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Abstract

We study the statistics of scalar perturbations in models of inflation with small and

rapid oscillations in the inflaton potential (resonant non-Gaussianity). We do so by deriving

the wavefunction Ψ[ζ(x)] non-perturbatively in ζ, but at first order in the amplitude of

the oscillations. The expression of the wavefunction of the universe (WFU) is explicit and

does not require solving partial differential equations. One finds qualitative deviations

from perturbation theory for |ζ| ≳ α−2, where α ≫ 1 is the number of oscillations per

Hubble time. Notably, the WFU exhibits distinct behaviours for negative and positive

values of ζ (troughs and peaks respectively). While corrections for ζ < 0 remain relatively

small, of the order of the oscillation amplitude, positive ζ yields substantial effects, growing

exponentially as eπα/2 in the limit of large ζ. This indicates that even minute oscillations

give large effects on the tail of the distribution.
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1 Introduction

It is widely believed that the initial conditions of our Universe were established during the period of

inflation. Over the past two decades, significant progress has been made in understanding how to

calculate the statistics of these initial perturbations. These calculations rely on in-in perturbation

theory. The use of perturbation theory appears to be particularly justified, as experiments have

placed strict constraints on non-Gaussianity, i.e. departure from a free theory. This demonstrates

that fluctuations during inflation are very weakly coupled. While typical fluctuations are indeed

weakly coupled, it turns out that perturbation theory is not appropriate to describe large, unlikely

fluctuations: non-linearities become sizeable when looking at large perturbations. To investigate such

improbable perturbations, one can turn to non-perturbative semiclassical methods [1].

Now, why should we concern ourselves with studying unlikely events that, by definition, are rarely

observed? One reason is conceptual. One is studying the most fundamental object of cosmology,

the wavefunction of the Universe (WFU), which contains the complete information about the initial

conditions. The possibility of studying it in a regime where perturbation theory fails is of the utmost

importance, even if it were not relevant experimentally. The tail of the probability distribution also

carries phenomenological significance: for instance the probability of generating a primordial black

hole depends on the probability distribution far away from its typical values. Moreover, there are

other inquiries where comprehensive knowledge of the WFU proves relevant, such as in the physics of

eternal inflation, which may be sensitive to the tail of the probability distribution [2–4]. Additionally,

one might be interested in the probability of non-perturbative transitions to other vacua. We will

also see that going beyond perturbation theory will also give new insights for the study of typical

fluctuations.

In reference [1] it was shown that the WFU in the semiclassical limit can be expressed as

Ψ[ζ̄(x)] ∼ eiS[ζcl]/ℏ . (1.1)

The WFU is a functional of the scalar perturbation ζ̄(x) at late times. (In this paper we do not consider

tensor perturbations and we focus on single-field models of inflation, so that ζ is the only variable.)

The action on the right-hand side of the equation above is evaluated on-shell, i.e. on the classical

trajectory ζcl that satisfies the boundary condition ζcl = ζ̄(x) at late times and the Bunch-Davies

condition at early times. The semiclassical approximation is valid when the action is large compared

with ℏ, and this occurs when the configuration ζ̄(x) is large, compared with a typical fluctuation. In

this limit, loop corrections can be neglected and the functional integral that gives the WFU reduces

to a single semiclassical configuration. Notice that we are keeping the full non-linear action and

not expanding in perturbation theory: the semiclassical expression (1.1) resums all non-linearities

that are enhanced by the large ζ̄. This method is general, but one still needs to solve a non-linear

partial differential equation (PDE) with prescribed boundary conditions and evaluate the action on

this classical solution. The solution of the PDE must be found numerically in general and this makes

the process somewhat cumbersome and obscures the physics. (Other studies that emphasize the whole

probability distribution of ζ, beyond the usual expansion in correlation functions, include [5–9].)
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In this paper we apply the method outlined above to a particular model of single-field inflation,

where one has small and rapid oscillations of the inflaton potential superimposed to a standard slow-

roll scenario. This model, sometimes dubbed resonant non-Gaussianity [10–14], can be motivated

by UV completions with monodromy [15]. The amplitude of the oscillations will be taken to be a

small parameter b̃. We will calculate the WFU non-perturbatively in ζ̄, but at first order in b̃. The

important simplification is that at first order in b̃ one does not need to solve any PDE: it is enough to

plug the solution in the absence of oscillations in the O(b̃) action. Another reason why it is interesting

to study the non-perturbative WFU in this class of models is related to the frequency of oscillations,

which is usually taken to be mush faster than Hubble, ω ∼ αH, α≫ 1. The rapidity of the oscillations

in the potential tells us that perturbation theory, which is based on expanding the potential in Taylor

series around a given point, will break down soon: one cannot hope to study in perturbation theory a

fluctuation that jumps from one minimum of the modulation to another. Indeed we will see that one

needs the full non-perturbative WFU for α2|ζ̄| ≳ 1. Eventually, notice that our approach takes into

account all interactions, including here resonant interactions inside the Hubble radius. This has to

be contrasted with stochastic inflation, which only resums nonlinearities outside the Hubble radius,

without taking into account non-Gaussianities at horizon crossing (see e.g. [16–19] and references

therein).

In Sec. 2 we derive a particularly useful form of the effective field theory (EFT) of inflation [20]

in the decoupling limit, when gravity perturbations can be neglected. This form, Eq. (2.7), retains

all non-linearities, it is valid for a generic potential and it has the advantage of making explicit the

conservation of ζ in the long wavelength limit. (In App. A we verify that this form of the action

is equivalent to others used in the literature, and in App. B we discuss corrections coming from the

mixing with gravity.) In Sec. 3 we focus on the case of periodic features in the potential and we derive

a closed-form expression for the WFU at first order in b̃, Eq. (3.21). We also discuss the regime of

validity of this formula, studying loop corrections (see also Apps. C and D). It turns out that loop

corrections are subdominant, in this particular model, even for typical fluctuations. The evaluation

of the WFU still requires an integral over space and time. We do this both numerically and using

a saddle-point approximation, valid in the regime α ≫ 1. These two methods are compared both

in the case of a monochromatic profile for ζ̄, Sec. 4, and for a more general spherically symmetric

configuration, Sec. 5. (Some details about the numerical analysis are deferred to App. E.)

The results show many new qualitative features that are absent in perturbation theory. First, the

WFU has a large asymmetry between peaks and troughs of ζ̄(x): the effect of the oscillations in the

potential is parametrically larger for peaks. Second, the modifications are not uniformly of order b̃: for

α2ζ̄ ≳ 1 one has very large effects, asymptotically going as eπα/2 for ζ̄ ≳ 1. Third, the WFU exhibits

oscillatory features as ζ̄ varies with frequency α. All these features may be understood in a quantum

mechanical toy model (see Sec. 6), with a periodic perturbations of the Hamiltonian. The periodic

modulation at high frequency induces transitions to excited states and these dominate completely the

tail of the wavefunction compared to the ground state wavefunction.

The study of the full WFU just began and many open questions remain as we discuss in the
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Conclusions, Sec. 7.

2 Decoupling limit of the EFT of Inflation

It is useful in many cases to study inflation in the limit ϵ → 0, keeping the power spectrum and

the other slow-roll parameters fixed. Since the power spectrum Pζ ∼ H2/(M2
Plϵ) is fixed, this limit

corresponds to inflation taking place at low energy, H → 0, or equivalently this is the limit in which

gravity decouples, MPl → ∞. Data are progressively pushing towards this limit: the observation of a

non-zero tilt together with the upper bounds on tensor modes imply a certain hierarchy ϵ≪ |η|. There
are various simplifications in this limit. First, the background geometry becomes exactly de Sitter.

Second, perturbations can be studied in the decoupling limit, i.e. without evaluating the perturbations

of the geometry. Technically this means that the metric remains unperturbed and one does not need

to solve the constraint equations for the lapse function N and the shift vectors N i. These variables

are indeed ϵ suppressed: in the limit MPl → ∞ one expects that the metric becomes non-dynamical.

The solutions of the constraints thus give terms in the action suppressed compared with the action of

the inflaton. The ϵ → 0 limit of slow-roll inflation is discussed in detail in [21], while the decoupling

limit is justified for typical fluctuations in the case of oscillatory features in [13]. In App. B, we derive

its regime of validity in a non-perturbative manner, as required for our analysis.

In this section we derive the action for the scalar perturbations π in the decoupling limit, using

the EFT of Inflation [20]. Throughout the paper, the background metric is assumed to be the flat

Friedmann-Robertson-Walker (FRW) metric: ds2 = −dt2 + a(t)2 dx2, where a(t) denotes the scale

factor. The EFT action for a scalar field with a minimal kinetic term is [20]

S =

∫
d4x

√−g
[
M2

Pl

2
R−M2

Pl(3H(t)2 + Ḣ(t)) +M2
PlḢ(t)g00

]
, (2.1)

where R is the 4d Ricci scalar, g00 is the (00)-component of gµν and MPl is the Planck mass. We

define the Hubble parameter as H(t) ≡ ȧ/a, where the dot is a time derivative. The action above is

formulated in the unitary gauge, having all the degrees of freedom inside the metric. The presence

of the scalar degree of freedom can be made manifest by performing a space-time dependent time

diffeomorphism and promoting the gauge parameter to a field −π(t,x). This is nothing but the usual

Stueckelberg trick: t→ t+ π(t,x), so that g00 then transforms as

g00 → (1 + π̇)2g00 + 2(1 + π̇)∂iπg
0i + gij∂iπ∂jπ ≃ −1− 2π̇ + (∂µπ)

2 . (2.2)

In the last step we took the decoupling limit and neglected metric perturbations; notice that this can

only be done after reintroducing π. Therefore, the action (2.1) becomes

S =

∫
d4x

√−g
[
M2

Pl

2
R−M2

Pl(3H(t+ π)2 + 2Ḣ(t+ π)) +M2
PlḢ(t+ π)(−2π̇ + (∂µπ)

2)

]
. (2.3)

The Einstein-Hilbert term, as expected, does not contain the field π because it is invariant under 4d

diffeomorphisms: since we are interested in the action for π we can disregard this term from now on
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and write the action as

S =

∫
d4x a3M2

Pl

[
− 3H(t+ π)2 − 2(1 + π̇)Ḣ(t+ π) + Ḣ(t+ π)(∂µπ)

2

]
. (2.4)

At linear order in π the action above vanishes after performing an integration by parts: this is a

consequence of the background equations of motion.

Let us now show that in the decoupling limit ϵ→ 0, the field π must be time-independent outside

the horizon. Indeed, when all modes are well outside the horizon, the relation between π and ζ

reads [13]

ζ(t,x) =

∫ t+T (t,x)

t
H(t′) dt′ , with π(t+ T (t,x),x) + T (t,x) = 0 , (2.5)

where the implicit equation defining T is found by working out the time-diffeomorphism mapping the

π to the ζ-gauge. 1 In the decoupling limit, one can consider the Hubble rate constant, H = H⋆,

hence ζ = H⋆T . From the time-independence of ζ outside the horizon, one deduces that T is also

constant. Inspecting the relationship between T and π in (2.5), one finds that this is realized only

with π constant, and hence with ζ = −H⋆π. It is also instructive to go beyond the decoupling limit,

in which case Eq. (2.5) gives ζ = −Hπ +Hππ̇ + Ḣπ2/2 +O(π3) up to quadratic order. This makes

it manifest that the time-dependence of H implies a time-dependence of π.

Although we are working in the decoupling limit, the time-independence of π is not manifest in the

action (2.4): polynomial terms in π naively induce an evolution outside the horizon. One can rewrite

the action in a more transparent form. We rewrite the second term on the RHS as −2 d[H(t+ π)]/ dt

and we integrate it by parts: up to terms that do not depend on π the action (2.4) becomes

S =

∫
d4x a(t)3M2

Pl

[
− 3(H(t+ π)−H(t))2 + Ḣ(t+ π)(∂µπ)

2

]
. (2.6)

The first term, (H(t + π) − H(t))2, scales as ∼ ϵ2 since it involves variations of H during inflation.

This is subdominant compared to the second term, Ḣ(t + π)(∂µπ)
2, which scales as ∼ ϵ. 2 Actually,

one is not allowed to retain the first term: as we discussed, solving the constraint equations for the

lapse function and the shift vector would give extra terms in the action that scale as ϵ2, i.e. of the same

order as the first term, see App. B. Therefore in the decoupling limit the action takes the simplified

form:

S =

∫
d4x a(t)3M2

PlḢ(t+ π)(∂µπ)
2 , (2.7)

where in a(t), one should consider for consistency a de Sitter evolution a(t) ∝ eH⋆t. Since the only

term in the action contains two derivatives, one can see explicitly that π = const is a solution of the

complete non-linear equation of motion. This action describes, in the limit ϵ→ 0, a model of inflation

1The spatial diffeomorphism that is required beyond linear order in π becomes negligible when all modes are well

outside the horizon, see [13] for an explicit proof in the context of resonant models.
2More precisely, (H(t+ π)−H(t))2 = (

∫ t+π

t
Ḣ(t′) dt′)2 ≤ Ḣ2

maxπ
2 ≤ ϵ2maxH

4
iniπ

2, where we used that H is decreasing

in the last step, shows that the first term is indeed negligible, inside the horizon, compared to the second one of order

ϵH2(∂µπ)
2. The impact outside the Hubble radius is discussed in App. B.
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with a minimal kinetic term and a generic potential that may include oscillations or features as we

are going to discuss momentarily. One can add extra terms in the EFT, like (g00 + 1)n or extrinsic

curvature terms. All these terms contain at least two derivatives on π and therefore do not affect the

argument for the conservation of π outside the horizon.

It is noteworthy that the action (2.7) is not formulated perturbatively: the nonlinearities that it

contains are expressed in a resummed manner, which is crucial when dealing with non-perturbative

phenomena and rare large fluctuations. Eventually, our action can be used for any single-clock model

of inflation, provided one is not interested in O(ϵ2) terms. If one is agnostic about the underlying

dynamics driving inflation, the dynamics of π can then be obtained simply by parametrizing the time

evolution of the Hubble rate during inflation, from which one deduces

π̈ +

[
3H⋆ +

Ḧ(t+ π)

Ḣ(t+ π)

]
π̇ − ∂2i π

a2
= − Ḧ(t+ π)

2Ḣ(t+ π)

[
π̇2 − (∂iπ)

2

a2

]
. (2.8)

Remarkably, this compact expression is the full non-linear equation of motion, encapsulating all non-

linearities, in any model of inflation involving a canonical single scalar field, in the decoupling limit.

The classical solutions of this equation, with suitable boundary conditions, can be used, following

[1], to analyse the WFU in the large ζ limit. The corresponding PDE, however, can only be solved

numerically. In this paper we concentrate on the case in which one has a feature, localised or periodic,

superimposed to a smooth slow-roll potential. In this case one has another expansion parameter, the

amplitude of the feature, and in this case we will be able to get analytic results. For concreteness we

focus on periodic features, i.e. the case of resonant non-Gaussianity.

3 Wavefunction of the universe for resonant features

3.1 Resonant features

In the following, we will compute the WFU when the time-dependence of the Hubble rate is assumed

to verify

Ḣ(t) = Ḣ⋆

[
1− b̃ cos(ωt+ δ)

]
, (3.1)

where all parameters Ḣ⋆, b̃, ω, δ are constant, and when treating the oscillatory part as a perturbation,

i.e. at first order in the parameter b̃. As we stressed, our method is readily applicable beyond these

assumptions, but this simple form will enable us to derive analytical results.

While the form (3.1) is a perfectly legitimate starting point from an EFT point of view, in this

section we explain that it is indeed a good approximation to the dynamics of the Hubble rate in

motivated models, and discuss its regime of validity in this context. Explicitly, let us consider models

of inflation driven by a scalar field with canonical kinetic term and potential

V (ϕ) = Vsr(ϕ) + Λ4 cos (ϕ/f) , (3.2)

where Vsr(ϕ) is a generic slow-roll potential, f is the analogue of the axion decay constant and Λ

is the scale that controls the amplitude of the oscillations of the potential. The specific model with
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Vsr(ϕ) = µ3ϕ has been studied in detail in [11] but we keep Vsr generic as in [12, 22]. We could also

allow Λ to depend on the scalar field in a slow-roll manner and results would equally hold, but we

consider Λ constant for simplicity.

The full equations governing the background dynamics are the standard ones:

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (3.3)

3H2M2
Pl =

ϕ̇2

2
+ V (ϕ) , (3.4)

implying −2M2
PlḢ = ϕ̇2. At zeroth order in the oscillatory component, Vsr is driving a standard phase

of slow-roll inflation, whose corresponding quantities ϕ0(t), H0(t) we denote with an index 0. Up to

first order in the oscillatory component (the precise expansion parameter will be made explicit below),

the time derivative of the Hubble rate reads −2M2
PlḢ = ϕ̇20 + 2ϕ̇0ϕ̇1, where quantities at first order

are denoted with an index 1, and one has

ϕ̈1 + 3H0ϕ̇1 + 3H1ϕ̇0 + V ′′
sr(ϕ0)ϕ1 =

Λ4

f
sin(ϕ0/f) . (3.5)

We are interested in the regime where the frequency of variation of the oscillatory component ϕ̇0/f

is large compared to the Hubble scale, i.e. where α ≡ |ϕ̇0|/(H0f) ≫ 1, a regime in which non-

Gaussianities are resonantly enhanced [10, 12, 22]. In this regime, the left-hand side is dominated by

the two-derivative term, with the approximate solution

ϕ1 = −Λ4f

ϕ̇20
sin(ϕ0/f) . (3.6)

Note that all quantities like H0, ϕ0 and α have a mild, slow-roll, time dependence with the usual

successive Hubble slow-roll parameters ϵ0 = −Ḣ0/H
2
0 = ϕ̇20/(2H

2
0M

2
Pl), η0 = ϵ̇0/(H0ϵ0), . . . much

smaller than unity. Hence one can check that (3.6) is indeed an approximate solution to (3.5): as the

sine term varies much more rapidly than ϕ̇0, ϕ̇1 scales like αH0ϕ1, and hence it is immediate that the

friction term 3H0ϕ̇1 and the mass term V ′′
sr(ϕ0)ϕ1 are negligible compared to ϕ̈1. Let us show that

3H1ϕ̇0 is also negligible. For this, note that (3.4) expanded at first order gives

6H0H1M
2
Pl = ϕ̇0ϕ̇1 + V ′

sr(ϕ0)ϕ1 + Λ4 cos(ϕ0/f) . (3.7)

The first and the last term on the right-hand side of (3.7) contribute to H1ϕ̇0/ϕ̈1 as ϵ0/α ≪ 1, and

the second one is even further suppressed by 1/α.

Now, using the solution (3.6), one finds the expression for Ḣ up to first order:

Ḣ = −ϵ0H2
0

[
1− 2Λ4

ϕ̇20
cos(ϕ0/f)

]
. (3.8)

That is, in addition to the slow-roll dependence Ḣ0 = −ϵ0H2
0 at zeroth order, Ḣ acquires a rapidly

varying oscillatory component. This is similar to the form (3.1) on which we will concentrate. It

corresponds to the approximation in which the slow-varying quantities, both ϵ0H
2
0 and the relative
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size of the oscillations 2Λ4/ϕ̇20, are considered as constant. More precisely, if one expands (3.8) around

a pivot time t⋆, then on time scales ∆t = t − t⋆ smaller than the scales of variation of the slow-roll

part, i.e. for H0∆t≪ (1/ϵ0(t⋆), 1/η0(t⋆)) and other combinations of inverse of slow-roll parameters at

higher-order, one can consider all quantities as constant except for ϕ0/f in the cosine term, which can

be approximated by (ϕ0(t⋆) + ϕ̇0(t⋆)(t− t⋆))/f . One then obtains the form (3.1) with

Ḣ⋆ = Ḣ0(t⋆) , ω = |ϕ̇0(t⋆)|/f ,
b̃ = 2Λ4/ϕ̇20(t⋆) , δ = sign(ϕ̇0(t⋆))ϕ0(t⋆)/f − ωt⋆ ,

(3.9)

and we chose ω > 0. 3 Note that another parameter b = Λ4

fV ′
sr(ϕ0(t⋆))

is used in references [11,12,22]. It

is simply related to our parameter b̃ ≃ 6|b|/α(t⋆) upon using the slow-roll equations. We prefer to use

b̃ since, as pointed out in [13], b does not have to be ≪ 1. Instead, b̃ < 1 is a necessary requirement

to satisfy the null energy condition, i.e. to ensure that Ḣ in (3.1) is always negative.

To summarize, the simple form (3.1) for Ḣ(t) on which we will concentrate is a good local approxi-

mation of the dynamics, in models of the type (3.2) when b̃≪ 1. As this is only a local approximation

in time, it means that one cannot consider arbitrarily large values of π in (2.7) to study the WFU for

rare large values of ζ = −Hπ. As we work in the decoupling limit in which ϵ0 ≪ η0, one finds that one

should restrict to values of |ζ| ≪ 1/η0.
4 However, we stress that this is not a theoretical limitation of

our method, which is valid for arbitrarily large values of |ζ| once the expansion history H(t) is known:

it simply illustrates that the extreme tail of the WFU is sensitive to the whole inflationary history. 5

3.2 Wavefunction of the universe

In this section we are going to express the wavefunction of the curvature perturbation ζ up to first

order in b̃ in the semiclassical limit, i.e. neglecting loops (we will discuss below the range of validity

of this approximation) in models with resonant features described by the expansion history (3.1). We

will pay attention to put it in a manifestly finite form so that it can be computed in the subsequent

sections using both numerical and analytical methods.

Before delving into the analysis, it is useful to compare our action (2.7) to the one used in the

literature to study resonant features. The “derivative” form of the action we are using is in fact

equivalent to the one that was used to calculate the n-point functions of ζ in these models (see

3From the approximate time-dependence of the scalar field we have derived, (ϕ(t) − ϕ0(t⋆)) sign(ϕ̇0(t⋆)) ≃ ωf(t −
t⋆)− 1

2
b̃f sin(ωt+ δ), one obtains the link between the Goldstone boson π and the fluctuation of the scalar field φ(t) =

ϕ(t+π)−ϕ(t), namely±φ/f = ωπ− 1
2
b̃[sin(ω(t+π)+δ)−sin(ωt+δ)]. With ζ = −H⋆π outside the horizon in the decoupling

limit that we consider, this gives the fully nonlinear relationship between φ and the observed curvature perturbation ζ.

The probability density function of ζ can then be deduced from the one of φ: P(ζ) = P(φ(ζ))αf [1− 1
2
b̃ cos(ωt+ δ−αζ)].

However, this is of little practical use. Considering that φ soon after Hubble crossing is Gaussian, as one would do in

stochastic inflation in slow-roll models, would lead to completely wrong results. Instead, our approach takes into account

the resonant interactions inside the Hubble radius (actually all interactions), directly at the level of the Goldstone boson,

which enables us to derive P(ζ) straight away.

4More generally, one should also require |ζ| ≪
[
n!Ḣ0H

n
0

(
dn+1H0
dtn+1

)−1
]1/n

(n ≥ 1).

5For completeness, we show in App. B that neglecting the mixing with gravity requires |ζ| ≪ 1/
√
ϵα3.
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Eq. (24) of [13] or Eq. (4.1) of [22]), up to integrations by parts. We explicitly show this in App. A.

The advantage of using our action is that the conservation of π is manifest, i.e. the equation of motion

admits a constant solution. On the other hand, in the form of the action used in the literature, the

conservation of π is not manifest because the action contains non-linear self-interactions πn. This

“polynomial” form has also the disadvantage that boundary terms must be kept in order to compute

correlation functions, see App. A for more details.

Specifying Eq. (2.7) to the time dependence (3.1), our action of interest reads

S =

∫
d4x a(t)3M2

PlḢ⋆

[
1− b̃ cos(ωt+ ωπ + δ)

]
(∂µπ)

2 , (3.10)

where remember that one should write a(t) ∝ eH⋆t for consistency. Let us now proceed with the

calculation of the WFU. Starting from the action (3.10) one can write down the classical non-linear

equation of motion of π, Eq. (2.8), and solve such a differential equation with boundary conditions

at η → −∞ and η → 0, where η is the conformal time such that a(η) = −1/(H⋆η). Then, one

can compute the WFU in the semiclassical limit, which is essentially the exponential of the on-shell

action [1]. This procedure is quite involved since it requires solving a non-linear partial differential

equation for π. Since we are interested in computing the WFU at linear order in b̃, we will not need

to perform this complicated task. Indeed, it is sufficient to calculate the action (3.10) on the “free”

solution of π —the one with b̃ = 0. This comes from the fact that

S[π = π0 + b̃π1] = S[π0] + b̃

∫
d4xπ1

(
δL
δπ

) ∣∣∣∣
π=π0,b̃=0

+O(b̃2) , (3.11)

where we explicitly factored out b̃ in the expansion π = π0 + b̃π1 + . . . and where, by definition,

π0 satisfies the free equation of motion, i.e. (δL/δπ)
∣∣
π=π0,b̃=0

= 0. As we see, the equality S[π =

π0 + b̃π1] = S[π0] + O(b̃2) is a generic fact that can be used in any model with a small expansion

parameter, and is not tied to the specific form (3.10). 6

Let us now define ζ ≡ −H⋆π0. The on-shell action as a function of the late-time value ζ̄(x) of the

curvature perturbation becomes

S[ζ̄] =

∫
dη d3x

1

2η2Pζ

[
1− b̃ cos

(
α (log(η/η⋆) + ζ)− δ̃

)][
ζ ′2 − (∂iζ)

2

]
, (3.13)

6For the sake of completeness, let us verify it in this case. The action (3.10) up to first order in b̃ reads

S[π0 + bπ1] ≃ S0[π0]− 2b̃

∫
dη d3x

M2
PlḢ⋆

H2
⋆η2

[
π′
0π

′
1 − ∂iπ0∂iπ1

]
+ b̃

∫
dη d3x

M2
PlḢ⋆

H2
⋆η2

[
π′2
0 − (∂iπ0)

2

]
cos(ωt+ ωπ0 + δ) , (3.12)

where a prime denotes a derivative with respect to the conformal time η, the first term is defined by S0[π0] ≡
−
∫

dη d3x
M2

PlḢ⋆

H2
⋆η

2

[
π′2
0 − (∂iπ0)

2
]
, and π0 verifies the linear equation of motion π′′

0 − (2/η)π′
0 − ∂2

i π0 = 0. Perform-

ing an integration by parts in the second term on the RHS of (3.12) thus gives rise to the equation of motion of π0 (plus

boundary terms, which vanish since we are imposing π1 = 0 at early and late times). Thus, the terms that contain π1

vanish using the free equation of motion of π0, and only the first and last term remain, whose sum is nothing else than

the full action, evaluated on the free solution π0. Hence, the on-shell action at first order in b̃ can indeed be evaluated

by using the free solution π0.
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where we have defined Pζ ≡ H4
⋆/(2M

2
Pl|Ḣ⋆|), δ̃ ≡ δ + ωt⋆ is simply sign(ϕ̇0(t⋆))ϕ0(t⋆)/f when (3.1)

comes from the scalar field model (3.2), and α ≡ ω/H⋆ (this naturally coincides with the previously

defined α in the scalar field model, simply evaluated at t⋆). Note one thing: ζ inside the integrand

does not coincide with the curvature perturbation at all times, but it is simply a rescaled version of

the free π0. However, as we have seen in Sec. 2, −H⋆π does agree with the curvature perturbation at

late times, and we also impose that π1 vanishes at the end of inflation, so that ζ ≡ −H⋆π0 approaches

the curvature perturbation field ζ̄. Hence, Eq. (3.13) gives the on-shell action as a function of the

late-time ζ̄(x).

Late-time divergences and Euclidean action: Let us study the divergences of the action (3.13) at

late times, in order to express its physical part in a manifestly finite form. Note that ζ(η,x) is defined

as the unique solution of the partial differential equation ζ ′′ − (2/η)ζ ′ − ∂2i ζ = 0 that asymptotes to

the configuration ζ̄(x) at the end of inflation, and with suitable behaviour at past infinity. Its Fourier

transform ζ(η,k) =
∫
d3x ζ(η,x)e−ik·x reads

ζ(η,k) = ζ̄(k)
(1− ikη)eikη

(1− ikηf)eikηf
, (3.14)

where ζ̄(k) denotes the Fourier transform of the late-time configuration, k = |k|, ηf is an arbitrary

late-time regulator (which will be sent to 0). We have selected only the eikη solution corresponding

to the usual Bunch-Davies vacuum. It corresponds to deforming the contour of the time integration

η → η(1− iϵ) in (3.13). Notice that ζ∗(η,k) ̸= ζ(η,−k), where the star denotes complex conjugation:

ζ(η,x) is not real, i.e. it does not correspond to any physical configuration of the field, but it simply

gives a configuration that dominates the path integral in the semiclassical limit.

Let us take ηf = 0 and consider the limit η → 0

ζ(η,k) ≃ ζ̄(k)

[
1 +

1

2
k2η2 +

i

3
k3η3 +O(η4)

]
. (3.15)

Then, using the inverse Fourier transform ζ(η,x) =
∫

d3k
(2π)3

ζ(η,k)eik·x, we arrive at

ζ(η,x) ≃
[
ζ̄(x)− 1

2
η2∇2ζ̄(x) +

i

3
η3∇3ζ̄(x) +O(η4)

]
, (3.16)

where we defined the inverse Fourier transform of k3ζ̄(k) as the non-local operator ∇3ζ̄(x). From

the expression above, the only term in the free action that diverges at late time is (∂iζ̄)
2/η2. This

divergent term, as pointed out in [23] (see also [1]), is real and thus it gives a pure phase in the WFU

that depends on the late-time regulator ηf . This phase does not contribute to the modulus squared

of the WFU and so it does not matter if we are interested in observables related to ζ. (The phase

of the WFU is relevant if one is interested in the momentum conjugate to ζ, which however decays

exponentially at late times.) Since it is irrelevant for late-time observables, in order to deal with finite

quantities, we can subtract this divergence from the action.
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Apart from the free term, in (3.13) there is a divergent contribution at order b̃ as well. Using

(3.16) one obtains

cos
(
α (log(η/η⋆) + ζ)− δ̃

)
= cos

(
α
(
log(η/η⋆) + ζ̄

)
− δ̃
)

+
1

2
αη2 sin

(
α
(
log(η/η⋆) + ζ̄

)
− δ̃
)
∇2ζ̄ + . . . (3.17)

The second term on the right-hand side gives a finite contribution in the action since the η2 factor

cancels the same factor at the denominator of Eq. (3.13). The divergent term in the action is thus

cos
(
α
(
log(η/η⋆) + ζ̄

)
− δ̃
)
(∂iζ̄)

2/η2. This again contributes to a pure phase in the WFU that can be

dropped. Therefore, the finite action at first order in b̃ is

∆S = ∆S0 + b̃∆S1 . (3.18)

Here we define

∆S0 ≡
∫

dη d3x
1

2η2Pζ

[
ζ ′2 − (∂iζ)

2 + (∂iζ̄)
2
]
, (3.19)

and

∆S1 ≡ −
∫

dη d3x
1

2η2Pζ

{[
ζ ′2 − (∂iζ)

2
]
cos
(
α (log(η/η⋆) + ζ)− δ̃

)
+ (∂iζ̄)

2 cos
(
α
(
log(η/η⋆) + ζ̄

)
− δ̃
)}

, (3.20)

where, as above, the subscripts 0 and 1 refer to the actions at zeroth and first order in b̃ respectively.

∆S0 gives the Gaussian wavefunction, while ∆S1 gives all the deviations from Gaussianity of the

probability distribution of ζ̄.

It is convenient to rotate to Euclidean time, where ζ is real and exponentially decaying at early

times, instead of oscillating. Since the action (3.18) is analytic everywhere in the upper-left quadrant

of the complex η plane, and the integrand decays sufficiently fast at infinity, one can indeed perform

a rotation to Euclidean space: η → −iτ where τ denotes the Euclidean time. Notice that it was

necessary to make the integrals in (3.19)–(3.20) convergent at η → 0 before doing the rotation. 7 We

write the exponent of the WFU as i∆S1 = −∆SE,1, where we define ∆SE,1 as the Euclidean action.

After the analytical continuation to Euclidean time, (3.20) leads to

∆SE,1[ζ̄] =

∫ 0

−∞
dτ

∫
d3x

1

2τ2Pζ

{[
ζ ′2 + (∂iζ)

2
]
cos
(
α (log(τ/η⋆) + ζ)− δ̃ − iαπ/2

)
−(∂iζ̄)

2 cos
(
α
(
log(τ/η⋆) + ζ̄

)
− δ̃ − iαπ/2

)}
,

(3.21)

7Some more details about the rotation. ζ is an analytic function of η and also the logarithm is analytic in the quadrant

of interest, except at the origin. Since also the cosine is analytic, one has only to worry about the arc at infinity and

the origin. Regarding the arc at infinity, notice that the imaginary part of the logarithm is bounded in the quadrant

of interest: this makes the modulus of the cosine bounded and the convergence is guaranteed by the 1/η2 term (notice

that ζ, but not ζ̄, is exponentially decaying at infinity). Regarding the origin: one can neglect the integration along the

infinitesimal quarter of the circle close to the origin since the modulus of the integrand is bounded.
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where a prime now refers to a derivative with respect to τ , and explicitly the real variable ζ(τ,x) =∫
d3k
(2π)3

ζ̄(k)eik·x(1− kτ)ekτ . Note that ζ(τ,x) is real, but in the action one has an imaginary constant

inside the cosine as a consequence of the Euclidean rotation. Therefore ∆SE,1 is complex. In the rest

of the paper we will evaluate the action (3.21) using analytical and numerical methods.

To understand the behaviour of the WFU, it is useful to fix a certain “shape” for ζ̄(x), say a

spherically symmetric Gaussian, and study the WFU as a function of the overall size: in this way one

has a function of a single variable that we can call ζ̄ with an abuse of notation. One expects that

the result for small ζ̄ is the one of perturbation theory, while things get non-perturbative for large ζ̄.

It is interesting to notice that the WFU as a function of this single variable ζ̄ has no singularity in

the whole complex ζ̄ plane. This is evident from the explicit expression Eq. (3.21), since the cosine

is an entire function. This means that the series in ζ̄, which is the perturbation-theory series, has

infinite radius of convergence. The non-perturbative results we are going to present are the sum of

the perturbative series.

Our results can be applied to the general case of bounded features in H(t). In situations where

Ḣ(t) = Ḣ0 + b̃Ḣ1(t), with the feature assumed to be controlled by the small parameter b̃, most of the

steps of the previous section still hold, so that we can write down the leading correction to the on-shell

action. If we define the dimensionless function h(t) ≡ Ḣ1(t)/Ḣ0, then the correction to the action is

∆S1[ζ̄] =

∫
dη d3x

1

2η2Pζ

{[
ζ ′2 − (∂iζ)

2
]
h (t− ζ/H0) + (∂iζ̄)

2h
(
t− ζ̄/H0

)}
, (3.22)

where t must be understood as function of the conformal time η, we subtracted the divergent contribu-

tion at late times, assuming that h is bounded in this limit, and we replaced π with ζ as before. Formula

(3.22) represents one of the main results of our paper. It can be used to compute the WFU in models

with a small feature in H(t), at first order in the amplitude of the feature, but non-perturbatively in

ζ̄. Note that the rotation to Euclidean time τ can however be more subtle and needs to be studied

case-by-case: the function h could feature singularities in the complex plane.

3.3 Regime of validity and relationship with perturbation theory

Let us study the regime of validity of the semiclassical result of Eq. (3.21). In the methodology

employed in [1], the semiclassical approximation proves reliable for the tails of Ψ, specifically when

|ζ̄| ≫ P
1/2
ζ . On the tails, tree-level diagrams are enhanced relative to loops: at a given order in

perturbation theory, tree-level diagrams are enhanced compared to loops by the amplitude |ζ̄| of the
external legs. This conclusion remains true in the presence of features. However, in this case loops

are negligible compared with tree-diagrams even for typical values of ζ̄, as we will show momentarily.

Unless specified, the whole discussion is a first order in b̃.

Scaling of tree-level diagrams: Let us study the scaling of the tree-level Witten diagrams. These

correspond to the expansion in powers of ζ of the on-shell action of Eq. (3.13). We first determine

the scaling of the vertex and then the α dependence of the time integral. To obtain the scaling of the
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ζ̄ζ̄

α
1
2 b̃ ζ̄2/Pζ

+

ζ̄ζ̄ ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)/Pζ

+

ζ̄ζ̄ ζ̄ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)2/Pζ

+ … +
. . .

ζ̄ζ̄ . . .ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)n−2/Pζ

ζ̄ζ̄

α
1
2 b̃ ζ̄2 (α2Pζ)/Pζ

+

ζ̄ζ̄ ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄) (α2Pζ)/Pζ

+

ζ̄ζ̄ ζ̄ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)2(α2Pζ)/Pζ

+ … +
. . .

ζ̄ζ̄ . . .ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)n−2(α2Pζ)/Pζ

Figure 1 Witten diagrams contributing to first order in b̃, with corresponding scalings with α, ζ̄ and Pζ , including

the effect of the resonance. Top: Tree-level diagrams. The first diagram on the left corresponds to the correction

to the power spectrum. The second is the contribution from the cubic part of the action and so on. Bottom:

One-loop diagrams at first order in b̃. At any given order in ζ̄, one-loop diagrams are suppressed by α2Pζ .

vertex, we need to Taylor-expand the action in powers of ζ. The vertex with n powers of ζ is obtained

by expanding the cosine function at order n − 2, see Eq. (D.2): this gives αn−2. The time integral

involves an oscillating function of η that goes as either cos(α log(−η)) or sin(α log(−η)), depending on

whether n is even or odd. At order n the structure of the integral is

1

n!

∫ 0

−∞

dη

η2
cos(α log(−η)) eiktη

n∏
i=1

(1− ikiη) ∼
α≫1

kt
n2n

√
ααn−2 , (3.23)

with kt ≡ ∑n
i=1 ki, and where we considered all ki to be comparable. The integral is estimated in

saddle-point approximation with the saddle at −ktηs ∼ α (8). (The estimate is the same for n odd,

when cosine is replaced by sine.) Including the scaling of the vertex discussed above, the tree-level

Witten diagrams go as
√
αα2(n−2). The Gaussian action is of order ζ̄2: compared to this the nth term

in the action contains an additional ζ̄n−2. Putting all together the scaling of the tree-level Witten

diagram is b̃
√
α ζ̄2(α2ζ̄)n−2/Pζ as shown in the first line of Fig. 1. This estimate just reproduces what

obtained from the explicit calculations of the n-point correlation functions [22]. From this estimate,

the expansion in powers of ζ̄ needs to be resummed when α2|ζ̄| ≳ 1: in this case the expansion in

powers does not make any sense and one has to rely on the full non-perturbative result.

It is quite straightforward to analyse the structure of tree-level diagrams at higher order in b̃. Tree

level diagrams will give for the WFU

Ψ ∼ e
− 1

Pζ
[ζ̄2+b̃∆SE,1(ζ̄,α)+b̃

2∆SE,2(ζ̄,α)+O(b̃3)]
. (3.24)

(For tree diagrams, each new vertex gives 1/Pζ from the normalization of the action, which is com-

pensated by an extra propagator ∝ Pζ .) Since we are expanding in b̃, the ∆SE,1(ζ̄, α) term must

8The saddle point ηs moves to later and later times when increasing n, since kt scales with n if all the external

momenta are of the same order. We will come back to this point in the next sections, when evaluating the time integral

in the WFU using a saddle-point approximation at large α and ζ̄.
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be small compared with the Gaussian part. However notice that this condition is compatible with

b̃∆SE,1(ζ̄, α) ≳ 1: in this case one cannot expand the term ∆S1 in the exponential.

Scaling of loop diagrams: Let us now discuss loop diagrams at O(b̃), see Fig. 1. First, we need to

make a distinction between loops at the level of the WFU and of correlators. Once the WFU is obtained

at one loop, in order to obtain correlation functions one still needs to perform an integration over ζ̄(x)

(i.e. apply the Born rule). This average over late-time field configurations gives extra contributions,

which we dub “boundary” loops. Of course the final result must coincide with the direct evaluation

of the correlator using the in-in calculation. We verify this in App. C for the simple case of λϕ4 in

de Sitter for the equal-time two-point function at one loop. The effect of the boundary loop combines

with the WFU loop in such a way to give the loop of the in-in propagator.

Let us focus, for the time being, on the WFU and estimate the size of loop corrections in the

resonant scenario. In App. D we show that one-loop diagrams are suppressed by α2Pζ compared

to tree-level contributions with the same number of external legs, see Fig. 1. 9 Let us now try to

understand the suppression of the one-loop graphs. First notice that, because of the loop, the vertex

has two more ζ’s than in the tree-level diagram with the same number of external legs. (For instance,

the one-loop graph with two external legs, contains the four-point vertex of Eq. (D.1).). This gives

two extra powers of α times Pζ . There are no extra powers of α from the loop: the bulk-to-bulk

propagator is zero at late times, which physically says loop particles are not resonantly produced. 10

Indeed, the integral over the physical momentum kp of the bulk-to-bulk propagator that describes

the loop does not depend on η (in the limit ηf → 0, see Eq. (D.6)), so that the integration over η

remains the same as at tree level, Eq. (3.23). We conclude that one-loop diagrams at order b̃ scale

as the tree-level diagrams with an additional factor α2Pζ (the exception is the one-point correlation

function, which has no tree-level analogue). It is straightforward to see that with ℓ loops at first order

in b̃ one gets a factor (α2Pζ)
ℓ. Loops are thus small if α2Pζ ≪ 1. As we will discuss below, the validity

of the EFT will give a bound which is more stringent than this, so that loops are automatically tiny.

We saw above that the expansion parameter of the tree-level diagrams is α2ζ̄. This implies that

even for typical fluctuations, ζ̄ ∼ P
1/2
ζ , tree-level diagrams, which are suppressed by powers of α2P

1/2
ζ ,

are more important than loop corrections, which are suppressed by powers of α2Pζ . This is at variance

with the general case of [1], where loop diagrams can be neglected compared to the tree-level ones

only for unlikely fluctuations, on the tail of the probability distribution.

What happens at the level of correlators? In this case the effect of loops, at first order in b̃, vanishes

exactly (see the related discussion in [24]). This is reminiscent of what happens for loops of massless

particles in S-matrix calculations, when the loop does not depend on the external momenta. Indeed

one can check that the in-in loops vanish exactly in dimensional regularization. This does not happen

for the Witten loops in the WFU as discussed in App. D: one remains with physical logarithms that

9There also exists a one-loop diagram with one external leg. This tadpole contribution is a spacetime constant whose

effect is to redefine the background solution.
10In terms of the canonical scalar ϕ of (3.2), fluctuations inside the loop have a size δϕ ∼ H, while external particles

have δϕ ∼ αH, since they are produced well inside the horizon when their frequency is ∼ αH.
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cannot be removed by counterterms. The difference between the in-in and wavefunction calculation is

particularly evident in Minkowski, as explained in [24]. For the in-in case the loop reduces to evaluating

the in-in propagator at coincident points: this gives a divergent constant which can be reabsorbed by

local counter-terms. For the WFU calculation the propagator has a different boundary condition: it

vanishes on the late-time boundary. Therefore, its contribution cannot be a space-time constant as

the boundary conditions break translational invariance. In momentum space this corresponds to a

momentum inflow inside the loop, and ultimately leads to log contributions that cannot be removed

by counter-terms. (We thank Enrico Pajer for enlightening discussions about this.)

In conclusion, loops in the WFU at order b̃ are suppressed by α2Pζ ≪ 1, while they are exactly

zero at the level of correlation functions.

Regime of validity of the EFT: We saw above that loop corrections are small if α2Pζ ≪ 1 and

that the tree-level action needs to be resummed if α2ζ̄ ≳ 1. One may wonder whether it is possible to

be in a regime in which one needs resummation even for typical fluctuations α2P
1/2
ζ ≳ 1 (notice that

this is compatible with small loop corrections). In this regime one would not be allowed to describe

the non-Gaussian corrections to the typical fluctuations in terms of bispectrum, trispectrum and so

on: all the n-point functions should be considered at once.

Using the definitions of α and Pζ , the condition for requiring resummation for typical fluctuations

can be written in terms of ω and f (see Sec. 3.1) and is equivalent to ω/(4πf) ≳ 1. (Here, we are

also taking into account the factors of π originating from the momentum integrals in the correlators,

see [13].) One would naively think that the unitarity cutoff of the theory is Λcutoff ∼ 4πf , so that

the regime ω/(4πf) ≳ 1 lies beyond the regime of validity of the EFT. However, the conclusion is

too quick: for b̃ = 0 the theory is free, so there must be some b̃ dependence in the calculation of the

unitarity cut-off. This calculation has been done recently in [25] and the result is

Λcutoff = 4πf log1/2
(
f4

Λ4

)
∼ 4πf log1/2

(
1

b̃Pζα4

)
∼ 4πf log1/2

(
b̃−1
)
. (3.25)

In the same reference [25] an explicit UV completion with new states entering at a scale parametrically

larger than 4πf is studied. It is therefore possible to have a situation where the resummation of the

tree-level diagrams is necessary for typical fluctuations: this contrasts the usual expectation that

deviations from Gaussianity should be encoded only in the three- and four-point functions. We defer

a detailed study of this interesting case to a future publication.

4 Single Fourier mode analysis

The WFU as a function of the boundary value ζ̄(x) is given by ∆SE,1, Eq. (3.21). To answer a specific

physical question, one should integrate over the configurations of ζ̄(x) with a weight given by their

probability, i.e. the modulus squared of the WFU. In order to understand how the WFU behaves for

large fluctuations, when non-linearities become relevant, one can fix a configuration of ζ̄(x) up to the

overall amplitude and study the WFU as a function of this amplitude. In this way one can study a
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function of a single variable, instead of a functional of the whole ζ̄(x). In this section we take ζ̄ to be

a single Fourier mode and postpone to Sec. 5 the study of more general configurations. This Single

Fourier Mode approximation (SFM) is similar to the ordinary-differential equation analysis done in

Sec. 4.3 of [1].

In Sec. 4.1 we explain that for α ≫ 1 the integral over τ is amenable of the saddle-point approx-

imation. In Sec. 4.2 we study the regime when non-linearities become important α2|ζ̄| ≳ 1, while in

Sec. 4.3 we focus on the extreme tail of the distribution |ζ̄| ≫ 1, when the saddle-point analysis can

be completed analytically. All analytical results are checked numerically in both Secs. 4.2 and 4.3.

4.1 Saddle-point approximation

Let us consider the spherically symmetric profile for ζ at late times given by ζ̄(r) = ζ̄ sin(kr)/(kr),

where ζ̄ is the amplitude at late times and k = |k| is a fixed momentum scale. This profile, in

momentum space, has support only for momenta equal to k, hence it can be considered as a single

Fourier mode. Due to this property, its free time evolution is given by

ζ(τ, r) =

[
ζ̄ sin(kr)

kr

]
(1− kτ)ekτ . (4.1)

Notice that the mode function above is not the same as the one used in Sec. 4.3 of [1] because of

the radial dependence of the amplitude. At late times, when kτ → 0, one can see that the mode

function exhibits a different behaviours between positive and negative values of ζ̄ (in the absence of

the denominator kr a change of sign in ζ̄ can be compensated by a radial shift).

With the reason above, we consider the function (4.1) as a radial single Fourier mode in position

space, and refer to it as the SFM simplification. Notice that the profile we are considering is in real

space, so that ζ remains dimensionless.

The fact that in Eq. (4.1) the amplitude depends on r makes our computation of the action (3.21)

more complicated and less illuminating since the radial dependence cannot be separated from the time

dependence, e.g. the cosine function contains both τ and r dependences. However, since our main

focus here is to capture the main features of the WFU of the full radial profile case (Sec. 5) as a function

of ζ̄, we are going to neglect the radial dependence of the profile (4.1), i.e. ζ(τ, r) ≃ ζ̄(1 − kτ)ekτ ,

throughout this section. Therefore, we do not need to perform the integral over r to obtain the on-shell

action and we are able to capture the main behaviour of the WFU encoded in the amplitude ζ̄.

Let us now proceed with the SFM simplification, using the mode function ζ(τ, r) ≃ ζ̄(1− kτ)ekτ .

We define the variable X(τ) as

X(τ) ≡ ζ ′2 + k2ζ2 = ζ̄2k2 [1− 2kτ(1− kτ)] e2kτ , (4.2)

so that X̄ ≡ X(0) = k2ζ̄2. Using (4.1) and (4.2), the action (3.21) then becomes

∆SE,1 =
4π

Pζk3

∫ 0

−∞
dτ

1

2τ2

{
X(τ) cos

(
α log (τ/η⋆)− δ̃ − iαπ/2 + αζ

)
− X̄ cos

(
α log (τ/η⋆)− δ̃ − iαπ/2 + αζ̄

)}
,

(4.3)
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where we have replaced (∂iζ)
2 with k2ζ2 and the spatial-volume integral with 4πk−3. Then, we

rewrite the action above in an exponential form, which is convenient for one to use the saddle-point

approximation. We thus obtain

∆SE,1 =
π

Pζ

∑
σ=±1

∫ 0

−∞
dτ

eσαπ/2

τ2

{
X(τ) exp (iσα log (−τ) + iσαζ)

− X̄ exp
(
iσα log (−τ) + iσαζ̄

)}
e−iσ(δ̃+α log(−kη⋆)) , (4.4)

where we have changed variable to τ → kτ and re-defined X → X/k2, so that τ and X(τ) that appear

now in the integral are dimensionless. Naively, one expects that the integral above is dominated by

the contributions with σ = 1, compared to the ones with σ = −1. This is only the case for ζ̄ > 0.

However, we will find that in the case where ζ̄ < 0 the two contributions are of the same order, so

that one needs to take into account the terms with σ = −1 as well.

Let us pause to comment on the dependence on the momentum scale k of the late-time profile. If

we rescale k → k/λ, then the free solution in real space goes to ζ(x, τ) → ζ(λx, λτ). One can then

rescale the coordinates τ and x to τ ′ = λτ , x′ = λx in Eq. (3.21). In doing so, the only change in

the action is due to the explicit τ dependence inside the cosine. Hence, a change in k is degenerate

with a change in η⋆. This is explicit in Eq. (4.4), since k appears only in the very last term, in the

combination kη⋆. The action is periodic in α log(−η⋆) (the original scale-invariance of de Sitter is

broken by the oscillations to a discrete subgroup) and therefore the result will be periodic in α log k.

This is all we can say in terms of symmetries. Notice, however, that when one of the two terms σ = ±1

dominates in Eq. (4.4), then the k (or η⋆) dependence reduces to a sinusoidal modulation of the (real

part of the) action.

We can write (4.4) in a more a compact form as

∆SE,1 =
π

Pζ

∑
σ=±1

eiσψeσ
απ
2 Iσ , (4.5)

where ψ ≡ −δ̃ − α log(−kη⋆) and the integral Iσ is defined by

Iσ ≡
∫ 0

−∞
dτ
(
eΦσ − eΨσ

)
, (4.6)

with the exponents Φσ and Ψσ being

Φσ ≡ −(2− iσα) log(−τ) + log (X(τ)) + iσαζ ,

Ψσ ≡ −(2− iσα) log(−τ) + log
(
X̄
)
+ iσαζ̄ .

(4.7)

The form (4.6) is particularly useful for an asymptotic expansion when α is much larger than unity.

It should be noted that the integral Iσ depends on both α and the late-time value ζ̄. Below, we are

going to evaluate the integral (4.6) using the saddle-point approximation, which is valid for α≫ 1.

Saddle-point equation: Here we are going to find the relevant saddle points for the evaluation of the

18



integral (4.6). Before proceeding, we need to be careful in applying the saddle-point approximation.

Indeed, Eq. (4.6) contains two exponential terms, each of which diverges at late times. Notice that

the first exponential term, eΦσ , contains the relevant physical information about the dynamics of ζ,

whereas the second term, eΨσ , has the only purpose of making the integral finite. Additionally, one

cannot evaluate the two integrals in saddle point separately, as the second term has no saddle point

solutions (solutions of ∂τΨσ = 0) since it only depends on log(−τ). This would suggest that a proper

treatment to find the saddle point when both terms contribute equally to the integral is required.

However, we will argue now that the contribution from eΨσ can be neglected and one can just focus

on the saddle point of eΦσ .

The argument is the following. Suppose the saddle point of Φσ is away from the origin τ = 0.

This means that the integral will be accumulating its value around this saddle. On the other hand,

the contribution of Ψσ will not grow around this specific point, as there is no saddle for Ψσ, but only

at later times, where however there will be a cancellation with Φσ as to make the integral finite. This

suggests that indeed Ψσ can be neglected. 11

We thus disregard the contribution of Ψσ: we will see later that this is indeed in agreement with the

numerical analysis. Let us proceed with the saddle-point analysis for the term Φσ. The saddle-point

equation for Φσ is given by

∂τΦσ = −2− iσα

τ
+
X ′(τ)

X(τ)
+ iσαζ ′ = 0 . (4.8)

Generally, the solutions of the above equation lie in the complex plane. Here we want to look for the

solutions with Re τ < 0, so that the wavemode (4.1) decays at large |τ |. 12 Unfortunately, Eq. (4.8)

does not admit a closed-form solution; therefore, one needs to either solve the equation numerically or

perform some additional expansion, e.g. |ζ̄| ≫ 1, such that an analytic solution can be found. Indeed,

as we will show below, in the limit |ζ̄| ≫ 1 we find an analytical late-time saddle point.

Let us comment on the possibility of having a saddle point at late times (k|τ | ≪ 1). The motivation

comes from the perturbative calculation. In order to compute the connected n-point correlation

functions ⟨πn⟩ in the perturbative regime, one encounters the integral of the product of the mode

functions over the conformal time η. (See App. A.20 for a computation of ⟨π3⟩.) Such an integral can

be done analytically and the result is given in terms of incomplete Gamma functions. However, in

the large α limit, one can use the saddle-point approximation to evaluate the integral over η. Indeed,

it was explicitly shown in [22] that the saddle-point is located at ktη = −α, where kt is the total

external momentum. For small n, this saddle is at early times. However, this is not the case when

the number of external legs is much larger than unity and becomes comparable with α. Indeed, if

all the n external momenta are of the same order, then kt ∼ nk and the saddle point schematically

becomes kη ∼ −α/n. This observation therefore motivates us to look for a late-time saddle point of

11A similar situation happens when computing a single WFU coefficient at tree level. Although the integrands diverge

at late times, with the divergence being just a phase, in the saddle-point estimate the divergent piece is lost.
12More properly, we require that the path of integration can be smoothly deformed from the initial domain to meet

the saddle point. In this sense, we can allow for saddles with Re τ > 0 as long as the overall integral remains convergent.
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the integral (4.6) at least for sufficiently large ζ̄. 13

4.2 α2|ζ̄| ≳ 1: intermediate saddle point

Let us recall the scaling of the tree-level action at first order in b̃. From Fig. 1 and the discussion below

Eq. (3.23), we concluded that when α2ζ̄ ∼ 1 all the tree-level n-point functions are equally important

and need to be resummed. We will distinguish this case from the far-tail of the distribution, |ζ̄| ≫ 1.

The solution to Eq. (4.8) cannot be found analytically in the regime where α2ζ̄ ∼ 1. We then solve

Eq. (4.8) numerically in two cases: ζ̄ > 0 and ζ̄ < 0.

At fixed α and ζ̄ the saddle-point equation has always multiple solutions in the τ complex plane. 14

However, only some are relevant: when we deform the contour of integration, we only reach a sub-set

of all the saddles. Moreover, depending on the value of α, we can have different saddles being relevant.

In particular, we find discrete values of α, at approximatively α = 4πN with N = 1, 2, . . ., at which

the behaviour of the saddles changes.

Notice that when ζ̄ = 0 we have a unique saddle, located at τs = −iασ/2. This saddle corresponds
with the perturbative saddle point used to evaluate the correction to the power spectrum (this comes

from the fact that we are setting ζ̄ = 0 inside the cosine term in the action). We therefore interpret this

saddle as the perturbative one. We can then analyse how the relevant saddles evolve as |ζ̄| increases.
First, we start with the case ζ̄ > 0. When α < 4π (but larger than 1 so that we can apply the

saddle-point approximation), the perturbative saddle point evolves towards late times. Moreover, we

notice the presence of an additional saddle which starts from ∞ when ζ̄ = 0 and that at large ζ̄

moves to the origin (its imaginary part is equal and opposite to the one of the (a) branch). The

evolution of the saddles is shown in the top-left panel of Fig. 2. Additionally, one finds more solutions

at larger values of |τ |, both with positive and negative imaginary parts (again, these are related to

the Lambert-W function). In this case, we find that only the evolved perturbative saddle is relevant

in the integral.

The situation becomes more intricate when we move to larger α’s. For instance, in the approximate

window 4π < α < 8π, we notice that the perturbative saddle does not move to the origin anymore

but instead moves towards kτs → −2πi −∞. Instead, a different saddle point becomes relevant and

moves towards the origin. This is the branch (b) in the top-right panel of Fig. 2. Notice that again,

this branch at late times has a “conjugate” saddle, the branch (c). The figure also shows an additional

branch (d), that is however not relevant. For larger values of α we find that this periodic behaviour

continues. For example, when 8π < α < 12π we still have a perturbative branch moving to infinity

and a branch moving to the origin, with an additional branch in between. For larger αs the number

of branches in between increases.

13Although it is not clear how the limits of large n and large ζ̄ are related, it is reasonable to expect that the saddle

points for large ζ̄ case follow the one of large n limit.
14We can intuitively see how these branches arise by inspecting the saddle-point equation (4.8) at large τ . In this

limit, the equation is solved by the Lambert-W function, which is known to have infinite branches labelled by a positive

integer.
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Figure 2 Location of the solutions of the saddle-point equation (4.8) in the complex-τ plane when varying ζ̄.

The arrows in the curves point to the direction of increasing |ζ̄|. The light-red line represents the branch cut of

Φσ due to the log(−τ) term. The zeros of X(τ), located at τ = e±iπ/4/
√
2, are indicated by the two red crosses.

Top Left: saddles for ζ̄ > 0 and α < 4π. The perturbative saddle (a) starts at τs = −iασ/2 when ζ̄ = 0 and

moves towards late times (the origin). The branch (b) instead moves from infinity towards the origin, becoming

the complex-conjugate of (a). Top Right: saddles for ζ̄ > 0 and 4π < α < 8π. The perturbative saddle (a)

moves to infinity whilst the branch (b) moves towards the origin, dominating the action at large ζ̄. The branches

(c) and (d) are instead irrelevant. Bottom centre: saddles for ζ̄ < 0 and α < 4π. The perturbative branch

(a) moves towards infinity whilst the branch (b) moves towards late times and becomes dominant. The branch

(c) is irrelevant. In its evolution it merges with one of the zeros of X(τ) before moving to the origin.

Finally, we can briefly mention what happens when ζ̄ < 0 in the case α < 4π. As opposed to

the positive-ζ̄ case, even for these values of α the perturbative saddle moves to infinity. Also, an

additional branch moves towards late times as |ζ̄| increases (together with its complex-conjugate, as

before). This is the branch (b) in the bottom panel of Fig. 2. Notice that in this case the branch

(b) approaches the origin from a different angle of the complex plane compared to the previous cases.

We will see this more in detail when evaluating this late-times saddle analytically later on. For larger

values of α we find a similar pattern as in the positive case, with new branches interposing between

the perturbative and the late-times branches.
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Figure 3 Action with the SFM simplification as a function of ζ̄ in the regime of α2ζ̄ ≳ 1 for different values of α.

Solid lines are obtained by numerically integrating Eq. (4.3). Dashed lines are obtained using the saddle-point

approximation, solving numerically Eq. (4.8) for the perturbative branch. Left: case of negative ζ̄. Right:

case of positive ζ̄.

Despite the complex structure of the saddles, we will show by direct comparison with the numerical

integration that for small α2|ζ̄| the integral is well approximated by the perturbative saddle. On the

other hand, for α2|ζ̄| ≫ 1 the branch that is moving towards late times dominates.

Once the relevant saddle-point solutions τs are identified numerically, we can evaluate the action

(4.4) on saddle. Specifically, the integral Iσ of Eq. (4.6) is evaluated as (here we neglect Ψσ)

Iσ ≃
√

2π

−∂2τ Φσ
eΦσ
∣∣
τs
. (4.9)

Finally, we can evaluate the action (4.5) using the integral we found above. Note that if we have more

than one relevant saddle, we also need to sum over them.

Apart from the saddle-point approximation presented above, we now compute the action (4.3)

numerically. First, we limit the range of integration up to kτf = −10−6 (the lower limit kτi is chosen

large enough in modulus so to reach numerical convergence). Then, we use the free solution of ζ(τ)

given by Eq. (4.1) and plug it back into the action (4.3). We fix α = 6, 7, 8 and 9, and we compute

the integral over τ numerically, varying the values of ζ̄ from −1 to 1.

The results for the cases with α = 6, 7, 8 and 9 are shown in Fig. 3 (both the full numerical

integration of Eq. (4.3) and the saddle-point approximation). The range of ζ̄ is chosen to highlight

the region where α2ζ̄ ∼ 1: here perturbation theory stops being reliable. To obtain the saddle-point

approximation in this range for ζ̄ we only included the branch (a) of Fig. 2 (the perturbative branch)

for both signs of ζ̄, while other branches are found to be subdominant here. As one expects, when

α2|ζ̄| ≪ 1 the saddle point is similar to the one of perturbation theory and the action ∆SE,1 is

dominated by the quadratic term (the correction at order b̃ to the power-spectrum). In fact, this can

be explicitly seen in Fig. 4 where the action ∆SE,1 is symmetric around the vertical axis for α2|ζ̄| ≪ 1.

For consistency, in the regime where α2|ζ̄| ≪ 1 we check that summing the perturbative tree-level
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Figure 4 Action with the SFM simplification as a function of ζ̄ in the regime of small α2ζ̄. In this limit we

recover the perturbation-theory expansion: the curves are well approximated by a polynomial in ζ̄.

diagrams at O(b̃) (see Eq. (4.16) of [22]) reproduces our results in Fig. 4. 15 As |ζ̄| increases, the
action becomes asymmetric due to the presence of odd contributions in ζ̄, starting from cubic terms.

As we approach the non-perturbative regime, the asymmetry is magnified as it can be noted from the

different scales in the two plots of Fig. 3. It is, in fact, interesting to point out that even in the regime

where α2|ζ̄| ≳ 1 our results in Fig. 3 match with the summation of perturbative results, which indicates

the fact that our non-perturbative WFU resums the perturbative tree-level graphs at first order in b̃,

as discussed below Eq. (3.21). Additionally, we find that the exponential growth for ζ̄ > 0 in Fig. 3

can also be realized in the summation of perturbative series, see Sec 4.4 for more detailed discussions.

Finally, as a check, we confirm that the full numerical integration and the saddle-point approximation

are in remarkably good agreement even for these moderate values of α. We did not choose larger

values of α since the numerical integration becomes more challenging, while the qualitative features

are unaffected.

4.3 |ζ̄| ≫ 1: late-time saddle point

Given the observation above, let us focus on the saddle point at late times. We will confirm that the

contributions from the early-time saddle point are subdominant. Expanding ζ and X(τ) for τ ≪ 1

gives

ζ ≃ ζ̄

(
1− τ2

2
− τ3

3
+O(τ4)

)
,

X(τ) ≃ ζ̄2
(
1 +

4

3
τ3 +O(τ4)

)
.

(4.10)

15It should be noted that the comparison of the two results in the perturbative regime was carried out using the SFM

simplification, otherwise one needs to perform the integrals over all momenta or fix the late-time profile ζ̄(x) as we will

study in detail in Sec. 5.
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The leading behaviour of the saddle point can be captured by keeping the terms up to first order in

τ in Eq. (4.8). We obtain

∂τΦσ ≃ −2− iσα

τ
− iσαζ̄τ = 0 . (4.11)

Note that the term X ′(τ)/X(τ) starts at second order in τ ; therefore, it is negligible compared to the

ones we kept. The solution τs to Eq. (4.11) is given by

τ2s ≃ 1

ζ̄

(
1 +

2iσ

α

)
, (4.12)

where the second term in the parenthesis is assumed to be small, since we are taking α large (it is

anyway useful to keep it). Let us assume, for the moment, that the subleading term is negligible, so

that τ2s ≃ 1/ζ̄. For ζ̄ > 0 we have τs ≃ −ζ̄−1/2, while the second root has Re τ > 0. The positive root

will not be encountered as we deform the contour of integration (it corresponds to the “conjugate”

branch showed in green in Fig. 2). On the other hand, for ζ̄ < 0 both solutions are close to the

imaginary axis. We find that, depending on σ, the relevant saddle is approximatively τs ≃ −iσ|ζ̄|−1/2.

This is a striking result, which indicates that when ζ̄ < 0 the saddle point moves from Euclidean to

Lorentzian time. This finding is consistent with the discussion of the previous subsection and with the

numerical saddles of Fig. 2. We will come back to this point later in Sec. 4.3.2. Let us now evaluate

the integral (4.6).

4.3.1 ζ̄ > 0 case

From Eq. (4.6), we compute the exponent Φσ on the saddle point (4.12). Recall that we are neglecting

the contribution from Ψσ. Since we are dealing with a late-time saddle point, then the relevant

terms in the exponent Φσ are just ∼ αζ and α log(−τ), while the rest can be evaluated at late times,

e.g. X(τ) ∼ X̄. Therefore, in this case we obtain

eΦσ |τs ≃ e ζ̄3
(
1 +

2iσ

α

)iσα/2−1

e−iασ/2eiσα(ζ̄−log
√
ζ̄) . (4.13)

where we have kept the terms in Φσ up to O(τ2). We see that the presence of the amplitude ζ̄ affects

both the overall scaling (∼ ζ̄3) and the oscillating behaviour through a phase ∼ σα(ζ̄ − log
√
ζ̄). This

non-trivial dependence on ζ̄ can be checked against the full numerical integral.

Apart from the exponent, we also need to evaluate the prefactor, which contains the second deriva-

tive of Φσ with respect to τ , evaluated at the saddle point. Straightforwardly, taking an additional

derivative on Eq. (4.11) with respect to τ and evaluating such an expression on the saddle point (4.12)

we find

∂2τΦσ|τs ≃ −2iσαζ̄ . (4.14)

Note that this result holds for both ζ̄ > 0 and ζ̄ < 0.

Using (4.13) and (4.14) we therefore obtain

Iσ ≃
√

2π

−∂2τΦσ
eΦσ
∣∣
τs

=

√
πζ̄5

α

(
1 +

2iσ

α

)iσα/2−1

e1−iασ/2−iπσ/4eiσα(ζ̄−log
√
ζ̄) . (4.15)
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From the result above we see that the two signs for σ do not affect the overall magnitude of Iσ. On

the other hand, looking at Eq. (4.5) we then see that the dominant contribution corresponds to σ = 1,

which is due to the exponential factor ∼ eπα/2, for large α. Therefore, the dominant contribution

(σ = 1) to the action ∆SE,1 is given by

∆SE,1 ≃
π

Pζ

√
πζ̄5

α
eπα/2eiα(ζ̄−log

√
ζ̄)eiψ̃ , (ζ̄ > 0) , (4.16)

where we have defined ψ̃ ≡ ψ−α/2−π/4. Note that to obtain (4.16) we approximated the parenthesis

in Eq. (4.15) with e−1. Moreover, it should be noted that in principle, there are terms proportional to

additional inverse powers of α which are generated by subleading terms in the saddle-point expansion,

so we cannot trust them at this level.

Before moving to the negative ζ̄ case, let us point out that one can obtain a better approximation

for ∆SE,1 at intermediate values of α and |ζ̄|, by solving the saddle-point equation (4.8) numerically.

This requires choosing the relevant saddle for the integral, as discussed previously. For large ζ̄ we find

that this saddle is approximately the late-times one, Eq. (4.12). We checked that by doing so, the

saddle-point approximation matches the full numerical result with a good precision, even at moderate

values for α and |ζ̄|.

4.3.2 ζ̄ < 0 case

This case is parametrically different from the previous case. As we already obtained, the late-times

saddle in this case is imaginary, see Eq. (4.12). Among the two saddles (obtained when taking the

square root in Eq. (4.12)), we identify the relevant one to be 16

τs =
−iσ√
|ζ̄|

(
1 +

2iσ

α

)1/2

. (4.17)

There are two cases one needs to consider, depending on σ = ±1. When σ = 1, the saddle point

(4.17) corresponds to a Lorentzian saddle point: τs ∼ −i/
√

|ζ̄| for large α. Therefore, in this case the

exponential factor eπα/2 in Eq. (4.5) gets cancelled. Essentially, this cancellation occurs because one

rotates back to the Lorentzian time. Instead, when σ = −1 we have τs ∼ i/
√
|ζ̄| for large α. This

saddle point is still imaginary, but it now lies on the positive imaginary axis of the complex τ -plane.

In this case we obtain an additional contribution proportional to e−πα/2 to the action. Therefore, the

contribution from σ = −1 is negligible for large α. Repeating the same steps as in the ζ̄ > 0 case and

using the saddle point (4.17), we obtain

∆SE,1 ≃ − π

Pζ

√
π|ζ̄|5
α

eiα(ζ̄−log
√

|ζ̄|)eiφ̃ , (ζ̄ < 0) , (4.18)

where we defined φ̃ ≡ ψ−α/2+π/4. The main difference between Eqs. (4.16) and (4.18) is the factor

eπα/2, which enhances the positive case. As already mentioned in the ζ̄ > 0 case, one can improve

16To check this, we performed a Thimble decomposition of the original contour of integration (see e.g. [26,27] for more

details on this procedure). Moreover, this choice of saddles is in agreement with the numerical results.
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Figure 5 Numerical results for the SFM action, Eq. (4.3), for different values of α. Here we are using δ̃ = 0

and kη⋆ = −1. Note the difference between the sizes of the action for positive and negative values of ζ̄.

the matching between the results of the saddle-point approximation and the numerical method, by

solving the saddle-point equation numerically.

In order to explicitly see the behaviour of the results (4.16) and (4.18), we compute the action

(4.3) numerically in the limit |ζ̄| ≫ 1. Following the same procedure described in Sec. 4.2, in Fig. 5 we

show the real part of ∆SE,1 as a function of ζ̄ for α = 5, 6, 7 respectively. Such numerical results are

obtained in the range ζ̄ ∈ [−15, 15]. Note that it is straightforward to verify that the imaginary part

of ∆SE,1 behaves in the same way as the real part. In the plot we have multiplied the action by Pζ

and we have set δ̃ = 0 and kη⋆ = −1, giving ψ = 0. Let us comment on the features of our numerical

results and their similarities to the saddle-point results (4.16) and (4.18) below. We leave the actual

comparison between the results of these two methods to Sec. 5.2.

As we already mentioned in the saddle-point calculation, the most striking feature of these results

is the stark asymmetry between positive and negative ζ̄. Positive values of ζ̄ lead to larger contri-

butions to the action, exponentially enhanced by α. On the other hand, for negative ζ̄ the action

simply scales as b̃|ζ̄|5/2/√α: larger α reduces the value of the action. We note however that ∆SE,1

is oscillatory, hence the enhancement might not directly lead to large asymmetries when computing

specific observables.

Another crucial feature is the presence of oscillations in ζ̄. As we were expecting from the saddle

calculation, these oscillations have indeed frequency α. In addition to this main frequency, there is

also a modulation ∼ eiα log
√
ζ̄ , see Eqs. (4.16) and (4.18). Although it is difficult to notice by eye, we

checked that this feature leads to a better agreement between numerical and analytical results.

We will see in the next section that these main features also apply beyond the SFM simplification,

for different late-time profiles for ζ̄.

4.4 Comments on the results

In this subsection we comment on the properties of the WFU we computed using the SFM approxi-

mation in Secs. 4.2 and 4.3.

As already explained in the previous section, the asymmetry of the WFU between positive and
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negative values of ζ̄ is manifest in the regime α2|ζ̄| ≫ 1. More explicitly, for positive ζ̄, Eq. (4.16)

contains the exponential factor eπα/2, unlike the WFU for negative ζ̄, Eq. (4.18). We notice that the

combination b̃ eπα/2 can exceed unity, unless the parameter b̃ is chosen to be catastrophically small.

One expects that perturbation theory in b̃ breaks down when the O(b̃) action becomes of order of the

Gaussian one; see also the discussion below Eq. (3.24). In order to be more quantitative one should

look at the action at O(b̃2), which requires to evaluate the solution at O(b̃).

Another interesting point to stress is the onset of the asymmetry, which starts to appear in the

intermediate regime, α2|ζ̄| ∼ 1. Here, there is an approximate exponential growth on the positive-ζ̄

side (see right panel of Fig. 3), while on the negative side the results remain small. One way to

understand this phenomenon is that, for ζ̄ > 0, the saddle point moves away from the imaginary axis

(see the top-left panel of Fig. 2), so that the factor eπα/2 tends to dominate the integral Iσ. One

can give a very rough estimate of the growth of the action considering the exponent of the WFU as

an infinite sum over tree-level Witten diagrams (or equivalently over wavefunction coefficients, which

are related to correlators). The terms of order n in the series scale as (α2ζ̄)n/(n!)2, where we have

used Eq. (3.23) and we have kept only terms that contain the power n. Given this result, we naively

expect that by maximizing such a series over n we obtain nmax ∼ αζ̄1/2, which yields b̃ eαζ̄
1/2

on the

positive-ζ̄ side. Note that we assume no cancellations among different terms in the series. Notice that

for α2|ζ̄| ≫ 1, the action is dominated by contributions around nmax, with negligible contributions

from the two- and three-point functions. On the negative side instead, we expect large cancellations

among the terms of the series so to keep the overall sum small (similarly to what happens in alternating

series, such as the cosine function, as opposed to the series for a real exponential).

We will expand on these considerations in an analogue quantum mechanical model in Sec. 6, where

a similar behaviour of the wavefunction can be realized and the series coefficients can be investigated

directly.

5 Spherical profile analysis

In the previous section we analysed the WFU using a single Fourier mode. Here we are going to

analyse the WFU assuming that the late-time profile ζ̄(x), and therefore the whole solution ζ(τ,x)

is spherically symmetric, i.e. function of the single variable r. We also assume that the profile ζ̄(r) is

localised in space, as motivated for instance by primordial black hole formation, with an extremum

at the center of coordinates r = 0. We denote this extremum value as ζ̄ ≡ ζ̄(r = 0). The choice of

spherical symmetry is motivated by simplicity and also by the expectation that non-spherical profile

are less likely: this is indeed the case in the Gaussian case. As in Sec. 4.1, we will use the saddle-point

approximation to evaluate the action ∆SE,1. Then, we will numerically compute the same action and

compare the two approaches.

27



5.1 Saddle-point approximation

Here we are going to approximate the action (3.21) using the saddle-point calculation for large α and

large |ζ̄|. In fact, the main obstacle in performing analytic and numerical estimates of the action is

that we do not have an explicit analytic form for ζ(τ, r) for a generic late-time profile. 17 However,

thanks to the intuition gained in Sec. 4.1, we expect the final result to be dominated by a late-time

saddle where we will be able to write down approximate expressions for ζ(τ, r) when |τ | ≪ 1.

Following the same procedure as done in Sec. 4.1, we rescale the spacetime coordinates with the

typical spatial momentum k0 of the late-time profile ζ̄(r). From the action (3.21) we obtain

∆SE,1 =
π

Pζ

∑
σ=±1

∫ 0

−∞

dτ

τ2

∫ ∞

0
dr r2 eσαπ/2

{
X(τ, r) exp (iσα log (−τ) + iσαζ(τ, r))

− X̄(r) exp
(
iσα log (−τ) + iσαζ̄(r)

)}
e−iσ(δ̃+α log(−k0η⋆)) ,

where we have defined X(τ, r) ≡ (∂τζ(τ, r))
2 + (∂rζ(τ, r))

2 and X̄(r) ≡ X(0, r) = (∂r ζ̄)
2. As in

Eq. (4.5), we write down the action above in a more compact form:

∆SE,1 =
π

Pζ

∑
σ=±1

eiσψeσ
απ
2 Iσ , (5.1)

where ψ ≡ −δ̃ − α log(−k0η⋆) and the integral Iσ is defined by

Iσ ≡
∫ 0

−∞
dτ

∫ ∞

0
dr
(
eΦσ − eΨσ

)
, (5.2)

with the exponents Φσ and Ψσ being

Φσ ≡ −(2− iσα) log(−τ) + 2 log(r) + log (X(τ, r)) + iσαζ(τ, r) ,

Ψσ ≡ −(2− iσα) log(−τ) + 2 log(r) + log
(
X̄(r)

)
+ iσαζ̄(r) .

(5.3)

As in Sec. 4, the term with Ψσ can be neglected in the saddle-point expansion. This is due to the fact

that Ψσ gives non-negligible contributions only at τ → 0 in which the cancellation between Φσ and

Ψσ happens. Therefore, around the saddle point the integral (5.2) is dominated by the expansion of

Φσ. In what follows, we will focus on the Φσ term. Note that, as we are going to show, the saddle

point over the integral in r is close to the peak of the late-time profile.

We now look for the saddle both in τ and in r: the saddle-point equations are

∂τΦσ = −2− iσα

τ
+
X ′(τ, r)

X(τ, r)
+ iσαζ ′(τ, r) = 0 ,

∂rΦσ =
2

r
+
∂rX(τ, r)

X(τ, r)
+ iσα ∂rζ(τ, r) = 0 .

(5.4)

This system of equations can be solved numerically for a generic late-time profile ζ̄(r) with amplitude

ζ̄. However, for large |ζ̄| we can find an analytic solution, corresponding to a late-time location of

17For a Gaussian profile, ζ(τ, r) can be written in terms of exponential integrals but manipulations of such expressions

are cumbersome.
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the saddle point. For simplicity, we concentrate on this in what follows, although there would be

no obstacle to study the intermediate regime α2ζ̄ ≳ 1 with a numerical solution to the saddle-point

equations, as we did in Sec. 4.1 for a single Fourier mode.

Late-time saddle: We assume the profile to be such that ∂r ζ̄(r)|r=0 = 0 and ∂2r ζ̄(r)|r=0 ̸= 0,

i.e. the origin can be either a maximum or a minimum. Then, using the late-time expansion (3.16),

in Euclidean time, we obtain

ζ(τ, r) ≃ ζ̄ +

(
r2

6
+
τ2

2

)
∇2ζ̄

∣∣∣∣
r=0

+ . . . , (5.5)

where we have used the fact that around r = 0 the late-time profile ζ̄(r) can be expanded as

ζ̄(r) = ζ̄ +
1

6
r2∇2ζ̄

∣∣∣∣
r=0

+ . . . . (5.6)

Note that for a spherically symmetric profile we have ∇2ζ̄ = 3∂2r ζ̄.
18 For later convenience, we will

drop the evaluation symbol, |r=0, and denote as ∇2ζ̄ the Laplacian of ζ̄(r) computed at r = 0.

Let us now determine the saddle point for the integrals over τ and r. Using the expansion (5.5) in

(5.4) the saddle point of the τ -integral is

τ2s ≃ 1

−∇2ζ̄

(
1 +

2iσ

α

)
, (5.7)

and the saddle point of the r-integral is

r2s ≃
−6iσ

α(−∇2ζ̄)
, (5.8)

where we have self-consistently assumed that |rs| ≪ |τs| ≪ 1 and we have neglected the term

∂rX(τ, r)/X(τ, r) in Eq. (5.4), which we can check in retrospect to be consistent with the assumption

α2ζ̄ ≫ 1. The saddle-point location (5.7) reduces to the one of the previous section, Eq. (4.12), when

ζ̄(r) is treated as a single Fourier mode. Below, we are going to evaluate the action ∆SE,1 on the

saddle point (5.7)–(5.8) in the two cases −∇2ζ̄ > 0 and −∇2ζ̄ < 0, corresponding respectively to a

local maximum and a local minimum of the profile.

5.1.1 Local maximum

Here we are interested in the case −∇2ζ̄ > 0. Let us compute the exponent Φσ evaluated on the

saddle point (5.7)–(5.8). There are four contributions in Eq. (5.3) giving

−(2− iσα) log(−τs) ≃ −1 +

(
1− iσα

2

)
log(|∇2ζ̄|) , 2 log(rs) = log

[ −6iσ

α|∇2ζ̄|

]
,

log(X(τs, rs)) ≃ log(|∇2ζ̄|) , iσζ(τs, rs) ≃ iσαζ̄ − iσα

2
,

(5.9)

18For a profile with ∇2ζ̄|r=0 = 0, one should go to next order in the expansion.
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where we have taken the limit α≫ 1 and we have used

(∂τζ)
2
∣∣
τs,rs

≃
(
1 +

2iσ

α

)
|∇2ζ̄| , (∂rζ)

2|τs,rs ≃
2iσ

3α
|∇2ζ̄| . (5.10)

Combining all the pieces we get

eΦσ |τs,rs ≃ −6iσ

eα
|∇2ζ̄| eiσα(ζ̄−log(

√
|∇2ζ̄|))e−iσα/2 . (5.11)

Moreover, in order to evaluate the integral (5.2), it is necessary to compute the Hessian matrix of Φσ

evaluated at the saddle point. We find

∂2τΦσ
∣∣
τs,rs

≃ 2iσα∇2ζ̄ , ∂2rΦσ
∣∣
τs,rs

≃ 2

3
iσα∇2ζ̄ , (5.12)

while the off-diagonal term is negligible at this order. Note that the expression (5.12) is valid for

both −∇2ζ̄ > 0 and −∇2ζ̄ < 0. Therefore, using Eqs. (5.11) and (5.12), the integral (5.2) can be

approximated as

Iσ ≃ 2π√
det (−∂µ∂νΦσ)

∣∣
τs,rs

eΦσ
∣∣
τs,rs

(5.13)

≃ −6πσ
√
3

α2e
eiσα(ζ̄−log(

√
|∇2ζ̄|))e−iσα/2 , (5.14)

where we have kept the leading order for large α and ζ̄. We note that the factor∇2ζ̄ in the determinant

of the Hessian matrix cancels with the one in (5.11). Looking at Eq. (5.1), we see that the action is

dominated by the terms with σ = 1, since there is no parametric difference at the level of Iσ, similarly

to the case of the SFM analysis. We therefore obtain the action at first order in b̃,

∆SE,1 ≃ −6π2

Pζ

√
3

α2e
eπα/2eiσα(ζ̄−log(

√
|∇2ζ̄|))eiχ , (local maximum) , (5.15)

where χ ≡ ψ − α/2. Let us comment on the features of the result above. First, we have a different

overall scaling with ∇2ζ̄, compared with Eq. (4.16). This is simply due to the fact that in this analysis

we are dealing with the two dimensional integral, instead of one dimensional integral as in the SFM

simplification. Thus, it leads to the fact that ∆SE,1 above does not grow as ζ̄ increases. Apart from

this, we also have a different scaling in α, compared with Eq. (4.16). Moreover, it is useful to point

out that our result (5.15) cannot be obtained by simple rescaling of ζ, as in [1] where the on-shell

action is simply proportional to an arbitrary function of the expansion parameter. Essentially, this

is due to the resonant effect, resulting in a non-trivial dependence of α in the action ∆SE,1, e.g. the

enhancement factor eπα/2. Finally, we see that the action (5.15) behaves as an oscillating function in

both ζ̄ and log(
√

|∇2ζ̄|), with frequency α, which cannot be captured by any order in perturbation

theory.
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5.1.2 Local minimum

Here we are interested in the −∇2ζ̄ < 0 case, which is similar to the SFM simplication with ζ̄ < 0.

As explained in Sec. 4.3.2, the role of τs changes depending on the sign of ∇2ζ̄. We find that in this

case the relevant saddle point of the τ -integral is

τs =
−iσ√
∇2ζ̄

(
1 +

2iσ

α

)1/2

. (5.16)

We see that for σ = 1 this saddle point lies on the negative imaginary axis in the limit α ≫ 1. This

implies that the factor eπα/2 in (5.1) will disappear (essentially one rotates back to the Lorentzian

time). On the other hand, for σ = −1 the saddle point then lies on positive imaginary axis, which

gives another factor e−πα/2 to the action. Therefore, the dominant piece in ∆SE,1 in this case is given

by the term with σ = 1. Following the same procedure as before, we obtain

∆SE,1 ≃
6π2

Pζ

√
3

α2e
eiσα(ζ̄−log(

√
|∇2ζ̄|))eiχ , (local minimum) . (5.17)

It is important to point out that there is no issue of selecting the right saddle point of the r-integral

because at leading order the dependence on this variable is only through r2. The action above indicates

that the overall scalings in α and ζ̄ are different from the one of the single-mode simplification,

Eq. (4.18). We also see that the result (5.17) is similar to (5.15) in the sense that they share the

same oscillatory behaviour as a function of ζ̄ − log(
√
|∇2ζ̄|), a behaviour of the WFU that cannot be

captured by perturbative computations. Moreover, the fact that this result (5.17) does not contain the

enhancement factor eπα/2 implies that the amplitude of the WFU is much smaller for a local minimum

than for a local maximum, resulting in an interesting asymmetry between the two situations.

In the next subsection we will compute the action ∆SE,1 numerically and compare it to the analytic

results, Eqs. (5.15) and (5.17).

5.2 Numerical results

In this section we evaluate the WFU using the numerical integration of Eq. (5.1). For concreteness,

we focus on a Gaussian profile at late times:

ζ̄(r) = ζ̄ e−(k0r)2 , (5.18)

where k0 is a given momentum scale and ζ̄ denotes the peak value of this Gaussian profile. Note

that, for this profile we have ∇2ζ̄ = −6k20 ζ̄ at r = 0. Therefore, we have ∇2ζ̄ < 0 for positive ζ̄,

while ∇2ζ̄ > 0 for negative ζ̄. We refer the reader to App. E where we explain in detail our numerical

method used to compute the action (5.1) with the late-time configuration (5.18). Below, we report our

numerical results and compare them with the results obtained from the saddle-point approximation

in Sec. 5.1.

The results for ∆SE,1 are obtained by combining ∆S1,early (Eq. (E.7)) and ∆S1,late (Eq. (E.5)) with

the numerical integral performed in the interval {τmin, rmin} to {τmax, rmax}, as explained in App. E.
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Figure 6 Numerical results for the real part of the on-shell action with Gaussian profile (5.18) for different

values of α as a function of ζ̄ (positive). We use δ̃ = 0 and k0η⋆ = −2. The numerical integration is performed

using the FFT method. For each curve the shaded area represents the estimated numerical error, obtained by

comparing the results from the FFT and the PDE methods (see App. E for details).

Following the analytical result in saddle point obtained in Sec. 5.1, we discuss separately the cases

ζ̄ < 0 and ζ̄ > 0 (corresponding to ∇2ζ̄ > 0 and ∇2ζ̄ < 0, respectively). In particular, we focus on

evaluating the real part of the resonant action ∆SE,1 as a function of ζ̄ for several values of α (it is

straightforward to verify that the imaginary part of ∆SE,1 qualitatively behaves in the same way as

the real part). To have a better control on the numerical errors, we focus on moderate values of α

and ζ̄: larger values require higher spatial resolution in the integration.

Fig. 6 shows our numerical results for ζ̄ > 0 (∇2ζ̄ < 0) for several values of α, with k0η⋆ = −2 and

δ̃. In the plot, the blue, orange and green lines correspond to α = 4, 5 and 6 respectively. We can

see that the real part of the action exhibits oscillatory features with frequency α. Moreover, for ζ̄ > 0

the amplitude of the action grows exponentially with α. To assess the convergence of our numerical

implementations, we compare the results obtained using the FFT and the PDE methods with similar

resolutions (see App. E for details). The difference between the two methods gives an estimate of the

numerical error, which is represented by the shaded area around the numerical curves in Fig. 6. We

find that the results from the two methods coincide with small numerical errors. Furthermore, we

also compare the numerical integration with the saddle-point approximation in Fig. 7. Actually, it is

important to note that the comparison is carried out with the numerical solution of the saddle-point

equations (5.4). 19 This is due to the fact that the analytic formula (5.15) is not expected to be very

accurate since we are dealing with moderate values for ζ̄. In Fig. 7 we see that the agreement improves

as ζ̄ increases, where the saddle-point approximation is expected to become more accurate. The same

behaviour is expected to happen for higher values of α’s.

19To obtain this numerical solution, we include very high-order terms in the late-time expansion (3.16) and use the

analytic solutions Eqs. (5.7) and (5.8) as initial guesses. The action is then obtained by evaluating Eq. (5.13) on the

numerical saddle point. For ζ̄ ∼ O(10) the approximate analytic solution (5.15) differs from the numerically-evaluated

saddle by ∼ 30%. We checked that the difference decreases for higher ζ̄. This is in agreement with the expectation that

corrections to Eq. (5.15) scale as ∼ 1/|ζ̄|1/2.
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Figure 7 Comparison between the numerical integration (orange) of the action and the numerical saddle-point

approximation for the integral (black dashed) as a function of ζ̄ for α = 6. The other parameters are fixed

as in Fig. 6. The saddle-point curve obtained from a late-time expansion is truncated at small ζ̄, where the

expansion stops being reliable. The shaded orange area represents the difference between the results obtained

from the FFT and the PDE methods.

Let us move to the case where ζ̄ < 0 (∇2ζ̄ > 0). In this case the numerical integration becomes

considerably more challenging. The reason can be explained as follows. As already discussed in

Sec. 5.1.2, the resonant action is not exponentially enhanced in α since the saddle point τs becomes

Lorentzian. Then, the fact that the integrand in (3.21) contains exponentially large factors, eπα/2,

implies that there should be cancellations of such a large numerical value in the integration. Therefore,

to resolve these cancellations and obtain numerically convergent results, we then need an accuracy of

order ∼ e−πα/2. 20 Given the complication in this case, we only perform the numerical integration

using the analytic expression (E.1) of ζ(τ, r). In Fig. 8 we plot the numerical result (blue solid line)

with α = 4, k0η⋆ = −2 and δ̃ = 0, and the numerical saddle-point approximation (black dashed line).

The two results agree and illustrate the fact that the resonant action oscillates as a function of ζ̄ with

frequency α. Finally, we confirm the asymmetric property of the WFU, i.e. the amplitude of ∆SE,1

for negative ζ̄ is much smaller than the one for positive ζ̄, see the different vertical axes of Figs. 7 and

8.

6 Quantum mechanics example

In this section we will study a simple quantum-mechanical model that shares many features with the

inflationary scenario we have been discussing. This will help in understanding the asymmetry between

negative and positive values of ζ̄ and the size of the effect of oscillations.

Let us consider a quantum harmonic oscillator perturbed by a small time-dependent interaction.

20Performing the numerical integration along the Lorentzian contour does not improve the situation: the exponential

in α is removed but ζ(η, r) is now complex, leading to exponential terms of order ∼ eαζ̄ .
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Figure 8 The real part of the on-shell action with Gaussian profile for α = 4 as a function of ζ̄ (negative).

We compare the numerical integration (blue) with the numerical saddle-point approximation (black dashed).

The numerical curve is obtained using the analytic formula for ζ(τ, r), Eq. (E.1). The difference at larger |ζ̄| is
expected to be mainly due to numerical errors. We use δ̃ = 0 and k0η⋆ = −2.

The Hamiltonian is taken to be

H = H0 + b̃ E0W (t) cos(α log(−t/t0) + αx/ℓ)

= H0 + b̃∆H(t) , H0 ≡
p2

2m
+
mω2

2
x2 . (6.1)

Here b̃ is our small expansion parameter, W (t) is a window function that turns off the interaction at

early times (t→ −∞) and late times (t→ 0): the time t here plays the role of conformal time in the

inflationary case. For convenience we take W (t) = −ωt eε·ωt with ε > 0 and small. This toy model is

chosen to mimic some characteristic features of our inflationary setup, of action (3.10). The window

function turns off the effect of the forcing at late times, effectively replacing the Hubble friction, while

at early times one has an analogue of the usual iϵ prescription. Note that with this choice, resonance

effects between the forcing term and the nth energy eigenstate of the harmonic oscillator happen

around the time ωt ≃ −α/n. The coefficient ℓ is a classical length scale (i.e. it is finite as ℏ → 0).

As in the inflationary case, we want to be in a regime where quantum fluctuations of x (which are of

order d ≡
√

ℏ/(mω)) do not jump to other minima of the cosine: thus we need αd/ℓ≪ 1. Finally, E0
is a classical energy scale.

Let us assume to be in the vacuum |0⟩ of H0 at early times t → −∞ and seek the evolved

wavefunction when the interaction drops to zero at t = 0. At linear order in b̃ the wavefunction,

at all orders in ℏ, can be obtained using time-dependent perturbation theory. Indeed, if we write

|Ψ(t = 0)⟩ = e−iE0T/ℏ |0⟩ +∑n cne
−iEnT/ℏ |n⟩ with n = 0, 1, . . . (and T being the total time of the

evolution) then the coefficients cn are given by

cn = − ib̃
ℏ

∫ 0

−∞
dt ⟨n|∆H(t)|0⟩ e−i(E0−En)t/ℏei(En−E0)T/ℏ . (6.2)

Notice that the final exponential phase factor, containing T , cancels at the level of the wavefunction.

Therefore, we are going to drop T in all the expressions. To compute the matrix element we split
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the cosine into a sum of exponentials. Then, we notice that the operator D(A) = e±iαx/ℓ is nothing

but the boost operator and that when applied to the vacuum it generates a coherent state |A⟩,
with A ≡ ±iαd/(

√
2ℓ). Therefore, ⟨n|D(A)|0⟩ = Ane−|A|2/2/

√
n!. Using this relation, it is then

straightforward to obtain the cn as

cn = − ib̃

2
√
2nn!

E0
ℏω

e−α
2d2/(4ℓ2)

∑
σ=±1

(
iαdσ

ℓ

)n Γ(2 + iασ)

(ε+ in)2+iασ
. (6.3)

(The time integral can also be performed in saddle-point approximation for large α, equivalently, one

can expand the Gamma functions in the last expression.) Notice that, for n > 0, the denominator

(ε + in)2+iασ ≃ (in)2+iασ is exponentially suppressed for σ = 1 compared to σ = −1. Hence, the

dominant contribution comes from σ = 1 and we are going to drop the other one (this corresponds

to a boost of positive momentum α/ℓ). Moreover, one can verify that the case n = 0 gives an

exponentially small contribution in α hence we will focus only on the terms n > 0 (in this case one

also neglects ε). Combining these results with the α≫ 1 limit gives the simplified expression

cn ≃
√
2πα3/2b̃

E0
ℏω

1

2
√
2nn!

(iαd/ℓ)n

(in)2+iα
e−πα/2e−α

2d2/(4ℓ2)eiφ (6.4)

= −
√
2πα3/2b̃

E0
ℏω

(iαd/ℓ)n

2
√
2nn!

1

n2+iα
e−α

2d2/(4ℓ2)eiφ , (6.5)

where we have defined φ ≡ −α+ α logα+ π/4.

Before studying the wavefunction at late times, we can gain some intuition for the final result by

analysing the transition probability P0→n ≡ |⟨n|Ψ(t = 0)⟩|2 =|cn|2, assuming n ̸= 0. We are going to

show that P0→n is dominated by transitions to small n’s. The probability is

P0→n ≃ πα3b̃2

2n4n!

E2
0

(ℏω)2

(
α2d2

2ℓ2

)n
e−α

2d2/(2ℓ2) . (6.6)

Since αd/ℓ ≪ 1, this expression decreases with increasing n and the maximum is attained at n = 1.

Therefore, the interaction populates states with large n with a tiny probability. However, as we are

going to see momentarily, excited states are very relevant when focussing on the tail of the distribution.

The probability of transition to excited states is small (the factors of ℏ at the denominator cancel)

and this suggests that the perturbative expansion in b̃ is reliable for this type of question.

We can then look at the wavefunction in position space at t = 0, Ψ(x) ≡ ⟨x|Ψ(t = 0)⟩. Here we

will need the expression for the harmonic oscillator eigenstates:

ψn(x) = ⟨x|n⟩ =
√
d

π1/4
√
2nn!

Hn (x/d) e
−x2/(2d2) , (6.7)

where Hn(x/d) are the Hermite polynomials. We are going to study the wavefunction in the semiclas-

sical limit, ℏ → 0, which is appropriate on the tail of the distribution. In this limit one must keep the

highest degree term in Hn(x/d) (i.e. Hn(x/d) ≃ (2x/d)n) since ℏ appears at the denominator here.

The factor d−n will then cancel with dn entering Eq. (6.3). Also, the factor e−α
2d2/(4ℓ2) contains ℏ
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in the exponent. This term, in the inflationary case, would read e−α
2Pζ/4 and α2Pζ being the loop-

counting parameter, which can be set to zero in the semiclassical limit. Using this consideration and

the simplified expression for cn in Eq. (6.5) and working at order b̃, we write the correction to the

probability distribution as |Ψ|2 ≃ |Ψ0|2 (1 + 2Re δΨ/Ψ0), where

2Re
δΨ(x)

Ψ0(x)
= 2Re

∞∑
n=1

cn
ψn(x)

ψ0(x)

≃ 2

∞∑
n=1

Re cn
(2x/d)n√

2nn!

≃ −
√
2πα3/2b̃

E0
ℏω

∞∑
n=1

(αx/ℓ)n

n2n!
cos (φ− α log n+ nπ/2) . (6.8)

The left-hand side of Eq. (6.8) is the exact analogue of the correction to the wavefunction we studied

in the inflationary case. It is useful to compare Eq. (6.8) with the probability in Eq. (6.6): even though

the probability to jump to the state n is low, when we look at the tails with |x|/d large, high n’s start

to dominate (the parameter raised to the power n is αx/ℓ as opposed to αd/ℓ). Taking into account the

1/n!, one expects values of n around nmax ∼ αx/ℓ to dominate the sum in Eq. (6.8). Their contribution

then scales as ∼ exp(αx/ℓ), making the correction to the wavefunction potentially exponentially large,

in analogy with the inflationary results. This explanation misses possible cancellations among the

series coefficients, which can take either sign. Equation (6.8) can be evaluated numerically, as shown

in Fig. 9: one can notice that, like in the case of inflation, this correction is highly asymmetric 21,

featuring oscillations at frequency α and very large for positive x. In this quantum mechanical example,

the origin of the large asymmetry is more evident. Indeed, the dominant term in the perturbation

∆H(t), selected by the resonance (σ = 1), corresponds with a boost with a positive momentum.

Therefore, one expects larger effects on the wavefunction for positive x. Moreover, this operator is

responsible for the phase n−iα in the coefficients cn and in the series (6.8) (see Eq. (6.3)). Such a

phase then leads to different behaviours of the series for different signs of x.

Alternatively, instead of starting from the general time-dependent perturbation theory, one can

focus on the semiclassical limit. This can be obtained using the path integral representation of the

wavefunction. Alternatively, we can re-discover the semiclassical approximation in the following way.

In δΨ(x) we keep the coefficients cn of Eq. (6.2), without performing the time integration. We then

sum over the states n and use the ℏ → 0 limit of the Hermite polynomials. Inside this sum, one can

notice that the phase e−i(E0−En)t/ℏ = eiωnt combines with the coordinate x in such a way that the

21The asymmetry of the wavefunction can be analysed by applying the Euler–Maclaurin formula to the series (6.8).

Such a formula allows one to represent the series as an integral over n plus corrections that depend on the derivatives of

the integrand evaluated at the end points of the integration. We check that those corrections are negligible in our case

and therefore the series (6.8) can be represented by the integral over n. In the large |x| and α limit, the integral can be

done using the saddle-point approximation over n. We find that for x > 0 the dominant saddle point is approximately

ns ∼ iαx/ℓ, which gives rise to an exponential factor eπα/2 in the wavefunction. It is important to note that such an

exponential factor is due to the term α logn in the cosine of Eq. (6.8). On the other hand, for x < 0 we observe that the

saddle point is close to zero and is not purely imaginary, so that the exponential factor on this side is smaller. Therefore,

the wavefunction is highly asymmetric between positive and negative x, as shown in Fig. 9.
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Figure 9 Relative correction to the real part of the wavefunction as a function of x/ℓ for α = 7, 8 and 9 for

b̃ = 1. We use units where d2/ℓ2 = 10−4 and ε = 10−2. With these values, the ranges of x/ℓ in the plot belong

to the semiclassical limit. The wavefunction is multiplied by d2/ℓ2. Notice the similarities with the results in

the main text, notably Fig. 3. Left: case of negative x. Right: case of positive x.

final result, before the time integration, is a function of xcl(t) = eiωtx: this is indeed the semiclassical

solution for the harmonic oscillator at zeroth order in b̃. As in the inflationary case, at first order in

b̃, it is enough to use the free solution to compute the wavefunction in the semiclassical limit. After

performing this procedure, one finds the following expression for the correction to the wavefunction

δΨ(x)

Ψ0(x)
= − ib̃E0

ℏ

∫ 0

−∞
dtW (t) cos (α log(−t/t0) + αxcl(t)/ℓ) . (6.9)

This is indeed the expression for i∆S/ℏ, with ∆S being the correction to the action, evaluated on

the free classical solution xcl(t). The resulting time integral can be solved in saddle-point for large α

and large x. Similarly to the cases studied in inflation, this will be an oscillatory function in αx. (In

Fig. 9 there is no appreciable difference between the exact correction, first line of Eq. (6.8), and the

semiclassical approximation.)

7 Conclusions and future directions

In this work, we studied the wavefunction of the universe in a simple single-field model with a resonant

feature. We discovered a striking behaviour which is completely unexpected from perturbation theory:

a feature with a tiny amplitude, which results in tiny deviations from a Gaussian wavefunction for

typical fluctuations, have exponentially large effects for rare events in the tail of the distribution.

Moreover the effect is large only for rare peaks of ζ, while one has a small effects on troughs.

The skeptic may wonder whether our conclusion is an artifact of working at first order in the

amplitude of the feature, but we stress that this is not the case. Going beyond first order is necessary

to have a quantitative understanding of what is going on in the tail, but this does not change the

fact that one has sizeable deviations from the Gaussian statistics, even for features with very small
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amplitudes. In this respect, we stress that, at least conceptually, there is no obstacle in applying

our semi-classical method in the large ζ limit of the WFU beyond first order in the amplitude, by

(numerically) solving the full non-linear equation of motion (2.8), and evaluating the corresponding

on-shell action. We leave this to future work: with the full WFU at all orders in b̃ one could investigate

the impact of the new tail on eternal inflation and on the rate of formation of primordial black holes.

Besides, given the exponential sensitivity of the tail to tiny features, it is reasonable to also expect

a large sensitivity of the WFU to details of the expansion history H(t), which would be worthwhile

to investigate. We have also pointed out the existence of a particularly striking regime where a

non-perturbative description of the WFU is required even for typical fluctuations. What are the

observational consequences of such a regime, and potential links with recent developments in particle

physics beyond the Standard Model, see e.g. [25,28,29], are interesting questions to which we plan to

come back.

Our work can be developed in many directions, which are interesting both observationally and

on purely theoretical grounds. As we have explained, our formalism can be readily applied to study

other types of small features, like localized ones. Moreover, for any type of feature, the unitary cutoff

is pushed to infinity as its amplitude goes to zero and the theory becomes free. This is suggestive

that the regime requiring a non-perturbative description of typical fluctuations may not be limited

to oscillating features. For generic features in the expansion history, the function h(t) in (3.22) may

exhibit singularities in the complex plane which preclude the rotation to Euclidean time: whether this

leads to specific features for the WFU is worth exploring. The UV completion of the type of models

studied in this work contains additional states: it would be interesting to understand when and how

they modify the predictions for the tail of the wavefunction. Eventually, it would be valuable to relate

our non-perturbative computations of the wavefunction of the universe, which fully characterizes the

state of primordial fluctuations, to the ongoing developments about how to best extract information

from cosmological data, see for example [30] and references therein.
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A Derivative versus polynomial form of the action

In this appendix we explicitly show that our action (2.7) indeed agrees with the action (24) of [13],

and we demonstrate the practical advantage of using our form, even for the computation of n-point

correlation functions. In doing so, it is important to remember that temporal boundary terms in the
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action contribute in general to correlation functions [31–34]. In particular, total (temporal) derivative

terms depending on π̇ (by contrast to the ones involving π only) contribute to correlation functions

of π, which are our object of interest. Hence, we will only keep such boundary terms in the following

discussion.

A.1 Action of π in two different forms

Our starting point here is the action (2.7):

S =

∫
d4x a3M2

PlḢ(t+ π)(∂µπ)
2 . (A.1)

Expanding Ḣ(t+ π) as a power series gives

S =M2
Pl

∞∑
n=0

∫
d4x

a3

n!
H(n+1)(t) πn∂µπ∂

µπ , (A.2)

where H(n)(t) denotes the nth derivative with respect to time acting on H(t). Here we are interested

in the terms with n ≥ 1. We rewrite the term πn∂µπ as ∂µ(π
n+1)/(n+1), so that the interacting part

of the action above becomes

Sint =M2
Pl

∞∑
n≥1

∫
d4x

a3

(n+ 1)!
H(n+1)(t) ∂µπ

n+1∂µπ ,

= −M2
Pl

∞∑
n≥1

∫
d4x

1

(n+ 1)!
∂µ

[
a3H(n+1)(t) ∂µπ

]
πn+1 + Sboundary , (A.3)

where we have performed an integration by parts in the second line, and we kept the relevant boundary

term

Sboundary = −M2
Pl

∞∑
n≥1

∫
d4x ∂t

[
a3

(n+ 1)!
H(n+1)(t)πn+1π̇

]
. (A.4)

We define □π ≡ ∂µ(a
3∂µπ)/a3. The action (A.3) then becomes

Sint = −M2
Pl

∞∑
n≥1

∫
d4x

1

(n+ 1)!

[
− a3H(n+2)(t)πn+1π̇ + a3H(n+1)(t)πn+1□π

]
+ Sboundary . (A.5)

Performing an integration by parts on the first term on the RHS of the action above, we obtain

Sint = −M2
Pl

∞∑
n>2

∫
d4x a3

{
1

n!

[
3H(t)H(n)(t) +H(n+1)(t)

]
πn +

1

(n− 1)!
H(n−1)(t)πn−1□π

}
+ Sboundary .

(A.6)

where we have changed n → n − 2. Additionally, note that the equation of motion derived from the

quadratic Lagrangian for π reads

δL2

δπ
= −2M2

Pla
3Ḣ(t)□π + 2M2

Pla
3Ḧ(t)π̇ . (A.7)
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Hence, to work out the action at first order in b, one can neglect the last term in (A.7) when inserted

back in (A.6), which gives

Sint =

∞∑
n>2

∫
d4x

{
− a3M2

Pl

n!

[
3H(t)H(n)(t) +H(n+1)(t)

]
πn + fn(π)

δL2

δπ

}
+O(b2) + Sboundary ,

(A.8)

where we have defined

fn(π) ≡
1

2(n− 1)!

H(n−1)(t)

Ḣ(t)
πn−1 . (A.9)

We see that the action (A.8) is the same as the action (24) of [13] 22, although the authors here did

not write the boundary terms, despite their role in the computation of n-point functions, as we will

see in (A.20). Therefore, our non-perturbative form of the action (2.7) is equivalent to their action.

Although what ultimately matters, in perturbative computations, are correlation functions of π,

it is interesting to study the structure of the equation of motion of π. In particular, the fact that

the action (A.8) involves self-interactions of π without derivatives acting on it seems to suggest that

a constant π is not a solution to the equation of motion, implying that π is not conserved on super-

horizon scales. However, this is not the case due to the contributions coming from the term in

δL2/δπ to the equation of motion of π: one can verify that at each order in π the equation of motion

derived from (A.8) admits a constant solution. In contrast, this property is manifestly valid, and

non-perturbatively, from our form (2.7).

A.2 Time-independence of the bispectrum

It is instructive to see explicitly the late-time constancy of the 3-point function of π computed from

the form (A.8), and to contrast it with the computation starting from our form (2.7) of the action. We

will see that the constancy of the bispectrum is immediate in the latter case, whereas in the former, it

requires taking into subleading terms in the expansion in large α as well as cancellations between the

contributions from the bulk and the boundary terms. This provides a non-trivial consistency check of

our computations, and showcases the usefulness of our form of the action.

Polynomial form of the action. There are three types of terms in the Lagrangian (A.8): the

bulk terms that are polynomial in π, the terms proportional to the linear equation of motion, and

boundary terms. When computing correlation functions in perturbation theory, terms proportional to

the linear equation of motion never contribute, as the interaction-picture fields are by definition free

fields obeying that equation. We treat the two other types of terms in turn.

22One can straightforwardly show that the action (A.8) is also equivalent to the nth-order interacting action obtained

in [22], as shown in [13].
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The contribution to the 3-point function of π at time η from the bulk terms in (A.8), reads

⟨π(k1, η)π(k2, η)π(k3, η))⟩′bulk =
1

(4ϵ⋆M2
Pl)

22ϵ⋆H4
∏
i k

3
i

×

× Im

[∫ η

−∞(1−iϵ)

dη′

η′4

(
H(4) + 3HH(3)

)
(η′)f(η′)f∗(η)

]
, (A.10)

with f(η) = eiktη
∏
i(1−ikiη) and kt =

∑
i ki. The prime means that we drop the factor (2π)3δ(3)(k1+

k2+k3). All the integrals here can be done analytically, but in terms of incomplete Gamma functions

which are not very illuminating for our purposes. Instead, remember that our goal is simply to show

that the bispectrum of π goes to a constant at late times. Hence, we will only keep track of the

relevant contributions at the asymptotic future, which are simply oscillations in η±iα, and we check

that they cancel in the final result. For that purpose, it is sufficient to expand f(η) at late times:

f(η) = 1 +
η2

2

∑
i

k2i +
iη3

3

∑
i

k3i +O(η4) , (A.11)

where we have to go up to third order as one needs

Im
[
f(η′)f∗(η)

]
=

1

3
(η′3 − η3)

∑
i

k3i + subleading . (A.12)

Here, we use the iϵ prescription that is relevant only in the asymptotic past, so that, for our purposes,

taking the imaginary part in (A.12) effectively applies only to f(η′)f∗(η). As for the terms denoted

as subleading, they do not lead to contributions that survive at late times. At first order in b, one can

consider H constant in the term HH(3), and with

Ḣ(η) = −ϵ⋆H2
⋆

[
1− 6b

α
cos
(
α log (η/η⋆)− δ̃

)]
, (A.13)

one obtains that the terms that survive at late times are

⟨π(k1, η)π(k2, η)π(k3, η))⟩′bulk ⊃ − H⋆b α
2

(4ϵ⋆M2
Pl)

2

∑
i k

3
i∏

i k
3
i

×

×
∫ η

−∞(1−iϵ)

dη′

η′4
(
η′3 − η3

) [
sin
(
α log

(
η′/η⋆

)
− δ̃
)
+

3

α
cos
(
α log

(
η′/η⋆

)
− δ̃
)]

= − 3H⋆b

(4ϵ⋆M2
Pl)

2

∑
i k

3
i∏

i k
3
i

× sin
(
α log (η/η⋆)− δ̃

)
. (A.14)

Note that cancellations between the various contributions—the sine and the cosine terms, as well as

the ones with and without η-dependence in the integrand—lead to the amplitude of the result being

independent of α. In particular, it was important to take into account the cosine term, despite the

fact that its contribution to the integrand is subdominant in the limit of large α.

Let us now consider the boundary term

S
(3)
boundary = −M

2
Pl

2

∫
dtd3x ∂t

(
a3Ḧ(t)π2π̇

)
. (A.15)
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The contribution from any such term can be worked out from first principles using the commutation

relation (see e.g. Sec. 3.3 of [34]). Using that the (linear) conjugate momentum to π is ∂L2/∂π̇ =

−2a3M2
PlḢπ̇, this gives here:

⟨π(k1, η)π(k2, η)π(k3, η))⟩′boundary = −
(
Ḧ

2Ḣ

)
(η) (Pπ(k1, η)Pπ(k2, η) + 2 perms.) , (A.16)

where, at first order in b, one can use the standard power spectrum for π, Pπ(k, η) = (1+k2η2)/(4ϵ⋆M
2
Plk

3).

Keeping the terms that survive at late times, this gives

⟨π(k1, η)π(k2, η)π(k3, η))⟩′boundary =
3H⋆b

(4ϵ⋆M2
Pl)

2

∑
i k

3
i∏

i k
3
i

× sin
(
α log (η/η⋆)− δ̃

)
, (A.17)

which precisely cancel with (A.14). Therefore, we have explicitly shown that the 3-point function of

π goes to a constant at late times, using the polynomial form of the action accompanied with the

necessary boundary terms.

Derivative form of the action: When using the derivative form of the action (2.7), the cubic part

reads

S(3) =

∫
d4x a3M2

PlḦπ(−π̇2 + (∂iπ)
2/a2) , (A.18)

which gives for the time-dependent 3-point function

⟨π(k1, η)π(k2, η)π(k3, η))⟩′ =
1

(4ϵ⋆M2
Pl)

2ϵ⋆H2
∏
i k

3
i

×

× Im

[∫ η

−∞(1−iϵ)

dη′

η′2
Ḧ(η′)

(
k2 · k3f

∗(η)f(η′) + k2k3f
∗(η)g1(η

′)
)]

+ 2 perms. , (A.19)

with f(η) as above, and g1(η) = eiktη(1− ik1η)k2k3η
2. Contrary to the polynomial form, here all the

integrals are manifestly convergent, and the late-time constancy of the 3-point function is immediate.

Let us also compute the bispectrum starting from (A.19). Taking η → 0 and writing the sine

function as a sum of two exponentials, this gives, with β = −δ̃ − α log η⋆:

B(k1, k2, k3) =
3H⋆b

(4ϵ⋆M2
Pl)

2
∏
i k

3
i

×

× Im

[
3∑

n=0

∑
σ=±1

Γ(iσα+ n− 1)
an

kiσα+n−1
t

eiσβe−σαπ/2

]
, (A.20)

with

a0 = −1

2

∑
i

k2i , a1 = −1

2
kt(
∑
i

k2i ) ,

a2 =
kt
2

(
−
∑
i ̸=j

k2i kj + k1k2k3

)
, a3 = −k1k2k3

(∑
i

k2i /2 +
∑
i<j

kikj

)
.

(A.21)

Simplifying, one finds

B(k1, k2, k3) =
3H⋆b α

3 cosh(απ/2)

(4ϵ⋆M2
Pl)

2
∏
i k

3
i

Im z , (A.22)
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with

z =

∏
i

ki −
i

α

∏
i

ki −
∑
i ̸=j

k2i kj

−
∑

i k
3
i

α2

Γ(−1− iα)ei(α log kt−β+π/2) . (A.23)

In the limit of large α, with cosh(πα/2) → eπα/2/2 and Γ(−1−iα) →
√
2π e−πα/2α−3/2ei(α−α logα+3π/4)[1+

13i/(12α)] taking into account next-to-leading order (NLO) terms, this reduces to

B(k1, k2, k3) =
3H⋆b α

3/2
√
2π

2(4ϵ⋆M2
Pl)

2
∏
i k

2
i

sin(α log kt + φ) +
1

α
cos(α log kt + φ)

∑
i ̸=j

ki
kj

+
1

12

 , (A.24)

with φ = α−α logα+5π/4−β, and where we have kept the first subleading term, see [14] for similar

result.

B Beyond the decoupling limit: mixing with gravity

In the main text, we have derived the full nonlinear action (2.7), at all orders in π and zeroth-order

in the decoupling limit. This action scales like O(ϵ). Here, we derive first-order corrections to this

action, i.e. up to O(ϵ2), also keeping the full nonlinear structure in π. From this, we deduce an upper

bound on ζ̄ for the mixing with gravity to be negligible.

We perform the space-time dependent time diffeomorphism t → t + π(t,x), starting from the

unitary gauge action (2.1). We use the ADM parametrization of the metric:

ds2 = −N2 dt2 + ĝij( dx
i +N i dt)( dxj +N j dt) , (B.1)

we neglect tensor modes, and we choose the spatially flat gauge ĝij = a2δij . One thus obtains the

action

S =

∫
d4x a3M2

Pl

{
1

2N
(E2

ij − E2)−N(3H2(t+ π) + Ḣ(t+ π))

+ Ḣ(t+ π)
[
−N−1(1 + π̇)2 + 2N−1(1 + π̇)N i∂iπ +N (∂iπ)

2 −N−1(N i∂iπ)
2
]}

,

where

Eij =
1

2
˙̂gij −N(i;j) = a2Hδij −N(i;j) , N(i;j) =

1

2
(Ni;j +Nj;i) , (B.2)

and ; stands for the covariant derivative with respect to the spatial metric ĝij , which in this gauge is

simply an ordinary derivative.

Performing similar manipulations as in the main text, this reads

S =

∫
d4x a(t)3M2

Pl

{
−Ḣ(t+ π)(π̇2 − (∂iπ)

2)− 3(H(t+ π)−H(t))2

+ δN
(
3N−1H2(t)− 3H2(t+ π)− 2N−1HN ;i

i

)
+

1

2
N−1(N2

(i;j) − (N ;i
i )2)

+ Ḣ(t+ π)
(
δN(N−1(1 + π̇)2 − 1 + (∂iπ)

2) + 2(1 + π̇)N−1N i∂iπ −N−1(N i∂iπ)
2
)}

,
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where contractions are made with the spatial metric ĝij = a2δij , we wrote N = 1 + δN , and no

approximation has been made so far. Varying the action with respect to δN and Ni, we obtain,

respectively, the lapse constraint:

3(H2(t)−H2(t+ π))− 3H2(t+ π)δN(2 + δN)− 2H(t)∂iNi −
1

2
(N2

(i;j) − (∂iNi)
2)

+Ḣ(t+ π)[2π̇ + π̇2 + (N i∂iπ)
2 − 2(1 + π̇)N i∂iπ + (∂iπ)

2 (1 + δN)2 − δN(2 + δN)] = 0 ,
(B.3)

and shift constraint:

2N−1Ḣ(t+ π)[1 + π̇ −N j∂jπ]∂iπ = ∂j

[
1

2
N−1(N ;j

i +N j
;i)− δji (2H(t)δN/N +N ;k

k )

]
. (B.4)

In order to derive the first correction to the decoupling limit action, we see that it is enough to work

out δN and Ni at first order in ϵ, which we denote with the superscript (1). From Eqs. (B.3)–(B.4),

and using the Helmoltz decomposition of the shift, Ni = ∂iψ + Ñi, with ∂iÑi = 0, one obtains the

compact expressions

δN (1) =
1

H(t)
∂−2∂iXi and Ñ

(1)
i = 4a2∂−2

(
∂i∂

−2∂jXj −Xi

)
, with Xi ≡ −Ḣ(t+π)(1+ π̇)∂iπ ,

(B.5)

and

2H(t)
∂2ψ(1)

a2
= 3

(
H2(t)−H2(t+ π)

)
− 6H2(t+ π)δN (1) + Ḣ(t+ π)[2π̇ + π̇2 + (∂iπ)

2] , (B.6)

where indices are simply contracted with δij here. One then obtains the final expression of the action

including first-order ϵ corrections:

S =

∫
d4x a(t)3M2

Pl

{
−Ḣ(t+ π)(π̇2 − (∂iπ)

2)− 3(H(t+ π)−H(t))2 − 3(H2(t+ π)−H2(t))δN (1)

+ 3H2(t)(δN (1))2 + Ḣ(t+ π)(2π̇ + π̇2 + (∂iπ)
2)δN (1) +

1

2
Ñ

(1)
(i;j)Ñ

(1)(i;j) − 2XiÑ
(1)i

}
,

(B.7)

where we note that the explicit expression of ψ(1) is actually not needed for this result because of

structural cancellations in the computation.

Let us now use the action (B.7) to identify the regime of validity of the decoupling limit analysis.

For this, in the same spirit as in Sec. 4, we consider a boundary profile ζ̄ characterized by a typical

momentum scale k. This way, the effects of spatial derivatives simply read ∂i ∼ ki and ∂
−2 ∼ k−2.

We also use the behaviour of the free mode function (3.14) to deduce the estimates π ∼ ζ̄/H(1 + kη)

and π̇ ∼ ζ̄(kη)2. We thus find Xi ∼ ϵHζ̄(1 + ζ̄(kη)2)(1 + kη)ki, Ñ
(1)
i ∼ a2/k2Xi and in particular

δN (1) ∼ ϵζ̄ [1 + ζ̄(kη)2](1 + kη) . (B.8)

The validity of the decoupling limit necessitates δN (1) ≪ 1. The right-hand side of (B.8) grows

with kη, but keep in mind that the corresponding interactions are shut off deep inside the horizon,
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due to the iϵ prescription projecting onto the interacting vacuum. However, we should demand that

δN (1) ≪ 1 at the resonance, such that |kη| ∼ α. This imposes the bound

|ζ̄| ≪ 1√
ϵα3

. (B.9)

This turns out to be the most stringent bound on ζ̄ when requiring the O(ϵ2) interactions to be neg-

ligible compared to the leading O(ϵ) part of the action. Checking this is straightforward, except for

the second term in (B.7). The corresponding polynomial interactions (H(t+π)−H(t))2 ∼ ϵ2H4π2 do

not decay outside the Hubble radius, contrary to the leading two-derivative part of the action. This

is simply a manifestation of the fact that π acquires a mass beyond the decoupling limit. Requiring

that these interactions are subdominant at the late-time saddle point (4.12) gives the bound ϵ|ζ̄| ≪ 1,

which is indeed less stringent than (B.9).

Importantly, let us highlight that the regime α2|ζ̄| ∼ 1, in which full non-perturbative results are

needed and we found qualitative deviations from perturbation theory, always lies within the regime

of validity (B.9) of the decoupling limit analysis. Notice as well that in order to get the range of

validity for ζ̄ of the decoupling limit it is crucial to use our non-perturbative form of the action; it is

not enough to stick to the perturbative analysis discussed in [13].

C Correlators from the WFU at one loop

In this section we are going to investigate how Witten diagrams are related to the correlators at loop

level. In the WFU approach, equal-time correlators are obtained by performing a path integral over

field configurations at that given time. At one-loop level, on top of Witten-diagram loops (needed to

obtain the WFU), there are in principle additional loops originating from ‘averaging’ tree-level Witten

diagrams over boundary (late-times) field configurations. In turn, this step can lead to additional

divergences that are not manifest in the WFU. When estimating the size of loops, we therefore need

to take into account both contributions.

On the other hand, correlators can also be evaluated using different methods that do not involve

the WFU, as for instance the ‘in-in formalism’ [23]. In this case, one does not make a distinction

between WFU and boundary loops. Notice also that the propagators running inside loops used in

the two methods are different: the in-in uses Wightman functions, while the WFU uses bulk-to-bulk

propagators. As it is perhaps expected, on the WFU side we will obtain that the two sets of loop

diagrams combine to yield back the in-in result: the effect of boundary loops is to change the boundary

conditions of the propagator. 23

For concreteness, we consider λϕ4 in dS, although our conclusion appears general. The action is

taken to be

S =

∫
d4x a4(η)

[
−1

2
(∂µϕ)

2 − λ

4!
ϕ4
]
. (C.1)

23For a similar discussion on the relation between the in-in and WFU approaches to loop diagrams, see [24].
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We furthermore focus on the equal time two-point function ⟨ϕ(η,x)ϕ(η,y)⟩ at linear order in λ. At

this order, the WFU at time ηf , Ψ[ϕ̄; ηf ], contains a tree-level correction to the four-point coefficient

ψ4 and a one-loop correction to the two-point coefficient ψ2. Both are needed to obtain the one-loop

correlator at O(λ).

In the following calculations we will need the bulk-to-bulk and the bulk-to-boundary propagators

for massless fields in dS. First, let us define the wave-modes in k-space that solve the free equation of

motion for ϕ

φ±(k, η) ≡ (1∓ ikη)e±ikη . (C.2)

Then, the bulk-to-bulk propagator is obtained as

G(η, η′;k) = − iH
2

2k3
[
θ(η − η′)φ+(k, η

′)φ−(k, η) + θ(η′ − η)φ+(k, η)φ−(k, η
′)

− φ̄−
φ̄+

φ+(k, η)φ+(k, η
′)

]
, (C.3)

where φ̄±(k) ≡ φ±(k, ηf) and θ is the Heaviside theta function. By construction, the function

G(η, η′;k) vanishes at early times (when η, η′ → −∞(1 − iϵ)) and at late times (when η, η′ → ηf).

Requiring that G satisfies the free equations of motion with a δ(η−η′) source then fixes the normaliza-

tion in Eq. (C.3) (i.e. we are working with canonically-normalized fields). Note that this normalization

changes if we work with ζ (in this case the factor H2 gets replaced by Pζ). On the other hand, the

bulk-to-boundary propagator is

Kk(η) ≡
φ+(k, η)

φ̄+(k)
. (C.4)

This function is obtained as the free solution of the equations of motion satisfying Kk(ηf) = 1 and

vanishing for η → −∞(1− iϵ).

After introducing these quantities, we are ready to evaluate the Witten diagrams contributing to

the WFU. The tree-level contribution is obtained by evaluating the interaction part of the action times

i on the free modes for ϕ (given by Eq. (3.14), but for ϕ). Therefore, we obtain

logΨ4[ϕ̄; ηf ] = − iλ
4!

∫ ηf

−∞

dη

(Hη)4

∫ 4∏
i=1

[
d3ki
(2π)3

ϕ(η,ki)

]
(2π)3 δ(3)(kt)

=
1

4!

∫ 4∏
i=1

d3ki
(2π)3

(2π)3 δ(3)(kt)ψ4(k1, . . . ,k4; ηf) ϕ̄(k1) . . . ϕ̄(ki) , (C.5)

where logΨn[ϕ̄; ηf ] is the correction to the exponent of the WFU with n fields and kt ≡ k1+k2+k3+k4.

Thus, written in terms of bulk-to-boundary propagators Kki
(η), the coefficient ψ4 reads

ψ4(k1,k2,k3,k4; ηf) = −iλ
∫ ηf

−∞

dη

(Hη)4

4∏
i=1

Kki
(η) . (C.6)

The one-loop contribution to ψ2 can instead be obtained using the standard Witten rules (see [35]
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η

η = ηf

(a)

+

η = ηf

(b)

Figure 10 The two one-loop contributions to ⟨ϕ(ηf ,p)ϕ(ηf ,p′)⟩. The grey surface represents the boundary at

η = ηf . On the left, (a), we have the one-loop diagram on the bulk, logΨ2, that contributes directly to the

WFU. On the right, (b), we have the boundary diagram where we average over two boundary fields in logΨ4.

for a derivation in AdS)

logΨ2[ϕ̄; ηf ] =
λ

4

∫ ηf

−∞

dη

(Hη)4

∫
d3k

(2π)3
K2

k(η) ϕ̄(k)ϕ̄(−k)

∫
d3p

(2π)3
G(η, η;p)

≡ 1

2!

∫
d3k

(2π)3
δψ2(k; ηf) ϕ̄(k)ϕ̄(−k) , (C.7)

where we used the total momentum-conserving delta function to remove one integral. Therefore, the

correction to ψ2 is given by

δψ2(k; ηf) =
λ

2

∫ ηf

−∞

dη

(Hη)4
K2

k(η)

∫
d3p

(2π)3
G(η, η;p) . (C.8)

Explicitly, the WFU at order λ can be expanded as follows

Ψ[ϕ̄; ηf ] = N
(
1 + logΨ2[ϕ̄; ηf ] + logΨ4[ϕ̄; ηf ]

)
exp

[
1

2!

∫
d3k

(2π)3
ψ2(k; ηf) ϕ̄(k)ϕ̄(−k)

]
, (C.9)

where N−1 ≡
∫
Dϕ̄ |Ψ[ϕ̄; ηf ]|2 is a normalization constant. The two-point correlator in momentum

space is then obtained using the standard Born rule of quantum mechanics:

⟨ϕ(ηf ,p)ϕ(ηf ,p′)⟩ =
∫

Dϕ̄ ϕ̄(p)ϕ̄(p′)
∣∣Ψ[ϕ̄; ηf ]

∣∣2 . (C.10)

In performing this path integral at order λ we encounter various types of contributions. There

are, for instance, bubble diagrams, that are however cancelled once the normalization N is taken into

account. In principle, there could be disconnected diagrams, but at this order they do not appear.

Finally, there are two types of connected diagrams. First, from δψ2, a diagram where the external

ϕ̄(p), ϕ̄(p′) connect to the internal ϕ̄(k)ϕ̄(−k). This can be interpreted as a loop contribution from

the bulk (given the origin of δψ2). Second, from ψ4, we have a loop diagram where two internal ϕ̄(ki)’s

are contracted among each other. Therefore, this corresponds to a boundary loop. These two one-loop

diagrams are represented respectively in Fig. 10 (a) and (b).
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One can straightforwardly check that

Reψ2(k; ηf) = − k3

H2φ̄+(k)φ̄−(k)
. (C.11)

At this point, we are ready to compute the order λ correction in Eq. (C.10) (the integral can be

performed, for instance, by first introducing a generating functional and by taking its functional

derivatives). We obtain

⟨ϕ(ηf ,p)ϕ(ηf ,p′)⟩′(1) =
1

2 (Reψ2(p; ηf))
2

[
Re δψ2(p; ηf)−

1

4

∫
d3k

(2π)3
Reψ4(p,p,k,k; ηf)

Reψ2(k; ηf)

]
=

λ

4 (Reψ2(p; ηf))
2 Re

∫ ηf

−∞

dη

(Hη)4
Kp(η)

2

∫
d3k

(2π)3

[
G(η, η;k) +

iK2
k(η)

2Reψ2(k; ηf)

]
. (C.12)

In the correlator, the subscript (1) stands for the first correction in λ, while the prime means we

remove (2π)3δ(3)(p + p′). In going to the second line we used Eqs. (C.6) and (C.8). Notice that,

although the two contributions of the first line come with different symmetry factors, when expressed

in terms of bulk objects this difference cancels. Indeed, as it is clear from Fig. 10, both diagrams have

the same combinatorics from a bulk perspective. In the second line on the RHS of (C.12), the two

terms in the square bracket are given by

G(η, η;k) = − iH
2

2k3

[
φ+(k, η)φ−(k, η)−

φ̄−(k)

φ̄+(k)
φ+(k, η)φ+(k, η)

]
, (C.13)

iK2
k(η)

2Reψ2(k; ηf)
= − iH

2

2k3
φ̄+(k)φ̄−(k)

(
φ+(k, η)

φ̄+(k, η)

)2

. (C.14)

By combining these two pieces, the term that imposes the boundary conditions at ηf in G(η, η,k)

(the last in Eq. (C.13)) is cancelled by the boundary loop (C.14). Therefore, we arrive at the overall

one-loop contribution to the correlator

⟨ϕ(ηf ,p)ϕ(ηf ,p′)⟩′(1) =
λH2

8 (Reψ2(p; ηf))
2 Im

∫ ηf

−∞

dη

(Hη)4
Kp(η)

2

∫
d3k

(2π)3
1

k3
φ+(k, η)φ−(k, η) , (C.15)

where indeed we recognize the propagator of the in-in relations inside the loop. Notice also that

the WFU loop, δψ2 in Eq. (C.8), is convergent in the IR, while the loop for the correlator (C.15) is

divergent [16]. Moreover, given that the loops are typically divergent, in order to have finite correlators

after renormalization we arrive at the conclusion that the WFU is necessarily a divergent object on

itself. The divergences from the additional path integral in Eq. (C.10) will then make the final result

UV finite. One can also check that Eq. (C.15) agrees with the in-in computation [36]. The cancellation

between bulk and boundary terms is completely independent on the spacetime, the theory and the

evaluation time ηf , as it is based on the properties of the in-in formalism. Therefore, the conclusion

also applies to the model of resonant non-Gaussianities.

D Estimate of one-loop Witten diagrams at O(b̃)

In this appendix we want to show that the one-loop Witten diagrams with n external legs at first

order in b̃ (see Fig. 1) scale as
√
α b̃ ζ̄2(α2ζ̄)n−2(α2Pζ)/Pζ . In comparison with the tree-level diagrams
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with the same number of external legs, these loop corrections are suppressed by α2Pζ ≲ 1. Note that

this condition is weaker than the one of perturbative unitarity, α4Pζ ≲ 1, see the discussion around

Eq. (3.25).

For illustrative purposes, let us focus on the one-loop Witten diagram with two external legs

(second graph in the second line of Fig. 1). The ingredients for computing such a diagram are two

bulk-to-boundary propagators, one bulk-to-bulk propagator and the four-point vertex which is given

by the quartic interaction:

L4 =
b̃α2ζ2

4η2Pζ

[
ζ ′2 − (∂iζ)

2

]
cos
(
α log(η/η⋆)− δ̃

)
. (D.1)

The coupling above can be straightforwardly obtained from expanding the action (3.13) for small ζ

up to quartic order. 24

Derivatives in the action can act on internal or external legs. Let us focus first on the case where

the two derivatives act on the two bulk-to-boundary propagators: this is the leading contribution

(highest power of α) as we will verify later. Using the vertex (D.1), the one-loop coefficient of the

WFU with two external legs is given by 25

ψ1−loop
2 (k1,k2) ⊃

b̃α2

4Pζ

∫ ηf

−∞

dη

η2
K ′

k1
(η)K ′

k2
(η) cos(α log(η/η⋆)− δ̃)

∫
d3k

(2π)3
G(η, η;k) , (D.3)

where the subscript denotes the number of external legs, k1 and k2 are the external momenta, and

k is the internal momentum. Note that in the expression (D.3) we considered two time derivatives

acting on Kk(η). One gets the same scaling in α also for spatial derivatives: this is straightforward

to verify using the saddle-point approximation (α ≫ 1) to the η-integral in the early-time limit. 26

Using the formula (C.13) and the fact that K ′
k(η) = ηk2eikη/φ̄+(k), Eq. (D.3) becomes

ψ1−loop
2 (k1,k2) ⊃ − ib̃α

2H2

8

k21k
2
2

φ̄+(k1)φ̄+(k2)

∫ ηf

−∞
dη eiktη cos

(
α log(η/η⋆)− δ̃

)
×

×
∫

d3k

(2π)3
1

k3

[
φ+(k, η)φ−(k, η)−

φ̄−(k)

φ̄+(k)
φ+(k, η)φ+(k, η)

]
, (D.4)

where kt ≡ k1 + k2. Setting ηf = 0 (27) we have

ψ1−loop
2 (k1,k2) ⊃ − ib̃α

2H2

8
k21k

2
2

∫ 0

−∞
dη eiktη cos

(
α log(η/η⋆)− δ̃

)
×

× 4π

(2π)3

∫ Λa(η)

0

dk

k

[
(1 + k2η2)− (1− ikη)2e2ikη

]
, (D.5)

24In general, the non-linear self-coupling of ζ’s at first order in b̃ reads

Ln+2 = − b̃αnζn

2η2Pζn!

[
ζ′2 − (∂iζ)

2

] (−1)n/2 cos
(
α log(η/η⋆)− δ̃

)
, n+ 2 ∈ even

(−1)(n+1)/2 sin
(
α log(η/η⋆)− δ̃

)
, n+ 2 ∈ odd

. (D.2)

25We define the wavefunction coefficients as in Eq. (C.9).
26Subleading corrections in the limit |kη| ≫ 1 contain less power of η: on the saddle point of the η integral, their

contributions have fewer power of α compared to the leading contributions.
27Since one gets a non-zero result for ηf = 0, it is safe to neglect subleading terms. As we will discuss, it is useful to

keep ηf ̸= 0 to study the Minkowski limit of the result.
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where Λ is a fixed physical cutoff. Notice that this physical cutoff Λ appears together with the scale

factor at time η, cutting off the integral in comoving momentum k (see a more detailed discussion

below Eq. (26) of [36]). Then, we change the variable using kp ≡ k/a(η) = −ηHk, where kp denotes

a physical momentum. Thus, the integral above becomes

ψ1−loop
2 (k1,k2) ⊃ − ib̃α

2H2

16π2
k21k

2
2

∫ 0

−∞
dη eiktη cos

(
α log(η/η⋆)− δ̃

)
×

×
∫ Λ

0

dkp
kp

[(
1 +

k2p
H2

)
−
(
1 +

ikp
H

)2

e−2ikp/H

]
. (D.6)

We now see that the integral over kp in the second line does not depend on η and in fact it potentially

leads to quadratic and logarithmic divergences. More precisely, we obtain

logΨ1−loop
2 ⊃ √

α b̃ ζ̄2α2k
2
1k

2
2

kt
e−i[α log(X⋆)+δ̃]

[
log

(
Λ

H

)
+

Λ2

2H2
+ finite terms

]
, (D.7)

where we have used X⋆ = −ktη⋆, and we have evaluated the η integral on the perturbative saddle

point, i.e. ηs = −α/kt. Note that the expression above is an estimate, assuming that ζ̄(k) ≃ ζ̄ and it

is peaked at some momentum. From Eq. (D.7), we see that the quadratic divergence, as expected, can

be removed by adding a local counter-term to the WFU, resulting in, for example, renormalization of

the mass term. On the other hand, the logarithmic divergence of the form log(Λ/H), as argued in [36],

cannot be removed by a local counter-term since for the modes inside the horizon such a divergence

becomes non-local, log((a(t)Λ)/k). With this reasoning, this logarithmic divergence is physical and

we can read off the dependence on α for ψ1−loop
2 .

Alternatively, one could draw the same conclusion using the dimensional regularization (dim. reg.)

to compute ψ1−loop
2 . In dim. reg. one usually performs the k integral in d = 3 + ε dimensions. We

use d to denote the number of spatial dimensions. Additionally, in (d+ 1)-dimensions the free mode

function becomes the Hankel function (−Hη)d/2H(1)
d/2(−kη). Since the integral involving the Hankel

function is very complicated, one can then use a trick, proposed in [37], to obtain a simple form of the

mode function in d = 3 + ε dimensions. One considers a massive scalar field in (d + 1) dimensional

de Sitter space, and analytically continues both the number of spatial dimensions and the mass of

the field in such a way that the index of the Hankel function remains 3/2. By doing so, the mode

function in d = 3 + ε dimensions takes a simple form, (−Hη)ε/2(1− ikη)eikη. We see that this mode

function is different from the one in d = 3 dimensions by the overall normalization factor (−Hη)ε/2.
Using such a simple form of the mode function it is then straightforward to perform the integral in

k analytically in the limit ηf = 0. At this point, one can see that there are several terms appearing

after the integration: a finite term, a term going as 1/ε and a term that contains log(H/µ) where µ is

a renormalization scale. Note that the finite term and the term with 1/ε can be altogether removed

in some renormalization scheme. After that, similar to the calculation in (D.7), one can apply the

saddle-point approximation to perform the η integral. Finally, we obtain the same α dependence of

ψ1−loop
2 together with the logarithmic divergence of the form log(H/µ) which, as explained earlier,

cannot be removed by adding local counter-terms. 28

28We can convince ourselves that log(H/µ) originates from a non-analytic term in k by performing the calculation
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The result (D.7) indicates that this one-loop correction is suppressed compared to the tree-level

one by α2Pζ ≪ 1. This confirms the estimates of Sec. 3.2. In addition, following the same method we

used, it is straightforward to generalise the scaling of logΨ1−loop
2 to logΨ1−loop

n where n is the number

of external legs:

logΨ1−loop
n ∼ b̃

√
α
ζ̄2

Pζ
(α2ζ̄)n−2(α2Pζ) . (D.9)

The suppression with respect to tree-level is always α2Pζ ≪ 1.

Let us discuss what happens when derivatives do not act on the external legs: contributions such

as Kk1(η)K
′
k1
(η)G′(η, η;k) and Kk1(η)Kk1(η)G

′′(η, η;k) to the one-loop coefficient ψ1−loop
2 . Following

the same procedure as above, one can straightforwardly show that these contributions are suppressed

by α, compared to Eq. (D.7). More explicitly, we have

logΨ1−loop
2 (KK ′G′) ∼ b̃

√
α

α

ζ̄2

Pζ
(α2Pζ) , logΨ1−loop

2 (KKG′′) ∼ b̃
√
α

α2

ζ̄2

Pζ
(α2Pζ) . (D.10)

The reason for this α suppression is the following. In this case, there is at least one time derivative

acting on the bulk-to-bulk propagator, implying that it will generate a factor of internal momentum k.

Then, changing the variables to the physical momentum (kp = −ηHk) leads to an additional factor of

1/η, so that the integrand in η contains fewer powers of η compared with the K ′
k1
(η)K ′

k1
(η)G(η, η;k)

contribution. Therefore, evaluating the η integral on the saddle point (ktηs ∼ −α) we find that in

comparison with Eq. (D.7) these contributions are suppressed in α as shown in Eq. (D.10).

Applying the same technique to the higher-loop corrections, one can deduce that the ℓ-loop wave-

function coefficient at O(b̃) with n external legs scales as

logΨℓ−Loop
n ∼ b̃

√
α
ζ̄2

Pζ
(α2ζ̄)n−2 (α2Pζ)

ℓ . (D.11)

E Numerical methods

In this appendix we explain the numerical methods used to compute the on-shell action in Sec. 5.2.

The first step towards numerically integrating the action is to obtain an accurate value for the free

solution ζ(τ, r) with the late-time boundary condition. We then provide two methods to obtain such

a solution. The first method makes use of the analytical expression for the Fourier transform ζ(τ, k),

in dim. reg. in the early-times limit |ηf | ≫ 1, where all the modes are inside the horizon and the mode functions are

approximated by the Minkowski ones (by time-translational invariance in this limit, we can set the final time tf = 0).

The time and momentum integrals in ψ1−loop
2 in this limit take the following form∑

σ

∫ 0

−∞
dt e−it(ktp−σω)

∫
ddkp

(2π)d
µδ

kp

[
1− e−2ikpt

]
∝
k2tp + ω2

4δ
+

1

8

[
(k2tp + ω2) log

4µ2

k2tp − ω2
+ ktpω log

ktp − ω

ktp + ω

]
, (D.8)

where in the first step we expanded the cosine in exponentials (σ = ±1) and in the second step we performed the

summation over σ. The subscript p stands for physical momentum. We first performed the time integral and then the

one over kp. Notice that the boundary term e−2ikpt mixes the t and kp dependences and does not vanish in dim. reg. .

Note the non-analytic dependence of the finite terms in δ.
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i.e. the Euclidean version of Eq. (3.14). Then, the real-space solution is obtained by performing

an inverse-Fourier transform at each time step, which is implemented numerically via a fast Fourier

transform (FFT). Since our system possesses spherical symmetry, the solution then only depends

on k and the inverse-Fourier transform simply becomes one dimensional. After that, we plug the

real-space solution into the action and evaluate the integral numerically, although there are some

technical points to be careful about, as we will explain below. The second method, on the other

hand, relies on solving the linear PDE for ζ(τ, r) with prescribed boundary conditions. Then, we can

straightforwardly compute the action on such a numerical solution. This method in fact is similar to

what was implemented in [1] (in this reference the equation for ζ(τ, r) was however non-linear). We

will refer to these two methods as FFT and PDE methods, respectively.

Before entering into the details of the numerical integration, let us comment on the Gaussian

profile at late times, see Eq. (5.18). In fact, in this specific case the solution ζ(τ, r) can be obtained

analytically in terms of exponential-integral functions, using the inverse-Fourier transform of the

(Euclidean-rotated) ζ(τ, k) in (3.14), giving

ζ(τ, r)/ζ̄ = (1− 4τ2)ReW (z) +
2τ

r
(τ2 − r2) ImW (z)− 2τ√

π
, (E.1)

where W (z) ≡ e−z
2
(1 − i erfi(z)), erfi(z) ≡ −ierf(iz) is the imaginary error function and z ≡ r + iτ .

It should be noted that dealing with the above expression is not always straightforward. Indeed, an

accurate evaluation of Eq. (E.1) requires the implementation of arbitrary-precision numerics (otherwise

large numerical errors appear when evaluating W (z) for complex argument in the regions |τ | ≫ 1,

r ≫ 1), resulting in very long evaluation times. Actually, we employ this analytical expression (E.1)

only for negative ζ̄ since high accuracy/precision is needed, as discussed in Sec. 5.2. However, this

procedure of finding an analytical expression for ζ(τ, r) cannot be generally applied to an arbitrary

late-time configuration.

Here we explain in detail how to perform the numerical integration over τ and r. First, note that

τ ∈ (−∞, 0) and r ∈ (0,+∞). In order to obtain a better accuracy/precision, we divide our integral

(5.1) into three pieces,

∆SE,1 = ∆S1,early +∆S1,grid +∆S1,late , (E.2)

where ∆S1,early is the integration over τ ∈ (−∞, τmin), ∆S1,grid the one over τ ∈ (τmin, τmax), and

∆S1,late the one over τ ∈ (τmax, 0). The reason for this separation, as we will see below, is essentially

the fact that the integral over τ in both ∆S1,early and ∆S1,late can be performed analytically, which

indeed improves the matching with the saddle-point approximation. Therefore, we are left with only

the numerical integration in r for ∆S1,early and ∆S1,late. Of course, we still have to do the numerical

integrations over τ and r in ∆S1,grid,
29 but this is less subtle since both τmin and τmin are finite.

Below, we provide a detailed analysis of both ∆S1,early and ∆S1,late.

29In fact, when performing the numerical integration it is more useful to change coordinates {τ, r} to {t̃, r̃}, defined as

t̃ ≡ − log(−τH) , r̃ ≡ log(Hr) . (E.3)

Notice that both t̃ and r̃ run from −∞ to +∞. We see that the oscillation of the on-shell action is periodic in t̃ with
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Let us analyse the late-time contribution ∆S1,late. In this regime, expanding the solution ζ(τ, r)

for small |τ |, see Eq. (3.16), gives rise to the late-time limit action up to the leading contributions,

∆S1,late ≃
2π

Pζ

∫ +∞

0
dr r2

∫ 0

τmax

dτ

[ (
∇2ζ̄(r) + ∂r ζ̄(r) ∂r∇2ζ̄(r)

)
cos q(τ, r)

− α

2
∇2ζ̄(r) (∂r ζ̄(r))

2 sin q(τ, r)

]
, (E.4)

where we have used the fact that the late-time profile is spherically symmetric and we have defined

q(τ, r) ≡ α
(
log(τ/η⋆) + ζ̄(r)− iπ/2

)
− δ̃. It is important to note that the limit τ → 0− is regular by

construction. Performing the integral over τ in (E.4) analytically, we therefore obtain

∆S1,late ≃− 2πτmin

(1 + α2)Pζ

∫ +∞

0
dr r2

[ (
∇2ζ̄(r) + ∂r ζ̄(r) ∂r∇2ζ̄(r)

)
(cos qmax(r) + α sin qmax(r))

− α

2
∇2ζ̄(r) (∂r ζ̄(r))

2(sin qmax(r)− α cos qmax(r))

]
, (E.5)

where qmax/min(r) ≡ q(τmax/min, r). Notice that in the formula shown above we have kept the terms

up to O(τmax). Actually, in our numerical implementation we include up to order O(τ12max) and when

choosing τmax we check that additional corrections are negligible. The integration over r in (E.5) is

then performed numerically.

Finally, let us consider the early-time contribution ∆S1,early. Following the same procedure as for

the late-time limit action, we expand the solution ζ(τ, r) for large |τ | to obtain

∆S1,early ≃ −2π

Pζ

∫ +∞

0
dr r2(∂r ζ̄(r))

2

∫ τmin

−∞

dτ

τ2
cos(q(τ, r)) . (E.6)

Notice that in the expression above the fact that ζ(τ, r) quickly decays for large |τ | implies that

the dominant contribution in the action at early times comes from the counter term in Eq. (3.21).

Evaluating the integral over τ analytically, we thus obtain

∆S1,early =
2π

τmin(1 + α2)Pζ

∫ +∞

0
dr r2(∂r ζ̄(r))

2 (cos qmin(r)− α sin qmin(r)) . (E.7)

As before, we are left with the radial integration which can be done numerically. Notice that this

contribution decays very slowly at early times, as ∼ 1/τmin. This suggests that including ∆S1,early

allows us to choose moderately large values for τmin, without considering an extremely large grid.
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