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The quantum simulation of fermionic gauge field theories is one of the anticipated uses of quantum
computers in the noisy intermediate-scale quantum (NISQ) era. Recently work has been done to simulate
properties of the fermionic Z2 gauge field theory in ð1þ 1ÞD and the pure gauge theory in ð2þ 1ÞD. In
this work, we investigate various options for simulating the fermionic Z2 gauge field theory in ð2þ 1ÞD.
To simulate the theory on a NISQ device it is vital to minimize both the number of qubits used and the
circuit depth. In this work we propose ways to optimize both criteria for simulating time dynamics. In
particular, we develop a new way to simulate this theory on a quantum computer, with minimal qubit
requirements. We provide a quantum circuit for simulating a single first-order Trotter step that minimizes
the number of 2-qubit gates needed and gives comparable results to methods requiring more qubits.
Furthermore, we investigate variational Trotterization approaches that allow us to further decrease the
circuit depth.
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I. INTRODUCTION

Simulating the dynamics of physical quantum systems is
one of the most anticipated applications of quantum
computing and a good candidate to show useful quantum
advantage for a noisy intermediate-scale quantum (NISQ)
device [1]. Physical systems of interest include quantum
chemistry models, material simulations, and high-energy
physics problems via lattice gauge theories, as the one
considered here [2–4]. To simulate the quantum dynamics
on a near-term quantum device, the resources used need to
be optimized. NISQ devices offer only a limited number of
qubits, and have limited coherence times, as well as
considerable 2-qubit gate errors [5]. Thus, to simulate a
given problem it is necessary to optimize the number of
qubits used and their architecture, as well as the depth (and
the number of 2-qubit gates) of the quantum circuit. This is
especially true for lattice gauge theories that feature more
complicated plaquette and dynamical fermion terms [6].
In this work, we focus on the simulation of the full Z2

(i.e., including fermionic matter) lattice gauge theory in
ð2þ 1ÞD with minimal resources. In particular, we use as
benchmarks the number of qubits and 2-qubit quantum

gates needed to implement a single first-order Trotter step.
We derive a local Hamiltonian that uses the minimum
number of qubits needed to encode the full theory. The
latter can be used to probe the dynamics of the system
either directly, via a Trotterized time evolution, or by using
it as a single step for an ansatz to perform variational
quantum algorithms for time evolution, like parametrized
variational quantum dynamics (pVQD) [7–9]. The same
ansatz can also be applied for other algorithms like QAOA
or variational quantum eigensolver (VQE) [10] to probe the
ground-state properties. In particular, we numerically
explore the improved accuracy for time-dynamics simu-
lation by using pVQD with a variational circuit of a fixed
number of Trotter steps. In minimizing the resources, we
exploit the fermion mapping (fermion elimination method)
introduced in [11,12], which allows the fermionic Z2

theory to be encoded with the same number of qubits as
the pure gauge theory without the fermions. This is the first
practical proposal that evaluates the resources needed for
simulating such fermionic ð2þ 1ÞD physical system on a
quantum computer.1 We compare the circuit depth obtained
via the fermion elimination method with the one obtained if
a standard approach for encoding fermions—Verstraete-
Cirac (VC) [14]—transformation is used. The new method
offers similar circuit depth requirements, with 17CX gates
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1While completing this manuscript, an independent proposal
has appeared that explored the use of the same fermion elimi-
nation method and also considered the fermionic Z2 theory in
ð2þ 1ÞD in their work [13].
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per link as compared to the 14 of VC encoding, while only
using half of the qubits of the latter. Furthermore, the use of
the variational pVQD algorithm is explored to further
reduce the requirements for the circuit depth to perform
time evolution of the system.
The discretization of continuous gauge field theories on a

lattice has enabled very successful numerical results in high-
energy physics [15,16]. Here we consider a genuinely
discrete lattice gauge theory, namely Z2 with fermionic
matter. This simple model allows an easy encoding of the
gauge field in qubits, but merits also an interest of its own.
In high-energy physics, SUðNÞ theories are of particular
importance, since the strong force, responsible for quark
binding and their interactions is mediated via the SUð3Þ
gauge field. The exact mechanism of the quark confinement
is poorly understood and many insights have been obtained
from numerical simulations. In particular, it is believed
that the center of the SUðNÞ theory, ZN , is responsible for
the confinement [17]. Classical simulations using Monte
Carlo methods suffer from a sign problem and the required
resources scale exponentially with the system size.
Quantum computers could avoid this problem by working
in the Hamiltonian formalism, see Refs. [4,6,18,19] and
references within. We show that the circuit depth needed to
simulate a single Trotter step is independent of the system
size, allowing the simulation to be scaled. As quantum
technologies continue to advance, it is important to explore
the optimal ways to simulate this theory in a sign problem-
free way to better understand its properties, and eventually
the process of quark confinement. This work only considers
the Z2 theory, but the methods used here can be altered to
probe other ZN theories, which are left for future work.
Previous work in [20,21] covered the simulation of a

pure Z2 theory in ð2þ 1ÞD. Very recently, [22] simulated
the fermionic Z2 theory in ð1þ 1ÞD, with an implementa-
tion on the Google Sycamore quantum device, and par-
ticular emphasis on probing the confinement. The authors
were able to perform the simulation of time dynamics via
Trotterization, with a much greater accuracy than one
naively would expect from the 2-qubit gate error rate of
the device. Additionally, there have been multiple propos-
als to simulate the Z2 theory in both pure and matter case
with analog quantum simulators [23–27]. These works
point out the current interest of simulating the fermionic Z2

theory in ð2þ 1ÞD, which we analyze in this paper.
We start by reviewing the Hamiltonian approach to the

pure gauge and fermionic Z2 theory in ð2þ 1ÞD. Next we
introduce the mechanism to encode the fermions in the
gauge-field, as proposed in [11,12], and how it can be
applied to the Z2 theory. In Sec. III, we show how this
model can be mapped to a quantum circuit and evaluate the
necessary number of 2-qubit gates needed for a single step
of a first-order Trotter circuit, which is compared with the
VC method. Section IV explores the use of the variational

methods, including numerical results. Finally, Sec. V sum-
marizes our conclusions.

II. Z2 LATTICE GAUGE THEORY

In the lattice gauge theory Hamiltonian formalism, the
space is discretized, but the time is left continuous. On the
lattice, matter fields are located on the vertices (labeled by
vectors x) and the gauge fields on the links (labeled l)
connecting them. In two spatial dimensions, x ¼ ðx; yÞ. In
this case, the fermions can be staggered as shown in Fig. 1;
on even sites (red) we have particles and on the odd sites
(blue) antiparticles, with charges þ1 and −1 respectively.
The parity of the site is given by ð−1ÞsðxÞ ¼ ð−1Þxþy with
1ð−1Þ indicating an even (odd) site [28]. The green sites on
the links denote the gauge fields. We will consider two-
dimensional rectangular lattices with periodic boundary
conditions and dimensionM × N, whereM, N are even, to
accommodate fermion staggering. Note that on a lattice of
sizeM × N, there are L ¼ 2 ×M × N gauge field links and
M × N fermion vertices (Fig. 1). The gauge field in ZN
theories has a finite-sized Hilbert space of dimension N,
thus allowing it to be encoded on each link.

A. Pure Z2 lattice gauge theory

The Hamiltonian of the pure gauge Z2 theory is given
by HKS [29],

FIG. 1. The top figure shows the labeling for the pure gauge
theory on a lattice. The bottom figure shows the labeling for the
full fermionic theory with staggered fermionic matter. Matter
sites are located on vertices while gauge fields are on the links.
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HKS ¼ HE þHB

¼ λE
X
l

½2 − ðPl þ P†
l Þ�

þ λB
X
p

½2 − ðUp1
Up2

U†
p3
U†

p4
þ H:c:Þ�: ð1Þ

For the electric termHE the sum is over all links and for the
magnetic term HB over all plaquettes p, as indicated in
Fig. 1. When discretizing the theory from the continuum
one, the coupling constants are connected through the
relations λE ¼ g2=2, λB ¼ 1=2g2 [30].
For Z2 the field can take two values; 0 and 1. The theory

can be defined using two generators per link Ul, Pl,
satisfying the relations,

P2
l ¼ U2

l ¼ 1; ð2Þ

P†
l Pl ¼ U†

l Ul ¼ 1; ð3Þ

P†
l UlPl ¼ expðiπÞUl ¼ −Ul: ð4Þ

The gauge field on a given link can be encoded into
qubit states j0i; j1i corresponding to the field values such
that UljEi ¼ jðEþ 1Þ mod 2i and PljEi ¼ expðiπEÞjEi.
Thus, Ul is the raising (lowering) operator for the gauge
field and Pl is a diagonal operator in this basis, describing
the field strength. An additional constraint that the theory
obeys is Gauss law,

GðxÞ ¼ PuPrP
†
dP

†
l

¼ expðiπ½Eu þ Er − Ed − El�Þ
¼ expðiπQðxÞÞ ¼ 1; ð5Þ

where QðxÞ is the charge on vertex x. For the pure gauge
theory with no static charges, QðxÞ ¼ 0 on all sites. The
sign convention for the gauge fields is given in Fig. 1.
This Hamiltonian can be implemented on a quantum

computer by mapping

Ul → Xl; ð6Þ

Pl → Zl; ð7Þ

where ðXl; Yl; ZlÞ are Pauli matrices acting on link l. The
pure gauge Hamiltonian is expressed as

HKS ¼ HE þHB

¼ −2λE
X
l

Zl − 2λB
X
p

Xp1
Xp2

Xp3
Xp4

; ð8Þ

and the Gauss law (in the absence of external charges) is
given by

ZuZrZdZl ¼ 1; ð9Þ

for every vertex. The quantum circuit to simulate this model
will be explicitly shown in the next section.

B. Fermionic Z2 lattice gauge theory

In the full theory, when the gauge field interacts with
matter, the Hamiltonian acquires two extra terms, the mass
term of the dynamical fermions and the interaction term
between the fermions and the gauge field. The matter field
part of the Hamiltonian is given by

Hf ¼ HM þHint

¼
X
x

ð−1ÞsðxÞMa†xax þ ϵ
X
x

a†ðx;yÞUrðxÞaðxþ1;yÞ þ H:c:

þ ϵ
X
x

a†ðx;yÞUuðxÞaðx;yþ1Þ þ H:c:; ð10Þ

with ai; a
†
j satisfying the canonical anticommutation rela-

tions (CAR). Note that in (10) the interaction term has been
split into horizontal and vertical parts for future conven-
ience. To accommodate both particles and antiparticles on
the lattice, the staggered fermion approach is used. Here on
even (odd) sites we have particles (antiparticles) with charge
þ1 (−1). In this approach, in the computational basis,

on even site

� j0i → vacuum ðno chargeÞ
j1i → particle ðcharge þ 1Þ;

on odd site

� j0i → anti-particle ðcharge − 1Þ
j1i → vacuum ðno chargeÞ: ð11Þ

The number operator on the vertex is given by

nðxÞ ¼ 1 − ð−1ÞsðxÞZx

2
: ð12Þ

While the number operator can be easily expressed, the
fermionic creation/annihilation operators require some
attention, as they obey the nonlocal CARs. In the method
from [11,12], that we review in the next section, the
fermionic statistics is absorbed into the gauge field, at the
expense of increasing the Pauli weight of the Hamiltonian
terms (i.e., the number of qubits on which the term acts
nontrivially). The transformed Hamiltonian consists of
hard-core bosonic matter for which creation/annihilation
operators can be implemented with simple spin-raising/-
lowering ones. Furthermore, these hard-core bosonic
degrees of freedom can be eliminated by the use of
Gauss law, which uniquely determines the charge distri-
bution on the vertices. This allows the full fermionic Z2

theory to be simulated with the same number of qubits
needed for the pure gauge one, minimizing the spatial
resources of the quantum computation.
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C. Fermion encoding via elimination

In [11] a method was introduced to perform a unitary
transformation that converts the fermionic degrees of
freedom to hard core bosonic degrees of freedom, if the
gauge group has Z2 as a normal subgroup. As a result, the
theory acquires phase factors ξ of the gauge field to keep
track of the fermionic exchange antisymmetry. The trans-
formed Hamiltonian is

HM ¼
X
x

ð−1ÞsðxÞMη†xηx; ð13Þ

HKS ¼ −λE
X
l

ðPl þ P†
l Þ

− λB
X
p

ðξpUp1
Up2

U†
p3
U†

p4
þ H:c:Þ; ð14Þ

HI ¼
ϵ

i

X
x

ξhðxÞη†ðx;yÞUrðxÞηðxþ1;yÞ þ H:c:

þ ϵ

i

X
x

ξvðxÞη†ðx;yÞUuðxÞηðx;yþ1Þ þ H:c:; ð15Þ

where ηðxÞ is a staggered hard-core boson annihilation
operator and the ξ phase factors are given by

ξhðx; yÞ ¼ ð−1ÞEuðx;yÞþElðx;yÞþEdðx;yÞþEdðxþ1;yÞ; ð16Þ

ξvðx; yÞ ¼ ð−1ÞElðx;yÞþEdðx;yÞ; ð17Þ

ξp ¼ ð−1ÞEp1
þEp2

þEp5
þEp6 ; ð18Þ

and the ordering is shown in Fig. 1. Under this trans-
formation, the Gauss law remains unchanged. This is
important, as the Gauss law fully defines the charge
configuration on the vertex and thus can be used to
eliminate the matter fields [12].
For an occupied (unoccupied) site (nðxÞ ¼ 1ð0Þ)QðxÞ ¼

�1ð0Þ and the Gauss law gives PuPrP
†
dP

†
l ¼ −1ð1Þ. We

define projection operators Πρðx; yÞ that project the Hilbert
space to the subspace withGðxÞ ¼ ρ, with ρ ¼ 1 indicating
that the site is empty and ρ ¼ −1 that the site is full.
Elimination of the matter fields via Gauss law leads to the
Hf terms to acquire projection operators as follows:

Hf ¼HMþHI ¼
X
x

MΠ−1ðxÞ

þ−iϵ
�X

x

ð−1ÞsðxÞξhðxÞΠ−1ðx;yÞUrðx;yÞΠ1ðxþ1;yÞ

þ
X
x

ð−1ÞsðxÞξvðxÞΠ−1ðx;yÞUuðx;yÞΠ1ðx;yþ1Þ
�

þH:c:; ð19Þ

where the factors of ð−1ÞsðxÞ arise from fermion staggering.
Thus, the full fermionicZ2 theory can be simulated only by
encoding the gauge field values. Once again, it is worth
reemphasizing that the matter fields have been eliminated at
the expense of the Gauss law, thus leaving the new theory
without this constraint. In further sections it will be shown
how each of these terms can be encoded on a digital
quantum computer.

D. Full Z2 theory as a spin system

Here we show how the pure gauge Hamiltonian can be
simulated on a quantum computer. We will assume access
to Pauli gates P ¼ fX; Y; Zg and their single qubit rota-
tions fRXðθÞ; RYðθÞ; RZðθÞgwith RPðθÞ ¼ expð−iθP=2Þ
as well as controlled X (CX) gate as the 2-qubit gate. To
implement this model, it is necessary to have an architec-
ture of qubits with a possibility to perform the CX gate
between nearest neighbors.
In order to perform the simulation, in addition to the

mapping of Ul → Xl and Pl → Zl introduced previously,
we need to map the projection operators Πg and the phase
factors ξ. The mapping of the phase factors is straightfor-
ward since ð−1ÞEl ¼ Pl. The projection operator Πρ can be
implemented as follows:

Π�1ðx;yÞ¼
1

2
ð1�ZuZlZdZrðx;yÞÞ¼

1

2
ð1�Gðx;yÞÞ: ð20Þ

The Hamiltonian mass term HM is thus given by

HM ¼
X
x

M
2
ð1 − ZuZrZdZlÞ: ð21Þ

Since we know how to implement each operator in the
interaction HamiltonianHint, it can be mapped to a quantum
device. While the direct mapping produces a somehow
complicated structure, it can be considerably simplified as
follows. Consider the horizontal part of the interaction
Hamiltonian and note that Ul ¼ U†

l ¼ Xl.
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HH ¼ ϵ

i

X
x

ð−1ÞsðxÞξhðxÞΠ−1ðx; yÞUrðx; yÞΠ1ðxþ 1; yÞ þ H:c: ¼ ϵ

i

X
x

ð−1ÞsðxÞUrðx; yÞξhðxÞΠ1ðx; yÞΠ1ðxþ 1; yÞ þ H:c:

¼ ϵ

i

X
x

ð−1ÞsðxÞUrðx; yÞξhðxÞðZrðx; yÞÞ2Π1ðx; yÞΠ1ðxþ 1; yÞ þ H:c:

¼ ϵ

i

X
x

ð−1ÞsðxÞUrðx; yÞGðxÞZdðxþ 1; yÞZrðx; yÞΠ1ðx; yÞΠ1ðxþ 1; yÞ þ H:c:

¼ −ϵ
X
x

ð−1ÞsðxÞYrðx; yÞZdðxþ 1; yÞΠ1ðx; yÞΠ1ðxþ 1; yÞ þ H:c:

¼ −ϵ
X
x

ð−1ÞsðxÞYrðx; yÞZdðxþ 1; yÞΠ1ðx; yÞΠ1ðxþ 1; yÞ − ϵ
X
x

ð−1ÞsðxÞYrðx; yÞZdðxþ 1; yÞΠ0ðx; yÞΠ0ðxþ 1; yÞ

¼ −
ϵ

2

X
x

ð−1ÞsðxÞYrðx; yÞZdðxþ 1; yÞð1þ ZuZlZdðx; yÞ × ZdZrZuðxþ 1; yÞÞ: ð22Þ

In lines 1–3, the projection operators are collected,
followed by insertion of ðZrðx; yÞÞ2 and simplification
from the Gauss law constraint in line 4. In the last two
lines, both terms are collected and Πρ values are inserted to
give the final result.
Similarly the vertical interaction terms can be

simplified to

HV ¼ −ϵ
X
x

ð−1ÞsðxÞYuðx; yÞZrðx; yÞ

×
1

2
ð1þ ZrZlZdðx; yÞ × ZlZrZuðx; yþ 1ÞÞ: ð23Þ

The interpretation of these terms is that we will have an
interaction term of the form Y ⊗ Z acting when both sites
at the end of the links are empty or occupied. This
corresponds to either particle-antiparticle pair creation or
annihilation. The pure gauge part of the Hamiltonian gets
slightly altered, with the plaquette term becoming 6-local,

HKS ¼ HE þHB

¼ −2λE
X
l

Zl − 2λB
X
p

Yp1
Yp2

Xp3
Xp4

Zp5
Zp6

: ð24Þ

In this matter-eliminated formalism, the most compli-
cated terms to implement are the interaction and magnetic
ones since they are both 6-local. Despite the complications
introduced by the projectors, the final gate complexity to
perform time evolution is similar to using the Verstraete-
Cirac encoding.
The same model was also considered in [13] where the

authors arrived at the same result. A similar (transformed)
Hamiltonian was obtained in [31] for classical simulation.
In our work the emphasis is put towards optimization for
circuit depth and comparison with other methods.

E. Fermion encoding via VC transformation

Different methods exist to deal with the fermion statistics
in simulations. The simplest strategy is to encode the

fermions via the Jordan-Wigner transformation [32], effec-
tive for one-dimensional (or small two-dimensional) sys-
tems. In this transformation, fermions in a chosen order are
mapped to spin operators, keeping track of their CARs.
However, in two dimensions, any such ordering maps local
fermionic terms (e.g., nearest-neighbor interactions) to
nonlocal ones, which results in strings of spin operators.
In general, the Pauli weight of interaction terms after this
mapping will scale asOðLÞ where L is the linear size of the
2D system.
There exist several fermionic encoding methods that

map a local fermion Hamiltonian to a local spin system
[14,33,34]. However, in all of these methods extra spins
(qubits) are introduced to enforce the fermion CARs, thus
making them unfavourable in terms of the spacial quantum
computation requirements when compared to the fermion
elimination method. One such method—the Verstraete-
Cirac transformation [14]—encodes fermions as spins by
introducing ancillary qubits and encoding the fermionic
statistics into this multiqubit increased Hilbert space.
Despite the fact that this method has been around for nearly
two decades it is still one of the lowest-weight encodings,
and a gold standard for benchmarking. In the VC approach,
the pure gauge part of the Hamiltonian remains unchanged,
with the matter part of Hamiltonian increasing in weight. To
accommodate for fermion statistics, an extra qubit is
introduced per each fermion site and the operators acting
on the ancillary qubits are denoted by Ã. Under this
mapping, the matter Hamiltonian becomes

Hf ¼ HM þHint

¼
X
x

ð−1ÞsðxÞM
2

ZðxÞ þ
X
x

ϵhðxÞXrðxÞðXðx; yÞ

× Xðxþ 1; yÞ þ Yðx; yÞYðxþ 1; yÞÞZ̃ðxÞ
þ
X
x

ϵvðxÞXuðxÞðXỸðx; yÞYX̃ðx; yþ 1Þ

− YỸðx; yÞXX̃ðx; yþ 1ÞÞ: ð25Þ
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Each of the horizontal terms has two components, each of
them with weight 4, while the vertical components have
weight 5.

III. QUANTUM CIRCUIT METHODS

A. Simulating time dynamics via Trotterization

Trotterization is a common way of simulating time
dynamics in which the nonlocal exponential of a
Hamiltonian is approximated as a sequence of smaller,
easier to implement unitaries, by means of a Suzuki-
Trotter expansion. In this method the entire time evolution
gets divided into n ¼ t=δ steps of fixed size δ, as

UðtÞ ¼ expð−iHtÞ ¼ ðexpð−iHδÞÞt=δ: ð26Þ
In general the Hamiltonian H contains multiple terms that
do not commute. Such Hamiltonian can be written as
H ¼ PM

i¼1 Hi where each Hi does not commute with the
others, but all terms within each of them do. At the lowest
Trotter order, each step UðδÞ is approximated as VðδÞ:

UðδÞ ≃ VðδÞ ¼
YM
i¼1

expð−iδHiÞ: ð27Þ

In general a single Trotter step of a Hamiltonian, composed
as a sum of local Pauli terms can be expressed as

VðδÞ ¼
Y1
i¼M

Y
L

ðViRPiðcðδÞÞV0; ð28Þ

where Vi is a general unitary operator and RPðcðδÞÞ is a
Pauli operator rotation that depends on the time-step size δ
and the Hamiltonian couplings. Note that we have used the
fact that in each Hi the L commuting terms can be done in
parallel. Next, the exact form of each of the terms RPi; Vi
will be given.
The entire error for the time evolution with Trotterization

can be bound by [35]

kUðtÞ − VðtÞk ≤
tδ
2

XM
i¼1

����
XM
j¼iþ1

½Hi;Hj�
����;

and thus it depends on the time step δ and the total evolution
time t. Furthermore, it has been observed that in practice
these bounds are loose and the Trotter error tends to be
much smaller [35]. Recent studies [36,37] that explored the
chaos-regular transition in Trotterized quantum dynamics
showed that even for large values of δ the systems still obey
controlled behavior. Furthermore, the threshold for this
transition is largely independent of the system size consid-
ered. This is an important result as it illustrates that one can
faithfully probe time dynamics with large δ values, thus
minimizing the number of steps and the circuit depth needed
to perform a simulation of a given time.

B. Quantum circuit for pure gauge Z2

In the pure Z2 case there are two noncommuting parts
HE and HB. To perform time evolution we need to
implement both expð−iδHEÞ and expð−iδHBÞ.
Implementing the expð−iθHEÞ is trivial in the chosen
basis as it is just a RZ rotation on each link.

Implementing the terms inHB is more difficult. Note that
a weight K Pauli term can be implemented with (2K − 2)
CX gates. For the terms appearing in HB of form
expðiθX⊗4Þ, the identity XaXb ¼ CXabXaCXab can be
used to yield the circuit below:

Thus, a single Trotter step of the pure theory can be
implemented with 6 × 1=2 × L ¼ ð3 × LÞ 2-qubit CX
gates for a system with L links.

C. Quantum circuit for fermionic Z2

In the fermionic Z2 theory, we need to implement all five
terms, HE, HB, HM, HH, and HV .
(1) The implementation of the expð−iδHEÞ is the same

as in the pure case, it consists of expð−iθZÞ rotations
that can be done in parallel on each link.

(2) The implementation of expð−iδHBÞ is slightly more
complicated than in the pure case as it is 6-local. Each
term is of the form expð−iθYp1

Yp2
Xp3

Xp4
Zp5

Zp6
Þ

and can be implemented as V†
2RXp3

ð2θÞV2 where the
circuit V2 is given by
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(3) The evolution of the mass term expð−iδHMÞ where
each term is of form expð−iθZ⊗4Þ and can be
implemented as expð−iθZ⊗4Þ ¼ V†

3RZrð2θÞV3

where V3 is given by:

The V3 circuit can be interpreted as calculating the parity
of a given vertex on link r.
(4) The weight-6 part of the horizontal interaction term

evolution expð−iδHHÞ can be implemented as
V†
4RZLð2θÞV4 with V4 given by the circuit below

(5) The weight-6 part of the vertical interaction term
expð−iδHVÞ is similar to the horizontal, making the
structure of the circuit similar. Each term can be
implemented as V†

5RZLð2θÞV5 with V5 given by the
circuit below.

(6) Both the horizontal and vertical terms also have a
weight-2 component that can be implemented as
expð−iθZaYbÞ ¼ V†

6RZbð2θÞV6 with V6 given by

Note that in all of the circuits the control gates act only
between qubits that are nearest neighbors on the lattice.

If the ordering of the terms is chosen in an optimal way, it
is possible to simplify the unitaries by contracting some of
the CX gates into identities. Trivially, to apply all these
terms one would need 10 × 1=2Lþ 6 × 1=2Lþ 12 × L ¼
20L ofCX gates (Table I). By choosing this order optimally
it can be brought down to 17L of CX gates for L links. A
detailed description of the optimal ordering to obtain this
simplified result is given in Appendix B.
Even though this fermion-eliminated Hamiltonian has a

complicated structure, the necessary number of 2-qubit gates
is quite modest. In comparison, the VC method needs 14L
CX gates, but it achieves that by using twice as many qubits.

D. Approaches for circuit depth minimization

One possible way to decrease the circuit depth of a
particular time dynamics simulation is to use variational
methods, such as parametrized variational quantum dynam-
ics (pVQD) [7]. The variational approaches allow one
to decrease the circuit depth at the expense of executing
the quantum circuit multiple times in the optimization
subroutine.
In the pure Z2 theory, a Trotter step is given by

UðδÞ ¼ expð−iHBδÞ expð−iHEδÞ: ð29Þ
The full time evolution for time t can either be implemented
by applying n Trotter steps such that nδ ¼ t, or approxi-
mated by a fixed depth variational circuit. A good candidate
for the variational circuit is to simply take k variational
steps and optimize the evolution parameters θi,

Uvarðθ⃗Þ ¼
Yk−1
j¼0

ðexpð−iHBθ2jÞ expð−iHEθ2jþ1ÞÞ: ð30Þ

Such ansatz can perform at least as good as a Trotterized
evolution of depth k. Furthermore, analysis in [7–9] suggest
that the variational optimization of these parameters can
lead to orders of magnitude more accurate results.
For a given state jΨi the optimization proceeds as

follows:
(1) Start with an easily preparable state jΨi to be evolved.
(2) For the first step maximize the overlap

hΨjU†ðθ⃗1ÞUðδÞjΨi: ð31Þ

TABLE I. Table shows the cost of implementing each term of
the Hamiltonian in terms of CX gates.

The H term Number of terms Single cost Total cost

HE L 0 0
HB L=2 10 5L
HM L=2 6 3L
HH L=2 12 6L
HV L=2 12 6L

Total 20L
Total Reduced 17L
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(3) Proceed to variationally maximize the overlap,

Cðθ⃗Þ ¼ hΨjU†ðθ⃗ði−1ÞÞUðδÞUðθ⃗ðiÞÞjΨi; ð32Þ
by changing the parameters θ⃗ðiÞ and using the

already optimized parameters θ⃗ði−1Þ from the pre-
vious time step.

By saving the variational parameters θ⃗ðiÞ, it is possible to
implement the entire time evolution with the constant
circuit depth of 2kþ 1 (Trotter time steps). This optimi-
zation procedure allows us to approximate the Trotterized
time evolution with a lower-depth circuit, provided that the
low-depth ansatz has sufficient expressibility and at the cost
of performing multiple runs for the classical optimization.
For the full fermionic theory, the ansatz can be con-

structed in a similar way,

Uvarðθ⃗Þ ¼
Yk
j¼1

ðexpð−iθ5jHBÞ expð−iθ5jþ1HEÞÞ

× expð−ið−1Þxþyθ5jþ2HVÞ expð−iθ5jþ3HMÞ
× expð−ið−1Þxþyθ5jþ4HHÞÞ: ð33Þ

Even though here we only explore the application of the
ansatz for simulating the time dynamics, it can also be used
in variational algorithms like QAOA and VQE to probe the
ground state properties of the system.

IV. NUMERICAL RESULTS

In this section we present the numerical results obtained
using pVQD. Probing the time dynamics via Trotterization
requires to repeat the single Trotter step circuit many times,
which results in a large circuit depth and thus makes it hard
to execute such simulations on NISQ hardware. But the
depth can be kept small and constant with the use of
variational methods. Here we apply pVQD to both the pure
gauge and the fermionic Z2 theories, focusing on a 2 × 2
lattice. We will explore how the accuracy depends on the
number of Trotter layers used in the ansatz (33). In all
simulations we ignore the shot noise that arises from finite
amount of measurements. We consider the evolution from
the initial product state,

jΨ0i ¼
YL
1

j0i; ð34Þ

and measure the accuracy of the variational evolution by the
fidelity of the pVQD approximation F ,

F ðtÞ ¼ jhΨ0jV†ðtÞUvarðθÞjΨ0ij2: ð35Þ
The error of the approximation is 1 − F ðtÞ.

A. Pure gauge results

For the pure Z2 theory we investigate the 2 × 2 lattice
and observe that the ansatz of k ¼ 2 steps already

approximate well the dynamics for all coupling values
considered g ¼ 0.5, 0.85, 1. The results are shown in
Fig. 2. In particular, we look at the expectation value of the
plaquette operator h□i on site x ¼ ð0; 0Þ. The results show
excellent agreement for the entire evolution range. By
using this method, it is possible to reduce circuit depth
required from 20 to 5 Trotter steps that were used in the
pVQD optimization procedure.

B. Full fermionic results

The variational ansatz for the full fermionic theory
consists of five terms compared to the two for the pure
case. This leads to the optimization process being slower
and makes it more difficult to reach the global minimum. In
this case, we compare the results for depth values of k ¼ 2,
3, 4, 5 along with their associated errors for the Hamiltonian
with ðλE; λB; ϵ;MÞ ¼ ð1; 0.2; 1Þ and observe good agree-
ment with the Trotterized evolution (Fig. 3). We investigate
the expectation value of occupation hni on site x ¼ ð0; 0Þ
and the expectation value of a plaquette operator h□i on site
x ¼ ð0; 0Þ when evolved under the variational circuit.
Furthermore, we study the infidelity 1 − F of the variational
state when compared to the Trotterized evolution. The
results are also compared with the exact dynamics obtained
by exact diagonalization. As expected, the increase in the
variational circuit depth leads to a better agreement for
long times.

FIG. 2. The lower figure shows the pVQD results for g ¼ 0.5,
0.85, 1 (lines red, green, blue) of a pure Z2 on a 2 × 2 lattice. In
this case the depth of k ¼ 2was used. × marks the pVQD results,̊
marks the Trotterization results with λEδ ¼ 0.1, and the dotted
lines represent results obtained from exact diagonalization. The
upper figure shows the time evolution of g ¼ 0.5 result on a larger
scale. In Appendix C we include Fig. 4 that show the evolution of
the optimized variational parameters.
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V. CONCLUSION

Here we have presented a new method to simulate the full
fermionic Z2 theory in ð2þ 1ÞD with minimal resources,
in particular, with minimal number of qubits. This was

achieved by eliminating the fermionic degrees of freedom
and absorbing them into the gauge field. For a lattice of size
M × N one needs L ¼ 2 ×M × N qubits (i.e., one per link)
to simulate the model. In methods that involve encoding the
fermions with the help of ancillary qubits, like the
Verstraete-Cirac encoding, one needs twice as many qubits.
We have shown that the circuit depth in our case is only
slightly worse, with 17CX gates per link, compared to the
14 of VC. Furthermore, we have presented a variational
Trotterization strategy that allows to further decrease the
circuit depth. Numerical results of the 2 × 2 lattice simu-
lation suggest that the time dynamics of both the pure gauge
and fermionic Z2 theory can be well-approximated with
Trotterized time dynamics. For the pure gauge theory, the
long time dynamics could be approximated well with a
variational ansatz of only k ¼ 2 layers. For the full
fermionic case, the evolution can still be approximated
by the variational ansatz, but we find that the number of
variational layers need to be increased to obtain reliable
results for longer times. Our results suggest that for
moderate system sizes the Z2 theory can be well approxi-
mated by the variational time dynamics, however further
work needs to be done to establish how the ansatz depth k
depends on the system size. While the benefits of the
parametrized variational quantum dynamics depend on the
initial state considered, we observe that the improvement in
accuracy is particular good when the initial state of interest
is a product state. This work shows that the fermion
elimination method is an optimal approach for simulating
the Z2 theory on a quantum computer, due to its minimal
qubit requirement and the comparable 2-qubit gate count
with other methods. Further work involves developing
similar methods for higher ZN theories and extending them
to ð3þ 1ÞD. While completing this manuscript, an inde-
pendent proposal appeared that also explores the use of
fermion elimination method for simulating lattice gauge
theories, including the fermionic Z2 in ð2þ 1ÞD [13].
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(a)

(b)

(c)

FIG. 3. Figure shows the expressibility for the pVQD varia-
tional ansatz for depths k ¼ 2, 3, 4, 5 for the 2 × 2 fermionic
Hamiltonian with couplings ðλE; λB; ϵ;MÞ ¼ ð1; 1; 0.2; 1Þ. The
time step for the evolution is λEδ ¼ 0.1. (a) shows the expectation
value for the occupation hni on the site (0,0) for various ansatz
depths and the comparison with the Trotterized and exact values,
(b) shows the expectation value of the transformed plaquette
operator and the comparison with the Trotterized and exact
values, and (c) shows the accuracy of the approximation in terms
of infidelity 1 − F ðtÞ ¼ 1 − jhΨTrotterðtÞjjΨpVQDðtÞij2.
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APPENDIX A: QUANTUM CIRCUIT USING
THE VERSTRAETE CIRAC ENCODING

The VC encoded Hamiltonian has 2L qubits (L qubits for
the gauge field, L=2 qubits for matter sites and L=2 qubtis
for extra ancillas). The VC Hamiltonian is H ¼ HKS þHf.
The terms in the pure gauge Hamiltonian HKS can be
simulated with 3L CX gates per link (Sec. III B). When
mapped to qubits using VC transformation the Hf term is
given by

Hf ¼ HM þHint

¼
X
x

ð−1ÞsðxÞM
2

ZðxÞ

þ
X
x

ϵhðxÞXrðxÞðXðx; yÞXðxþ 1; yÞ

þ Yðx; yÞYðxþ 1; yÞÞZ̃ðxÞ
þ
X
x

ϵvðxÞXuðxÞðXỸðx; yÞYX̃ðx; yþ 1Þ

− YỸðx; yÞXX̃ðx; yþ 1ÞÞ: ðA1Þ
The mass term HM can be implemented trivially since it is
only an RZ gate. The horizontal interaction term for each
link has two weight-4 terms. For each of the terms we want
to implement a rotation of type,

expðiθX1X2X3Z4Þ expðiθX1Y2Y3Z4Þ: ðA2Þ
Again, by using similar methods as before, this can be
decomposed as

expðiθX1X2X3Z4Þ expðiθX1Y2Y3Z4Þ
¼ H4 expðiθX1X2X3X4ÞRZ2ð−π=2ÞRZ3ð−π=2Þ
× expðiθX1X2X3X4ÞRZ2ðπ=2ÞRZ3ðπ=2ÞH4; ðA3Þ

which can be implemented with 10CX gates. Similarly,
the vertical interaction terms can be implemented with
12CX gates.
Thus, the total cost for implementing a single step of

Trotterized time evolution is ð3Lþ ð10þ 12Þ × L=2 ¼
14L CX gates.

APPENDIX B: ORDERING OF THE TERMS

The optimization for the CX gate count comes from
picking the optimal order in which to implement each term
in the Trotterized evolution:

(i) Start with ImplementingHE on all vertices, followed
by the weight-2 part of the HH and HV terms.

(ii) Then start with (even,even) vertices. Perform the
weight-6 part of HH, followed by HM, followed by
HB, followed by the weight-6 part of HV .

(iii) Next, starting from (even,odd). Perform the weight-6
part of HH, followed by HM, followed by HB,
followed by the weight-6 part of HV .

(iv) Next, starting from (odd,even). Perform the weight-6
part of HH, followed by HM, followed by HB,
followed by the weight-6 part of HV .

(v) Next, starting from (odd,odd). Perform the weight-6
part of HH, followed by HM, followed by HB,
followed by HV terms.

By this ordering in each of the last four steps we can
optimize the unitary rotations that act on the same qubits
and reduce the gates necessary in total from 20L CX to 17L
gates. The simplifications follow from the CX gate can-
cellation when this ordering is used.

APPENDIX C: VARIATIONAL ANSATZE
PARAMETERS

The evolution of the optimized ansatz parameters from
Fig. 2 are shown in Fig. 4.

FIG. 4. The figure shows the evolution of the θi variational
parameter values from the ansatz Eq. (29) for the coupling
constants g ¼ 0.5, 0.85, 1, respectively.
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