equations for the three diagrammatic
channels �x, x ∈ {P,C, D}:

d�P,�
o1,o2,o3,o4

(k1, k2; k3)

d�
= −L̇�

o′
1,o

′
2,o

′
3,o

′
4
(k′, k1 + k2 − k′)F�

o1,o2,o′
1,o

′
2
(k1, k2; k′)F�

o′
3,o

′
4,o3,o4

(k′, k1 + k2 − k′; k3), (2)

d�C,�
o1,o2,o3,o4

(k1, k2; k3)

d�
= −L̇�

o′
1,o

′
2,o

′
3,o

′
4
(k′, k′ + k2 − k3)F�

o1,o′
4,o4o′

1
(k1, k′ + k2 − k3; k′)F�

o′
3,o2,o3,o′

2
(k′, k2; k3), (3)

d�D,�
o1,o2,o3,o4

(k1, k2; k3)

d�
= L̇�

o′
1,o

′
2,o

′
3,o

′
4
(k′, k′ + k3 − k1)

[
2F�

o1,o′
4,o3,o′

1
(k1, k′ + k3 − k1; k3)F�

o′
3,o2,o′

2,o4
(k′, k2; k′ + k3 − k1)

− F�
o1,o′

4,o3,o′
1
(k1, k′ + k3 − k1; k3)F�

o′
3,o2,o4,o′

2
(k′, k2; k3)

− F�
o1,o′

4,o
′
1,o3

(k1, k′ + k3 − k1; k′)F�
o′

3,o2,o′
2,o4

(k′, k2; k′ + k3 − k1)
]

, (4)

where we defined the noninteracting two-particle propaga-
tor as In terms of the bare Greens function G� and the single
scale Greens function S = ∂�G�

L̇�
1,2,3,4(k1, k2, k3, k4) = [

S�
1,3(k1) G�

2,4(k2)

+ G�
1,3(k1) S�

2,4(k2)
]
δk1,k3δk2,k4 .

(5)

The full two-particle vertex F is then obtained by F =
U + ∑

x∈{P,C,D} �x, where U is the two-particle irreducible
interaction, here given by the on-site and nearest-neighbor
interactions. Differences between truncated unity FRG and
N-patch FRG are detailed in Ref. [70] and Appendix A. The
details for all simulations are given in Appendix B. Impor-
tantly, the two different variants should give consistent results,
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which for the kagome Hubbard model has not been the case
[32,34], a conundrum we resolve in this paper.

IV. TUFRG RESULTS

We begin by discussing the phase diagram at the two dif-
ferent van Hove types. The prior discussed change in orbital
makeup drastically changes the predicted phase diagram, see
Figs. 1(d) and 1(e). In both we find the same phases, dis-
tinguished by their linearized gap equation solution whose
analytic form is detailed in Appendix E, but their phase space
volume is vastly different. We find a doubly degenerate q = 0
charge-density wave order at low U and V , which will be
discussed in detail in Sec. IV A. For small nearest-neighbor
interactions we find a large ferromagnetic region. This phase
stems from the divergent density of states, which fuels a
divergence of the particle-hole loop at low temperatures. In
order to obtain this phase, the model’s kinetics have to be
finely resolved as otherwise the divergence is smeared out by
limited momentum resolution. At large V , we find a super-
conducting order with A1 symmetry (an s wave) with uniform
orbital weight on the three sublattices. At large V the effec-
tive on-site interaction becomes attractive, strongly favoring
double occupancy and a pair formation to avoid the penalty of
having neighboring electrons. Upon lowering V , we enter the
E2 superconducting state, which is discussed in much detail
in Refs. [46,71] and briefly revisited in Sec. IV A. Notably,
the on-site component of this order parameter does not need
to vanish, as we analytically show in Appdenix C. We find
that the order parameter weight is approximately evenly split
between on-site and nearest-neighbor bonds. The supercon-
ducting phases found agree with prior RPA studies [56]. The
phase diagram we predict is in some sense complementary to
the one found in variational Monte Carlo studies [47] making
comparisons difficult. Furthermore, at the m-type VHS we
find good agreement between our V = 0 line and the one
presented in Ref. [60].

All phases mentioned before are located roughly within
the same region of the phase diagram at the m and p type
VHS, however the spin bond order and charge bond order
are not. We name a phase spin or charge bond order if the
leading ordering has nonzero weight on a bond and stems
from either a crossed or direct particle-hole contribution. Both
orders belong to the A1 irreducible representation with transfer
momentum q = M (inducing a 2 × 2 enlargement of the unit
cell). They consist of on-site and bond components, mixing
with different weights at different points in the phase dia-
gram. At the p-type VHS, the charge bond-order makes up
the largest portion of the phase diagram, while the spin-bond
order (SBO) is driven by increased nearest-neighbor interac-
tions on top of the CBO. In contrast, at the m-type VHS,
the SBO makes up most parts of the phase diagram, while
the CBO is restricted to a very small region at small U and
intermediate V .

It should be noted, that these bond orders always mix with
the respective on-site density wave. The ratio between bond
and on-site order strongly depends on the chosen U and V .
To understand the origin of the phases, we examine the case
V = 0 and unravel what drives the order, by subsequently
turning off channels in the FRG calculation. At the m-type

VHS the dominant phase is an M point SBO. The bond or-
der character of the phase is induced by the interplay with
the other diagrammatic channels: If we perform a flow for
only the C channel, we find an M-point spin-density wave
roughly agreeing with the phase space of the spin-bond order.
By inclusion of the D channel, the critical scale changes by
less than 1% (at U = 3t), however now the observed order
features bond contributions. This indicates that the spin order
is primarily driven by RPA-like diagrams, while the bond
weights are generated by the higher harmonics induced from
the feedback of the P and D channels. To understand why
these higher harmonics are amplified, we need to consider the
particle-hole loop at the M point:

Lb1,b3
o1,o3

(M ) =
∫

dk e−ik(B1−B3 )(Go1,o3 (k)Go3+b3,o1+b1 (k − M )

+ Go1,o3 (k − M )Go3+b3,o1+b1 (k)), (6)

which we wrote here in the TU formalism, where bi is the
bond connecting the site oi with another site o j via the intra
unit cell contribution (written as index on the RHS) and the
lattice vector Bi, for more details see Appendix A. At low
critical scales, the main contribution to the integral stems from
the two nested Fermi surfaces (FSs) connected by q = M.
Since at each point along the FS the weight is distributed
between at least two orbitals, we obtain nonzero values for
all components containing a suitable orbital combination—
including the diagonal component L0,0

o1,o1
and the on-site and

bond mixing component L0,bi
o1,o1

. Therefore, if the interaction
contains a weak bond-order contribution arising from the
inter-channel coupling it will get enhanced by the coupling
present in the particle-hole loop.

In contrast, the charge bond order at the p-type VHS lacks
a parental RPA-like phase, due to the sublattice interference
mechanism preventing such an order [63]. If we only flow
in the D channel, we encounter no divergence. If we include
the C channel, we encounter a divergence in the C channel at
critical scales that are larger by an order of magnitude than
for the full FRG flow. Therefore, the P channel is a crucial
ingredient in suppressing the ferromagnetic divergence. We
can understand this again from the loop above. At the p-
type VHS the Green’s function has weight on at most two
of the three orbitals at each point along the Fermi surface.
Most importantly, in the high density regions, its weight is
concentrated on a single orbital. This suppresses the on-site
form factor components of the loop (but they are not zero).
So no RPA-like divergence at the M point exists, since the
high density regions mainly drive contributions in nontrivial
form-factor sectors. Only once the bond components are gen-
erated from the C and P channel, we find the bond ordered
phase. Note that this dependency on all channels renders the
CBO less stable than the SBO. Further, this exemplifies the
necessity of numerical studies beyond RPA approximations.

A. Analysis of orders

In the following we give a detailed analysis of the charge
orders as well as the E2 superconducting order at the p-type
VHS.
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1. Flowing into the symmetry broken phase

After analyzing the leading instabilities from the TUFRG
flow two different routes can be taken to extract more infor-
mation about the form of the symmetry broken state. On the
one hand, the FRG flow can be combined with a mean-field
analysis of the effective model after the flow reached the
critical scale �c [72,73]. Here, one needs to be careful in the
construction of the divergence free part of the interactions.
On the other hand, one can include self-energies via their flow
equation

d	�
1,3(k)

d�
= S�

4′,2′ (k′)F�
1,2′,3,4′ (k, k′, k) , (7)

and allow for broken symmetries by insertion of a symmetry
breaking perturbation at the initial scale [74,75]. The inclusion
of the self-energy to the FRG equations allows for a gap
opening during the flow, which, in the exact case (i.e., without
truncation of diagrams), cancels the divergence within the
vertex-flow equations, see Appendix A. Thereby, the flow can
be continued to the symmetry broken state. With this proce-
dure one faces several challenges. First of all, the standard
FRG flow equations are not mean-field exact [75–77]. Only
once the Katanin-substitution is introduced, the fulfillment
of the Ward identities is restored and the flow equations be-
come mean-field exact [78]. This, however, is an issue, as we
strongly rely on the sharp cutoff removing frequency integrals
from our flow equations which is not possible anymore in
the Katanin flow. We can therefore not assume a priori that
divergences can be removed by allowing broken symmetries.
Past results for 1D models, however, do indicate that flowing
into symmetry broken charge orders is possible without the
inclusion of the Katanin substitution [74].

Since the FRG flow is formulated in the grand canonical
ensemble, enabling self-energy feedback implies a flowing
particle number. A solution that is frequently employed in
self-consistent methods is to adapt the chemical potential
after each flow step in order to force a given filling. In this
pseudocanonical picture, a counter term is introduced to the
diagonal part of the self-energy, effectively altering the system
in each step of the iteration. While there are heuristic argu-
ments why this is valid in self-consistent methods, it is known
to break down in FRG away from particle-hole symmetry if
the Katanin correction is not included [79]. To circumvent
possible issues arising from forcing an electron filling to the
FRG flow, we perform a search where we vary the initial
chemical potential to arrive at the right filling value when the
stopping condition is met. In Appendix B 2 a we give a more
detailed introduction how the flows into the symmetry broken
phase are implemented in practice.

2. Charge orders

a. Charge density wave. We first examine the simplest
charge order: A charge density wave (orbital order) at q = 0
that occurs for small U and nonzero V . The peculiar nature of
the Kagome lattice allows for an on-site eigenvector that is in
the E2 irreducible representation. This order parameter hence
acts as a site dependent chemical potential. As the Hamil-
tonian has to be Hermitian, the two order parameters must
not be superimposed in a complex fashion. Since nontrivial

FIG. 2. Spectral function A(k, ω = 0) for the noninteracting
(a) and symmetry broken state (b), respectively. In the upper left
panels we visualize the occupation number in the two states on the
three different sublattices. From a first FRG run, we found the CDW
order to be in the E2 irreducible representation. The two independent
solutions are combined such that all M points are fully gapped.

superpositions of the two eigenvectors may occur neverthe-
less, we perform a flow into the charge ordered state and
visualize the resulting spectral function in Fig. 2.

We observe a transition from a state in which all sites are
equally populated to one in which one site is less populated.
This charge reordering deforms the Fermi surface to avoid
the van Hove singularities at the M-points, which effectively
removes the divergence from the FRG flow. The gap-opening
breaks the C6v symmetry down to a C2v symmetry, thus we
find a Pomeranchuk like instability from electronic repulsion.
Notably, if the flow did not open a gap at all VHS, we would
expect a divergent susceptibility even in the symmetry broken
phase.

b. Charge bond order. In experiments, a time reversal sym-
metry breaking charge bond order has been observed [12–15].
Since this observation is under current debate, it is desirable
to understand whether such a state can be facilitated by purely
electronic effects in the single orbital model. To answer this
question with FRG, we set up a 2 × 2 supercell (with 12 sites)
that maps the q = M charge order to the � point. In this larger
system, we repeat the FRG flow with varying random initial
symmetry breaking strength, initialized according to the form
of the leading eigenvector of the instability in the symmetric
phase. An exemplary result of an FRG flow into the symmetry
broken phase is visualized in Fig. 3.

In all simulations, we observe a locking between the bond
order and on-site components. The preferred configuration
features higher occupation on the central hexagons and lower
on the tips of the triangles. Furthermore, hopping between
sites of the central hexagon is stronger than hopping out of the
central hexagon (such a pattern was dubbed anti-tri-hexagonal
[55]). The enlarged unit cell leads to the formation of mini-
bands at the M point, see Fig. 3(b). This gapping of the M
point again removes the divergence of the susceptibility from
the flow allowing us to enter the symmetry broken phase.

As we have a phase locking between charge bond and
density order, no time-reversal symmetry breaking can emerge
in this state (as otherwise the Hamiltonian becomes non-
Hermitian). The locking stems from the particle-hole loop at
the M point, see Eq. (6), which enters the linearized (charge
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FIG. 3. CBO flow into the symmetry broken phase. On the
left we show the predicted charge and hopping modulation in the
symmetry broken phase, larger dots/connections indicate higher
occupation/hopping. The spectral function around the M point on
the right shows the formation of mini-bands at the Fermi level. The
slight asymmetry in the minibands stems from the non fixing of the
particle number during the FRG flow.

channel) gap equation in the form-factor basis:

λ
b1
o1

= (2�D − �C )b1,b′
1

o1,o′
1
L

b′
1,b2

o′
1,o2


b2
o2

, (8)

where λ is the eigenvalue and 
 is the gap. The physical
charge channel is given by (2�D − �C ) [69]. Here, we im-
mediately observe that if we start with a pure bond order gap,
the first matrix multiplication L

b′
1,b2

o′
1,o2


b2
o2

will result in a gap
function mixing on-site and bond components, except if the
on-site component is orthogonalized by a suitable imaginary
order such as the loop-current order shown in Appendix E.
Since such orders can not exploit the weight of the loop in
the bond-on-site mixing components mentioned above, they
never provide the leading instability and are superseded by
real charge orders in the entire phase space. A classification
in terms of extended point groups [80] is a natural next step
to deepen our understanding of these phases from a group
theory perspective. Thus the real bond order instability is
a general feature of the spin-1/2 kagome Hubbard model
for small gap sizes in the vicinity of the phase transition,
assuming a negligible frequency dependence of the charge
channel vertex. To find a complex order, we have to remove
the on-site components of the interaction decoupling the bond
from the density order. The former is for example achieved
by considering a spinless model [81]. Alternatively, in more
realistic models, this feature can be avoided by the orbital
structure of the model under consideration.

B. Superconducting orders

We found that flowing into the superconducting state is
not possible without the Katanin substitution as the diver-
gence cannot be removed [76]. Therefore, to analyze the
preferred realization of the E2 superconducting state we have
to fall back to conventional methods. To find the energetically
favored superposition we extract the gap functions from a
linearized gap equation and feed them back into a single step
self-consistent mean field equation, allowing us to track the
free energy of every initial state, see Fig 4.

We observe minima in the free energy landscape at the
d ± id superposition. Therefore, from this analysis the super-
conducting order is expected to be chiral [71,82].

FIG. 4. Chiral superconductivity. In (a) we show the leading
eigenvectors from the linearized gap equation, each for one half
of the Fermi surface. We find two exactly degenerate eigenfuctions
which obey a C2 symmetry. The gap equation is solved on the Fermi
surface. With the obtained linearized gap solutions, we calculate
the free energy for different superpositions cos(θ )ψ1 + sin(θ )eiφψ2

resulting in (b). We see that chiral superpositions are preferred.

V. N-PATCH RESULTS

N-patch FRG is based on solving the flow equations on
the Fermi surface. This is motivated by a power counting
argument [64] which shows analytically, that only the con-
tributions of the Fermi surface of the two-particle vertex are
not RG irrelevant. In practice, we represent the two-particle
interaction as

Fo1,o2,o3,o4 (k1, k2, k3), (9)

where the three momenta are restricted to the Fermi-surface.
This however leads to a problem; in general k4 is not lo-
calized on the Fermi surface. Thereby we implicitly break
crossing symmetries, momentum conservation and all point
group symmetries. Nonetheless, the application of patching
RG has been fruitful [83,84].

To remedy these shortcomings partially, we can perform a
resymmetrization of the vertex in each step of the flow. This
procedure is well defined on a formal level since, as long
as our patches are chosen according to the symmetries, all
momenta the vertex explicitly depends on map correctly un-
der symmetries. The fourth momentum enters the symmetry
transformation exclusively as a phase prefactor, which we can
calculate irrespective of the vertex parametrization:

Fo1,o2,o3,o4 (k1, k2, k3) = 1

|G|
∑
S∈G

S(Fo1,o2,o3,o4 (k1, k2, k3)),

(10)
where S are the symmetry operations contained in the point
group of the lattice G. This procedure effectively removes
the symmetry breaking and therefore allows us to observe
correctly the degeneracies between the eigenvalues in two-
dimensional irreducible representations of a point group.

Another subtlety necessitates the flow evaluation in
orbital/sublattice space instead of band space. This require-
ment stems from missing gauge invariance of the two-particle
vertex under the orbital to band transformation. In orbital
space the matrix element interference is captured better (how-
ever still not completely as one finds analogously to Ref. [85]).
With these implementational advancements, we calculate the
phase diagram, see Fig 5. At the p-type VHS the phase
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FIG. 5. Schematic phase diagrams of the p- and m-type filled kagome-Hubbard model calculated with N-patch. (a) shows the phase diagram
in U -V space at the p-type VHS. We find a ferromagnetic region (FM), a charge density wave (CDW), a charge bond order (CBO), a spin bond
order (SBO), an E2 superconductor (E2-SC) and an A1 superconductor (A1-SC). (b) shows the phase diagram at the m-type VHS. The same
phases as at the p-type VHS are observed, however the CBO is absent.

diagram agrees qualitatively with TUFRG and SMFRG, while
at the m-type VHS, we observe two main differences: The
ferromagnetic phase is enlarged and the small area of charge
bond ordered phase is absent.

As discussed above, the transition from the ferromagnetic
to the spin bond order (and its on-site component) is visible
in RPA, thus both phases emerge upon the fulfillment of the
stoner criterion at either qC = 0 or qC = M. On the RPA
level, the transition is observed in N-patch as well, only once
the screening from the P-channel is incorporated, the FM is
enhanced, while incorporating the D channel leaves the phase
diagram invariant. In other words, the feedback from the P-
to the C-channel type diagrams strongly suppresses the tran-
sition to the antiferromagnet, in contrast to what we observed
at the p-type VHS where no such suppression occurred. This
fundamental change in behavior can be traced back to the
change in orbital content of the Hamiltonian at the M point;
while at the p-type VHS we have only weight on a single
orbital exactly at the Van Hove points, the weight is split
between two orbitals at the m type. This change induces phase
slips for the matrix element stemming from the high sym-
metry points when evaluating one channel at the momentum
arguments of another (except when the considered transfer
momentum is 0). Therefore, the M point is suppressed by an
combination of the mapping back to the FS of the feedback
of another channel and the orbital makeup. The D channel
does not influence the results as strongly, since its lowest order
contribution is U 3 and not U 2 as for the C and P channel.
This highlights that for multisite/multiorbital systems a pure
N-patch approach is prone to approximation errors at larger
scales at which contributions away from the Fermi level are
still relevant [85]. A possible remedy is to switch from a trun-
cated unity to an N-patch approach during the flow thereby
merging the strengths of each of the methods.

To understand why our N-patch calculation does not agree
with the earlier work by Kiesel et al. [34], we emphasize
the difference in the approach taken. Here we stay in orbital
space of the full three-site model, while the work by Kiesel
et al. works in a projected band space where the effective
RG flow was reduced to the van Hove point carrying band.
This turns out to be a too drastic approximation for some
parts of the phase diagram, in particular when FRG seeks

to identify instabilities in the particle-hole channel where
the log2 divergence of the particle-particle channel is only
overcome through intermediate coupling strength. With our
methodological refinements which avoid the band projection
altogether, N-patch FRG works more reliably and matches
with the alternative truncated unity formulation.

VI. CONCLUSIONS

We examined the kagome Hubbard model with two differ-
ent flavors of FRG, N-patch and truncated unity. Our results
resolve the tension between earlier FRG results [32,34] by
unifying the picture between TUFRG and N-patch high-
lighting the challenges mutli-orbital models pose in these
approaches. Furthermore, we include static self-energy feed-
back and flow into the symmetry broken phases for both the
charge density wave and the charge bond order. Here we found
both to be a real superposition of the linearly independent
order parameters. The CDW order leads to a deformed Fermi
surface which gaps out the Van Hove singularities. This CBO
realizes a 2 × 2 charge order that couples bond with density
sectors. Notably, this coupling is a general feature of the single
orbital kagome-Hubbard model. This highlights that either
the single orbital kagome Hubbard model is not a suitable
minimal model for the rich zoo of orderings observed in
experiments, or that time reversal symmetry is not broken in
the ground state of the system [21,30]. The lack of a flow to
a charge ordered state and then to a superconducting phase
in our simulations suggests that the single-orbital Hubbard
model might not be the proper minimal model to describe the
phenomenology of the vanadium-based kagome metals.

In any case, it is of utmost importance to find a valid
minimal model describing the physics at play in the kagome
metals in order to unravel the puzzling experimental findings.
Using models closer to the real materials and linking the FRG
flow with ab initio simulations [62] seems to be the most
promising route.
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APPENDIX A: COMPARISON OF TUFRG AND N-PATCH

In this section we will first introduce the basic notions and
approximations introduced in these two FRG schemes and
then compare them. We first begin by the conceptually simpler
N-patch FRG.

1. N-patch

In N-patch FRG we consider the general form of the flow
equations [64], without altering them intrinsically. Instead,
we reduce the complexity by keeping only very specific mo-
mentum components which are chosen to lie on the FS. The
motivation for such an approximation is that one can show
these components to be the only relevant ones within the two-
particle vertex in an RG sense [64] in the limit of low cutoff
scales. This greatly reduces the number of points required in
the approach, since instead of a two-dimensional (2D) grid,
we sample (potential collections) of 1D lines.

This approach is mostly defined in band space and was
widely used for single band Hubbard models [84]. The main
drawback introduced by the patching approximation stems
from restricting the vertex to FS scattering vectors. To be more
specific let us consider the flow for the P channel

d�P,�
1,2,3,4(k1, k2; k3)

d�

= 1

2
F�

1,2,1′,2′ (k1, k2; k′)F�
3′,4′,3,4(k′, k1 + k2 − k′; k3)

× L̇�
1′,2′,3′,4′ (k′, k1 + k2 − k′) , (A1)

Technically, the summation is performed over the whole Bril-
louin zone (BZ), the first approximation we have to make

is that we can replace it by a summation over the patches.
Secondly, even if all momenta refer to patches on the FS,
momentum additions, such as k1 + k2 − k′, are not necessar-
ily mapping to a k value on the FS. Whenever this is the case,
we again have to approximate this momenta by its closest
counterpart on the FS. On a fundamental level, since we only
know the vertex at the FS, momentum conservation must not
necessarily be fulfilled as k4 = k1 + k2 − k3 is not guaranteed
to lie on the FS. Thus we break momentum conservation. As
a consequence also Grassmann antisymmetry is violated and
lattice symmetries are broken. While the latter two can be re-
stored on average, the prior one poses a fundamental problem
as the matrix element interference is not fully captured [85],
and phase slips due to approximating orbital-to-band trans-
formations by non-matching k points occur when performing
calculations in Band space. The second issue is circumvented
by performing the N-patch calculations in orbital space.

2. TUFRG

While N-patch becomes exact at infinitely small scales, the
idea behind TUFRG is to make an expansion of the fermionic
momenta in a complete basis and then to truncate this ex-
pansion. Since the topic of TUFRG is rather broad we will
only summarize the main points important for this manuscript
and refer the interested reader to Refs. [66,67,70,87]. We will
follow the notation of Ref. [87], technically slightly deviating
from standard TUFRG to conserve rotational symmetries with
the truncated basis.

First we define the transfer momenta for the different chan-
nels as

qP = k1 + k2 = k4 + k3,

qC = k1 − k4 = k3 − k2,

qD = k1 − k3 = k4 − k2. (A2)

We define a complete basis mapping a site-orbital index ox

and momentum k to a bond as gb(ox, k). To be a complete and
orthogonal basis the basis functions have to fulfill∑

b1

gb1 (o2, k)g∗
b1

(o3, k′) = δk,k′δo2,o3 , (A3)

∑
o,k

gb1 (o, k)g∗
b2

(o, k) = δb1,b2 . (A4)

The idea is now that the ladder resummation of a single
diagramatic channel results in one bosonic momentum de-
pendence, which we defined above. At low temperatures, the
functions usually become rapidly varying with q as one would
expect from RPA. On the other hand, the fermionic momenta
develop functional dependences much slower and one can
therefore expand these in slow varying lattice harmonics [67].
In our case, the basis functions are defined as

gbi (o j, k) = e−ikBiδri+bi,r j , (A5)

and are truncated according to the real space distance for each
site in the lattice individually. We define the Projections onto
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the different channels as

P̂[F ]b1,b3
o1,o3

(qP )s2;s4
s1;s3

=
∑

o2,o4,k1k3

gb1 (o2, k1)g∗
b3

(o4, k3)Fo1..4 (k1, qP − k1; k3)s1..4 , (A6)

Ĉ[F ]b1,b3
o1,o3

(qC )s4;s2
s1;s3

=
∑

o2,o4,k1k3

gb1 (o4, k1)g∗
b3

(o2, k3)Fo1..4 (k1, k1 − qC ; k3)s1..4 , (A7)

D̂[F ]b1,b4
o1,o4

(qD)s3;s2
s1;s4

=
∑

o2,o3,k1k4

gb1 (o3, k1)g∗
b4

(o2, k4)Fo1..4 (k1, k4 − qD; k1 − qD)s1..4 . (A8)

In this new basis the flow equations for a SU (2) symmetric Hamiltonian read

dP̂[�P]b1,b3
o1,o3

(qP )

d�
= −P̂[F ]b1,b′

1
o1,o′

1
(qP ) L

pp;b′
1,b

′
3

o′
1,o

′
3

(qP ) P̂[F ]b′
3,b3

o′
3,o3

(qP ), (A9)

dĈ[�C]b1,b3
o1,o3

(qC )

d�
= −Ĉ[F ]b1,b′

1
o1,o′

1
(qC )Lph;b′

1,b
′
3

o′
1,o

′
3

(qC )Ĉ[F ]b′
3,b3

o′
3,o3

(qC ) , (A10)

dD̂[�D]b1,b4
o1,o4

(qD)

d�
= L

ph;b′
1,b

′
4

o′
1,o

′
4

(qD)
(
2D̂[F ]b1,b′

1
o1,o′

1
(qD)D̂[F ]b′

4,b4

o′
4,o4

(qD) − Ĉ[F ]b1,b′
1

o1,o′
1
(qD)D̂[F ]b′

4,b4

o′
4,o4

(qD)

− D̂[F ]b1,b′
1

o1,o′
1
(qD)Ĉ[F ]b′

4,b4

o′
4,o4

(qD)
)

. (A11)

The two-particle propagator L is in this basis given as (already integrating out the sharp cutoff)

Lph;b1,b3
o1,o3

(qX ) = 1

2π

∫
k

e−iB1keiB3k(G�
o1;o3

(k)G�
o1+b1;o3+b3

(k − qX ) + G−�
o1;o3

(k)G−�
o1+b1;o3+b3

(k − qX )
)
,

Lpp;b1,b3
o1,o3

(qP, ) = − 1

2π

∫
k

e−iB1keiB3k(G−�
o1;o3

(k)G�
o1+b1;o3+b3

(qP − k) + G�
o1;o3

(k)G
−�

o1+b1;o3+b3
(qP − k)

)
. (A12)

In this basis, the self-energy equation reads

d	o1,o3 (k)

d�
= − 1

2π

∑
ν=±�

2Go′
2;o′

4
(k′, ν)

× [
g∗

b′
1
(o′

2, k)gb′
3
(o′

4, k)Pb′
1,b

′
3

o1,o3 (k + k′, ν)

+ g∗
b′

1
(o′

4, k)gb′
3
(o′

2, k)Cb′
1,b

′
3

o1,o3 (k − k′,−ν)

+ g∗
b′

1
(o3, k)gb′

4
(o′

2, k′)Db1,b4
o1,o4

(0)
]

+ 1

2π

∑
ν=±�

Go′
2;o′

4
(k′, ν)

× [
g∗

b′
1
(o′

2, k)gb′
4
(o′

3, k′)Pb′
1,b

′
3

o1,o3 (k + k′, ν+)

+ g∗
b′

1
(o′

4, k)gb′
3
(o′

2, k)Db′
1,b

′
3

o1,o3 (k − k′,−ν)

+ g∗
b′

1
(o3, k)gb′

4
(o′

2, k′)Cb′
1,b

′
4

o1,o′
4
(0)

]
. (A13)

TUFRG introduces a systematic error as we cut away feed-
back in between the channels from high harmonics. This
feedback is expected to become more important at lower criti-
cal scales. Further, we introduce a bias towards low harmonic
orders due to the finite harmonic truncation. Therefore, one
usually performs convergence checks ensuring that no rele-
vant contributions were neglected.

3. Summary

TUFRG and N-patch are technically approximations com-
ing from different regimes of critical scales. While TUFRG
is build around the limit of large critical scales and

expanded upon a known exact representation there, N-patch is
build around power counting arguments for very small critical
scales. Both methods are technically constructed such that the
full solution can be recovered (either by adding more form
factors or by adding additional points away from the FS).
However, this is unpractical for complex models.

APPENDIX B: NUMERICAL DETAILS

In this subsection we provide the necessary numerical de-
tails to reproduce the calculations at hand. For all calculations
we used the divERGe library [62] and its predecessor the
TU2FRG code.

1. N-patch

For the N-patch calculations, we used the autopatching
function of divERGe, with 6 patching points within the irre-
ducible Brillouin zone (IBZ) wedge. Thus in total we used
72 points along the FS. For the integration of the flow equa-
tions, we used the diverge Euler integrator with its default
parameters, except increasing the initial � value to 100. We
checked that resymmetrizing the vertex during the flow does
not influence that phase we diverge into, but merely ensures
that E2 eigenvalues are approximately degenerate. The bare
two-particle propagator is calculated on a 20002 grid for the
p-type and on a 24002 grid for the m-type calculation. The
flow equations are averaged over the Graßmann antisymmetry
related contributions to ensure that the vertices obey these on
average. This requires us to explicitly store the loop for three
momenta q, k, k′ and sum over equivalent parametrizations of
the diagrams.
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FIG. 6. Phases and critical scales at various points in the phase
diagram as a function of bond distance d . The chosen bond distance
is depicted as a grey dashed line. We find that the found phases are
stable for the chosen cutoff, while the exact critical scale changes on
a quantitative level.

2. TUFRG

For the TUFRG calculation of the phase diagram, we em-
ployed a 36 × 36 mesh for the bosonic momenta in each of the
channels. For the loop we utilized an additional refinement of
45 × 45. The integration of the flow equations is performed
with a Bogacki-Shampine integrator allowing for an relative
error of 10−2 and an absolute error of 10−3. For each site, we
include all bonds with a real-space length shorter than 2.01d ,
which we checked to be sufficient for obtaining convergent
phases, see Fig 6.

Flowing into the ordered state

For flowing to the ordered state, we first pick the unit
cell, matching the expected ordering, for the CDW this is
the standard unit cell, while for the CBO this is a 2 × 2 unit
cell with 12 sites, which in turn results in a backfolded BZ.
Then we add a random initial symmetry breaking, which is
ensured to be Hermitian and run the FRG flow for a set of
these random initialization. We control the maximal ampli-
tude of the randomness as a convergence parameter, which
should be smaller than the expected critical scale we aim to
reach such that it cannot have any influence to the expected
ordering. Additionally we track the grand-canonical potential
by including its flow equation which reads [88]

∂��� = 1

2π

∑
ω=±�

Tr[1 − G0(iω)	(iω)] . (B1)

Further, we perform flows at fixed and non-fixed particle
number. Thus in total we track the static self-energy, the
static vertex and the grand canonical potential during the
flow. In practice we include the static contribution of both
the self-energy and the vertex during the flow and solve the
coupled set of differential equations, keeping the momentum
dependence of both. Notably, in our case, the divergence in

FIG. 7. Two solutions of the flow equations at fixed particle
number. The left forms a C2 breaking DW order, while the right forms
a anti-tri-hexagonal order. The DW order is slightly higher in energy
and cannot be recovered in flows without fixing the particle number.

the vertex is indeed suppressed by the gap opening in the
self-energy, which is not necessarily the case in the used
truncation scheme. For charge orders this was found to be
true in Ref. [74]. The calculations with self-energy feedback
are performed on a 48 × 48 mesh for the q dependence of
the vertices, with an additional refinement of 15 × 15 for the
loop. To obtain the self-energy on the fine grid, we perform a
Fourier interpolation.

First, let us discuss the CBO flows. For the flows at non-
fixed particle number, the initial filling required such that the
flow terminates at the van Hove filling of the bare system is
about 0.33x slightly dependent on the initial symmetry break-
ing. As expected, we find that a symmetry breaking of ≈10−5

does not influence the outcome of the calculation anymore.
When fixing the filling, we are able to stabilize two different
orderings (depending on the random seed). We find the one
presented in the main text and, –at slightly higher energy, a
C2 breaking CDW order, see Fig 7. The preferred solution
should, from the energetic viewpoint, be the one presented in
the main text. To verify that this is not an artifact of fixing
the particle number we repeat the calculation without fixed
particle number. We adapt the initial filling such that at the
end we are at the van Hove filling of the noninteracting sys-
tem. In agreement with what was predicted by the energetics
arguments, we only find the solution presented in the main
text. Since in both schemes, this solution is the preferred one,
we conclude that this is the order FRG predicts.

We follow the same procedure for the CDW order, for
which we do not find competing solutions from the fixed
particle number flows or the nonfixed particle number flows.

APPENDIX C: S WAVE IN E2

In the triangular and honeycomb lattice it is common
knowledge that the E2 irreducible representation does not
allow for an on-site component of the order parameter. This
follows directly from the requirement that the mirror planes
have character 0. In the kagome lattice we will prove in the
following that this is not true, by explicitly constructing the
system of equations and solving it. We label the three sites a,
b, and c and the corresponding complex numbers α, β, and γ .
To calculate the character we have to apply the point group
symmetry and calculate χ = ∑

i v
∗
i Ovi where i runs over the

subspace dimension (v0 = v, v1 = w). We will focus on the
on-site component of the ordering vector, restricting v and w

to three component vectors. For the mirror planes we have

043078-10



KAGOME HUBBARD MODEL FROM A FUNCTIONAL … PHYSICAL REVIEW RESEARCH 6, 043078 (2024)

χ = 0. The mirrors exchange two sites, while the third maps
onto itself. The C6 rotation maps a → c, c → b, b → a, The
C3 rotation maps a → b, b → c, c → a. We directly observe
that their inverse operations behave identically to the other
rotation therefore the rotations give us instead of four condi-
tions only two. The C2 maps every site onto itself, and thus
acts as an identity. We will assume normalized three compo-
nent vectors, thus the E/C2 condition is trivially fulfilled. An
additional requirement is that the two vectors have to span a
2D space. The resulting set of equations read:

0 = v∗
ava + v∗

bvc + v∗
c vb + w∗

awa + w∗
bwc + w∗

c wb,

0 = v∗
bvb + v∗

avc + v∗
c va + w∗

bwb + w∗
awc + w∗

c wa,

0 = v∗
c vc + v∗

bva + v∗
avb + w∗

c wc + w∗
bwa + w∗

awb,

−1 = v∗
avb + v∗

bvc + v∗
c va + w∗

awb + w∗
bwc + w∗

c wa,

−1 = v∗
avc + v∗

c vb + v∗
bva + w∗

awc + w∗
c wb + w∗

bwa,

0 = v∗
awa + v∗

bwb + v∗
c wc.

The equations are solved by va = 0, vb = 1/
√

2 · φ, vc =
−vb,wa = −2wb,wb = 1/

√
6 · γ ,wc = wb, where φ and γ

are global phases. As can be seen by insertion

2|vb|2 = 6|wb|2,
|vb|2 = 3|wb|2,
|vb|2 = 3|wb|2,
−1 = −|vb|2 + −3|wb|2,
−1 = −|vb|2 + −3|wb|2,

0 = v∗
bwb − v∗

bwb.

The phases of v and w are free parameters. Since we found the
on-site components of the order parameter vector we initially
started to fulfill all restrictions due to symmetry, we found the
specific form of the on-site component of the E2 irrep.

APPENDIX D: EXISTENCE OF A
FERROMAGNETIC STATE

In the following we will argue that the weak interaction
ferromagnet, which was not seen in some recent studies, has to
be present in the thermodynamic limit. Since we are interested
in the weak-coupling limit, RPA arguments will suffice. In
general we can rewrite the particle-hole loop at zero momen-
tum transfer as

[b]L(0) =
∑
ω,k

G(ω, k)G(ω, k)

=
∑

k

n f (ε(k))(1 − n f (ε(k)))

=
∫

dε ρ(ε)n f (ε)(1 − n f (ε)), (D1)

where ρ(ε) is the density of states and n f (ε) is the Fermi
distribution. For a more general multiband model we need to
project this loop onto the eigenvector corresponding to a FM,
which has equal weight on all sites within the unit cell (we

sum out all doubly occurring indices)

viLi jv j = viG(ω, k)i jG(ω, k) jiv j

= [t]
1

3

∑
k,α,β

1

iω − ε(k, α)

1

iω − ε(k, β )

×
∑

i

Ui,α (k)Ui,β (k)∗
∑

j

Uj,β (k)Uj,α (k)∗

= 1

3

∑
k,α

1

iω − ε(k, α)

1

iω − ε(k, α)

= − 1

3T

∑
k,α

n f (ε(k, α))[1 − n f (ε(k, α))], (D2)

where ε(k, α) is the dispersion of band α at momentum k
given as

ε(k, 1) = 2t,

ε(k, 2/3) = t (−1 ±
√

4A(k) − 3)

with A(k) = cos2

(
k · R1

2

)
+ cos2

(
k · R2

2

)

+ cos2

(
k · (R2 − R1)

2

)

with R1 and R2 being the basis vectors of the kagome lattice.
At the p-type VHS the flat band plays no role. Furthermore
we can restrict the summation to an irreducible BZ wedge in
which only one band crosses the Fermi level, here we pick for
simplicity one in which band 2 crosses. Thus we obtain

viLi jv j = − 4

T

∑
k

n f (ε(k, 2))(1 − n f (ε(k, 2))). (D3)

We can now rewrite this in terms of the density of states of the
band as in Eq. (6):

viLi jv j = − 4

3T

∫
dερ(ε)n f (ε)(1 − n f (ε)). (D4)

We have n f (ε)(1 − n f (ε)) = δT (ε) where δT (ε) is a smeared
out Dirac delta distribution, thus we get

viLi jv j ≈ − 4

T
ρ(0). (D5)

Since we are at the van Hove singularity, the density of states
is logarithmically diverging. This divergence is cut off by
finite size effects explaining its absence in some earlier studies
[47]. In the TDL the ferromagnetic phase should be existent
as long as no other phase gaps out the system beforehand.

APPENDIX E: ORDER PARAMETERS OF THE
FOUND PHASES

In the following, we will detail the general analytical form
of the linearized gap equation solutions for the orders we
found in our FRG simulations, see Fig. 1, in site + position
space, thus the fermionic arguments are encoded in the site in-
dices and the bosonic argument is encoded in the dependence
on the unit-cell distance R. Further we highlight how these
change between p-type and m-type van Hove singularities.
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FM. The ferromagnetic phase is a q = 0 phase (R indepen-
dent) and orbitally nonselective it belongs to the A1 irreducible
representation of the C6v group and the order parameter math-
ematically reads


i, j (R)FM = δi, j
0 (1, 1, 1)T
i , (E1)

where 
0 is the real valued amplitude of the phase. CDW. At
both, the m− and p-type van-Hove dopings, the CDW belongs
to the E2 irreducible representation, is peaked at q = 0 and
is orbitally selective. Due to the E2 nature of the order the
gap functions are only specifically picked representatives and
different vectors can be achieved by recombination of these
(this is also the case for all other E2 orders). The order has the
form


i, j (R)CDW,1 = δi, j
0 (0, 1,−1)T
i , (E2)


i, j (R)CDW,2 = δi, j
0 (1, 0,−1)T
i . (E3)

The combination realizing the minimal energy is visualized in
Fig. 2.

A1-SC. As the ferromagnet, the A1-SC belongs to the A1

irreducible representation of the C6v group, is orbitally non
selective and is peaked at q = 0. The corresponding energy
gap is given by


i, j (R)A1 = δi, j
0 (1, 1, 1)T
i , (E4)

which is identical to the FM phase (note that the correspond-
ing electronic operator pair is a different one).

E2-SC. A in detail analysis of the E2 superconducting order
has been given in Ref. [71]. It is a q = 0 order with both
on-site and higher form-factor components belonging to the
E2 irreducible representation of C6v. The exact weight distri-
bution between on-site, nearest- and second- nearest neighbor
depends on the point in the phase diagram, resulting in a
rather complicated linearized gap form. In general, the order
parameter can be classified according to its weight on the
different distance shells


o1,o2 (R)E2,i = (
δo1,o2


i
0 + δ〈o1,o2〉


i
1

+ δ〈〈o1,o2〉〉

i
2 + ...

)
, (E5)

while on each distance shell we have two gap functions trans-
forming according to the E2 irreducible representation. The
different distance shells do couple thus the gaps on different
distances are not independent.

CBO/CDW. The CBO/CDW phase is a q = M phase and
has a three component order parameter. The general form of

FIG. 8. Loop current order 
o1,o2 at a single M-point transfer
momentum from the linearized charge-sector gap equation for the
three sublattices o1 (left to right) normalized such that the largest
component is 1.

its gap function reads


o1,o2 (R)CBO,i = eiRMi
(
δo1,o2


i
0;o1

+ δ〈o1,o2〉

i
1;o1,o2

+ δ〈〈o1,o2〉〉

i
2;o1,o2

+ ...
)
. (E6)

In the case examined in the main text, the higher distance gaps
are strongly suppressed, thus only the first two orders remain,
with (
i

1)o1,o2 = A for connections between A and B/C sub-
lattice and −A for the connection between B and C sublattices.
The phase alternates this pattern between neighboring unit
cells.

SBO/SDW. The SBO/SDW phase is, as the CBO/CDW, a
q = M phase and it has a three component order parameter.
Within a linearized gap approximation, the gap functions of
these two are only differing by their spin dependence (here
we picked an Sz representation)


o1,o2 (R)SBO,i,s = σ z
s,se

iRMi
(
δo1,o2


i
0;o1

+ δ〈o1,o2〉

i
1;o1,o2

+ δ〈〈o1,o2〉〉

i
2;o1,o2

+ ...
)
, (E7)

LCO. Our FRG calculations are also capturing imaginary
charge orderlike loop current orders, that attracted enormous
attention in the literature. In our calculations, however, the
LCO is subleading for all parameter settings. For complete-
ness we show such a subleading solution and give the form of
the order parameter. Its general order parameter is of the form


o1,o2 (R)LCO,i = ieiRMi
̃o1,o2 (R) , (E8)

where 
̃o1,o2 (R) = −
̃o2,o1 (−R), thus by definition the LCO
is not allowed to have an on-site component. Below, we show
one such LCO solution found subleading but stable in the
postflow linerized gap equation, which is stable under the
linearized gap equation is visualized in Fig. 8.
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