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Abstract: It is a fundamental unsolved question in general relativity how to unambiguously
characterize the effective collective dynamics of an ensemble of fluid elements sourcing
the local geometry, in the absence of exact symmetries. In a cosmological context this is
sometimes referred to as the averaging problem. At the heart of this problem in relativity
is the non-uniqueness of the choice of foliation within which the statistical properties of
the local spacetime are quantified, which can lead to ambiguity in the formulated average
theory. This has led to debate in the literature on how to best construct and view such a
coarse-grained hydrodynamic theory. Here, we address this ambiguity by performing the first
quantitative investigation of foliation dependence in cosmological spatial averaging. Starting
from the aim of constructing slicing-independent integral functionals (volume, mass, entropy,
etc.) as well as average functionals (mean density, average curvature, etc.) defined on spatial
volume sections, we investigate infinitesimal foliation variations and derive results on the
foliation dependence of functionals and on extremal leaves. Our results show that one may
only identify fully foliation-independent integral functionals in special scenarios, requiring the
existence of associated conserved currents. We then derive bounds on the foliation dependence
of integral functionals for general scalar quantities under finite variations within physically
motivated classes of foliations. Our findings provide tools that are useful for quantifying,
eliminating or constraining the foliation dependence in cosmological averaging.
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1 Introduction

The formulation of the theory of relativity came with the remarkable insight that proper
time varies between observers, and, consequently, the Newtonian notion of a unique time
parameterization of physical phenomena was abandoned. In concrete applications of rela-
tivity to the modelling of physical systems, it is nevertheless practical to introduce a time
parametrization. Foliations of spacetime into a set of spatial leaves that are labelled by a
time coordinate, also known as ‘3 + 1’ decompositions, appear very commonly in applications
of general relativity (and alternative theories of gravity), and especially in the cosmological
context. Such foliations allow for an initial value formulation of general relativity [1, 2].

Due to the non-uniqueness of time parameterization in general relativity, there is a broad
freedom in choosing the foliation of a given spacetime. The non-uniqueness of the foliation is
not a problem per se: it may be seen as an advantage that there is the freedom to consider
a foliation where the physical phenomena of interest are more easily described. Once one
applies operations that are tied to a particular slicing, such as the integration or averaging of
a field over the leaves of the foliation, the choice of foliation is important. In this paper, it
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will be our goal to systematically examine and quantify the impact of the choice of foliation
in spatial averaging with a focus on applications for cosmology, and we thus give a brief
review of the cosmological averaging problem here.

Cosmology typically aims at describing overall, statistical, or average properties of the
Universe as a whole as a function of cosmic time. Thus, the concept of 3 + 1 foliations
is inherent in the questions posed in cosmology. The formulation of a large-scale effective
cosmological theory can be approached either (i) by making an ansatz for the large-scale
metric (that must be assumed to be a meaningful object) and for the large-scale matter
content and seeking solutions within this ansatz — possibly also allowing for smaller-scale
perturbations thereof; or (ii) by explicitly averaging over small-scale dynamics to derive the
large-scale evolution laws of the locally defined spacetime.

The route in (i) is most often applied. It works well when the small and intermediate
scales of gravitational phenomena can effectively be ignored in the large-scale evolution
of the Universe, and it becomes simple when there is a notion of large-scale symmetries.
When assuming homogeneity and isotropy over spatial sections of the Universe at its largest
scales, one arrives at a Friedman-Lemaître-Robertson-Walker (FLRW) metric description
by this route. The Lambda Cold Dark Matter (ΛCDM) paradigm of cosmology is founded
on this approach, where structures are described as perturbations around a large-scale (and
background) FLRW model.

The alternative route in (ii) is more involved, since it starts with the local spacetime
description — which must necessarily be complicated by accounting for the hierarchy of scales
and nonlinearity of gravitational phenomena in the Universe — as the basis for deriving the
dynamics of the largest scales. This step also involves the construction of an appropriately
defined coarse-graining or averaging operation. If the assumptions of decoupling of the physics
at scales comparable to the size of the visible Universe from physics at smaller scales hold,
and if large-scale homogeneity and isotropy apply, then one should, by such a procedure,
arrive at the same FLRW metric description as for the approach in (i). However, if these
conditions are not satisfied, then the results of the route in (ii) is expected to differ from the
usual applications of the procedure in (i) — such a difference is called a backreaction effect
of the dynamics of inhomogeneous structures. Despite of its empirical success, the ΛCDM
paradigm is subject to model anomalies on a wide range of scales [3–7], and continues to face
the fundamental challenges of the nature of the dark energy and dark matter sources. There
is a debate regarding whether exploring the route in (ii) could help resolve the anomalies
and interpretational challenges of the ΛCDM paradigm; see for instance [8, 9].

The problem of how to formally approach the route in (ii) may be denoted as the
averaging problem or the fitting problem, and was first discussed in detail in early works
by [10–12]. The most widely studied procedure for cosmological averaging is the Buchert
averaging scheme for scalar quantities [13–16], but there have been numerous contributions
on complementary/alternative procedures, e.g., [17–22]. A variety of applications, mainly
following the Buchert averaging scheme, and generalisations thereof, have directly addressed
the impact of the choice of foliation in these schemes, either quantitatively or in qualitative
discussions [23–29]. Very briefly summarized, these papers point towards a variation of the
cosmological averages performed in a given spacetime with the choice of foliation, which is
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indeed natural: the choice of foliation is defining the averaging domains and therefore also
the final values of the computed averages. Such a variation may be worsened by additional
dependences of the averaging scheme in the choice of slices, e.g. if the quantities to be averaged
or the spatial boundaries of the domain depend on the foliation too. Without such extra
dependences, it may be possible to select from physical constraints a broad class of foliations
within which averaged observables remain approximately invariant, as argued qualitatively
in [28]. The foliation dependence in cosmological averaging is not in itself a problem, but if
left uncontrolled, it can introduce ambiguity in the average cosmological theory.

Foliation dependence in cosmological averaging has not yet been quantified systematically
in the literature. In this paper, we present covariant and broadly applicable methods for quan-
tifying, eliminating and/or constraining the foliation dependence in cosmological averaging.
Although the methods are investigated with the cosmological averaging problem in mind, they
have broad applications to foliation studies in general relativity and differential geometry.

In section 2, we present the general scalar averaging formalism that we use to quantify
foliation dependence throughout this paper. We then consider foliation (in)dependence in an
exact way, in section 3, through calculus of variation, for integral and average functionals. We
also investigate how foliations might be singled out uniquely from their extremal properties.
In section 4, we consider bounds on foliation dependence for finite variations, which are
relevant when considering physically motivated restricted classes of cosmic foliations. Finally,
in section 5, we summarize and discuss our results and their potential application to the
foliation dependence of large-scale backreaction terms and effects in cosmological averaging.

2 Covariant averaging over spatial foliations

We now define an averaging scheme relevant for averaging scalar functions over 3-dimensional
(spatial or null) slices as embedded within the four-dimensional spacetime manifold M. We
use the 3 + 1 averaging formalism presented in [22], building upon [20, 21, 30] — see also
the related development in [31]. This scheme is very general for 3 + 1 averaging of scalars,1

as it allows for the selection of an arbitrary averaging domain within an arbitrary slicing,
and — as an extension to [20, 21, 30] — it further allows for any volume measure and
weighting function for the integrand.

Following [22], we consider spacetime domains that are selected by a window function
of the form:

WA,A0,B,B0,V = V µ∇µA δD(A−A0) H(B0 −B) , (2.1)

where H is the Heaviside step-function and δD the Dirac delta function. Above, the foliation
scalar A, with an everywhere nonzero gradient, defines the foliation, each level set {A = cst.}
defining a hypersurface. The gradient of A is assumed to be either time-like or null, making
the hypersurfaces space-like or light-like, accordingly. The constant A0 parametrizes the

1There exists also a covariant formalism for smoothing (coarse-graining) tensorial fields, known as
Macroscopic Gravity [17, 18]. It differs in scope from the approach used here however, due to a focus on
coarse-graining fields within the 4-dimensional bulk, rather than on defining averages over given bounded
regions of hypersurfaces.
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hypersurface within the foliation. The boundary scalar B is set to have a space-like, outwards-
pointing gradient, hence one may think of B as a radial coordinate in a suitable coordinate
system. Together with the (fixed) constant B0, it defines the spatial boundaries of the finite
domain of averaging within each hypersurface. We shall restrict ourselves to the case where
B is independent of A and its derivatives, i.e., by selecting the region where B ≤ B0 we
consider a fixed spatially bounded (3 + 1)–dimensional tube in spacetime. We illustrate
this setup and these notations on figure 1.

The volume measure vector V , on the other hand, determines the integration measure
on the selected 3-dimensional surfaces. For instance, for space-like hypersurfaces, taking
V to be their unit normal vector n, i.e., V µ = nµ ≡ −∇µA (−∇νA∇νA)−1/2, is the choice
that would let √

gWA,A0,B,B0,V d4x reduce to the Riemannian volume element within the
hypersurfaces, inside the integration domain, where g is the modulus of the determinant of
the spacetime metric g (the components of which are noted gµν), g ≡ | det(gµν)| = − det(gµν).
We shall, however, allow V to be any time-like vector field, and the integration measure will
thus generally not coincide with the Riemannian volume measure on the leaves. Allowing
for a non-Riemannian volume measure is convenient for certain types of fluid-intrinsic
averaging [15, 28]. Those formalisms are recovered by setting V to be the 4-velocity u of
a certain fluid flow, independently of the foliation set by A, and the volume measure then
differs from the Riemannian one on the slices (if ∇A is time-like) by the Lorenz factor
γ ≡ −u · n. The generality of V shall also be convenient in the present paper for making
explicit which properties of the averaged expressions are related to the domain selection
and which are related to the volume measure. We finally note that V is not necessarily
requested to be unitary. This allows for weighted averages — where the norm |V | of V can
be considered as the local weight and the normalized V as defining the volume measure —,
such as mass-weighted averages when |V | is a mass density [22, 32].

For the examples of applications considered in this paper we mainly have in mind spatial
foliations (∇A · ∇A < 0), which are relevant for formulating averaged evolution equations in
time, i.e., viewing the averaging problem as an initial value problem. We shall however also
be interested in considering null foliations (∇A · ∇A = 0) in some cases. In such situations,
we will sometimes be interested in allowing B to rather have a time-like gradient. Then,
{B = B0} would become a space-like hypersurface rather than a time-like tube boundary,
and the regions selected by WA,A0,B,B0,V for a range of values of A0 would then rather be
interpreted as a set of light-cones truncated at that fixed hypersurface.

For the unit Heaviside step-function H, we use the right-continuous convention H(0) = 1
throughout. In the following we shall omit the subscripts on WA,A0,B,B0,V except for those
relating to the foliation and refer to the window function (2.1) as WA

A0
, leaving the choice

of boundaries and volume measure implicit.
We define the integral over a scalar S over the spacetime domain singled out by WA

A0

in the following way

I(S)A
A0 ≡

∫
M
d4x

√
g S WA

A0 . (2.2)

We then define the volume VA
A0

of the domain and the volume average ⟨S⟩A
A0

of an arbitrary
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A = A0

A = A1

B = B0

A = A2

B < B0

Figure 1. Representation of the foliation and integration domain setup defined by the scalar functions
A and B in the window function (2.1). The figure shows several hypersurfaces from the foliation
defined by the level sets of A, the spacetime tube specified by {B ≤ B0} bounding the spatial extent
of the region of interest, and the compact integration domain defined within each {A = cst.} slice from
the intersection of the slice with the above tube. Note that we here illustrate the case of space-like
slices, but a function A with light-like level sets could be chosen as well.

scalar S, respectively, as

VA
A0 = I(1)A

A0 ; ⟨S⟩A
A0

≡
I(S)A

A0

VA
A0

. (2.3)

The derivative of the integral (2.2) with respect to A0 is given by (see [22]):

∂I(S)A
A0

∂A0
=
∫

M
d4x

√
g V ν∇νA δD(A−A0) ∇µ(SV µH(B0 −B))

V σ∇σA
, (2.4)

and the analogous derivative of the average (2.3) is given by:

∂ ⟨S⟩A
A0

∂A0
= 1
I(1)A

A0

∂I(S)A
A0

∂A0
−

⟨S⟩A
A0

I(1)A
A0

∂I(1)A
A0

∂A0

= − 1
I(1)A

A0

∫
M
d4x

√
g V ν∇νA δD(A−A0) (2.5)

×
∇µ (SV µH(B0 −B)) − ⟨S⟩A

A0
∇µ(V µH(B0 −B))

V σ∇σA
.

When A is a time-function, meaning that ∇A · ∇A < 0, these derivatives may be thought
of as describing the time-evolution of the integral/average.

In the above expressions, we re-introduced the volume weighting factor V · ∇A to
explicitly separate the window function and the scalar to be integrated (generally foliation
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dependent due to its V σ∇σA denominator). For instance, given our H(0) = 1 convention,
eq. (2.4) may be rewritten as,

∂I(S)A
A0

∂A0
= I

(∇µ(SV µH(B0 −B))
V σ∇σA

)A

A0

= I

(∇µ(SV µ) − SV µ∇µB δD(B −B0))
V σ∇σA

)A

A0

.

(2.6)
We do require that B be parametrized in such a way that space-like or null sections

of {B ≤ cst.} tubes are compact. In the case where the spatial sections of M are infinite,
integrals or averages over the entire {A = cst.} slices may be obtained from a B0 → ∞
limit, the existence of which would however set some convergence conditions that S must
obey; we will not directly consider such a limit in this work. In the case of a spatially closed
topology, on the other hand, the above formalism can directly encompass the special case
of integrating over the entire compact slices. This is obtained by choosing a large enough
B0; in that case, the corresponding equations may as well be simplified by dropping the
Heaviside factors H(B0 − B). Boundary conditions arising from derivatives of this factor,
i.e. δD(B − B0) terms, then disappear as B < B0 everywhere within M.

3 Infinitesimal variation of the foliation

In this section we consider local extrema of the integrals and averages defined above, when
they are viewed as functionals of the foliation. We thus compute stationarity conditions of the
integrals/averages under variation of the foliation scalar A. Such stationarity conditions have
at least two useful applications. Firstly, we are interested in identifying foliation independent
quantities. Foliation-independence is equivalent to stationarity of the given functional for all
foliations. Secondly, we may be interested in finding a foliation (or leaf of a foliation) that
extremise a specific integral or average functional. Extremal leaves of such functionals can
be thought of as generalisations of paths of shortest distance, and they may be thought of
defining natural hypersurfaces in specific contexts. Thus, such extremals may provide an
interesting way of defining leaves/foliations uniquely. Moreover, the corresponding extremum
value of the functional would be a natural foliation independent measure of this functional,
generalising the shortest distance (minimised over all possible paths) as a preferred measure
of distance between two points.

We leave the foliation scalar unconstrained in the variation. Thus the leaves associated
with the solutions to the resulting stationarity conditions may in principle be space-like,
time-like, null, or of a varying nature (depending on the point) amid these three possibilities;
and the nature of the solution will have to be checked in each case. Analogous constrained
stationarity conditions can be derived by imposing local or global constraints of physical
interest, such as constraining the foliation scalar to have an everywhere null gradient (e.g.
when discussing light cones) or to be a proper-time function for a given 4-velocity field. We
avoid such considerations in this paper for the sake of simplicity.

We shall consider stationarity conditions either for a single leaf or for an entire foliation,
the latter being more restrictive. We consider cases where the integrated scalar S of interest
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is possibly dependent on ∇A, but not A or higher-order derivatives, and where the volume
measure vector V is possibly dependent on A and ∇A.2

3.1 Freedom of parameterisation of the foliation

Before considering the variation of the average/integral functionals in generality, we shall
consider the trivial subset of variations that define a map of the foliation onto itself. We
shall require that the functional is invariant under such mappings. Consider a given foliation
F = {ΣA=A0}, where A is a spacetime scalar representing the foliation, A0 is a parameter
defined over some range A0,1 ≤ A0 ≤ A0,2 selecting a leaf of the foliation, and where ΣA=A0

represents a leaf of the foliation. The transformation

A 7→ f(A) , A0 7→ f(A0) , (3.1)

where f is a strictly monotonic function, defines a map from the foliation onto itself F 7→ F .
We thus denote the choice of f the freedom of parameterisation of the foliation.

We can define an averaging operation independent of this parameterisation by requiring
that a change of parametrisation leaves the integral (2.2) invariant when S is itself independent
of the parametrisation of the foliation. Thus, we require that transformations A 7→ f(A),
A0 7→ f(A0) lead to mappings of the integral onto itself I(S)A

A0
7→ I(S)f(A)

f(A0) = I(S)A
A0

, where
S is an arbitrary scalar independent of the parametrisation of the foliation F . Demanding
that I(S)A

A0
remains invariant under the gauge transformations A 7→ f(A), A0 7→ f(A0)

is equivalent to requiring stationarity of I(S)A
A0

for all representations A of the foliation
F under variations A 7→ Ã = A + δf(A) , A0 7→ Ã0 = A0 + δf(A0), where δf(A) (and its
derivatives) is an infinitesimal scalar function of A.

For a generic integral operation (2.2) the integral evaluated at the representation Ã of the
foliation can be expressed in terms of the integral evaluated in the representation A as follows

I(S)Ã
Ã0

=
∫

M
d4x

√
g SV µ[Ã,∇Ã] ∇µ(Ã) δD(Ã0 − Ã)H(B0 −B)

=
∫

M
d4x

√
g SV µ[Ã,∇Ã] ∇µAδD(A0 −A)H(B0 −B) , (3.2)

where the second line follows from ∂AÃ δD(Ã0 − Ã) = δD(A0 − A). We have made the
functional dependence of V explicit by writing V µ[Ã,∇Ã]. Performing the first order
functional expansion of V µ(Ã) around the representation A and plugging it into (3.2) we have

δI(S)A
A0

∣∣∣
F

≡ I(S)Ã
Ã0

− I(S)A
A0

=
∫

M
d4x

√
g S

(
∂V µ

∂A
δf(A) + ∂V µ

∂∇νA
∇νδf(A)

)
∇µAδD(A0 −A)H(B0 −B)

= δf(A0) I
(
S ∂V µ(A)

∂A ∇µA

V κ(A)∇κA

)A

A0

+ ∂δf(A0)
∂A0

I

S ∂V µ(A)
∂∇νA ∇νA∇µA

V κ(A)∇κA

A

A0

, (3.3)

2We consider possible dependence of V on ∇A since we want to allow for cases where V is normal to the
hypersurfaces defined by A. We also consider possible dependence of S on ∇A, the reason being that factors
of V · ∇A arise naturally for time-derivatives as seen in the commutation rules (2.4) and (2.5). For analysing
higher-order derivatives or scalar curvature of the slices, dependence on second-order derivatives ∇∇A in S

would need to be considered in the variation.
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where δI(S)A
A0

∣∣∣
F

denotes the first order variation of δI(S)A
A0

under variations of A,A0 that
maps the foliation F onto itself. We require (3.3) to vanish for any choice of S. Since
δf(A0) and its derivative can be chosen arbitrarily and independently on a given leaf A = A0,
the following two conditions,

∂V µ(A)
∂A

∇µA = 0 and ∂V µ(A)
∂∇νA

∇νA∇µA = 0 , (3.4)

must be independently satisfied. Loosely speaking, (3.4) states that the volume measure
(as determined by V ) can depend only on the direction defined by ∇A, but not on its
norm or the values of A. Besides any foliation-independent V , these conditions allow in
particular for taking V as the unit normal to the hypersurfaces as in [20, 21], in the case
where those surfaces are space-like.

3.2 Variation of integral quantities with respect to the foliation

We shall now derive the stationarity conditions for the integral functional (2.2) under variation
of the hypersurface scalar3 A. Physical integral functionals of interest may for instance be
volume or mass functionals.

We write the first order variation of the integral I(S)A
A0

(2.2) as a function of the
variation A → A + δA as

I(S)A
A0 → I(S)A+δA

A0
= I(S)A

A0 + δI(S)A
A0 , (3.5)

with

δI(S)A
A0 =

∫
M
d4x

√
g δ
(
SWA

A0

)
= −

∫
M
d4x δA

√
g δD(A0 −A)∇µ(SV µH(B0 −B))

+
∫

M
d4x δ(∇µA)√g δD(A0 −A)H(B0 −B)

[
∂

∂(∇µA)(SV ν∇νA) − SV µ

]

= −
∫

M
d4x δA

√
g δD(A0 −A)∇µ(SV µH(B0 −B))

+
∫

M
d4x δ(∇µA)√g δD(A0 −A)H(B0 −B)∇νA

[
∂

∂(∇µA)(SV ν)
]
. (3.6)

We note that local stationarity requirements cannot yet be directly extracted from the variation
as written in (3.6), because δ(∇µA) = ∇µ(δA) may not be considered fully independent of
δA. It is only the component of ∇µ(δA) along a direction pointing away from the surface,
that may be considered independent from δA as evaluated on the surface. Hence, we make

3We are here varying the domain of integration, by varying the spatial slice. This is in contrast to most
variational problems, where a field living on a fixed domain is varied. Note that the functional I(S)A

A0 is
differentiable even though it contains a delta-function in A, since the variation of the delta-function is defined
through partial integration.
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the following rewriting, first using partial integration of (3.6) to obtain

δI(S)A
A0 = −

∫
M
d4x δA

√
g
∂

∂A
(δD(A0 −A))H(B0 −B)∇µA∇νA

∂

∂(∇µA)(SV ν)

−
∫

M
d4x δA

√
g δD(A0 −A) ∇µ

(
∂

∂(∇µA)(SV ν∇νA)H(B0 −B)
)
, (3.7)

and then introducing an arbitrary, fixed vector field Z chosen such that Z · ∇A ̸= 0 (this is
for instance guaranteed for a time-like Z, if A has an everywhere time-like or null gradient)
to rewrite the first term in (3.7). This results in the following useful form of the variation:

δI(S)A
A0 =

∫
M
d4x

δ (Zσ∇σA)
Zκ∇κA

√
g δD(A0 −A)H(B0 −B)V ν∇νA∇µA

∂S

∂(∇µA)

+
∫

M
d4x δA

√
g δD(A0 −A) ∇σ

(
Zσ

Zκ∇κA
H(B0 −B)V ν∇νA∇µA

∂S

∂(∇µA)

)

−
∫

M
d4x δA

√
g δD(A0 −A) ∇µ

(
∂

∂(∇µA)(SV ν∇νA)H(B0 −B)
)
, (3.8)

where the requirement of gauge-invariance of the averaging operation (3.4) has been used,
and with δ(Zσ∇σA) = Zσδ(∇σA).

In eq. (3.8) above, the variation δA on a given surface can now be considered independent
from its derivative as the latter is taken along the direction Z, away from the surface.
Accordingly, the first line of (3.8) gives rise to a first local constraint equation, and the last
two lines give rise to a second one. Altogether, we arrive at the two independent constraints
for stationarity of I(S)A

A0
around the surface A = A0:

δI(S)A
A0 = 0 ∀ δA

⇔


H(B0 −B)∇µA

∂S
∂(∇µA)

∣∣∣
A0

= 0
and
∇σ

(
Zσ

Zκ∇κAH(B0 −B)V ν∇νA∇µA
∂S

∂(∇µA) − ∂(SV ν∇νA)
∂(∇σA) H(B0 −B)

)∣∣∣
A0

= 0 ,
(3.9)

where we have made use of the assumption V ν∇νA ̸= 0. The first condition above is nothing
but the requirement for S to be invariant under a change of the foliation F = {ΣA=A0}.
Note that the conditions for stationarity in eq. (3.9) are independent on the arbitrary choice
of Z despite the apparent dependence on Z in the second condition. This can be seen by
expanding Z in a component proportional to ∇A and a component orthogonal to ∇A, and
noting that all contributions orthogonal to ∇A vanish due to the first condition of (3.9) and
to its spatial derivatives along the {A = A0} hypersurface.

Requiring that I(S)A
A0

is stationary for all surfaces A0 results in the following conditions:4

δI(S)A
A0 = 0 ∀ δA,A0 ⇔


H(B0 −B)∇µA

∂S
∂(∇µA) = 0

and
∇σ

(
∂(SV ν∇νA)

∂(∇σA) H(B0 −B)
)

= 0 .
(3.10)

4We could have considered a domain with a small width in time, by replacing the delta function in (2.1) by
a narrow step-function. In that case we arrive at (3.7) with the delta-function replaced by a step function. In
this case the expression equivalent to (3.7) is not singular, but the “boundary condition” ∇µA ∂S/∂(∇µA) = 0
would still need to be fulfilled separately in order for there to be extrema.
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Note that the stationarity requirements (3.9) and (3.10) for the integral I(S)A
A0

are local
conservation equations. Due to the first condition, when S is dependent on the representation
A of the foliation such that ∇µA ∂S/∂(∇µA) ̸= 0, no stationary foliations exist for I(S)A

A0
,

when allowing for all possible variations of the foliation.5 Due to the derivative of the spatial
boundary selection function H(B0 −B), the second condition in either eq. (3.9) or eq. (3.10)
may itself be split into a condition inside the B ≤ B0 domain and a condition on the B = B0
boundary. For instance for eq. (3.10), the second condition is expanded as

∇σ

(
∂(SV ν∇νA)
∂(∇σA)

)
H(B0 −B) − ∂(SV ν∇νA)

∂(∇σA) ∇σB δD(B −B0) = 0 , (3.11)

and is thus equivalent to: 
H(B0 −B) ∇σ

(
∂(SV ν∇νA)

∂(∇σA)

)
= 0

and(
∂(SV ν∇νA)

∂(∇σA) ∇σB
)∣∣∣

B=B0
= 0 .

(3.12)

It can be shown from (2.4) and the conditions (3.9) that stationarity of I(S)A
A0

implies
the vanishing of its derivative with respect to A0:

δI(S)A
A0 = 0 ∀ δA ⇒

∂I(S)A
A0

∂A0

∣∣∣∣∣
A0

= 0 . (3.13)

Similarly (3.10) implies

δI(S)A
A0 = 0 ∀ δA,A0 ⇒

∂I(S)A
A0

∂A0
= 0 . (3.14)

These results are expected since (infinitesimal) constant translations of A at fixed A0, which
are part of the class of variations δA, can also be seen as a translation in time within the
original foliation. In fact, the results (3.13) and (3.14) are general and apply to integral
functionals with arbitrary functional dependence on ∇A,∇∇A, . . . ,∇(n)A.

We now consider the special case where S and V are independent of the foliation.
In particular, we let S and V be independent on the direction vector ∇A of the foliation,
and it follows that

∇νA
∂V ν

∂(∇µA)

∣∣∣∣∣
A0

= 0 and ∂S

∂(∇µA)

∣∣∣∣∣
A0

= 0 and (3.15)

∇σ

(
∇νA

∂V ν

∂(∇µA)

)∣∣∣∣∣
A0

= 0 and ∇σ

(
∂S

∂(∇µA)

)∣∣∣∣∣
A0

= 0 ,

in the case of extremisation for a single leaf; or,

∇νA
∂V ν

∂(∇µA) = 0 and ∂S

∂(∇µA) = 0 , (3.16)

5Sometimes we might be interested in considering restricted subclasses of variations, e.g. variations within
a class of proper time-foliations τ → τ + δτ of a 4-velocity u, that by construction satisfy u · ∇δτ = 0 (see
section 4.5). In such cases stationary foliations for certain functionals may exist for ∇µA ∂S/∂(∇µA) ̸= 0.
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for extremisation for the entire foliation. In these cases, the first condition of (3.9) and
of (3.10) respectively are automatically satisfied. Moreover, the condition for stationarity
for a single hypersurface simplifies to

δI(S)A
A0 = 0 ∀ δA ⇔ ∇σ (SV σH(B0 −B))|A0

= 0 , (3.17)

and the stationarity condition for all surfaces reduces to

δI(S)A
A0 = 0 ∀ δA,A0 ⇔ ∇σ (SV σH(B0 −B)) = 0 . (3.18)

The requirements (3.15) or (3.16) are indeed natural in many cases.6 In the case where V is
independent of the foliation, the stationarity requirement (3.17) for a single surface is only
dependent on the foliation through the surface of evaluation, and the requirement (3.18)
for stationarity for an entire foliation does not depend on the foliation at all. In this case,
if (3.18) is satisfied for a particular foliation, then it is satisfied for any possible foliation.

As in the general case of eqs. (3.9)–(3.10), the above stationarity conditions may be
split into a bulk and a boundary condition,

H(B0 −B) ∇σ(SV σ) = 0 and (SV σ∇σB)|B=B0
= 0 , (3.19)

to be simultaneously satisfied either on the single {A = A0} slice or on all slices.

We remark that the stationarity conditions for integral functionals are restric-
tive. In particular, the stationarity requirement (3.18) for an entire foliation is extremely
restrictive. The foliation is stationary only when SV is a conserved current. The stationarity
requirement (3.17) for a single leaf is more flexible: obtaining stationarity in a given foliation
amounts to being able to collect points for which ∇ · (SV ) = 0 is satisfied to construct a
space-like (or null-like) leaf. We emphasise that the stationarity conditions (3.17) and (3.18)
are derived under assumptions. For instance, they are derived under the assumption of
no functional dependence of I(S)A

A0
on second or higher order derivatives of A (thus, for

integrals over foliation-adapted curvature degrees of freedom the results derived in the present
section do in general not apply). We also emphasise, that extrema which are not stationary
points can exist in the form of infimums or in the form of local extrema introduced by a
“boundary” in the solution space.

3.2.1 Example: rest mass

Consider a conserved local rest mass current

Mµ = ϱuµ, ∇µM
µ = 0 , (3.20)

where ϱ is a rest mass density of a fluid with 4-velocity u. We might seek to define a total
rest mass of spatial domains as volume integrals over ϱ.

Let us consider the case where we take V to coincide with the fluid 4-velocity: V = u.
This is a natural choice when averaging local quantities intrinsic to the fluid [14, 28], and

6Note that the case of V being the unit normal to the hypersurfaces defined by A (when those are space-like)
automatically satisfies (3.15) and (3.16) when S is independent of the foliation.
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it allows for the integrated ϱ, I(ϱ)A
A0

, to properly define a total rest mass [22]. We will
assume that we can define boundaries B intrinsic to the fluid flow through parallel transport,
u · ∇B = 0, such that the spatial boundary is comoving with the fluid flow. We may,
alternatively, consider the case of a boundary-free domain, i.e., for a spatially closed manifold
and an integration domain coinciding with the whole hypersurfaces. Either way, this ensures
the preservation of the fluid content of the averaging domain over time, and will accordingly
allow for the preservation of its total rest mass.

Accordingly, we define a total rest-mass associated with the (fluid-comoving) averaging
domain in a given foliation A as

MA
A0 = I(ϱ)A

A0 =
∫

M
d4x

√
g ϱWA

A0 , (3.21)

with
WA

A0 = uµ∇µAδD(A−A0) H(B0 −B) . (3.22)

The mass (3.21) can be shown to be conserved over time (∂MA
A0
/∂A0 = 0) for any choice

of foliation A [22]. Furthermore, we have from (3.8) that

δMA
A0 ≡ δI(ϱ)A

A0 = −
∫

M
d4x δA

√
g δD(A0 −A)∇µ(ϱuµH(B0 −B)) , (3.23)

and we recover the condition (3.18), ∇µ(ϱuµH(B0 − B)) = 0, for the stationarity of MA
A0

with respect to the foliation. Using the conservation (3.20) of the rest mass current and the
comoving boundary (or no-boundary) assumption, ∇µ(ϱuµH(B0 −B)) = ∇µ(ϱuµ)H(B0 −
B) − ϱuµ∇µB δD(B0 − B) always vanishes, implying that the mass is stationary for all
foliations and thus foliation independent.

The rest mass definition (3.21) and its stationarity still hold if ∇A is light-like.7 Thus,
this mass is not only invariant with respect to a choice of spatial hypersurface; it is also
invariant under a change from spatial to light-like hypersurfaces, providing a potentially
interesting correspondence between light-cone and spatial hypersurface averaging.

3.2.2 Example: volume

Suppose we want to consider extremal foliations for the volume VA
A0

≡ I(1)A
A0

of a domain
lying within the hypersurfaces. We consider variations A → A+ δA that vanish (δA = 0) on
the boundary B = B0 (or, as above, that the domain is boundary-free, i.e. B < B0 everywhere
on M). This implies slightly weaker stationarity requirements, removing the conditions
imposed at the domain boundary since only the interior region has to be constrained.

The problem of finding the extremal volume enclosed by a fixed spatial boundary, can
be thought of as a higher-dimensional generalisation of finding the shortest path between
two fixed spacetime events. This is a well-studied problem in the literature, at least for the
Riemannian volume measure (see e.g. [33] and references therein for the case of Riemannian
geometry and [34] and references therein for Lorentzian manifolds). It is nevertheless worth
recalling here as an illustrative example for the present discussion, as the volume functional
is of great importance in cosmology.

7The induced volume measure (V · ∇A) √
g is in this case the generalisation of the induced volume measure

on the null-cone considered in [30]. The present integration measure reduces to that of [30] when V is taken
to be a time-like unit vector field which is hypersurface-forming.
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We first consider the case where the hypersurfaces are space-like and V is their
unit normal. In this case, we recover the Riemannian volume measure on the surfaces.
We write

Vµ = nµ = −∇µA

N
, N ≡ (−gαβ∇αA∇βA)1/2 , (3.24)

where n is the future-pointing unit normal to the hypersurfaces, and N −1 is the associated
lapse function. In this case the condition (3.16) is satisfied, and the stationarity requirement
reduces to (3.18). This simplifies further due to the fixed value of A at the boundary (or
the lack of a boundary), removing the condition at B = B0, (V · ∇B) δD(B0 − B) = 0. It
follows that a foliation extremises I(1)A

A0
if and only if the extrinsic curvature scalar of each

hypersurface vanishes inside the domain, ∇ · V = ∇ · n = 0. We thus recover the well-known
condition for the stationarity of this volume functional.

Suppose that we can find a foliation for which this condition is satisfied. We want to
determine whether such an extremal foliation is a maximum, minimum, or a saddle-point.
For this purpose we use the identities

∂N
∂∇µA

= V µ,
∂V ν

∂∇µA
= − 1

N
hµν , hµν ≡ V µV ν + gµν , (3.25)

to compute the second variation of the volume

δ2VA
A0 ≡δ2I(1)A

A0 =
∫

M
d4x

√
gH(B0−B)δ2(δD(A0−A)N )

=
∫

M
d4x

√
gH(B0−B)

(
∂2δD(A0−A)

∂A2 N δA2

+2∂δD(A0−A)
∂A

∂N
∂∇µA

δA∇µ(δA)+δD(A0−A) ∂2N
∂∇νA∂∇µA

∇ν(δA)∇µ(δA)
)

=
∫

M
d4x

√
gH(B0−B)δD(A0−A) ∂2N

∂∇νA∂∇µA
∇ν(δA)∇µ(δA)

=−
∫

M
d4x

√
gH(B0−B)δD(A0−A) 1

N
hµν∇ν(δA)∇µ(δA), (3.26)

where the second last equality follows from partial integration of the term involving
N δA2 (∂2δD(A0 − A)/∂A2), the condition for stationarity ∇ · V = 0, and (3.25). The
last equality follows from (3.25). Since hµν is positive semi-definite, we have δ2VA

A0
≤ 0,

with equality when the perturbation δA depends solely on A (with ∇δA ∝ ∇A). Such
perturbations simply map the foliation onto itself — and in fact, they have to vanish when
the domain does have a boundary, due to the boundary condition δA|B=B0

= 0 that we set
in this case for the current example. Thus δ2VA

A0
< 0 for any infinitesimal actual change

of foliation, and hence the extremal foliation maximises the volume. This is an expected
consequence of the Lorentzian signature of the metric, while a Riemannian signature would
induce a minimisation of the volume.

We next consider the case where V is independent of the foliation. For variations
of A that are zero on the boundary B = B0 and in the boundary-free case, all foliations
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are extrema of the volume if and only if ∇ · V = 0, and it follows that the volume is
foliation independent if this condition is satisfied. Furthermore, we trivially have δ2VA

A0
= 0

for all foliations in this class. The volume has no local extremum, on the other hand, if
∇ · V ≠ 0. This is the case for a fluid proper volume measure, i.e. V = u where u is
the 4-velocity of a fluid source [22, 28], if any expansion or contraction of the fluid occurs
within the integration domain.

Choosing V as a conserved current defines a foliation-independent “volume”. We can
consider again the example of a conserved rest mass current M = ϱu (3.20) from the
above subsection, and set V = ϱu. In this example, the conserved “volume” is simply
the total rest mass as defined in (3.21), and averages with such a window function are
mass-weighted [22, 32]. The foliation-independence is still, in principle, restricted to the
case δA|B=B0

= 0 or that of a boundary-free domain, but is recovered for any deformation
and more generic domains with the additional requirement of a domain boundary comoving
with the rest mass current, u · ∇B = 0.

A few remarks are in order on extremal leaves. In this section we have commented
on volume extremising foliations. However, we remark that a single leaf that extremises
volume — or another integral functional of physical interest — could be used as a preferred
surface for the initial value problem in cosmology. A preferred initial surface may in turn
be extrapolated to form a foliation, by for instance propagating the initial surface along a
physically motivated 4-velocity field. Since stationarity requirements for a single leaf are
easier to satisfy than for a full foliation, single leaf extrema may be explored in cases where
it is not possible to identify a full extremal foliation.

3.3 Variation of averaged quantities with respect to the foliation

We will now derive stationaity conditions for the average functional (2.3) under variations of
the hypersurface scalar A, analogous to the above results for the integral functional. Examples
of physical average functionals of interest in cosmology are average density, expansion rate,
and spatial curvature degrees.

We write the first order variation of the average (2.3) under the variation A → A+ δA as

⟨S⟩A
A0

→ ⟨S⟩A+δA
A0

= ⟨S⟩A
A0

+ δ ⟨S⟩A
A0
. (3.27)

The variation of the average can be expressed through the variation of integral quantities
in the following way

δ ⟨S⟩A
A0

=
δI(S)A

A0

I(1)A
A0

− ⟨S⟩A
A0

δI(1)A
A0

I(1)A
A0

, (3.28)

and we can plug in (3.8) to obtain stationarity conditions for averaged quantities. The
conditions for demanding stationarity for the entire foliation are

δ ⟨S⟩A
A0

= 0 ∀ δA,A0

⇔


H(B0 −B)V ν∇νA∇µA

(
∂

∂(∇µA)(S)
)

= 0
and
∇σ

(
∂(SV ν∇νA)

∂(∇σA) H(B0 −B)
)

− ⟨S⟩A
A0

∇σ

(
∂(V ν∇νA)

∂(∇σA) H(B0 −B)
)

= 0 .
(3.29)
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The condition for stationarity of an average functional for a single leaf can be similarly
derived from (3.8), providing an analogous criterion to (3.9) for integral functionals. We do
not include this condition for simplicity given that such a situation will not be of interest
for the investigations discussed below. We also note that, as for stationary integrals above,
the second condition in eq. (3.29) — or its single-slice equivalent — may be further split
into a bulk (B ≤ B0) and a boundary (B = B0) conditions stemming from the domain
selection factor H(B − B0) and its derivative.

The global constraint equation

δ ⟨S⟩A
A0

= 0 ∀ δA,A0 ⇒
∂ ⟨S⟩A

A0

∂A0
= 0 (3.30)

must be satisfied in order to obtain stationarity for a single slice of a foliation selected by
A = A0 and for stationarity for the entire foliation respectively. The necessary condition (3.30)
is analogous to the integral condition (3.14). As for (3.14), the condition (3.30) can be shown to
hold for averages arising from a general window function with arbitrary functional dependence
on ∇A,∇∇A, . . . ,∇(n)A.

We now consider the special case where S and V are independent of the foliation.
In this case, the constraints (3.16) are satisfied. Stationarity conditions for the entire foliation,
eq. (3.29), accordingly reduce to

δ ⟨S⟩A
A0

= 0 ∀ δA,A0 ⇔ ∇σ (SV σH(B0 −B)) − ⟨S⟩A
A0

∇σ (V σH(B0 −B)) = 0 .
(3.31)

Using (3.30), we see that the above condition is equivalent to ⟨S⟩A
A0

being constant (inde-
pendent of A0) together with

(
S − ⟨S⟩A

A0

)
V σ being a conserved current comoving with the

boundaries of the domain, such that ∇σ
((
S − ⟨S⟩A

A0

)
V σH(B0 −B)

)
= 0 is satisfied — i.e.,

∇σ
((
S − ⟨S⟩A

A0

)
V σ
)

= 0 for B ≤ B0 and
(
S − ⟨S⟩A

A0

)(
V σ∇σB

)
= 0 on B = B0. The latter

boundary condition can be neglected if we consider variations that are fixed on the boundary,
or a global averaging domain on a spatially closed manifold.

We remark that the conditions for stationarity of average functionals are very
restrictive. The existence of extremal foliations are conditioned on the existence of a
locally-conserved current. Considering the case V = u, where u is a fluid four velocity
field with an associated rest mass density ϱ, we note that a natural conserved current is
ϱu: ∇µ(ϱuµ) = 0. However, since ⟨ϱ⟩A

A0
≥ 0 with equality only when ϱ = 0 everywhere, it

follows that setting
(
S − ⟨S⟩A

A0

)
∝ ϱ cannot generate stationary solutions to (3.31), except

for the trivial case of taking S as a constant of spacetime. We note that ϱ might itself be
such a constant, but in addition to a homogeneous rest-mass distribution, this would imply a
non-expanding fluid flow, ∇µu

µ = 0, unless ϱ = 0, due to the conservation equation.
We note that solutions found in this section are valid only for the specified functional

dependence of the average functional on the foliation. As discussed for integral functionals in
section 3.2, there might exist extremals that are not stationary points, occuring as infimums
or as local extrema on the boundary of a set of allowed foliations.
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3.3.1 Example: entropy

The study of entropy is a rich topic in gravitational physics, and in cosmology it has found
various applications, for instance in the characterisation of initial conditions and inflationary
scenarios [35], cyclic universe models [36], and structure formation [37]. Here, we focus
on the following entropy measure, inspired by the Kullback-Leibler relative information
entropy [38, 39]:

SA
A0 ≡ I

(
S ln

(
S

⟨S⟩A
A0

))A

A0

. (3.32)

where S must be a field in which gravity induces an increased clustering or inhomogeneity.
Physically relevant substitutions for S include rest mass densities ϱ as in [39], expansion
scalars θ (in case of positive expansion everywhere), and proper time measures τ . The
variation of S with the foliation reads

δSA
A0 = δI (S ln (S))A

A0
− δ

(
I (S)A

A0
ln
(
⟨S⟩A

A0

))
= δI (S ln (S))A

A0
−
(
ln
(
⟨S⟩A

A0

)
+ 1

)
δI (S)A

A0
+ ⟨S⟩A

A0
δI (1)A

A0
. (3.33)

We restrict our investigation to the case where V is independent of the foliation.
In this case, the condition (3.16) applies, and using (3.8), the stationarity condition becomes

δSA
A0 = 0 ∀ δA,A0 ⇔



(
S ln

(
S

⟨S⟩A
A0

)
+ ⟨S⟩A

A0
− S

)
V µ∇µB

∣∣∣∣
B=B0

= 0

and

ln
(

S
⟨S⟩A

A0

)
∇µ (SV µ) −

(
S − ⟨S⟩A

A0

)
∇µV

µ = 0 .

(3.34)
We have here explicitly split the condition into its boundary and bulk components (respectively
from δD(B −B0) and H(B0 −B) terms). Accordingly, the second requirement above is to be
satisfied everywhere inside the B ≤ B0 tube; the first requirement, as a boundary condition,
is dropped in the case of a boundary-free averaging domain. Assuming that S is hypersurface-
forming, the foliation into constant-S hypersurfaces, A = S, satisfies (3.34) since S is then by
construction homogeneous over each slice, and S = ⟨S⟩A

A0
. It follows that S is stationary with

value S = 0 for this foliation. This point of stationarity is guaranteed to be a unique global
minimum when S is a strictly positive function (as is the case for a rest mass density) since

SA
A0

I (1)A
A0

=
〈
S ln

(
S

⟨S⟩A
A0

)〉A

A0

=
〈

S

⟨S⟩A
A0

ln
(

S

⟨S⟩A
A0

)〉A

A0

⟨S⟩A
A0

≥ 0 , (3.35)

where the inequality follows from Jensen’s inequality for the function x 7→ x ln(x), with
equality only if S is constant over the A = A0 hypersurface. For a hypersurface-forming
S, such an extremal-foliation exists irrespective of how V and B are defined. However,
to satisfy non-singularity of the integration measure (V · ∇A ̸= 0) for this foliation, we
would have to demand V · ∇S ̸= 0.

Note that in case ∇S · ∇S < 0 is not fulfilled everywhere, the constant-S solution does
not define a spatial foliation. This situation may occur for the choices of S suggested above,
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S ∈ {ϱ, θ, τ}, for which the hypersurface-forming property of S must always be checked.
Moreover, in general, the constant-S foliation needs not be the unique solution to (3.34),
i.e., there may be other local extrema.

We now consider the special case where SV is a conserved current. In this case,
we have ∇µ(SV µ) = 0. This includes the physical example where V is a 4-velocity field and
S is the associated rest mass density. In this case, the stationarity conditions (3.34) reduce to

δSA
A0 = 0 ∀ δA,A0 ⇔


(
S ln

(
S

⟨S⟩A
A0

)
+ ⟨S⟩A

A0
− S

)
V µ∇µB

∣∣∣∣
B=B0

= 0

and
(⟨S⟩A

A0
− S)∇µV

µ = 0 .

(3.36)

For ∇ · V = 0 the second condition of (3.36) is automatically satisfied for any foliation.
Hence, in this case, the entropy is foliation independent and has a constant value (which
is zero if and only if S is a constant of spacetime), up to the boundary condition, i.e. the
first condition of (3.36). The latter can be accounted for by either imposing V · ∇B = 0, by
considering the particular case of a global boundary-free integration domain, or by simply
keeping the foliation fixed at the domain’s boundaries, δA|B=B0

= 0. Note that this case of
∇ · V = 0 also implies V · ∇S = 0, and thus a foliation defined by A = S (where S would
realise its global minimum at S = 0) would result in a singular volume element.

For ∇ · V ̸= 0 everywhere, (3.36) is equivalent to S = ⟨S⟩A
A0

, i.e., the global minimum of
S corresponding to the constant-S foliation is the only local extremum. It follows for instance
that, for an everywhere expanding fluid with 4-velocity V = u and rest mass density S = ϱ,
the constant-ϱ foliation is the unique minimiser for the entropy.

3.3.2 Example: minimally differing frames

Suppose that we have a physical time-like vector field u in our cosmological theory in the frame
of which averaged quantities would be desirable. This would for instance mean averaging in
the rest frame of a fluid source if u represents its 4-velocity. This 4-velocity field can have
vorticity, which will prevent defining hypersurfaces that are orthogonal to its flow lines. In
this case we may ask whether there is a unique space-like foliation (defined by a scalar A with
time-like gradient), or a family of foliations, such that their normal vector field n, given by

nµ = −∇µA

(−gνκ∇νA∇κA)1/2 , (3.37)

is maximally close to u by some measure. In cases where such a foliation could be defined,
this would provide a natural frame for definining averages as close to the frame of u as
possible. The tilt between the two normalised time-like vector fields

γ = −nµuµ, γ ≥ 1 , (3.38)

is a natural local scalar measure of their closeness, where γ = 1 if and only if n = u. We
define the measure of “statistical closeness” of the vector fields n and u over the domain
defined by {A = A0 , B ≤ B0}, as

⟨γ⟩A
A0

=
∫

M d4x
√
gWA

A0,nγ∫
M d4x

√
gWA

A0,n

=
∫

M d4x
√
gWA

A0,u∫
M d4x

√
gWA

A0,n

≥ 1 , (3.39)
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with

WA
A0,n = nµ∇µA δD(A−A0) H(B0−B) ; WA

A0,u = uµ∇µA δD(A−A0) H(B0−B) , (3.40)

being the window functions with volume measure defined with respect to the normal vector
n (3.37) and the vector field u, respectively. Plugging in V = n and S = γ in (3.29), we
have that the first condition of (3.29) is automatically satisfied while the second condition
of (3.29), split into its bulk and boundary components, becomes

δ ⟨γ⟩A
A0

= 0 ∀ δA,A0 ⇔


⟨γ⟩A

A0
∇σn

σ − ∇σu
σ = 0

and(
⟨γ⟩A

A0
nσ − uσ

)
∇σB

∣∣∣
B=B0

= 0 .
(3.41)

The second condition in (3.41), i.e., the boundary condition, needs to be satisfied only if the
domain has a boundary and we include variations of the foliation at that boundary as well as
on the domain’s interior. A necessary condition for (3.41) is ∂A0 ⟨γ⟩A

A0
= 0. In solving (3.41),

we can thus consider ⟨γ⟩A
A0

as a constant parameter.
Investigations of the general solution to eq. (3.41) is beyond the scope of this paper.

However, we consider here the special case where u is divergence-free, ∇ · u = 0. The first
condition of (3.41) then reduces to ∇ · n = 0. Finding a solution to the first condition of
eq. (3.41) in this case amounts to examining the existence of zero extrinsic scalar curvature
foliations. The problem of extremising the averaged tilt (3.39) thus becomes equivalent
to extremising the volume as in section 3.2.2. This is because

∫
M d4x

√
gWA

A0,u becomes
foliation independent, so that we are extremising the inverse of the Riemannian volume (as
defined by

∫
M d4x

√
gWA

A0,n). From the results in section 3.2.2 we know that stationary
points for the Riemannian volume are maximal, meaning that the stationary points for the
averaged tilt (3.39) are minimal in this case.

4 Finite foliation changes and quantitative bounds on foliation
dependence

The results of section 3 show that, while foliation independent statements can be made for
special cases, most integral or average functionals are foliation dependent. Nevertheless,
it may be possible in many cases of interest to quantify the level of foliation dependence.
The aim of this section is to determine quantitative bounds on the foliation dependence in
scenarios relevant for cosmological models.

4.1 Correspondence between hypersurfaces of different foliations

In the following, we will consider two different foliations F and F ′ corresponding to the
respective level sets of two scalars with past-pointing time-like or null gradients,8 A and A′,
where the transformation A 7→ A′ needs not be infinitesimal.

In order to make comparisons of leaves Σ0 ≡ ΣA=A0 and Σ′
0 ≡ ΣA′=A′

0
of the two foliations

in a meaningful way, we must ensure that the two slices correspond to the “same time” in
8Due to the signature of the Lorentzian metric tensor, a function with causal gradient that increases

towards the future has a past-pointing gradient.
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some sense. We shall specifically require that Σ0 and Σ′
0 intersect at at least one event within

the bounded region determined by the tube TB0 ≡ {x ∈ M /B(x) ≤ B0}. This ensures a
notion of synchronisation at at least one point within the domain of interest. It prevents
in particular artificial differences due to the comparison of two different parametrisations
of the same foliation.

We can always choose a parametrization such that A′
0 ≡ A0, such that Σ′

0 = ΣA′=A′
0

=
ΣA′=A0 for all A0. This can be achieved by using the freedom of reparametrization of F ′

as per transformations of A′ of the class (3.1). The requirement of intersection of the pairs
of corresponding slices from the foliations will suffice in what follows, even though it does
not always uniquely specify the parametrization9 A′ for F ′ from the parametrization choice
A for F . It already ensures, in particular, that A′ must be chosen as equal to A (i.e., the
transformation A 7→ A′ = f(A) reduces to the identity) in the case F = F ′ mentioned above.

4.2 Simplifying assumptions

In this section, we shall only consider cases where S and V are invariant under deformations
A 7→ A′ of the foliation. As has been argued in the above sections, defining V as a physical
vector field independent of the foliation is natural for many purposes — a natural choice of
V could for instance be the 4-velocity field of a physical matter source. In most cases we will
also be interested in averaging physical scalars that are independent of the foliation,10 as for
instance the rest mass density or expansion rate of a physical matter source.

The boundaries of the domain and their propagation between slices, as determined by the
scalar B, are already considered to be set independently of the foliation as part of our averaging
scheme. Here, we shall make the simplifying assumption that the domain propagation follows
the flow of the volume-measure vector: V · ∇B = 0 — unless a boundary-free domain is
being considered so that boundary terms can already be discarded, with H(B0 − B) = 1
and δD(B − B0) = 0 everywhere, and TB0 = M. We set V to be unitary, V · V = −1; a
non-normalized vector field (corresponding to weighted volume averages) could formally be
absorbed into the scalar S to be averaged, SV =

[
S(V · V )1/2

]
×
[
(V · V )−1/2 V

]
. The

above assumption and normalization convention are again compatible with the choice of V

as a source fluid’s 4-velocity; in this case with a fluid-comoving domain propagation. This is
indeed one of the main applications we have in mind for this section (see, e.g., [14, 28]).

4.3 The difference of integral functionals between leaves of two foliations

We now consider the difference between integrals of a given scalar S over leaves of two foliations
F and F ′: ∆I(S) ≡ I(S)A′

A0
− I(S)A

A0
, where S is any foliation-independent scalar. Note that

we are using the short hand notation for the difference, ∆I(S), where the dependence on
9To obtain, if necessary, a unique determination of the parametrization A′ given F , F ′, and A, one could,

for instance, specify the intersection point of each pair of slices ( ΣA=A0 , ΣA′=A0 ) by requiring that A′ = A

everywhere along a given time-like curve within the domain TB0 . Such a curve could correspond to the
worldline of a given (e.g. geocentric) observer.

10In some cases, factors of V · ∇A appear naturally, when computing derivatives of global quantities, as
seen in (2.4) and (2.5). We can still consider scalars that have dependence on V · ∇A in this framework, when
we restrict the deformation of the foliation A to have gradient orthogonal to V . Such a class of deformations
is in fact of physical interest, e.g. in the context of proper time foliations (see section 4.5 below).
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the foliations and the leaves selected by A0 is implicit. We shall rewrite this difference in
a way that will be convenient for defining upper bounds for its norm.

4.3.1 ∆I(S) in terms of covariant 4-integration

We consider a given A0 and the corresponding pair of intersecting slices Σ0 = ΣA=A0 ,
Σ′

0 = ΣA′=A0 from the two foliations F , F ′, obeying the above assumptions. While the roles
played by F and F ′ are formally symmetric, we will consider F as the reference foliation
in which the integrals I(ξ)A

A0
or averages ⟨ξ⟩A

A0
of various scalars ξ are known. F ′, on the

other hand, will be considered as an arbitrary other space-like or null foliation that may
be subjected to certain conditions, such as having a small tilt everywhere with respect to
F in the case where both foliations are space-like. We will keep F ′ fully general in the
present subsection. We assume that M is a path-connected manifold, hence so are Σ0 and
Σ′

0 according to the global hyperbolicity assumption.
In the following, we will make use of the flowlines of V as a diffeomorphism between

the domains of Σ0 and Σ′
0 that are within the tube TB0 . While this mapping is covariantly

defined, it will be convenient to introduce an associated set of spatial coordinates. We do
so by arbitrarily choosing a coordinate basis (Xi, i = 1, 2, 3) on one of the slices ΣA=A1

of F (or some open subset of ΣA=A1 containing ΣA=A1 ∩ TB0). The three coordinates Xi,
assumed to span R3 without loss of generality, can then be extended into an incomplete
(spatial) set of coordinates in spacetime by requiring them to be constant along the flow
lines of V : V · ∇(Xi) = 0, ∀i ∈ {1, 2, 3}. The spacetime tube TB0 = {x ∈ M /B(x) ≤ B0}
with V · ∇B = 0, then corresponds to a given compact domain in the space of the spatial
coordinates (Xi); in other words H(B0 − B) is a function of (Xi). (This also holds in the
case of a spatially closed manifold with a global, boundary-free averaging domain.) One may
then introduce any time coordinate to complete (Xi) into a spacetime coordinate set — again
for convenience in the below calculations. We shall complete it into a synchronous-comoving
coordinate set adapted to the 4−vector field V by introducing a proper time τ of V , i.e., a
function satisfying V · ∇τ = 1 (see section 2.4.2 of [14]). We can use the residual freedom in
the definition of τ to demand that τ = 0 on Σ0 — even if Σ0 is light-like. This then uniquely
specifies11 τ among the proper-time parametrizations of the family of worldlines of V .

With the simplifying assumptions from section 4.2, the difference ∆I(S) = I(S)A′

A0
−

I(S)A
A0

can be expressed covariantly as:

∆I(S) =
∫

M
d4x

√
g SH(B0 −B)

[
V µ∇µA

′ δD(A′ −A0) − V µ∇µA δD(A−A0)
]
. (4.1)

The spacetime functions A, A′ and τ are all nondecreasing along each of the worldlines
of V . Hence, these three scalars are nondecreasing functions of each other for any constant
value of the V -comoving spatial coordinates Xi. This implies that slices of both foliations
F and F ′ can be parametrized by τ . In particular, Σ′

0 can be characterized as: P ∈ Σ′
0 ⇔

τ(P ) = τ0(Xi(P )) (for any spacetime point P ), where the values taken by the scalar field

11Although we still simply denote it as τ for convenience, note that the scalar function uniquely defined in
this way is specific to Σ0; it will define a different function if another A0 is considered.
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τ on Σ′
0 define a smooth function of the spatial coordinates12 that we denote as τ0(Xi). In

turn, Σ0 is simply parametrized as P ∈ Σ0 ⇔ τ(P ) = 0. Using these parametrizations, the
weighted slice-selecting terms V µ∇µA

′ δD(A′ − A0) and V µ∇µA δD(A − A0) in eq. (4.1)
can be rewritten as, respectively:

V µ∇µA
′ δD(A′−A0) = V µ∇µτ δD(τ−τ0(Xi)) and V µ∇µA δD(A−A0) = V µ∇µτ δD(τ) .

(4.2)
Eq. (4.1) then becomes

∆I(S) =
∫

M
d4x

√
g SH(B0 −B)(V µ∇µτ)

[
δD(τ − τ0(Xi)) − δD(τ)

]
. (4.3)

4.3.2 ∆I(S) in terms of 3-integration in adapted coordinates

Using the definition V µ∇µτ = 1 and choosing the spacetime coordinate system xµ = (τ,Xi)
as the coordinates of integration in (4.3), we can integrate this expression over τ :

∆I(S) =
∫
R3
d3X H(B0 −B)

[(√
g S
)

(τ=τ0(Xi),Xi) −
(√
g S
)

(τ=0,Xi)

]
, (4.4)

where the subscript coordinates refer to an evaluation point, that is, f(τ,Xi) would be a
function f evaluated at the event of coordinates (τ,Xi).

The metric determinant modulus g appearing in eq. (4.4) above is the one obtained
in the coordinate system (τ,Xi). To recover a more coordinate-independent expression,
one may introduce the (positive) determinant b = det(bij) of the local spatial projector
orthogonal to V , b = bµν dx

µ ⊗ dxν = bij dX
i ⊗ dXj , i, j = 1, 2, 3, with bµν ≡ gµν + VµVν .

This determinant remains invariant under a change of the time coordinate, and it coincides
with the value taken by g in the coordinate system (τ,Xi). (We generalize the choice of
time coordinate and show the relation between the two determinants in appendix A.1.) The
occurrences of √

g in eq. (4.4) may thus equivalently be replaced by
√
b. The associated

volume 3−form
√
b d3X is then invariant both under a change of time coordinate and under

a time-independent change of the spatial coordinates Xi (i.e., under a relabelling of the
flow lines of V ). This volume 3-form corresponds to the (manifestly covariant) Hodge dual
⋆V to the 1-form V ≡ Vµ dx

µ associated to V , and may be interpreted as the infinitesimal
spatial volume element in the local V -orthogonal frames (see [14, section 4 and appendix D]
and [22]). In cases where V is hypersurface-forming, b would correspond to the Riemannian
spatial metric tensor induced by g on the V -orthogonal hypersurfaces, and

√
b d3X would

then simply be the associated spatial volume form.
To compute the difference in

√
b S between two points along a given flow line of V that

appears in eq. (4.4), let us first write the evolution equation along V of the
√
b factor, in

the adapted coordinates (τ,Xi):

V µ∂µ

(√
b
)

= ∂µ

(√
b V µ

)
= ∂µ(√g V µ) = √

g∇µV
µ =

√
b∇µV

µ , (4.5)

where we again made use of two relations holding in these coordinates:
√
b = √

g and
V µ = (1, 0, 0, 0). The first and last sides of eq. (4.5), and hence their equality, are nevertheless

12The Cauchy hypersurface Σ′
0 from F ′, like ΣA=A1 from F , intersects each of the (time-like) flow lines of

V exactly once. Hence, the flow of V defines a diffeomorphic parametrization of the points of Σ′
0 by their

spatial coordinates (Xi) within the domain of interest.
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independent of the choice of the time coordinate. The evolution rate of the volume measure√
b, which is additionally invariant under a change of V -comoving spatial coordinates (Xi),

is thus given by

1√
b
V µ∂µ

(√
b
)

= 1√
b

d
dτ

∣∣∣∣
Xi

(√
b
)

= ∇µV
µ , (4.6)

where the operator (d/dτ)|Xi corresponds to a derivative along V with respect to τ . Using
the coordinates (τ,Xi), we can now explicitly integrate eq. (4.6) into

(√
b
)

(τ=τ1,Xi) =
(√
b
)

(τ=0,Xi) exp
(∫ τ1

τ=0
(∇µV

µ)(τ,Xi) dτ

)
, (4.7)

for any value τ1 of τ . The main integrand in expression (4.4) for ∆I(S) is then rewritten as:(√
b S
)

(τ=τ0(Xi),Xi) −
(√
b S
)

(τ=0,Xi) =
(√
b
)

(τ=0,Xi) ψ(Xi) , (4.8)

with

ψ(Xi) ≡
[
exp

(∫ τ0(Xi)

τ=0
(∇µV

µ)(τ,Xi) dτ

)
− 1

]
S(τ=0,Xi)

+ exp
(∫ τ0(Xi)

τ=0
(∇µV

µ)(τ,Xi) dτ

) ∫ τ0(Xi)

τ=0
(V µ∂µS)(τ,Xi) dτ . (4.9)

With this rewriting, the expression for ∆I(S) finally reduces to

∆I(S) =
∫
R3
d3X H(B0 −B)

(√
b
)

(τ=0,Xi) ψ(Xi) = I
(
ψ̄
)A

A0
, (4.10)

where ψ(Xi) is extended into a spacetime scalar ψ̄ by defining the latter as equalling ψ(Xi)
on some Cauchy hypersurface (say Σ0) and satisfying V · ∇ψ̄ = 0; i.e., ψ̄(τ,Xi) = ψ(Xi) ∀τ .
With a slight abuse of notation, one may simply write ∆I(S) = I

(
ψ(Xi)

)A
A0

.
We give in appendix A.2 an alternative form of ψ(Xi) re-expressed in terms of the local

current ∇µ (SV µ). This form allows for a more direct connection with our results on exact
foliation-(in)dependence of section 3.2 and for alternative bounds on finite variations of
spatial integrals and averages to the ones presented below.

4.4 Bounds for foliations with small relative tilts

Cosmology is typically studied under the assumption of small (nonrelativistic) relative
velocities between relevant observers in spacetime. In this section, we shall therefore consider
bounds on integrals relevant for a class of space-like foliations which are close to the reference
field V (and to each other) in terms of their relative Lorentz factors.

4.4.1 The small tilts assumption

In this subsection, we restrict our attention to space-like foliations. We denote as n the
future-pointing unit time-like normal vector field to the foliation F , i.e. satisfying

n = −N ∇A ; N = (−∇µA∇µA)−1/2 , (4.11)
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where N is the lapse function associated with A. We similarly define n′ as the unit time-like
normal associated with F ′ and N ′ as the lapse associated with A′, with n′ = −N ′ ∇A′.

We can then define the local Lorentz factors between V , n and n′, as follows:

γV ,n ≡ −V · n ≥ 1 ; γV ,n′ ≡ −V · n′ ≥ 1 ; γn,n′ ≡ −n · n′ ≥ 1 , (4.12)

and introduce the local decomposition of n′ with respect to V :

n′ = γV ,n′
(
V + v′) , v′µVµ = 0 , (4.13)

where v′ automatically satisfies v′µv′
µ = 1 − γ−2

V ,n′ .
The key assumption that we shall use in this subsection is that both n and n′ are close

to V , that is, that the tilt velocities
√

1 − γ−2
V ,n and

√
1 − γ−2

V ,n′ ( =
√
v′µv′

µ ) are small,
i.e., globally bounded by a small parameter v1 ≪ 1. This implies in particular that the
relative tilt between slices of the two foliations also remain small and globally bounded:√

1 − γ−2
n,n′ ≤ 2v1. We then also have γV ,n ≤ (1 − v2

1)−1/2 ≃ 1, and we can introduce the
global small parameter v0 ≡ v1(1 −v2

1)−1/2 ≃ v1, satisfying everywhere v1 ≤ γV ,n v1 ≤ v0 ≪ 1
as the main characteristic spatial velocity to be used in the below bounds.

4.4.2 Bounding the distance between two tilted slices

From the expression of ψ above, eq. (4.9), or its rewriting in eq. (A.4), it is clear that
in addition to assuming upper limits on the local S– and V -based variables |S| (on Σ0),
|V µ∂µS|, |∇µ(SV µ)| and/or |∇µV

µ|, one also needs to be able to bound the proper-time
parametrization function |τ0(Xi)| of Σ′

0 for all points. This quantity provides a measure of
the distance between the two slices Σ0 and Σ′

0, and in this section we shall provide a bound
of |τ0(Xi)| in terms of the small velocity parameter v0.

Consider any given point P — of coordinates (τ = 0, Xi) for a certain (Xi) — within
the integration domain on Σ0. One can draw a geodesic spatial curve C within Σ0 joining P
to a reference point P0 — say of coordinates (τ = 0, Xi

0) — within the integration domain
on Σ0 where τ0(Xi

0) = 0. That is, P0 is taken as an intersection point of the two slices:
P0 ∈ Σ0 ∩ Σ′

0 ∩ TB0 which we assumed to be non-empty. (See figure 2 for an illustration of
this geometric setup.) C can be parametrized by its unit space-like n-orthogonal tangent
vector K, and the associated affine parameter λ. Setting λ = 0 at P0, λ then runs from 0 at
P0 to L at P , where L is the total proper length of the curve within Σ0. The coordinates
of the point at parameter λ along C can then be parametrized as xµ(λ) = (τ = 0, Xi(λ)).
These definitions allow us to perform spatial integrations along C , using P0 as a reference
point where τ0 = 0, writing for instance

τ0(Xi) =
∫ L

λ=0

d
dλ
(
τ0(Xi(λ))

)
dλ . (4.14)

In the following we will use the short-hand notation τ0(λ) ≡ τ0(Xi(λ)).
We may extend the tangent vector K of C into a vector field L̃ on the congruence

generated by V from C — i.e., along all worldlines of V that intersect Σ0 at a point on C —
by Lie dragging K along V : LV L̃ ≡ ∇V L̃ − ∇L̃V = 0, i.e., (d/dτ)L̃ν |Xi = L̃µ∂µV

ν , with
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Figure 2. The spatial slices Σ0 and Σ′
0, the spatial curve C ⊂ Σ0, and the main points and vector fields

used for expressing and bounding the time-like distance τ0 between the two slices. P is an arbitrary
point of Σ0, while P0, at coordinates (τ = 0, Xi

0), belongs to the intersection Σ0 ∩ Σ′
0 of both slices

under consideration: τ0(Xi
0) = 0. Note that for this schematic representation which is not specifically

concerned with causality, we use a Riemannian picture of orthogonality for easier visualisation.

L̃ = K at τ = 0, along any given C -intersecting worldline of V . Along these same worldlines,
we can then introduce a unit space-like vector L built from L̃:

Lµ ≡ bµ
νL̃

ν

bµνL̃µL̃ν
; L · L = bµνL

µLν = 1 . (4.15)

The V -orthogonal projection bµ
νL̃

ν is indeed nonvanishing, given that L̃ is not parallel to V

at τ = 0 (as K · K = 1 while V is time-like) and that this property is preserved by the Lie
dragging. Note that, on points of C , K coincides with L̃ (by construction), but a priori not
with the projected vector L, since K needs not be orthogonal to the local V .

The derivative of τ0 along C involved in eq. (4.14) is then obtained as

dτ0(λ)
dλ

=
(

L̃ · n′

γV ,n′

)
(τ=τ0(λ),Xi(λ))

. (4.16)

It can also be re-expressed as follows:

dτ0(λ)
dλ

= (V ·K)λ+
√

1 + (V · K)2
λ

[
(L · v′)(τ=τ0(λ),Xi(λ)) F (τ0(λ), λ) +G(τ0(λ), λ)

]
, (4.17)

where (V · K)λ ≡ (V · K)(τ=0,Xi(λ)) is V · K evaluated at the current point on C and where

F (τ1, λ) ≡ exp
[∫ τ1

τ=0
(Θµν L

µLν)(τ,Xi(λ)) dτ

]
; (4.18)

G(τ1, λ) ≡
∫ τ1

τ=0
(L · a)(τ,Xi(λ)) F (τ, λ) dτ , (4.19)
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for any τ1. The derivation of these results, eqs. (4.16)–(4.19), is given in appendix A.3.
In the above expressions for F and G, we have used the decomposition of the covariant
derivative of V with respect to V [40]:

∇µVν = −Vµ V
ρ∇ρVν + bρ

µb
σ
ν∇ρVσ = −Vµ aν + Θµν + bρ

[µb
σ
ν]∇ρVσ . (4.20)

This defines the expansion tensor of V , with components Θµν ≡ bρ
(µb

σ
ν)∇ρVσ; its vorticity

tensor, of components bρ
[µb

σ
ν]∇ρVσ; and its acceleration vector a, with components aµ ≡

V ν∇νV
µ.

We can right away use the above global smallness assumption on the relative tilts between
n, n′ and V to derive bounds on the terms |V · K| and

√
1 + (V · K)2

λ |L · v′| appearing
in eq. (4.17). We first note that |V · K| = |hµνV

µKν | ≤
√
hµνV µV ν =

√
γ2

V ,n − 1 =

γV ,n

√
1 − γ−2

V ,n, where hµν ≡ gµν + nµnν are the components of the spatial projector (which
is also the induced metric) on the leaves of F . Using this, the second above term obeys
the following inequality:√

1 + (V · K)2
λ

∣∣L · v′∣∣
(τ,Xi(λ)) =

√
1 + (V · K)2

λ

∣∣bµνL
µv′ν ∣∣

(τ,Xi(λ))

≤ (γV ,n)(τ=0,Xi(λ))

√
(v′µv′

µ)(τ,Xi(λ)) . (4.21)

With the small tilt velocities v1, v0 satisfying everywhere
√

1 − γ−2
V ,n ≤ v1,

√
v′µv′

µ ≤ v1 and
γV ,nv1 ≤ v0, both of the above terms from eq. (4.17) are everywhere smaller than v0.

We shall now assume the existence of a global bound on the norm of the expansion
tensor. That is, we assume that there exists a bound on (Θµ

ν Θν
µ)1/2 that applies throughout

the part of M under consideration (i.e., a certain portion of TB0). This is equivalent to
assuming a global bound H̄ on all eigenvalues of the (diagonalizable) matrix Θµ

ν over the
local tangent spaces orthogonal to V , so that for any point P in the spacetime region of
interest, for each eigenvalue θk(P ) (k = 1, 2, 3) of Θµ

ν at P over the tangent space orthogonal
to V at P , |θk(P )| ≤ H̄. Note that these eigenvalues are real, and covariantly defined. This
implies, in particular, that the norm of the volume expansion rate ∇µV

µ = bµν∇µVν = Θµ
µ

is also globally bounded: |∇µV
µ| ≤ 3H̄. We also set the acceleration of V to zero (see the

discussion below for the case of a nonzero acceleration), so that G(τ0(λ), λ) = 0.
We shall now use the above quantities to set bounds on τ0(Xi). Let us first consider the

case τ0(Xi) > 0. This correspond to Σ′
0 lying to the future of the V -comoving observer at

P . If τ0(λ) changes sign along C , it will cross 0 again at some λ = λ0 > 0, corresponding
to another point in Σ′

0 ∩ Σ0 ∩ TB0 .13 We then only need to consider the part of C beyond
13This requires the integration domain Σ0 ∩ TB0 to be path-connected, and geodesically convex or at least

star-shaped with respect to P0. If this is not satisfied but Σ0 as a whole does satisfy these conditions, spatial
paths may be drawn within an extended flow-tube TB0 of V , encompassing TB0 , such that Σ0 ∩ TB0 satisfies
these properties while keeping its diameter as small as possible (e.g., Σ0 ∩ TB0 could be taken as the smallest
sphere containing Σ0 ∩ TB0 ). The assumed global bounds on tilts, Θµν , or the integration domain’s diameter,
then simply are understood to hold on a portion of TB0 rather than only the corresponding one of TB0 , while
the domain of spatial integration is unchanged (Σ0 ∩ TB0 or Σ′

0 ∩ TB0 ). If Σ0 is itself not geodesically convex
e.g. due to punctures, when referring to spatial curves within Σ0 the meaning of ‘geodesic’ has to be extended
to a non-necessarily unique path taken as short as possible within Σ0 (for instance, we do not need K to
satisfy the spatial geodesic equation within Σ0).
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this point, and we may simply replace the integration bounds [λ = 0, λ = L] in integrals
like eq. (4.14) by [λ = λ0, λ = L]. Otherwise, we can simply set λ0 = 0. We thus ensure
in either case that τ0(λ) > 0 ∀λ ∈ ]λ0,L], with τ0(λ = λ0) = 0.

From the bound v0 on |(V · K)λ| and on
√

1 + (V · K)2
λ |L · v′|(τ,Xi(λ)) (for any τ), and

with G(τ0(λ), λ) = 0, eq. (4.17) gives

d

dλ
τ0(λ) ≤ v0 [1 + F (τ0(λ), λ)] , (4.22)

remembering that F > 0 by definition. One moreover has

Θµν L
µLν = (bµρL

ρ) Θµ
ν (bν

σL
σ) ≤ H̄ (bµνL

µLν) = H̄ , (4.23)

where we have used again the orthogonality of V and its expansion tensor, implying Θµν =
b ρ

µ Θρν = Θµσb
σ
ν . Injecting the above inequality into eq. (4.18) implies F (τ0(λ), λ) ≤

exp
(
H̄ τ0(λ)

)
for any λ ∈ [0,L], given that τ0(λ) ≥ 0. Eq. (4.22) then becomes,

d

dλ
τ0(λ) ≤ v0

[
1 + exp

(
H̄ τ0(λ)

)]
, i.e. ,

d

dλ

(
ln
[
1 + exp

(
−H̄ τ0(λ)

)])
≥ −v0H̄. (4.24)

This may then be integrated between λ0, where τ0(λ0) = 0, and any λ ≥ λ0, to give

ln
[
1 + exp

(
−H̄ τ0(λ)

)]
≥ ln(2) − v0H̄(λ− λ0) , (4.25)

that is,

exp
(
−H̄ τ0(λ)

)
≥ 2 exp

(
−v0H̄(λ− λ0)

)
− 1 . (4.26)

If the above right-hand side is nonnegative, which is ensured for all λ ∈ [λ0,L] provided
v0 is small enough such that v0H̄(L − λ0) < ln(2), we then obtain the following bound on
τ0(Xi) = τ0(λ = L) as a function of the tilt velocity v0:

0 ≤ τ0(Xi) ≤ − 1
H̄

ln
[
2 exp

(
−v0H̄(L − λ0)

)
− 1

]
. (4.27)

As the integration domain Σ0 ∩ TB0 is compact, v0H̄(L − λ0) admits a maximum; we can
thus introduce a small parameter η (with still η < ln(2) to satisfy the above assumption)
such that v0H̄(L − λ0) ≤ η for any P . We can then use the convexity of the function x 7→
− ln(2e−x − 1) for 0 ≤ x < ln(2) to write − ln

[
2 exp

(
−v0H̄(L − λ0)

)
− 1

]
≤ α v0H̄(L − λ0),

with α ≡ −η−1 ln(2e−η − 1). This then gives a bound on τ0(Xi) that is linear in v0 and
independent of H̄ (apart from setting the above condition on v0H̄(L − λ0)):

0 ≤ τ0(Xi) ≤ α v0 (L − λ0) . (4.28)

The (positive) numerical factor α = −η−1 ln(2e−η − 1) yields for instance α ≃ 2.11 for
η = 1/10, and converges to α = 2 for η → 0.

The factor L − λ0 (≤ L) in the above bound and condition, is simply the length of a
reduced curve C̃ , the (still spatially geodesic) part of C parametrized by λ ∈ [λ0,L], i.e., the
part of C joining the point of coordinate xµ(λ0) to P . It is in fact clear that this bound
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may be written in terms of the length of the shortest among all curves on Σ0 that join P

to a point of Σ0 ∩ Σ′
0. Since this simply amounts to a redefinition (if necessary) of C and

of its length L, we may simply rewrite the above bound as

0 ≤ τ0(Xi) ≤ α v0 L , (4.29)

where the previous assumed bound on v0 (≪ 1) and L becomes:

v0H̄L ≤ η , with η < ln(2) , (4.30)

where L is now interpreted as the length of the shortest curve on Σ0 joining P to Σ0 ∩ Σ′
0

as above. This length may be significantly smaller than that of a geodesic on Σ0 joining
P to a given arbitrary point P0 ∈ Σ0 ∩ Σ′

0 in cases where the Σ0 and Σ′
0 slices intersect

multiple times (e.g., periodically).
The symmetric case τ0(Xi) < 0, corresponding to Σ′

0 lying to the past of the V -comoving
observer at P , can be handled in a similar way. One may first assume that τ0(λ) < 0 ∀λ ∈]0,L]
with τ0(λ = 0) = 0 up to a suitable redefinition of C , L (and the parameter λ) as above. The
bound v0 on |(V · K)λ| and on

√
1 + (V · K)2

λ |L · v′|(τ,Xi(λ)), along with eq. (4.23) (writing
this time Θµν L

µLν ≥ −H̄), can then again be used to bound the derivative of τ0(λ) as given
by eq. (4.17), this time from below (cf. eqs. (4.22) and (4.24)):

d

dλ
τ0(λ) ≥ −v0 [1 + F (τ0(λ), λ)] ≥ −v0

[
1 + exp

(
−H̄ τ0(λ)

)]
. (4.31)

Proceeding similarly to the τ0(Xi) > 0 case above, this results in

0 ≥ τ0(Xi) ≥ −α v0 L , (4.32)

still assuming v0H̄L ≤ η < ln(2), with the same numerical factor α = −η−1 ln(2e−η − 1) as
above. In this bound, L is to be interpreted in the same way as discussed for eqs. (4.29)–
(4.30) above.

Combining eqs. (4.29), for the τ0(Xi) > 0 case, and (4.32), for the τ0(Xi) < 0 case,
implies that in all cases,14

∣∣∣τ0(Xi)
∣∣∣ ≤ α v0 L , (4.33)

under the condition (4.30), with α = α(η) as above and still the same interpretation for L
as discussed above.

∣∣τ0(Xi)
∣∣ corresponds to the distance between the slices Σ0 and Σ′

0 as
measured along the flow line of V passing through P . The spatial curve length L depends on
the point P ∈ Σ0 ∩ TB0 considered, but it may itself be globally bounded for all points P
in this domain by a finite length L̄. The latter may for instance be defined as the diameter
of the domain within Σ0,

L̄ = L̄1 ≡ max
P1,P2 ∈ Σ0∩TB0

d(P1, P2) , (4.34)

14This bound remains of course valid in the τ0(Xi) = 0 case, even considering that L may then be set to 0.
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or as the maximal distance along Σ0 of a point in the domain to the intersection of the
two slices within the domain,

L̄ = L̄2 ≡ max
P ∈ Σ0∩TB0 , P0 ∈ Σ0∩TB0 ∩Σ′

0

d(P, P0) . (4.35)

Above, d(P, P ′) is the spatial distance along Σ0 between the points P and P ′, that is, the
proper length of the shortest curve on Σ0 joining P and P ′. The existence of the above
maxima is guaranteed by the compactness of the spatial domain Σ0 ∩ TB0 (and consequently
of Σ0 ∩ TB0 ∩ Σ′

0, which is non-empty). L̄2 is always a smaller (or equal) length than L̄1,
and may be much smaller, but it could be harder to determine in practice, and it generally
depends on Σ′

0.
We assume that the bounds on the tilt, v0 ≪ 1, on the expansion rate, H̄, and on the

distances on the reference slice as defined by L̄, can be taken as small enough to ensure a
relatively small v0H̄L̄. We denote as η the best upper limit that may be set a priori on this
value, and as above we assume that this limit is strictly smaller than ln(2). We thus have

v0H̄L̄ ≤ η , with η < ln(2) , (4.36)

and consequently the condition (4.30) is satisfied with this same η for all points P ∈ Σ0 ∩ TB0 .
Eq. (4.33) then implies that for all such points, of coordinates (τ = 0, Xi),∣∣∣τ0(Xi)

∣∣∣ ≤ α v0 L̄ . (4.37)

This global bound means in particular that, within the spacetime tube TB0 delineating the
domain of interest, the distance between the slices Σ0 and Σ′

0 (along V ) is everywhere much
smaller than the spatial size of the domain as measured in the reference slice Σ0, if v0 ≪ 1.

Case of a nonvanishing 4-acceleration / velocity dispersion. In the more general case,
the 4-acceleration a of V cannot be everywhere neglected. When for instance V represents
the 4-velocity of a source fluid, a can correspond to non-gravitational accelerations, which we
would consider negligible apart from extremely small fractions of the volume of the domain
considered, but it can also arise from the effective modelling of velocity dispersion within
the source fluid by effective pressure terms. We can then assume some global bound ā (with
dimension time−1 or length−1) on

√
a · a =

√
bµνaµaν and follow a similar derivation as above

from eq. (4.17), noting that |G(τ0(λ), λ)| ≤ ā
∫ τ0(λ)

0 exp (H̄τ) dτ = ā/H̄
[
exp (H̄τ0(λ)) − 1

]
.

For a small enough ā so that āL̄ is at most of order unity and under a possibly more
stringent, ā-dependent constraint on v0H̄L than previously, bounds on |τ0| now involving
āL̄ can be similarly obtained.

For instance, let us assume that ζ(āL̄ − v0H̄L̄) ≤ K for some constant K > 0, where ζ is
the nonnegative, nondecreasing function defined by ζ(x) ≡ (ex − 1)/x. The inverse function
ζ−1 can be defined and is nondecreasing as well, and the above condition is equivalently
rewritten as āL̄ ≤ v0H̄L̄ + ζ−1(K). Assuming additionally that the bound η on v0H̄L̄ is
small enough such that v0H̄L̄ ≤ η < 1/(2K), one can show that∣∣∣τ0(Xi)

∣∣∣ ≤
(− ln (1 − 2Kη)

Kη

)
×K × v0 L̄ . (4.38)
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Note that the above requirements imply again that η < ln 2, and thus K > 1/(2 ln 2). The
prefactor [− ln (1 − 2Kη)]/[Kη] in the above expression is always larger than 2 (corresponding
to its Kη ≪ 1 limit), but remains of order unity if 2Kη is not too close to 1. Consequently,
for the above bound on |τ0| to be significant, K should not be very large, and āL̄ should
accordingly be at most of order unity (with ζ−1(K) ∼ lnK for large K). For instance, āL̄ ≃ 1
would still allow for taking K ≲ 2. Note that one can take e.g. K = 1 if the 4-acceleration
is small enough that āL̄ ≤ v0H̄L̄ ≤ η < 1/2 (as ζ−1(1) = 0).

In practice, the above requirements may be too restrictive, or the bound too large, to be
used directly.15 This can be considered as being due to accumulating proper-time differences
along Σ0 when 4-accelerations have a specific consistent spatial orientation (corresponding
to making the Cauchy-Schwarz bound |L · a| ≤

√
a · a

√
bµνLµLν (=

√
a · a) in G into an

equality, with no changes of sign). However, especially when V models a physical fluid
4-velocity, and regardless of a corresponding to non-gravitational forces or to effective velocity
dispersion, a residual 4-acceleration is only expected around localized overdensities, hence
small parts of the domain. The acceleration vector is moreover expected to have radial
orientations around the centers of those overdensities, leading to compensating signs in
L · a over paths crossing such regions. In such a case, we may thus assume that the fluid’s
4-acceleration only contributes small corrections to the above (a = 0) bounds. It can moreover
be argued that the small spatial regions where a may be non-negligible could be avoided
by the spatial path C up to a small increase in its total length, while the cases where the
endpoint P of the path, spanning the whole integration domain, falls within such a dense
region may be neglected for their small contribution to the volume-weighted spatial integrals
I(S) in either slice. When V arises from a different, more geometric construction, we shall
simply assume it to be a geodesic vector field for simplicity. Accordingly, in the following,
we will adopt either of these simplifying assumptions and use the bounds obtained in the
vanishing-acceleration case above — with small corrections being e.g. encompassed into taking
a slightly pessimistic value for η or v0, if necessary.

4.4.3 Resulting bounds on the norm of ∆I(S)

For any given Xi in the domain considered, the above bound on |τ0(Xi)|, eq. (4.33), results in a
constraint on the volume ratios (

√
b)(τ=τ1,Xi)/(

√
b)(τ=0,Xi) = exp

(∫ τ1
τ=0(∇µV

µ)(τ,Xi) dτ
)

that
appear in ψ(Xi), eq. (4.9), for τ1 ≡ τ0(Xi). Together with the global bound |∇µV

µ| ≤ 3H̄,
15Considering for instance, in the late Universe, the natural case of V representing the 4-velocity field of a

non-relativistic (nearly dust) matter fluid, the main contribution to its 4-acceleration over most of the volume
is expected to arise from velocity dispersion within the fluid acting as effective pressure forces which contribute
to oppose gravitational collapse in bound structures. The magnitude of such a 4-acceleration from effective
pressure can then be estimated as being at most of the same order as the (Newtonian) gravitational acceleration
within those virialized domains. A typical present-day value for these accelerations in the outskirts of galaxies
or within galaxy cluster haloes, for instance, would then be of the order of 10−10 m.s−2 (e.g., [41, 42]), or a little
smaller. This value of ā accumulated over a large cosmological domain with a diameter L̄ of a Hubble length,
would correspond to āL̄ of about 10−1. A more pessimistic estimate of the maximum ā of the 4-acceleration
local amplitude, e.g. accounting for the central regions of dense clusters or for the haloes of very massive
elliptic galaxies, and still with L̄ ≃ 1/H0, may then lead to an āL̄ of order unity or beyond. The regions where
this may occur, however, would occupy a very small volume fraction at such scales and may accordingly be
avoided by the spatial path and/or neglected in the volume-weighted spatial integrals considered.
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eq. (4.33) implies∣∣∣∣∫ τ1

τ=0
(∇µV

µ)(τ,Xi) dτ

∣∣∣∣ ≤ 3H̄|τ1| ≤ 3H̄|τ0(Xi)| ≤ 3α v0H̄L , (4.39)

still assuming the condition (4.30) to hold. Noting that | exp(x) − 1| ≤ exp(|x|) − 1 for
any real number x, and then successively using the monotonicity and the convexity of the
exponential function, the above relation gives∣∣∣∣ exp

(∫ τ1

τ=0
(∇µV

µ)(τ,Xi) dτ

)
− 1

∣∣∣∣ ≤ e3H̄|τ0(Xi)| − 1 ≤ e3 α v0H̄L − 1 ≤ α̃ v0H̄L . (4.40)

The numerical factor α̃ defined as α̃ ≡ η−1(e3αη − 1) = 2η−1(eη − 1)(e2η − 2eη + 4)/(2 − eη)3,
yields for instance α̃ ≃ 8.8 for η = 1/10, and converges to α̃ = 6 for η → 0.

Taking τ1 = τ0(Xi) and applying this inequality to ψ in eq. (4.9) then gives:

|ψ(Xi)| ≤ α̃ v0H̄L
∣∣∣S(τ=0,Xi)

∣∣∣+ (1 + α̃ v0H̄L)
∣∣∣τ0(Xi)

∣∣∣× max
τ ∈ [0, τ0(Xi)]

∣∣∣(V µ∂µS)(τ,Xi)

∣∣∣
≤ α̃ v0H̄L

∣∣∣S(τ=0,Xi)

∣∣∣+ α(1 + ηα̃) v0 L × max
τ ∈ [0, τ0(Xi)]

∣∣∣(V µ∂µS)(τ,Xi)

∣∣∣ . (4.41)

The numerical factor α(1 + ηα̃) in the second term yields for instance α(1 + ηα̃) ≃ 4.0 for
η = 1/10 and converges to α(1 + ηα̃) = 2 for η → 0.

The range τ ∈ [0, τ0(Xi)] for the maximum simply corresponds geometrically to taking
a maximum over the segment of a flow line of V that joins the two slices Σ0 and Σ′

0. The
interval [0, τ0(Xi)] (which should be read as [τ0(Xi), 0] in case τ0(Xi) < 0) is part of the
larger interval [−α v0 L, α v0 L] from eq. (4.33), and we may then use

max
τ ∈ [0, τ0(Xi)]

∣∣∣(V µ∂µS)(τ,Xi)

∣∣∣ ≤ max
τ ∈ [−α v0 L, α v0 L]

∣∣∣(V µ∂µS)(τ,Xi)

∣∣∣ , (4.42)

to get rid of the remaining dependence of eq. (4.41) on the specific foliation F ′. Setting again
as η the best upper threshold that may be set on the global v0H̄L̄, and assuming that it
can obey the constraint (4.36), η < ln(2), we can moreover replace the two Xi-dependent
factors L in eq. (4.41) by the global length bound L̄. With these two remarks, inserting the
above eq. (4.41) into eq. (4.10) provides the following bound on the variation of the spatial
integral of the scalar S between the two slices under the condition (4.36):

|∆I(S)| ≤ I
(∣∣∣ψ(Xi)

∣∣∣)A

A0
(4.43)

≤ α̃ v0H̄L̄ I(|S|)A
A0

+ α(1 + ηα̃) v0 L̄ I

(
max

τ ∈ [−α v0 L, α v0 L]

∣∣∣(V µ∂µS)(τ,Xi)

∣∣∣)A

A0

.

Above, we have kept the Xi-dependent distance L in the second spatial integral, but it
may as well be replaced by the global size L̄ (since [−α v0 L, α v0 L] ⊂ [−α v0 L̄, α v0 L̄])
to give a simpler, though a priori weaker bound. We also note that, from eq. (4.9), we
could instead have written∣∣∣∣∣

∫ τ0(Xi)

τ=0
(V µ∂µS)(τ,Xi) dτ

∣∣∣∣∣ ≤
∫ α v0 L

τ=−α v0 L
|V µ∂µS|(τ,Xi) dτ , (4.44)
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and thus the second spatial integral in eq. (4.43) could alternatively be replaced by:

I

(∫ α v0 L

τ=−α v0 L
|V µ∂µS|(τ,Xi) dτ

)A

A0

, or by: I

(∫ α v0 L̄

τ=−α v0 L̄
|V µ∂µS|(τ,Xi) dτ

)A

A0

, (4.45)

with now simply a prefactor (1 + ηα̃) in front of this integral.
Another variant of the above bound, eq. (4.43), is provided in appendix A.2 as eq. (A.7).

It is based on an alternative writing of ψ(Xi) and requires some knowledge about the local
variable ∇µ (SV µ), rather than S and V µ∂µS as in the above.

The bound obtained here, eq. (4.43), ensures that |∆I(S)|/I(|S|)A
A0

≪ 1 provided the
‘tilt-weighted’ domain size v0L̄ (≪ L̄) can be considered much smaller than the characteristic
lengths (or times) associated with H̄−1 and with

∣∣S(0,Xi)
∣∣ / |(V µ∇µS)(τ,Xi)|. At least in the

cases where S does not change sign on Σ0 (e.g., for an energy or mass density, or for S = 1,
or as a known property of Σ0), this expresses a direct constraint on the relative variation
of its integral, |∆I(S)/I(S)A

A0
|.

In general, this bound, as well as its alternative form in eq. (A.7), require that the global
upper limit H̄ on the local directional expansion rates exists over the appropriate spacetime
region, and that it and/or the domain size and tilt velocity be sufficiently small for the
condition (4.36) to be satisfied. As mentioned, the bounds become more stringent if one can
even ensure that v0H̄L̄ ≪ 1 (i.e., η ≪ 1). In a cosmological setup, and in the case where V

can be associated with the 4-velocity of a matter fluid source component, one can expect
the typical expansion rate within the domain to be of the order of the Hubble parameter
at a characteristic time of Σ0. If local fluctuations of the expansion rate do not substantially
exceed this value, then v0H̄L̄ ≪ 1 is ensured up to a domain size of the order of the associated
Hubble length (and possibly larger for v0 small enough). This assumption might be violated in
rapidly collapsing, overdense regions. However, as discussed earlier about the 4-acceleration,
which is also expected to only have potentially non-negligible values in strong overdensities,
such regions typically occupy very small spatial volumes and may accordingly be avoided and
neglected in the spatial integrals, allowing for a tighter H̄ bound in the remaining domain.
This may as well be applied to the tilt velocities (interpreted as peculiar velocities of the source
fluid in each slice), considering that a tighter threshold may be imposed on the tilts everywhere
outside small overdense regions. This would allow for an even smaller v0 to be picked while
neglecting the contributions of the remaining overdensities as small corrections to the result.

4.4.4 Consequences for the foliation dependence of averages

We can now derive a bound on the difference of scalar averages between slices of two foliations,
while making use of the above results on bounds on the difference of scalar integrals.

We first obtain a bound on the modulus of the volume difference ∆V ≡ VA′
A0

− VA
A0

, by
taking S = 1 in eq. (4.43), from which we have:

|∆V| = |∆I(1)| ≤ α̃ v0H̄L̄ VA
A0 ≤ α̃η VA

A0 . (4.46)

Here, we do assume non-weighted averages, i.e., that V is indeed normalized without a need
to include its normalization into a redefinition of S.
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Considering again any given foliation-independent scalar S, the difference of its average
between slices of the two foliations, ∆⟨S⟩ ≡ ⟨S⟩A′

A0
− ⟨S⟩A

A0
, is given by

∆⟨S⟩ =
I(S)A′

A0

VA′
A0

−
I(S)A

A0

VA
A0

= ∆I(S)
VA′

A0

− I(S)A
A0

∆V
VA

A0
VA′

A0

= ∆I(S) − S0 ∆V
VA′

A0

= ∆I(S − S0)
VA

A0
+ ∆V

, (4.47)

where we introduced the short-hand notation S0 ≡ ⟨S⟩A
A0

for the average of S within the
reference slice Σ0, seen as a constant number. We can then apply the integral bound in
eq. (4.43) to the shifted scalar S − S0 to obtain the following bound:

|∆I(S−S0)| ≤ α̃ v0H̄L̄ I(|S − S0|)A
A0

+α(1+ηα̃) v0 L̄ I

(
max

τ ∈ [−α v0 L, α v0 L]

∣∣∣(V µ∂µS)(τ,Xi)

∣∣∣)A

A0

.

(4.48)
Injecting this into eq. (4.47) and using eq. (4.46), we thus obtain the following bound on
the variation of the average of S between the slices:

|∆⟨S⟩| ≤ 1
1 − α̃η

[
α̃ v0H̄L̄

〈∣∣∣S − ⟨S⟩A
A0

∣∣∣〉A

A0

+ α(1 + ηα̃) v0 L̄
〈

max
τ ∈ [−α v0 L, α v0 L]

∣∣∣(V µ∂µS)(τ,Xi)

∣∣∣〉A

A0

 , (4.49)

provided α̃η < 1, which is ensured for η small enough since α̃η ∼ 6η when η → 0.
In the same way as for the bounds on ∆I(S) in eqs. (4.43)–(4.45), we could have replaced

in the above the maximum of |V µ∂µS| by its time integral (along the worldline of V ) over
the same interval, i.e.,

α v0 L̄
〈

max
τ ∈ [−α v0 L, α v0 L]

∣∣∣(V µ∂µS)(τ,Xi)

∣∣∣〉A

A0

7→
〈∫ α v0 L

τ=−α v0 L
|V µ∂µS|(τ,Xi) dτ

〉A

A0

,

(4.50)
and L (appearing in the interval bounds ±α v0 L) could be replaced by the global L̄ in
either expression.

In eq. (A.8) of appendix A.2, an alternative form for the bound on ∆⟨S⟩ is presented.
This form is rather based on the local quantities ∇µ (SV µ) and ∇µV

µ thanks to a rewriting of
ψ(Xi), following the same logic as for the alternative form of the bound on ∆I(S) mentioned
hereabove and also presented in appendix A.2.

Eq. (4.49) and its variants provide upper limits for the possible changes in the spatial
average of the scalar S over the domain of interest when going from Σ0 to another, intersecting
slice that may belong to any other foliation F ′, of normal vector n′, provided it (like F) obeys
the global small tilt condition (γ2

V ,n′ − 1)1/2 ≤ v0. This independence in Σ′
0 is fully achieved

if the result is expressed in terms of L̄ instead of L and L̄ is for instance defined as the
diameter of the averaging domain in Σ0 (see eq. (4.34)). It is also achieved if some intersection
point P0 between Σ0 and any possible choice of Σ′

0 is kept fixed via the requirements on the
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parametrization of A′, and L is replaced by the (a priori larger) value of the spatial distance
along Σ0, d(P, P0), between the current point P (of coordinates (τ = 0, Xi)) and P0.

As for the variation of integrals ∆I(S) in section 4.4.3 above, these bounds are expressed
as a function of v0H̄L̄ and require this factor to be small enough to obey the constraint (4.36);
hence, similar remarks on setting H̄ and/or v0 apply. The bounds on the variation ∆⟨S⟩
still depend on the local evolution rate V µ∇µS or non-conserved current ∇µ(SV µ); but we
note in this case that their additional dependence is on the local fluctuations of S on the
reference slice, rather than just ⟨S⟩A

A0
.

4.5 Bounds for constant-proper time foliations

In cosmology, the age of the Universe is typically measured with respect to the proper time
of fundamental observers. However, the choice of proper time function is associated with
a calibration freedom, and a family of proper time functions in general exist for a given
4-velocity field. In the present section, we shall investigate bounds of integrals formulated
within classes of proper time foliations. In particular, we give as an example proper time
foliations that are calibrated within the epoch of last scattering.

4.5.1 The family of constant-proper time foliations

We consider proper time foliations of a single 4-velocity field, as an example of a set of
foliations that are natural to compare. Let us consider the class of proper time functions
of a given 4-velocity field. We shall use this (unit) 4-velocity field as our volume measure
vector V , and as above use this V to define the propagation of the boundaries of the tube
TB0 . We say that τ is a proper time function of V if it satisfies the equation

V µ∇µτ = 1. (4.51)

Let Σinit be an initial reference hypersurface chosen at convenience, and let τ = τref be
the proper time function satisfying τref(Σinit) = constant. All solutions to eq. (4.51) can
be expressed as

τ = τref + ξ , (4.52)

where ξ is a given function satisfying the transport rule V µ∇µξ = 0. If the function ξ,
describing the distance of a given solution τ to the reference time function τref, can be
bounded on a single hypersurface, then it can be bounded throughout the tube TB0 . In the
following, we shall consider bounds that are relevant for when we can assume that we can
bound ξ on the initial surface Σinit such that |ξ| ≤ δT everywhere on Σinit. It then follows
immediately from the above transport rule that |ξ| ≤ δT globally within TB0 . This scenario
is thus substantially simpler than the setup considered in subsection 4.4 above where the
main difficulty was bounding the proper time distance between the two slices considered.
With such a bound already ensured, we do not need to assume small tilts between the slices
of the constant-proper time foliations.
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4.5.2 Resulting bounds on the norm of ∆I(S)

We now consider an arbitrary scalar function S, and two intersecting leaves Σ0 and Σ′
0 of

the foliations F and F ′ corresponding to the level sets of τref and τ ′, where τ ′ is an arbitrary
member of the class of solutions (4.52). We may choose τref(Σ0) = 0 = τ ′(Σ′

0) without loss of
generality, using the gauge freedom of shifting τ ′ by an additive constant if necessary. Let
(Xi) again be a set of three V -comoving spatial coordinates. The values τ0(Xi) taken by
τref on the Σ′

0 hypersurface are equivalently given by the values of −ξ on that same surface
since τref = τ ′ − ξ; and it follows that |τ0(Xi)| ≤ δT within TB0 . From this global upper
bound on |τ0(Xi)| we can formulate an upper bound on |ψ(Xi)| from eq. (4.9), which reads,
in the (τref , X

i) coordinate system:

∣∣∣ψ(Xi)
∣∣∣ ≤

(
exp

(
max
±δT

∣∣∣∣∣
∫ ±δT

τ=0
|∇µV

µ|(τ,Xi) dτ

∣∣∣∣∣
)

− 1
) ∣∣∣S(τref=0,Xi)

∣∣∣ (4.53)

+ exp
(

max
±δT

∣∣∣∣∣
∫ ±δT

τ=0
|∇µV

µ|(τ,Xi) dτ

∣∣∣∣∣
)

× max
±δT

∣∣∣∣∣
∫ ±δT

τ=0
|V µ∂µS|(τ,Xi) dτ

∣∣∣∣∣ .
Assume that we can define a global upper bound 3H̄ on the volume expansion rate, time-
averaged along V for τref spanning [−δT, 0] or [0, δT ]:

1
δT

∣∣∣∣∣
∫ ±δT

τ=0
|∇µV

µ|(τ,Xi) dτ

∣∣∣∣∣ ≤ 3H̄ . (4.54)

This may arise still as a consequence of 3H̄ holding as a bound on the local expansion
rate everywhere over the spacetime range considered, as in subsection 4.4 above; but in the
present case only the less restrictive time-averaged bound is required. With this assumption,
eq. (4.53) becomes

∣∣∣ψ(Xi)
∣∣∣ ≤

(
e3H̄ δT − 1

) ∣∣∣S(τref=0,Xi)

∣∣∣+ e3H̄ δT × max
±δT

∣∣∣∣∣
∫ ±δT

τ=0
|V µ∂µS|(τ,Xi) dτ

∣∣∣∣∣ . (4.55)

Similarly to subsection 4.4, the exponential terms above may as well be replaced by affine
expressions in H̄ δT as e3H̄ δT ≤ 1+η−1(e3η −1) H̄ δT by considering an upper threshold value
η that can be set on H̄ δT . The above local constraints on |ψ(Xi)| then bound the variation of
the integral of S, ∆I(S) = I(ψ(Xi)), as |∆I(S)| ≤ I(|ψ(Xi)|). This translates as well into a
bound on the variation of averages, ∆⟨S⟩, along the same lines as in section 4.4.4 above. These
bounds are useful when it is possible to constrain (V µ∂µS)(τ,Xi) over the bounding time span
±δT between the leaves. When δT is much smaller than typical values of the time scales set
by
∣∣∣(∇µV

µ)(τ,Xi)

∣∣∣−1
and

∣∣∣S(τ=0,Xi)

∣∣∣ / ∣∣∣(V µ∂µS)(τ,Xi)

∣∣∣ within the subdomain of TB0 defined by
−δT ≤ τref ≤ δT , then |∆I(S)|/I(|S|)A

A0
is much smaller than 1. This directly constrains the

relative variation |∆I(S)/I(S)A
A0

| at least when S has a constant sign along the reference slice.

4.5.3 Example: proper time foliations synchronised near the last scattering
epoch

We consider a class of proper time foliation scalars (4.52) of a physical matter congruence
V = u which are synchronised at the epoch of last scattering. The epoch of last scattering
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defines a natural initialisation epoch in cosmology, and this epoch may thus naturally be
used for synchronizing the proper time of physical observers. This epoch does however cover
a spacetime region with a finite width in cosmic time. In the physics of recombination,
the visibility function quantifies the probability of the streaming of photons as protons and
electrons combine into hydrogen. The visibility function might then be used to quantify an
epoch of last scattering, after which most photons are freely streaming. The full width at
half maximum of the visibility function in ΛCDM cosmology is ∼ 105 years, and can be used
to define the duration of the last scattering epoch. Consider the sub-class of proper time
functions (4.52) of u which can all be initialized within the epoch of last scattering. That is,
we set τref as defined from an initialization hypersurface Σinit that is fully contained within
the spacetime region of last scattering, and all remaining proper time functions considered
are also required to have an (“initial”) level set contained within the region of last scattering.
These proper time functions accordingly satisfy the global constraint |ξ| ≤ δT with δT ∼ 105

years. We might think of this class of synchronisation hypersurfaces as defining a set of
equally preferred calibrations of a cosmic age function.

Let us investigate how integral quantities computed at the present epoch, defined as the
τ = t0 slice in each foliation for the fixed present-day age t0, differ between foliations of this
set. Let typical values of the matter fluid’s expansion rate |∇µu

µ| around the present-epoch
Universe be of the order of 3H0 with the Hubble constant H0 ∼ 10−10 years−1, and let its
local fluctuations reach at most a factor of a few times this value (say, at most ∼ 10H0), such
that

∣∣∣∫±δT
τ=0 |∇µu

µ|(τ,Xi) dτ
∣∣∣ ≤ 3H̄ δT ≲ 10−4, with 3H̄ ≲ 10H0. Let us see for instance how

the present-epoch volume of the Universe is bounded within members of this set of proper
time foliations. We accordingly take S(τ,Xi) = 1, and the bound (4.53) becomes

∣∣∣ψ(Xi)
∣∣∣ ≤ exp

(
max
±δT

∣∣∣∣∣
∫ ±δT

τ=0
|∇µV

µ|(τ,Xi) dτ

∣∣∣∣∣
)

− 1 ≲ exp
(
3H̄ δT

)
− 1 ≈ 3H̄ δT ≲ 10−4 .

(4.56)
Thus, the difference in the present-epoch volume V0,τ ≡ I(1)τ

t0 , as measured in two members
of the class of proper time foliations synchronised at the last scattering epoch, is bounded as

|∆V0| = |∆I(1)| ≤ I(|ψ(Xi)|)τref
t0 ≲ 3H̄ δT I(1)τref

t0 = 3H̄ δT V0,τref ≲ 10−4 × V0,τref . (4.57)

Hence, the volume of the present-epoch Universe is well-defined at the level of ∼ 10−4

in the class of proper time foliations calibrated within the region of last scattering. This
is due to the time scale set by the duration of last scattering through the width of the
visibility function being much smaller than the typical time scale associated with volume
expansion in the present-epoch Universe.

5 Summary and discussion

The 3 + 1 foliation of spacetime in general relativity is a powerful tool for casting Einstein’s
equations into an initial value problem and for constructing coarse-grained variables by
integration operations defined on the leaves. This is in particular used in approaches for
cosmological averaging, as in [13–21]. It has been noted that average quantities that appear in
such formalisms have dependence on the foliation within which they are formulated [23–29].
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In the present paper, we go beyond these previous investigations and consider the 3 + 1
foliation problem in a broad context. We are hence not addressing a particular metric
model nor a perturbative setting, but are treating the problem of foliation dependence
in relativistic integrals and averages of scalar variables over arbitrary bounded regions of
3-dimensional hypersurfaces, in presence of a generic nonsingular spacetime metric. This
setup also encompasses the case of integrals and averages over the entire hypersurfaces when
those have a closed topology, such as that of a 3-torus or a 3-sphere. We view the integral
and averaged quantities as functionals of the general scalar function defining the foliation.
Our systematic analysis of these functionals considering infinitesimal variations of foliations
revealed that globally foliation-independent functionals do exist but must be associated with
a locally-conserved current. Thus, the only physically relevant exactly preserved quantities
are total rest masses within a bounded domain or other quantities that are per construction
preserved within the individual volume elements. This is not in contradiction with the
gauge-independent scheme recently proposed in [29] in the context of perturbation theory,
since there, the coordinate transformations considered are not affecting the spacetime foliation,
and thus actual foliation changes are by construction absent in the authors’ scheme.

We additionally examined choosing foliations specifically to leave a certain functional
invariant under infinitesimal deformations, i.e., foliations or individual slices which extremize
a given functional, as in the well-known case of extremal-volume slices. Such extremals
provide examples of ways to uniquely specify a foliation and thus to eliminate the ambiguity
of foliation choice. We briefly discussed, as specific applications, the extremization of entropy
functionals and the selection of slices with a minimal average tilt with respect to a given
vortical (hence not hypersurface-orthogonal) fluid flow.

Since strictly foliation-independent integral/average quantities are rare, as might have
been expected, in the second half of our paper we investigated the bounding of foliation
dependence of integrals and averages under finite changes of foliations. There we showed
that we can in some cases set upper limits on this dependence if we consider foliations with
space-like leaves that can be bounded in terms of their relative distance. In particular we
have considered classes of space-like foliations with associated normal vectors that have a
small relative tilt. We have also considered families of constant-proper time foliations (for a
given family of observers defining a 4-velocity field) that are bounded in terms of distance
between their respective initial synchronization slices. In both cases, we derived bounds
on the relative variation of integrals of scalar quantities between different foliations, under
the assumption that the local volume expansion rate also remains bounded within a certain
spacetime region. These bounds depend on the ability to set constraints on the evolution rate
of the scalar quantity considered or on the associated non-conserved current. This implies, as
a special case, bounds on the volume within the integration domain. The results on integral
functionals of scalars also directly imply bounds on the variation of the associated averages,
which we explicited in the small-tilt case, and which depend on the local fluctuations of
the corresponding scalar. These bounds are consistent with the qualitative discussion for
similarly restricted classes of space-like foliations in [28].

The foliation dependence of cosmological backreaction terms as defined in [13, 14]
and extended to arbitrary spatial foliations in [15, 28] turns out to be complicated to
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bound rigorously in general. This is due to the appearance of the threading lapse
M ≡ (V · ∇A)−1 = (∇A · ∇A)−1/2 γ−1

V ,n, or of M 2, as a factor in the corresponding inte-
grands, inducing a dependence on the local foliation scalar’s gradient.16 We have accordingly
not derived general analytical expressions for the bounding of variations of backreaction terms.
We note, however, that our results in the case of constant-proper time foliations (V · ∇A = 1)
are directly applicable to the averages and backreaction terms appearing in [15, 28] when the
same class of foliations is considered there. Our results in the case of space-like foliations with
small relative tilts also remain applicable to such backreaction terms under the additional
assumption of geodesic slicings, for which the slicing lapse N ≡ (∇A · ∇A)−1/2 can be set to
1 — up to the small extra corrections induced by the presence of the Lorentz factor γV ,n ∼ 1.
Moreover, since we have succeeded in bounding the volume of spatial sections, and since the
important implication of backreaction is precisely its impact on the growth of cosmic volume
over time, our results still provide implicit bounds on the foliation-dependent contributions
to backreaction. In a setting where the foliation dependence of the volume is tightly bounded
at all times, while the foliation dependence of a particular backreaction term might be larger,
the backreaction effect on the volume (as the combined impact of all backreaction terms
accumulated over some time evolution) also has to remain tightly bounded in this scenario.

Our results indicate that while the averaged properties of a given region of spacetime are
generally going to depend on the reference time-slicing, there are nevertheless tight bounds
that can be constructed within physically motivated classes of foliations that are close to
each other by some suitable measure. In particular, for cosmological purposes where most
of the matter in the Universe is thought to have non-relativistic relative speeds, physically
meaningful space-like foliation frames that approximately trace the matter of the Universe
will have a relative tilt velocity much smaller than unity. There are also epochs in the early
Universe that constitute natural choices for setting a synchronisation of relevant cosmological
foliations. Since, for instance, the time duration of the epoch of last scattering is very short
relative to the present-day Hubble time scale, a synchronisation within this epoch provides
a class of natural foliations which have small separations, compared to the characteristic
time scale of expansion. The results that we have obtained are thus directly applicable to
the averaging problem in cosmology.
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A Complements to the derivation and alternative forms of the bounds on
finite variations of spatial integrals and averages

A.1 General time coordinate and relation between determinants

Compared to the derivation above in section 4.3, eq. (4.4) can as well be obtained along
the same lines in the more general coordinates (T,Xi), with any time coordinate T that
is nondecreasing along any flow line of V . In such coordinates, the resulting equivalent of
eq. (4.4) would then feature the factor √

g V 0 instead of √
g, where V µ = (V 0, 0, 0, 0), arising

from a factor √
g (V µ∇µT ) in eq. (4.3) once re-expressed in terms of the arbitrary time T .

As in eq. (4.4) (with V 0 = 1 in that case), this factor √
g V 0 — which can also directly be

seen to remain invariant under the change of the time coordinate — corresponds to
√
b. This

can be shown by applying Cramer’s rule to the inverse metric tensor g−1, expressing the metric
itself (as the inverse of g−1) in terms of the determinant and the adjugate matrix of g−1. The
(00)-component of this relation gives g00 = det(gij)/det(gµν) = (−g) det(gij). Noting that
V µVµ = −1 = g00(V 0)2 so that g00 = −1/(V 0)2, and that (bij) is the inverse matrix to (gij):
gikbkj = δi

j (using V i = 0 and V µVµ = V 0V0 = −1) so that det(gij) = 1/b, the above relation
g00 = (−g) det(gij) becomes g (V 0)2 = b. Within the choice T = τ as used in section 4.3, the
component V 0 ( = V µ∇µτ) reduces to 1, hence g reduces to b in the coordinates (τ,Xi).

A.2 Alternative form of the local integrand and of the global bounds on the
variation of spatial integrals and averages

The integrand of ∆I(S) in eq. (4.4), normalized by the reference volume element,

ψ(Xi) ≡
[(√

b S
)

(τ=τ0(Xi),Xi) −
(
(
√
b S
)

(τ=0,Xi)

] / (√
b
)

(τ=0,Xi) , (A.1)

can be alternatively written as

ψ(Xi) =
(√

b
)−1

(τ=0,Xi)

∫ τ0(Xi)

τ=0
V µ∂µ

(√
b S
)

(τ,Xi)
dτ , (A.2)

where, from eq. (4.5),

V µ∂µ

(√
b S
)

=
√
b∇µ(SV µ) . (A.3)
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Substituting expression (4.7) for
√
b in the above, eq. (A.2) becomes:

ψ(Xi) =
∫ τ0(Xi)

τ=0
(∇µ(SV µ))(τ,Xi) exp

(∫ τ

τ̄=0
(∇µV

µ)(τ̄ ,Xi) dτ̄

)
dτ . (A.4)

This alternative form of ψ shows more explicitly the exact foliation-independence
of I(S)A

A0
, ∆I(S) = 0, in case ∇µ(SV µ) = 0, in agreement with our results from sec-

tion 3.2 (in particular eq. (3.18)) under the additional simplifying assumptions consid-
ered in section 4. This form of ψ would have been the one naturally arising under a
similar derivation as the one in section 4.3 leading to eqs. (4.8)–(4.10), had one started
from the alternative form of I(S)A

A0
and I(S)A′

A0
obtained by integrating by parts, that is,

∆I(S) =
∫

M d4x
√
g [H(A−A0) − H(A′ −A0)] ∇µ(SV µ) H(B0 − B).

Both forms for ψ, eqs. (4.9) and (A.4), can be of interest, as they can give rise to different
upper bounds on ∆I(S) = I

(
ψ̄
)A

A0
and on ∆⟨S⟩ (see below), expressed with different local

variables — |S| (on Σ0) and |V µ∂µS| in the former case, |∇µ(SV µ)| in the latter, in addition
to |∇µV

µ| in both cases. Depending on the scalar S under consideration, on the choice
of V , and on the requirements on F ′, available physical or mathematical constraints on
the above local quantities would then determine the most suitable of both expressions to
derive upper limits on ∆I(S) or ∆⟨S⟩.

Application to the bounds on the variation of spatial integrals. Using this alternative
form of ψ, in the derivation of the bound on ∆I(S) (as in section 4.4.3), we may write,
for τ0(Xi) ≥ 0,

|ψ(Xi)| ≤
(

max
τ ∈ [0, τ0(Xi)]

|∇µ (SV µ)|(τ,Xi)

)
×
∫ τ0(Xi)

τ=0
exp

(∫ τ

τ ′=0
(∇µV

µ)(τ ′,Xi) dτ
′
)
dτ

≤
(

max
τ ∈ [−α v0 L, α v0 L]

|∇µ (SV µ)|(τ,Xi)

)
×
∫ τ0(Xi)

τ=0
e3H̄τdτ

=
(

max
τ ∈ [−α v0 L, α v0 L]

|∇µ (SV µ)|(τ,Xi)

)
× 1

3H̄

(
e3H̄τ0(Xi) − 1

)
≤
(

max
τ ∈ [−α v0 L, α v0 L]

|∇µ (SV µ)|(τ,Xi)

)
× α̃

3 v0 L , (A.5)

still under the condition (4.30) (v0H̄L ≤ η < ln 2), and where we have used part of eq. (4.40)
for the last inequality. For τ0(Xi) ≤ 0, the first line of the above eq. (A.5) holds with
the bounds τ = 0 and τ = τ0(Xi) of the first integral (and of the maximum) reversed, so
that the next two lines become

|ψ(Xi)| ≤ max
τ ∈ [−α v0 L, α v0 L]

|∇µ (SV µ)|(τ,Xi) ×
∫ 0

τ=τ0(Xi)
e3H̄(−τ)dτ

= max
τ ∈ [−α v0 L, α v0 L]

|∇µ (SV µ)|(τ,Xi) × 1
3H̄

(
e3H̄(−τ0(Xi)) − 1

)
, (A.6)

and the last line of eq. (A.5) thus holds regardless of the sign of τ0(Xi). Setting again the
global upper threshold η on v0H̄L̄, eq. (4.36), i.e., v0H̄L̄ ≤ η, we can as previously replace
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the factor L appearing above by the global L̄, and insert the corresponding inequality on
|ψ(Xi)| into eq. (4.10) to get the following alternative to eq. (4.43) for the bound on ∆I(S):

|∆I(S)| ≤ I
(
|ψ(Xi)|

)A

A0
≤ α̃

3 v0 L̄ I

(
max

τ ∈ [−α v0 L, α v0 L]
|∇µ (SV µ)|(τ,Xi)

)A

A0

. (A.7)

As for eq. (4.43) earlier, one may either keep the Xi-dependent length L appearing within
the spatial integrand, or replace it by the global value L̄ by computing the corresponding
maximum over the range [−α v0 L̄, α v0 L̄] instead of [−α v0 L, α v0 L].

Application to the bounds on the variation of averages. The alternative form to
eq. (4.49) of the bound on ∆⟨S⟩ corresponding to the above alternative form of ψ, is provided
by applying to S − S0 (with S0 = ⟨S⟩A

A0
) the bound on ∆I(S) above, eq. (A.7). Following

the same procedure as in section 4.4.4, this gives

|∆⟨S⟩| ≤ α̃ v0 L̄
3 (1 − α̃η)

〈
max

τ ∈ [−α v0 L, α v0 L]

∣∣∣(∂µ (SV µ))(τ,Xi) − ⟨S⟩A
A0

(∇µV
µ)(τ,Xi)

∣∣∣〉A

A0

, (A.8)

still assuming α̃η < 1.
Again, the use of either eq. (4.49) or eq. (A.8) depends on the knowledge of the correspond-

ing local quantities. This holds to a lesser extent as in the case of ∆I(S) (with either eq. (4.43)
or eq. (A.7)) though, since the above eq. (A.8) still involves the local S through its reference
average ⟨S⟩A

A0
, as well as a contribution from ∇µV

µ, rather than only a ∂µ (SV µ) term.

A.3 The proper-time distance between the slices as an integral along a spatial
curve

Let us consider, as in section 4.4.2, a curve C within Σ0, connecting any two points P0 and
P within the integration domain on Σ0, and parametrized by its unit space-like n-orthogonal
tangent vector K and the associated affine parameter λ. In the xµ = (τ,Xi) coordinate
system, which we will be using throughout this section, the point at parameter λ along C

has coordinates xµ(λ) = (0, Xi(λ)).
In order to determine the evolution along the path C of the distance τ0(λ) ≡ τ0(Xi(λ))

between Σ0 and Σ′
0, we consider two infinitesimally close points P1 and P2 along C , respectively

at parameter λ and λ+dλ, i.e. at coordinates xµ(λ) = (0, Xi(λ)) and xµ(λ+dλ) = (0, Xi(λ+
dλ)). The coordinates of these two points are related through the tangent vector K of C

at P1, as xµ(λ+ dλ) = xµ(λ) +Kµ dλ; i.e., K0 = 0 and Xi(λ+ dλ) = Xi(λ) +Ki dλ. The
flow line of V going through P1 intersects the (Cauchy) slice Σ′

0 at a single point Q1. The
coordinates of Q1 read xµ

(1) ≡ (τ0(λ), Xi(λ)): they follow from the definition of τ0, and by
construction of the coordinate system (τ,Xi) as comoving and synchronous with respect to
V with τ = 0 on Σ0. Similarly, the flow line of V going through P2 intersects Σ′

0 at the
unique point Q2 of coordinates xµ

(2) ≡ (τ0(λ+ dλ), Xi(λ+ dλ)). The geometric framework
and points of Σ0 and Σ′

0 under consideration are illustrated on figure 3.
The fact that the two infinitesimally close points Q1 and Q2 both belong to the n′-

orthogonal slice Σ′
0 can be expressed via the following constraint at Q1:

0 = n′
µ

(
xµ

(2) − xµ
(1)

)
= n′

0
dτ0
dλ dλ+ n′

i

[
Xi(λ+ dλ) −Xi(λ)

]
. (A.9)
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Figure 3. Schematic representation of the geometric configuration and main points (P1, P2, Q1, Q2)
and vectors of interest for the derivation of dτ0/dλ. Coordinate labels are included for each named
point. We use a Riemannian picture of orthogonality for easier visualisation.

At P1, i.e. on C , the spatial coordinate difference Xi(λ + dλ) − Xi(λ) corresponds to the
spatial components Ki dλ of K dλ. At Q1, it can be expressed in terms of the vector field L̃

extending K by Lie dragging along the wordlines of V that intersect C :

0 =
(
LV L̃

)ν = (d/dτ)L̃ν |Xi − L̃µ(∂µV
ν) = (d/dτ)L̃ν |Xi . (A.10)

Hence, (L̃µ)(τ,Xi) = (L̃µ)(0,Xi) = (Kµ)(0,Xi) = (0,Ki)(0,Xi) ∀τ , and at Q1, the following holds:

n′
i

[
Xi(λ+ dλ) −Xi(λ)

]
= dλ (n′

iL̃
i)(τ0(λ),Xi(λ)) = dλ (n′

µL̃
µ)(τ0(λ),Xi(λ)) . (A.11)

Injecting the above into eq. (A.9), and using that, at Q1, one has n′
0 = n′

µV
µ = −γV ,n′ ,

leads to the first key expression for dτ0/dλ:

dτ0
dλ

=
(

n′ · L̃

γV ,n′

)
(τ0(λ),Xi(λ))

. (A.12)

Using the local decomposition of n′ with respect to V , eq. (4.13): n′ = γV ,n′(V + v′)
with v′ · V = 0, the above expression is rewritten as

dτ0
dλ

= (V · L̃)(τ0(λ),Xi(λ)) + (v′ · L̃)(τ0(λ),Xi(λ)) . (A.13)

Introducing the projected norm L̃b ≡ (bµνL̃
µL̃ν)1/2 and the normalized V -orthogonal projec-

tion L of L̃, defined by Lµ ≡ bµ
νL̃

ν/L̃b, the second term in the right-hand side above can
be rewritten as v′ · L̃ = (v′ · L) L̃b, since v′ · V = 0.

We can now compute both of the right-hand-side terms above from their initial value at
P1 (on Σ0) and an evolution equation along the flow lines of V , making use of the vanishing
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Lie derivative of L̃ along V , this time written as V µ∇µL̃
ν − L̃µ∇µV

ν = 0. Projecting this
expression onto V gives VνV

µ∇µL̃
ν = VνL̃

µ∇µV
ν = 0, hence

d
dτ

∣∣∣∣
Xi

(
V · L̃

)
= V µ∇µ

(
VνL̃

ν) = aνL̃
ν = (a · L) L̃b , (A.14)

with the V -orthogonal 4-acceleration a of V : aν = V µ∇µV
ν . One thus obtains

(
V · L̃

)
(τ0(λ),Xi(λ))

= (V · K)(0,Xi(λ)) +
∫ τ0(λ)

τ=0
(L · a)(τ,Xi(λ)) (L̃b)(τ,Xi(λ)) dτ . (A.15)

Now projecting the vanishing Lie derivative expression above onto L̃ instead, and using
the kinematic decomposition of the covariant derivative of V in eq. (4.20), results in the
following evolution equation for L̃ · L̃:

V µ∇µ(L̃νL̃
ν) = 2 L̃νV

µ∇µL̃
ν = 2 L̃µL̃ν∇µVν = −2 (L̃µVµ)(L̃νaν) + 2 ΘµνL̃

µL̃ν . (A.16)

Using the evolution equation (A.14) for V · L̃, as well as L̃2
b = L̃µL̃

µ + (V · L̃)2, leads
to an evolution equation for L̃b:

d
dτ
(
L̃2

b

)∣∣∣
Xi

= V µ∇µ
(
L̃νL̃

ν)+2
(
L̃µVµ

) d
dτ
(
L̃νVν

)∣∣∣
Xi

= 2 ΘµνL̃
µL̃ν = 2 L̃2

b ΘµνL
µLν , (A.17)

where the last equality uses the orthogonality of Θµν to V . At τ = 0, i.e., at P1, we have:

L̃b =
√
bµνKµKν =

√
1 + (K · V )2

(0,Xi(λ)) ; (A.18)

and the above evolution equation for L̃b, eq. (A.17), is solved as

(L̃b)(τ,Xi(λ)) =
√

1 + (K · V )2
(0,Xi(λ)) F (τ, λ) , (A.19)

with F (τ, λ) ≡ exp
[∫ τ

τ1=0
(Θµν L

µLν)(τ1,Xi(λ)) dτ1

]
. (A.20)

Injecting this expression for L̃b into eq. (A.15) for V · L̃, while noticing that the√
1 + (V · K)2 prefactor is time-independent, then gives the following:

(V · L̃)(τ0(λ),Xi(λ)) = (V · K)(0,Xi(λ)) +
√

1 + (V · K)2
(0,Xi(λ)) G(τ0(λ), λ) , (A.21)

with G(τ, λ) ≡
∫ τ

τ1=0
(L · a)(τ1,Xi(λ)) F (τ1, λ) dτ1 . (A.22)

Finally, by injecting eq. (A.21) above for V · L̃ and eq. (A.19) for L̃b into eq. (A.13),
with v′ · L̃ = (v′ · L) L̃b, one recovers the main result for dτ0/dλ:

dτ0
dλ = (V ·K)(0,Xi(λ)) +

√
1 + (V · K)2

(0,Xi(λ))

[
(v′ · L)(τ0(λ),Xi(λ)) F (τ0(λ), λ) +G(τ0(λ), λ)

]
.

(A.23)
One can then bound the distance |τ0(λ)| between the slices, as per the derivation of

section 4.4.2, from writing τ0(λ) as an integral of the above expression of dτ0/dλ along C ,
setting the starting point P0 as belonging to Σ0 ∩ Σ′

0 — where τ0 = 0 by construction.
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