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1 Introduction

The holographic principle, foundational in quantum gravity [1, 2], reshapes our understanding
of spacetime, black holes, and the universe, particularly through the anti-de Sitter/conformal
field theory (AdS/CFT) correspondence [3–5]. This correspondence unravels the intricate
relationship between quantum gravity properties and boundary field theory. Renormalization
group (RG) flow in the boundary field theory provides insights into quantum gravity’s
behavior across energy scales. We focus on investigating marginal and irrelevant deformations
using the double-current construction.
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For irrelevant deformations, computational challenges arise due to an infinite number of
operators at a fixed point, necessitating an infinite number of counterterms. Solvable classes of
2D spacetime irrelevant deformations, such as TT [6–8] and JT [9] for U(1) current-conserving
seed theories, present exceptions. The JTµ deformation [10] generalizes JT . RG flow analysis
shows these deformations lead to high-energy scales, disrupting seed theory symmetries.
Symmetries of TT , JT , and JTµ deformed CFTs are explored in [11]. In addition, TT and
JTµ deformations serve as probes for seed theory’s ultraviolet (UV) behavior. Marginal
deformations, like root-TT [12] (see also [13–15]), arise from a finite number of operators.
Exact marginal deformations maintain symmetries, though perturbative methods introduce
deviations, discussed in sections 4 and 5. Throughout RG flows, these deformations impact
quantum gravity in the bulk through the AdS/CFT correspondence [16–24].

To further understand quantum gravity, efforts extend the AdS/CFT correspondence
to flat holography [25–36]. Recent studies indicate two approaches for flat holography, both
centered on the BMS group in asymptotically flat spacetime (AFS) [37–39].

The first flat holography approach, celestial holography, establishes a connection between
4D asymptotically flat spacetime (AFS) quantum gravity and a 2D conformal field theory
(CFT) on the celestial sphere at the null boundary I± [40–46]. This celestial CFT incorpo-
rates irrelevant or marginal deformations, extending and enriching the celestial holography
framework. Co-dimensional two celestial holography applies 2D irrelevant deformations to
4D quantum gravity, potentially constructing UV-complete theories of general relativity [47].
Double current marginal deformations in celestial CFT correspond to loop corrections in
4D AFS scattering amplitudes, impacting the moduli space of bulk vacua [48], providing
precise holographic dictionaries.

The second approach, co-dimension one Carrollian holography, proposes a duality between
quantum gravity in AFS and a Carrollian conformal field theory on the null boundary [49, 50].
This duality can also be observed through limits in the AdS/CFT correspondence, where
the transition from AdS to Minkowski spacetime, i.e., infinite radius, corresponds to the
limit of zero light velocity (c→ 0) in the CFT [51–53]. This limit gives rise to a Carrollian
CFT or a BMS-invariant field theory (BMSFT). The c→ 0 limit is also known as the ultra-
relativistic (UR) limit. The details of re-deriving BMSFT from UR limit are presented in
appendix A. Further investigations into the connection between Carrollian and flat holography
are discussed in [54–63].

Given the interconnected nature of various flat holography approaches [64–66], our
study delves into the impact of irrelevant or marginal deformations, adopting a Carrollian
perspective. Correlation functions, pivotal observables in quantum field theories, are the focal
points we focused on. Aiming to maintain simplicity and clarity, our examination focuses
on the 2D BMSFT as the seed theory, known for its foundational role in flat holography.
Specific deformations, such as TT , JTµ, and

√
TT , well-defined in Lorentz-invariant quantum

field theories, form the basis of our exploration.
Notably, extending these deformations to the relatively unexplored realm of BMSFT

becomes a central objective. Drawing inspiration directly from previous studies [67–72],
we directly define deformations on BMSFT using the same framework as deformations on
2D Lorentz-invariant quantum field theories. The deformations can also be defined by
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leveraging the UR limit on Lorentz-invariant quantum field theory definitions. Our proposed
approaches to defining deformations within the Carrollian structure are elucidated, with
potential equivalence between them suggested by the findings presented in appendix B. These
results offer valuable insights into the compatibility and interchangeability of the two proposed
methods, shedding light on the nuanced relationship between deformations and the Carrollian
structure in the context of flat holography.

The paper is structured as follows. In section 2, we offer a comprehensive review of
the seed theory BMSFT, encompassing an overview of the operator product expansions
(OPEs) between the conserved currents and the primary operators. Moreover, we present
the non-vanishing correlation functions constructed by these primary operators. Moving
on to section 3, we introduce and define the TT , JTµ,

√
TT deformations for 2D BMSFT.

We then proceed to perturbatively calculate the first-order correction of these deformations
on the correlators in a generic form. To observe the flow effect, achieving accuracy up to
at least the second order becomes necessary. Therefore, we apply these deformations to
specific examples: the BMS-invariant free scalar model in section 4 and the BMS-invariant
free Fermion model in section 5. In these two sections, we provide the all-order corrected
Lagrangian for the TT , JTµ and

√
TT deformed theory. We then proceed to compute the

higher-order corrections of the deformed correlation functions systematically.

2 2D BMSFT

2.1 BMS3 algebra

The 2D BMSFT is a kind of quantum field theory which is invariant under the following
local BMS transform

x→ f(x), y → f ′(x)y + g(x), (2.1)

where x denotes space while y denotes time, and f(x), g(x) are the local dilation and local
boost respectively, which can be expanded near x = 0 as

f(x) =
∑
n∈Z

anx
n+1, g(x) =

∑
n∈Z

bnx
n+1, an, bn ∈ R. (2.2)

The transform (2.1) can be generated by the following BMS generators [73]

Ln = −xn(x∂x + (n+ 1)y∂y), Mn = −xn+1∂y. (2.3)

By central extension, the algebra of BMSFT should be

[Ln, Lm] = (n−m)Ln+m + cL

12(n
3 − n)δn+m,0,

[Ln,Mm] = (n−m)Mn+m + cM

12 (n3 − n)δn+m,0,

[Mn,Mm] = 0,

(2.4)

which refers to BMS3 algebra, equivalently, the 2D Galilean or Carrollian conformal algebra
(in short, GCA or CCA). This algebra can be derived from UR limit, see appendix A.1.
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Suppose the action is invariant under transformation (2.1), the components of stress tensor
should satisfy [62]

T x
y = 0, Tµ

µ = 0. (2.5)

Therefore the components of stress tensor are defined as

Tµ
ν =

(
M T

0 −M

)
, T = L+ y∂xM, (2.6)

where T,M are Noether current of the translation symmetry along x, y respectively [73].
Then the conservation law ∂µT

µ
ν = 0 yields

∂yL = 0, ∂yM = 0. (2.7)

Therefore the components can be expanded as

L =
∑
n∈Z

Lnx
−n−2, M =

∑
n∈Z

Mnx
−n−2. (2.8)

Then by using the algebra (2.4), the OPEs between the components of stress tensors can
be obtained as1

L(x′)L(x) ∼ cL

2(x̃′ − x̃)4 + 2L(x)
(x̃′ − x̃)2 + ∂xL(x)

x̃′ − x̃
, M(x′)M(x) ∼ 0,

L(x′)M(x) ∼ cM

2(x̃′ − x̃)4 + 2M(x)
(x̃′ − x̃)2 + ∂xM(x)

x̃′ − x̃
.

(2.9)

The TM -OPE can be simply obtained by using their relation T = L + y∂xM

T (x′, y′)T (x, y) ∼ cL

2(x′ − x)4 + 2T (x, y)
(x̃′ − x̃)2 + ∂xT (x, y)

x̃′ − x̃

− 2cM (y′ − y)
(x̃′ − x̃)5 − 4(y′ − y)M(x)

(x̃′ − x̃)3 − (y′ − y)∂xM(x)
(x̃′ − x̃)2 ,

T (x′, y′)M(x) ∼M(x′)T (x, y) ∼ cM

2(x̃′ − x̃)4 + 2M(x)
(x̃′ − x̃)2 + ∂xM(x)

x̃′ − x̃
,

M(x′)M(x) ∼0.

(2.10)

2.2 Highest weight representation

In this subsection, we discuss the highest weight representation of 2D BMSFT. Since the
BMS algebra (2.4) can be obtained by UR limit from Virasoro algebra, it is straightforward to
borrow the highest weight representation from 2D CFT by using UR limit. This representation
in BMSFT is referred to as the induced representation [74], which is unitary. Note, however,
that the induced representation is not the highest weight representation of 2D BMSFT, which

1Here is some ambiguity we should remark. While implementing integration, x should be recovered as z by
the UR limit. Namely, x → x̃ = x + iεy, which belongs to the complex plane. Fortunately, this is equivalent to
the radial quantization and analytical continuation from cylinder to plane [73]. That is why we can use (2.4)
to derive OPE.
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can be derived parallelly as that of 2D CFT. In this way, the Hilbert space of 2D BMSFT
can be decomposed into the BMS module of (2.4) as

H =
∑
∆,ξ

H∆,ξ, (2.11)

where ∆, ξ are eigenvalues of L0,M0 respectively. The requirement to the primary operator
defined on origin O = O(0, 0) in each block can be derived by using the state-operator
correspondence

[Ln,O] = 0, [Mn,O] = 0, n > 0. (2.12)

Unfortunately, it turns out that the Kac determinant for the highest weight representation of
2D BMSFT with non-zero boost charge is negative [75], which indicates that the highest weight
representation of 2D BMSFT is not unitary. Therefore, even though L0,M0 are commutative
with each other, they may not be diagonalizable in the same module simultaneously. This
will form a novel “multiplet” structure of primary operator which shares a similar feature
as logarithmic CFT [76–83]. Then the eigenvalue of L0,M0 can be read off as

[L0, Oa] = ∆Oa, [M0, Oa] = (ξO)a, a = 0, · · · , r − 1 (2.13)

where the rank r,2 is the number of primary operators in the same module that are related
to each other, and the matrix ξ can always be chosen as Jordan form

ξ =


ξ

1 ξ
. . . . . .

1 ξ

 . (2.14)

The operators on arbitrary position can be evolved by U = exL−1−yM−1 as

Oa(x, y) = UOa(0, 0)U−1 (2.15)

Then the transform of primary operators will be derived by using the Baker-Campbell-
Hausdorff (BCH) formula

[Ln, Oa(x, y)] =
[
xn+1∂x + (n+ 1)xny∂y + (n+ 1)(xn∆+ nxn−1yξ)

]
Oa(x, y),

[Mn, Oa(x, y)] =
[
xn+1∂y + (n+ 1)xnξ

]
Oa(x, y). (2.16)

Similarly, the OPEs between primary operators and stress tensors can be derived as

T (x′, y′)Oa(x, y) ∼
∆Oa

(x̃′ − x̃)2 + 2(y − y′)(ξ ·O)a

(x̃′ − x̃)3 + ∂xOa

x̃′ − x̃
+ (y − y′)∂yOa

(x̃′ − x̃)2

M(x′)Oa(x, y) ∼
(ξ ·O)a

(x̃′ − x̃)2 + ∂yOa

x̃′ − x̃
,

(2.17)

where we substituted x̃ for x, see the relevant discussion in footnote 1. This matches with the
OPEs derived from [62]. The OPEs can also be derived from the UR limit, see appendix A.2.

2In particular, the rank-1 multiplet of primary operators refer to as singlets, which is denoted as O. They
form the singlet version of highest weight representation [74].
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2.3 2D non-Lorentzian Kac-Moody algebra

The non-vanishing commutators of 2D non-Lorentzian Kac-Moody (NLKM) algebra are [60]

[Ln, Lm] = (m− n)Lm+n + cL

12(m
3 −m)δm+n,0,

[Lm,Mn] = (m− n)Mm+n + cM

12 (m3 −m)δm+n,0,

[Lm, J
a
n ] = −nJa

m+n, [Lm,K
a
n] = −nKa

m+n, [Mm, J
a
n ] = −nKa

m+n,

[Ja
m, J

b
n] = iF abcJc

m+n + iGabcKc
m+n +mk1δ

abδm+n,0,

[Ja
m,K

b
n] = iF abcKc

m+n +mk2δ
abδm+n,0,

(2.18)

where we sum over the double index c, and the first two lines are exactly the CCA (2.4)
derived in previous subsections, indicating that the subalgebra of NLKM is the BMS3 algebra.
The NLKM algebra can also be derived from Virasoro Kac-Moody algebra by taking UR
limit, see appendix A.1. Furthermore, the NLKM algebra can be intrinsically derived from
the conserved Kac-Moody current with the following form3

jaµ = (Ja
x ,−Ja

y ), (2.19)

where
Ja

y =
∑
n∈Z

x−n−1Ka
n, Ja

x =
∑
n∈Z

x−n−1
[
Ja

n − (n+ 1)y
x
Ka

n

]
. (2.20)

The OPEs between the current and the primary operators are [60]

Ja
y (x′, y′)O(x, y) ∼ i

Fa ·O(x, y)
x̃′ − x̃

,

Ja
x (x′, y′)O(x, y) ∼ i

Ga ·O(x, y)
x̃′ − x̃

− i(y′ − y)F
a ·O(x, y)
(x̃′ − x̃)2 ,

(2.21)

where G,F are two independent operators acting on fields, which denote the variation of
the fields under the infinitesimal NLKM transformation.

2.4 Correlators

2.4.1 Correlators of singlets

Since the vacuum is invariant under the global BMS symmetry, the two and three-point
function of primary operators can be fixed as

⟨X2⟩ = ⟨O1(x1, y1)O2(x2, y2)⟩ = Nδ∆1,∆2δξ1,ξ2 |x12|−2∆1e
−2ξ1

y12
x12 , (2.22)

⟨X3⟩ = ⟨O1(x1, y1)O2(x2, y2)O3(x3, y3)⟩

= c123|x12|−∆123 |x23|−∆231 |x31|−∆312exp
(
−ξ123

y12
x12

− ξ312
y31
x31

− ξ231
y23
x23

)
, (2.23)

3Note that the upper index µ of the current jaµ is raised by ϵµν . Precisely, we have jaµ = ϵµνJa
ν . This

depends on the structure of Newton-Cartan geometry [84], see also the review in [85].
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where N is the normalization factor, c123 encodes dynamical information of BMSFTs, and

xij = xi − xj , yij = yi − yj ∆ijk = ∆i +∆j −∆k, ξijk = ξi + ξj − ξk (2.24)

Moreover, the four-point function of primary operators can be defined up to an arbitrary
function

⟨X4⟩ = ⟨O1(x1, y1)O2(x2, y2)O3(x3, y3)O4(x4, y4)⟩

=
4∏

i<j

|xij |
∑4

k=1 −∆ijk/3exp
(
yij

xij

4∑
k=1

ξijk

3

)
f(X ,Y),

(2.25)

where the following defined cross ratios are invariant under the global BMS transform

X = x12x34
x13x24

, Y = y12
x12

+ y34
x34

− y13
x13

− y24
x24

. (2.26)

2.4.2 Correlators of multiplets
Things will become more complex than singlet primary operators. For two and three
functions, we have

⟨Oia(x1,y1)Ojb(x2,y2)⟩=


0, qi = a+b+1−ri< 0,

δijNi|x12|−2∆ie
−2ξi

y12
x12 1

qi!

(
−2y12

x12

)qi
, qi ≥ 0, (2.27)

⟨OiaOjbOkc⟩=A B Cabc
ijk , (2.28)

where Ni is the normalization factor and

A = exp
(
−ξijk

y12
x12

− ξkij
y31
x31

− ξjki
y23
x23

)
,

B = |x12|−∆123 |x23|−∆231 |x31|−∆312 ,

Cabc
ijk =

a∑
n1=0

b∑
n2=0

c∑
n3=0

cn1n2n3
ijk

pn1
1 pn2

2 pn3
3

n1!n2!n3!
, pi = ∂ξi

logA.

(2.29)

3 Deformations for the 2D BMSFT

We will now discuss the effect of irrelevant and marginal deformations on the BMSFT. As we
have introduced before, little is known about how to define deformations acting on BMSFT.
Therefore, in this section, we will generically implement the definitions of irrelevant and
marginal deformations to the seed theory 2D BMSFT. Specifically, we will discuss TT and
JTµ for irrelevant deformations and

√
TT for marginal deformation. As we will see, the

first-order correction to both correlators and the Lagrangians or actions are all universal
and are not affected by the flow of deformations. Our primary concern is where the seed
theory will be flowed by these deformations. The flow effect will be reflected in the higher-
order corrections, which, unfortunately, are not universal and depend on the concrete seed
theory. As a generic introduction to show the universal properties of the deformed correlation
functions without knowing the fields, we will mainly focus on the first-order correction of
these deformations in this section, while the non-universal, or higher-order corrections will
be concerned in the next sections.
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3.1 T T deformed BMSFT

The TT deformed action for BMSFT, which is a non-relativistic field theory, can be defined
in a similar way as that for CFT, namely

∂λS
[λ] = λ

∫
dxdyO[λ]

T T̄
, OT T̄ = detTµ

ν , S[λ][Φ, ∂µΦ] =
∫
dxdyL[λ]. (3.1)

Perturbatively, each quantity can be expanded as a Taylor series by the power of λ

L[λ] =
∞∑

n=1

λn

n! L
(n), Tµ[λ]

ν =
∞∑

n=1

λn

n! T
µ(n)
ν , S[λ] =

∞∑
n=1

λn

n! S
(n), (3.2)

where S(n) =
∫

dxdyL(n). Then each order of deformed Lagrangian satisfies the following
recursion relation [86]4

L(n+1) = 1
2

n∑
i=0

Ci
n

(
Tµ(i)

µ T ν(n−i)
ν − Tµ(i)

ν T ν(n−i)
µ

)
,

Tµ(n)
ν = ∂L(n)

∂(∂µΦ)
∂νΦ− δµ

νL(n), n = 1, 2, · · · .
(3.3)

The Tµ(0)
ν is defined in (2.6). Sometimes T µ(0)

ν = ∂L(0)

∂(∂µΦ)∂νΦ − δµ
νL(0) without the EoM of

fields is in the same form as Tµ(0)
ν defined in (2.6). In this case, the expression of Tµ(n)

ν above
can be formally extended to n = 0, 1, 2, · · · . We will show this in section 4. Generally, without
the EoM of fields, T µ(0)

ν is not in the same form as Tµ(0)
ν , then the Tµ(n)

ν in the above equation
should not include n = 0, and the EoM of fields should be implemented after finishing the
computation of all order corrections of the deformed Lagrangian. We will see this in section 5.
The deformed correlation function can be derived from the path integral definition as

⟨Xn⟩T T
[λ] =

∫
DΦ Xn e

−S[λ]∫
DΦe−S[λ] =

〈
Xn e

−δS
〉

⟨e−δS⟩
, δS = S[λ] − S. (3.4)

Therefore, the deformed correlators can be computed order by order

⟨Xn⟩T T
[λ] =

∞∑
n=0

λn

n! ⟨Xn⟩(n), (3.5)

where

⟨Xn⟩(0)
T T

= ⟨Xn⟩[λ=0] = ⟨Xn⟩ (3.6)

⟨Xn⟩(1)
T T

=
〈
S(1)

〉
⟨Xn⟩ −

〈
S(1)Xn

〉
, (3.7)

⟨Xn⟩(2)
T T

=
〈
S(1)S(1)Xn

〉
−
〈
S(1)S(1)

〉
⟨Xn⟩+

〈
S(2)

〉
⟨Xn⟩ −

〈
S(2)Xn

〉
+ 2

〈
S(1)

〉2
⟨Xn⟩ − 2

〈
S(1)

〉〈
S(1)Xn

〉
(3.8)

...
4One can also refer to the recent systematic investigation [87] of the deformed correlation function which is

independent of detailed data of the seed theory.
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Note that ⟨Mk⟩ = 0 for any integral k > 0, since the MM OPE (2.9) is zero. Therefore
the first-order correction of BMSFT correlators (3.7) can be derived as follows by using
un-deformed stress tensor defined in (2.6) and the recursion relation (3.3)5

⟨Xn⟩(1)
T T

=
∫

dxdy⟨(MM)(x)Xn⟩, (3.9)

where the integral range of (x, y) are all (−∞,∞). Since the Ward identities between M

and primary operators are generic, the first-order correction of TT deformed correlators is
universal. Meanwhile, since the first-order correction is based on the data in seed theory, it
does not contain the information on the flow effect, which will appear in the higher-order
corrections. However, the higher-order correction will not be universal anymore. We will
discuss this later. In this subsection, we only consider the first-order correction to the
correlators, which could be derived by using the Ward identity (2.17) as

⟨Xn⟩(1)
T T

=
n∑
i,j

∫
dxdy

[
ξi

(x̃− x̃i)2 + ∂yi

x̃− x̃i

] [
ξj

(x̃− x̃j)2 +
∂yj

x̃− x̃j

]
⟨Xn⟩. (3.10)

Therefore we only need to deal with the integral with the following form

If
a1···an

=
∫

dxdy f(y − yi)∏n
i=1(x̃− x̃i)ai

, (3.11)

where f(y−yi) is an arbitrary function of the time direction y without poles. This integral can
be computed by attaching each operator to an arbitrary operator in (xk, yk), k ∈ {1, · · · , n}

If
a1···an

= −
n∑

j=1

∫ yk

yj

dyf(y − yi)
∮

xj

dx∏n
i=1(x− xi)ai

, (3.12)

where all xk are all real numbers while the integral variable x is complex number, see
details in appendix C. Specifically, we will encounter the simplest case f = 1 for most
computations, such that

Ia1···an =
n∑

j=1
yjk

∮
xj

dx∏n
i=1(x− xi)ai

. (3.13)

With all these preparations, the first-order correction can be easily computed as

⟨Xn⟩(1)
T T

= −2πi
∑
i ̸=j

yij

xij

[
2
x2

ij

ξiξj +
1
xij

(
ξi∂yj + ξj∂yi

)
+ ∂yj∂yi

]
⟨Xn⟩. (3.14)

We should remark again that ξi is a Jordan matrix acting on the i-th field of the correlator ⟨Xn⟩
in the generic case, whose size depends on the rank of the multiplet primary fields. Moreover,
there still are some derivative operators ∂yi , which will have distinguishing behavior depending

5Another way to define the T T deformation is to use the UR limit to borrow the definition from the T T

deformation for Lorentz invariant field theory. At least, we can easily verify that the first-order correction of
these two definitions is almost the same, up to a constant, which can be absorbed to the coupling constant λ

by redefinition. One may find the details in appendix B.
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on the different pole structures of the correlators in the seed theory. The deformation will yield
extra pole structures at the first-order correction level for the correlation functions, which
depend on the rank of the multiplets and the pole structure of the un-deformed correlators.
The extra pole structure might be complex, even though the result (3.14) seems simple.
Therefore, it is worth computing some relevant specific cases to detect these novel structures.
To manifest them in the first correction level without knowing the fields themselves, we only
need to fix the rank of each field in ⟨Xn⟩ and we should know the pole structures of the
un-deformed ⟨Xn⟩. Specifically, in some cases, the pole structure yielded by the deformed
and un-deformed pole structure is simply factorized at the first-order corrected correlators,
which will appear only when the pole structure can be fixed by the BMS symmetries in the
seed theory and the rank of the fields are all 1. Fortunately, the singlet version of 2-point
and 3-point functions satisfy these two conditions. But the first-order correction of 4-point
functions may not be factorized, since the un-deformed pole structure of 4-point functions is
not completely fixed, up to an arbitrary function of cross-ratio. Next in this subsection, we
will compute 2-point and 3-point functions for the singlet version to show the factorization
property. As a comparison, we will compute the 4-point functions in the singlet version and
correlators at 2-point, and 3-point to show that they are not factorized.

3.1.1 Correction to singlets
In the singlet case, the rank of the matrix ξ in (3.14) is 1, namely ξ = ξ is a number,
rather than a matrix.

2-point. From (2.22), we notice that only operators that have the same weights are non-zero.
Thus, the non-vanishing singlet 2-point function in seed theory is constructed by two same
singlets O with the conformal dimension ∆ and boost charge ξ defined at different points

⟨X2⟩ = ⟨O(x1, y1)O(x2, y2)⟩ = N |x12|−2∆e
−2ξ

y12
x12 . (3.15)

Then the first-order correction is Then the first-order correction through TT flow is

⟨X2⟩(1)
T T

= −40πiξ2 y12
x3

12
⟨X2⟩, (3.16)

which is exactly factorized. Note that xk are real numbers since we only implement analytical
continuation for x, not xk. The normalization factor N can absorb the probable minus sign
caused by the removal of the absolute value sign of x12.

3-point. We only consider a specific case in 3-pt case: three operators with the same (∆, ξ)
are placed on 3 different points (x1, y1), (x2, y2), (x3, y3). Namely, we choose

O1 = O2 = O3 = O, ξ1 = ξ2 = ξ3 = ξ, ∆1 = ∆2 = ∆3 = ∆. (3.17)

So the un-deformed 3-pt (2.23) is

⟨X3⟩ = ⟨O(x1, y1)O(x2, y2)O(x3, y3)⟩ = c123(x12x23x13)−∆e
−ξ

(
y12
x12

+ y31
x31

+ y23
x23

)
, (3.18)

where we absorbed the probable minus sign into c123. Therefore the first-order correction is

⟨X3⟩(1)
T T

= 20πiξ2
(
y12
x3

12
+ y13
x3

13
+ y23
x3

23

)
⟨X3⟩, (3.19)

where we used (3.13) and the residue theorem. We can easily see that this result is factorized.

– 10 –



J
H
E
P
0
4
(
2
0
2
4
)
1
3
8

4-point. We first consider 4 same operators in four different points. In this case

ξ2 = ξ4 = ξ1 = ξ3 = ξ, ∆1 = ∆2 = ∆3 = ∆4 = ∆ (3.20)

then the un-deformed 4-pt (2.25) is

⟨O(x1, y1)O(x2, y2)O(x3, y3)O(x4, y4)⟩ =
F (X ,Y)
|x13x24|2∆ exp

[
−2ξ

(
y13
x13

+ y24
x24

)]
, (3.21)

where we used the following formulas to simplify some of the ratios and absorb extra X ,Y
into F (X ,Y)

x12x34 = x13x24X , x14x23 = x13x24(1−X ),

y23
x23

+ y14
x14

= Y
X − 1 + y13

x13
+ y24
x24

,
y12
x12

+ y34
x34

= Y
X

+ y13
x13

+ y24
x24

.

Then the 1-st correction of this case is

⟨O(x1, y1)O(x2, y2)O(x3, y3)O(x4, y4)⟩(1)
T T

= −
[
ξ2(x4

24I0404 + x4
13I4040) + x2

14x
2
23

(
X 2(∂2

Y lnF + (∂Y lnF )2) + 2ξ2

(1−X )2

)
I2222

+ 2ξx14x23X∂Y lnF
(
x2

24I1313 + x2
13I3131

)] F (X ,Y)
|x13x24|2∆ e

−2ξ

(
y13
x13

+ y24
x24

)
, (3.22)

see the integrals in appendix C.
Then we consider another case: put O on 2,4 and put O† on 1,3. In this case, we have

ξ2 = ξ4 = −ξ1 = −ξ3 = ξ, ∆1 = ∆2 = ∆3 = ∆4 = ∆. (3.23)

So the un-deformed 4-point function is (2.25)

⟨X ′
4⟩= ⟨O†(x1,y1)O(x2,y2)O†(x3,y3)O(x4,y4)⟩=

F (X ,Y)
|x13x24|2∆ exp

[2ξ
3

(
y24
x24

− y13
x13

)]
(3.24)

Then the 1-st correction of the 4-point function in this case is

⟨O†(x1, y1)O(x2, y2)O†(x3, y3)O(x4, y4)⟩(1)
T T

= −
{
x2

14x
2
23I2222X 2

[
∂2
Y lnF + (∂Y lnF )2

]
+ ξ2

[
x4

24I0404 + x4
13I4040 − 2x2

24x
2
13I2222

+ 64
9 (I0202 + I2020 − 2I1111) +

16
3
(
x2

24(I0303 − I1212) + x2
13(I3030 − I2121)

)]

+ 2ξx14x23X∂Y lnF
[
x2

24I1313 − x2
13I3131 +

8
3(I1212 − I2121)

]}
F (X ,Y)
|x13x24|2∆ e

2ξ
3

(
y24
x24

− y13
x13

)
,

(3.25)

see the integrals in appendix C. In general, we can explicitly see that the corrections of
4-point functions in the first-order level is not factorized.
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3.1.2 Correction to multiplets
Then we will show the first-order correction to the 2-point and 3-point functions composed
with multiple operators and show that are not factorized in the first-order level.

2-point. From (2.27) we notice that Oia and Ojb must in the same multiplet, namely i = j.
So we can drop i, j, put them in 1,2 respectively (a + b + 1 − r ≥ 0)

⟨Oa(x1, y1)Ob(x2, y2)⟩ =
N |x12|−2∆e

−2ξ
y12
x12

(a+ b+ 1− r)!

(
−2y12
x12

)a+b+1−r

. (3.26)

For r = 1, the 1-st correction degenerates to the result of the singlet. We only discuss
the following condition

a ≥ 2, b ≥ 2, a+ b+ 1− r ≥ 0. (3.27)

The MM-insertion as

⟨MM(x)Oa(x1,y1)Ob(x2,y2)⟩=
{
(Q2

a+b−Pa+b)
[ 1
(x−x1)4 +

1
(x−x2)4

]
+

6(Q2
a+b−Pa+b)

(x−x1)2(x−x2)2

−
2(Q2

a+b−Pa+b−2Qa+bξ)
(x−x1)(x−x2)

[ 1
(x−x1)2 +

1
(x−x2)2

]}
⟨OaOb⟩,

(3.28)
where

Pa+b =
x12
2y12

(Qa+b + ξ) = (a+ b+ 1− r)
(
x12
2y12

)2
,

Qa+b = (a+ b+ 1− r) x12
2y12

− ξ
(3.29)

Then, the 1-st correction of the multiplet 2-point function is

⟨Oa(x1, y1)Ob(x2, y2)⟩(1)
T T

= −16πi y12
x3

12
(2Q2

a+b − 2Pa+b −Qa+bξ)⟨OaOb⟩. (3.30)

3-point. consider a, b, c ≥ 2 and i = j = k (so we can drop ijk for simplicity). Put
Oa, Ob, Oc on 1,2,3 respectively. Then, the 1-st correction of the 3-point multiplet is

⟨Oa(x1, y1)Ob(x2, y2)Oc(x3, y3)⟩(1)
T T

= 2πiB
{
2 y12
x12

∂y1∂y2(CabcA) + 2 y13
x13

∂y1∂y3(CabcA) + 2 y23
x23

∂y2∂y3(CabcA)

− 2ξ
[(

y21
x2

21
+ y31
x2

31

)
∂y1(CabcA) +

(
y12
x2

12
+ y32
x2

32

)
∂y2(CabcA) +

(
y13
x2

13
+ y23
x2

23

)
∂y3(CabcA)

]
− 2A

(
y12
x3

12
Ca−1,b−1,c + y13

x3
13
Ca−1,b,c−1A+ y23

x3
23
Ca,b−1,c−1

)
− 2Aξ

[(
y12
x3

12
+ y13
x3

13

)
Ca−1,b,c +

(
y12
x3

12
+ y23
x3

23

)
Ca,b−1,c +

(
y13
x3

13
+ y23
x3

23

)
Ca,b,c−1

]
− y21
x2

21
∂y1(Ca,b−1,cA)− y31

x2
31
∂y1(Ca,b,c−1A)− y12

x2
12
∂y2(Ca−1,b,cA)− y32

x2
32
∂y2(Ca,b,c−1A)

− y13
x2

13
∂y3(Ca−1,b,cA)− y23

x2
23
∂y3(Ca,b−1,cA)− 4ξ2ACabc

(
y12
x3

12
+ y13
x3

13
+ y23
x3

23

)}
,

(3.31)
which may not be factorized.
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From now on, we have shown the first-order corrections to the correlation functions, which
do not depend on the seed theory. As a perturbative version, the higher-order corrections
are based on the data defined in lower orders, which makes the higher-order corrections
non-universal and thus depend on the seed theory. The higher-order corrections will be
seen in the next sections, which discuss the concrete examples of TT deformed free scalar
and free Fermion models.

3.2 JTµ deformed BMSFT

The JTµ deformation can be implemented for the seed BMSFT which contains the NLKM
symmetries. The generic definition of JTµ deformation can be borrowed from [10] as

∂S[λ]

∂λµ
a

=
∫

dxdy ϵαβ j
aα
[λ]T

β[λ]
µ (3.32)

where jaµ is the Kac-Moody current. The first-order correction to the action is also universal,
which can be expressed as

S[λ] = S[0] + λ0
a

∫
dxdy

(
jayT x

y − jaxT y
y

)
+ λ1

a

∫
dxdy (jayT x

x − jaxT y
x) + o(λµ

a)

= S[0] + λ0
a

∫
dxdyJa

yM + λ1
a

∫
dxdy

(
Ja

yT − Ja
xM

)
+ o(λµ

a) (3.33)

where the current without “[λ]” is the data of the seed theory, and we used (2.6) and (2.19).
Through the path integral, the first-order correction to the correlation function will be

⟨Xn⟩
JTµ

[λ] = ⟨Xn⟩(0)
JTµ

+ λµ
a⟨Xn⟩a(1)

µ + o(λµ
a) (3.34)

where

⟨Xn⟩(0) = ⟨Xn⟩,

⟨Xn⟩a(1)
0 = −

∫
dxdy⟨Ja

yMXn⟩,

⟨Xn⟩a(1)
1 = −

∫
dxdy

(
⟨Ja

yTXn⟩ − ⟨Ja
xMXn⟩

)
.

(3.35)

We can use the Ward identities (2.17) and (2.21) to compute the first-order corrections for
a generic n-point correlation function

⟨Xn⟩a(1)
0 = i

n∑
i,j=1

∫
dxdy Fa

i

x− xi

[
ξj

(x− xj)2 +
∂yj

x− xj

]
⟨Xn⟩ (3.36)

⟨Xn⟩a(1)
1 = i

n∑
i,j=1

∫
dxdy

{[ Ga
i

x− xi
− y − yi

(x− xi)2F
a
i

] [
ξj

(x− xj)2 +
∂yj

x− xj

]

− Fa
i

x− xi

[
∆j

(x− xj)2 − 2(y − yj)
(x− xj)3 ξj +

∂xj

x− xj
−

(y − yj)∂yj

(x− xj)2

]}
⟨Xn⟩ (3.37)

By using the integral scheme (3.12), one obtains

⟨Xn⟩a(1)
0 = −2π

∑
i ̸=j

yij

x2
ij

Fa
i (ξj + xij∂yj )⟨Xn⟩, (3.38)
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and

⟨Xn⟩a(1)
1 = 2π

∑
i ̸=j

yij

xij

[
Fa

i

(
∆j

xij
+ yij

2xij
∂yj + ∂xj

)
− Ga

i

(
ξj

xij
+ ∂yj

)]
⟨Xn⟩. (3.39)

Similar to the discussion of TT case, these generic and simple results do not completely
manifest the pole structure of the deformed correlation functions at the first-order correction
level. Unfortunately, even though the un-deformed pole structure and the rank are fixed,
the extra pole structure yielded by the deformation still cannot be completely displayed
without knowing the fields themselves because Fa

i depend on the internal structure of the
i-th fields, which is different for distinct fields. Then there is no need for this subsection
to discuss examples like 2-point and 3-point functions for JTµ deformations, which will be
left for the deformed free scalar and Fermion models.

3.3 Root-T T deformed BMSFT

The
√
TT deformation is defined as [14]

∂λS
[λ] =

∫
dxdyR[λ], (3.40)

where λ is a dimensionless coupling constant, and R[λ] is defined as

R[λ] =
√

1
2T

A[λ]
B T

B[λ]
A − 1

4
(
T

A[λ]
A

)2
(3.41)

Similarly, quantities like the stress tensor, the Lagrangian, and the action can be expanded
as (3.2). So the recursion relation can be derived from the following formula

∞∑
n=0

λn

n! L
(n+1) = R[λ] =

√√√√ ∞∑
n=0

λn

n!

n∑
i=0

Ci
n

(1
2T

A(i)
B T

B(n−i)
A − 1

4T
A(i)
A T

B(n−i)
B

)
(3.42)

The explicit form of L(n+1) cannot be presented easily because we need to expand the square
root around det[Tµ(0)

ν ] by the power of λ. Therefore the recursion relation in
√
TT case is

not as simple as that in TT case (3.3). But the first-order correction to the Lagrangian
is still universal

L(1) = R(0) =M. (3.43)

The corrections of correlators will have the same form as (3.6) (3.7) and (3.8) with dif-
ferent S(n)-s.

The first-order corrected correlator can be computed by using (3.7)

⟨Xn⟩(1)√
T T

= −
∫

dxdy⟨M(x)Xn⟩ = −
n∑

k=1

∫
dxdy ∂yk

x− xk
⟨Xn⟩, (3.44)

where the term associated with the boost charge (ξi·Oi)a

(∆x̃i)2 or ξiOi

(∆x̃i)2 are zero by using the residue
theorem. Since (C.1) will be spoiled in this case, we cannot use the integral scheme (C.4)
directly. We need to divide the integral into 2 parts: y > yk, y < yk, but the contour of x
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only contains half of the plane, namely, we can drop one range of y. Dropping y > yk or
y < yk are equivalent, we will see the reason as follows. Firstly, we drop y < yk to compute
contour of x surrounding upper half plane the 1-st order correction as

⟨Xn⟩(1)√
T T

= −
∑

k

lim
Λ→∞

∫ Λ

yk

dy

∮
xk

dx
∂yk

x− xk
⟨Xn⟩ = −2πi

∑
k

(Λ− yk)∂yk
⟨Xn⟩ (3.45)

Then, by using the translation conservation, namely
∑

k ∂yk
= 0, we obtain

⟨Xn⟩(1)√
T T

= 2πi
∑

k

yk∂yk
⟨Xn⟩ (3.46)

Next we drop y > yk

⟨Xn⟩(1)√
T T

=
∑

k

lim
Λ→∞

∫ yk

−Λ
dy

∮
xk

dx
∂yk

x− xk
⟨Xn⟩ = 2πi

∑
k

(Λ + yk)∂yk
⟨Xn⟩ (3.47)

where the lower half-plane contour of x has a minus sign difference from the upper half-plane.
By using conservation law to omit Λ, we can similarly obtain (3.46). As a final remark, the
generic form of 1-st order corrected root-TT deformation is (3.46) no matter whether the
un-deformed correlator is multiplet or singlet. The higher-order corrections are not universal
and depend on different theories. Next, we will implement the

√
TT deformation to the

free scalar model to see the higher-order effect.

4 Deformed BMS free scalar model

4.1 Data of seed theory

This subsection gives the data of the seed theory, the BMS free scalar model, to be well
prepared for the deformation. We mainly review [73] here. The un-deformed Lagrangian
of the BMSFT scalar model is

L(0) = (∂yϕ)2 (4.1)

The equation of motion is

∂2
yϕ = 0. (4.2)

There are three kinds of primary operators defined in the seed theory: the identity operator,
a rank-2 multiplet

O0(x) = i∂yϕ, O1(x, y) = i∂xϕ, (4.3)

and a singlet vertex operator

Vα =: eαϕ(x,y) : . (4.4)

The components of stress tensor defined in the seed theory can be derived from the def-
inition (3.3) as

T y(0)
x = T = 2∂yϕ∂xϕ, T y(0)

y =M = −T x(0)
x = (∂yϕ)2, T x(0)

y = 0, (4.5)
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which are consist with the generic discussion (2.6). The stress tensor equipped with the
EoM of fields (4.2) is conserved, satisfying (2.7). The OPE between two scalar fields defined
at different points is

ϕ(x1, y1)ϕ(x2, y2) ∼ − y12
x12

. (4.6)

One can easily use the above OPE to derive the OPEs between primary operators and
stress tensors

T (x′, y′)O0(x) ∼
O0

(x′ − x)2 + ∂xO0
x′ − x

,

T (x′, y′)O1(x, y) ∼
O1

(x′ − x)2 + ∂xO1
x′ − x

− 2(y′ − y)O0
(x′ − x)3 − y′ − y

(x′ − x)2∂yO1,

M(x′)O0(x) ∼ 0, M(x′)O1(x, y) ∼
O0(x)

(x′ − x)2 + ∂yO1(x, y)
x′ − x

,

(4.7)

and

T (x′, y′)Vα(x, y) ∼
∂yVα(x, y)
x′ − x

− (y′ − y)∂yVα(x, y)
(x′ − x)2 + α2(y′ − y)Vα(x, y)

(x′ − x)3 ,

M(x′)Vα(x, y) ∼
∂yVα(x, y)
x′ − x

− α2Vα(x, y)
2(x′ − x)2 ,

(4.8)

Comparing with the generic form (2.17), Oa is a multiplet with weight ∆ = 1 and vanishing
ξ = 0, while Vα is a singlet with boost charge ξ = −α2

2 and vanishing weight ∆ = 0. The OPEs
between the components of the stress tensor can also be derived from the contraction (4.6),
which are also verified to be consistent with the generic form (2.10) with cL = 2 and cM = 0.

Note that the seed Lagrangian (4.1) also has the following affine U(1) symmetry

ϕ→ ϕ′(x, y) = ϕ(x, y) + Λ(x). (4.9)

Correspondingly, the Noether current in the seed theory is

jµ
(0) = − ∂L(0)

∂(∂µϕ)
= (J, 0), jy

(0) = Jx = J = −2∂yϕ. (4.10)

The OPEs between J and primary operators in the seed theory are

J(x′)O0(x, y) ∼ 0,

J(x′)O1(x, y) ∼
−i

x′ − x
,

J(x′)Vα(x, y) ∼
−α
x′ − x

Vα(x, y),

(4.11)

which means that the Fa
i ,Ga

i defined in subsection 2.3 are

G0 = 0, G1O1 = −1, GV = iα, Fi = 0, (4.12)

for O0, O1 and Vα respectively. Here we dropped the superscript a, since the current J
itself has no group indices.
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The correlators among the primary operators can be derived from the OPEs between
the fields. We present the non-vanishing correlators here

⟨O0(x1)O1(x2, y2)⟩(0) = 1
x2

12
, ⟨O1(x1, y1)O1(x2, y2)⟩(0) = −2y12

x3
12
,

⟨O0(x1)Vα(x2, y2)V−α(x3, y3)⟩(0) = − iαx23
x12x13

e
α2 y23

x23 ,

⟨O1(x1, y1)Vα(x2, y2)V−α(x3, y3)⟩(0) = −iα
(
y12
x2

12
− y13
x2

13

)
e

α2 y23
x23

〈
n∏

k=1
Vαk

(xk, yk)
〉(0)

= exp

−∑
i<j

αiαj
yij

xij

 δ0,
∑

i
αi

(4.13)

4.2 T T deformation

4.2.1 Deformed Lagrangian

As the discussion in section 3, the TT deformed physical quantities like Lagrangian, stress
tensor and action can be expanded in Taylor series by power of deformation parameter λ,
and use the recursion relation (3.3) to compute the corrections to the Lagrangian order by
order. For example, the first several orders are

L(0) = (∂yϕ)2, L(1) = −(∂yϕ)4, L(2) = 4(∂yϕ)6, L(3) = −30(∂yϕ)8,

L(4) = 336(∂yϕ)10, L(5) = −5040(∂yϕ)12, L(6) = 95040(∂yϕ)14,

L(7) = −2162160(∂yϕ)16, L(8) = 57657600(∂yϕ)18,

L(9) = −1764322560(∂yϕ)20, L(10) = 60949324800(∂yϕ)22,

(4.14)

where L(n) is the n-th order of the expansion of the deformed Lagrangian, namely L[λ] =∑∞
n=0

λn

n! L
(n). We observe that these terms can be cast into a general form

L(n) = (−4)n

1 + n

Γ
(

1
2 + n

)
Γ
(

1
2

) (∂yϕ)2n+2, (4.15)

where the Gamma-function Γ(x) =
∫∞

0 dttx−1e−t has been introduced. Implementing the
summation (3.2) gives the closed form of the deformed Lagrangian

L[λ] =
∞∑

n=0

λn

n! L
(n) =

√
4λ(∂yϕ)2 + 1− 1

2λ . (4.16)

In appendix B, we have provided a detailed demonstration that this Lagrangian is equivalent
to implementing the UR limit from the TT deformed Lagrangian of the free scalar model in
the 2D relativistic CFT, as initially discussed in [8]. For further information, refer to the
review in [88]. Consequently, (4.16) can be interpreted as the non-relativistic Nambu-Goto
Lagrangian, suggesting that the TT deformation maps the local BMSFT scalar model into
a non-local and non-relativistic bosonic string.
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4.2.2 Deformed correlators accurate to second order
Now we can compute the deformed correlator constructed by the primary operators from the
original data. From (3.7) and (3.8), to compute the deformed correlator accurate to second
order of λ, one needs the data of S(1) and S(2), which we have been derived in (4.14) as

S(1) = −
∫

dxdy(∂yϕ)4, S(2) = 4
∫

dxdy(∂yϕ)6. (4.17)

Note that (∂yϕ)4 and (∂yϕ)6 are in the classical level, which need to be rewritten in the
quantum level by normal ordering. However, the ways of quantization lead to different
results. For example, (∂yϕ)2 can be quantized as : ∂yϕ :: ∂yϕ : or : ∂yϕ∂yϕ :, which should be
distinguished while calculating the deformed correlation functions, since they have distinct
OPEs with other operators. Actually, the quantum version of deformed action depends on the
data in the seed theory, or more precisely, it only depends on the un-deformed stress tensor
T = 2 : ∂yϕ∂xϕ :, M =: ∂yϕ∂yϕ : rather than J = −2 : ∂yϕ :, since the deformed action is
only triggered by stress tensor. In particular, the first-order correction only depends on M

and must be
∫

dxdyMM , as discussed in previous sections. Moreover, the deformed action
in the quantum level must be independent with T , since the deformed Lagrangian (4.16) is
independent with ∂xϕ. In conclusion, the quantum level of the corrections are

S(1) = −
∫

dxdyMM, S(2) = 4
∫

dxdyMMM (4.18)

Then, the deformed correlators can be derived as

⟨Xn⟩T T
[λ] = ⟨Xn⟩+ λ⟨Xn⟩(1)

T T
+ λ2

2! ⟨Xn⟩(2)
T T

+O(λ3), (4.19)

where

⟨Xn⟩(1)
T T

=
∫

dxdy⟨(MM)(x, y)Xn⟩,

⟨Xn⟩(2)
T T

=
∫

dxdy
∫

dx′dy′⟨(MM)(x, y)(MM)(x′, y′)Xn⟩

− 4
∫

dxdy⟨(MMM)(x, y)Xn⟩

(4.20)

With the Ward identities (2.17), the generic form of the second order of the TT deformed
BMS free scalar correlators can be derived as

⟨Xn⟩(2)
T T

= − 4π2

∑
i ̸=j

yij

xij

(
2
x2

ij

ξiξj +
1
xij

(
ξi∂yj + ξj∂yi

)
+ ∂yj∂yi

)2

⟨Xn⟩

− 8πi
∑

i ̸=j ̸=k

[(
yjk

xjk + xji

x3
jk

− yik
xik + xij

x3
ik

)
2ξiξjξk

x3
ij

−
(
yjk

x3
jk

+ yij
2xik + xij

x3
ij

)
3ξiξj∂yk

xik

+
(
yik

x2
ik

− yjk

x2
jk

)
3ξi∂yj∂yk

xij
+
(
yik

xik
− yjk

xjk

)
∂yi∂yj∂yk

xij

]
⟨Xn⟩

+ 24πi
∑
i ̸=j

yij

x2
ij

[
4

ξ2
i ξj

x3
ij

− 9
ξiξj∂yi

x4
ij

− 3
ξi∂yi∂yj

xij
+ ∂2

yi
∂yj

]
⟨Xn⟩

(4.21)
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The first-order ⟨Xn⟩(1)
T T

has been derived in (3.14). Actually, S(n) with different integers n
are only related to M , and independent with T . Therefore, in principle, the scheme of the
integral (3.13) is enough to derive the correction in all order. Since our purpose is just to see
the flow effect to the poles of the correlators, we only need to be accurate to the second-order
correction, instead of all-order correction. The rest of this sub-subsection is to manifest all
the effects on the poles, by presenting some concrete examples.

Correlators full of vertex operators. The n-point vertex function in the seed theory is〈
n∏

k=1
Vαk

(xk, yk)
〉(0)

= exp

−∑
i<j

αiαj
yij

xij

 δ0,
∑

i
αi
. (4.22)

Then the first-order correction is〈
n∏

k=1
Vαk

〉(1)

T T

= πi
∑
m ̸=k

αmαk
ykm

xkm

[
2AkAm + 2Akαm

xkm
− αkαm

x2
km

]〈
n∏

s=1
Vαs

〉(0)

(4.23)

The second order correction is〈
n∏

k=1
Vαk

〉(2)

T T

=
〈

n∏
k=1

Vαk

〉(0)

×
{
−π2

[ ∑
m ̸=k

αmαk
ykm

xkm

(
2AkAm+2Akαm

xkm
− αkαm

x2
km

)]2

−8πi
n∑

m,k,s=1
(k ̸=m,k ̸=s,m ̸=s)

αmαkαs

[
AmAkAs

xms

(
ymk

xmk
− ysk

xsk

)
+ 3αkAmAs

2xsm

(
ykm

x2
km

+ ysk

x2
sk

)

− αkαsαm

4x3
ms

(
ymk

xms+xmk

x3
mk

−ysk
xms+xks

x3
ks

)
+ 3αkαmAs

x2
ms

(
ysk

x2
sk

−ymk
2xms+xmk

x3
mk

)]
−16πi

∑
m ̸=k

αkα
2
m

ykm

x5
km

(
AkA

2
mx

3
km− 1

2αkα
2
m− 9

4αkαmAsxkm−3A2
mα

2
kx

2
km

)}
(4.24)

Therefore the first and second-order corrections of the n-point vertex correlators are all
factorized for arbitrary n. Further, we can easily deduce that the TT deformed n-point
vertex correlators are factorized at all orders.

2-point. In seed theory, the two-point functions are

⟨O0(x1)O0(x2)⟩(0) = ⟨O0(x′, y′)Vα(x, y)⟩(0) = ⟨O1(x′, y′)Vα(x, y)⟩(0) = 0,

⟨O0(x1)O1(x2, y2)⟩(0) = 1
x2

12
, ⟨O1(x1, y1)O1(x2, y2)⟩(0) = −2y12

x3
12
.

(4.25)

It is easy to confirm that the MM -insertion into the 2-point function of multiple primary
operators in this free scalar case are all zero. Note that each order of TT deformed correlator
is corrected by inserting one or more composite operators MM . Therefore, the correction
of any order is exactly zero for a 2-point case

⟨OaOb⟩
(k)
T T

= ⟨OaVα⟩(k)
T T

= 0, ∀k = 1, 2, · · · , (4.26)

which indicates that these two-point functions will not flow. In a non-perturbative way, we have

⟨OaOb⟩T T
[λ] = ⟨OaOb⟩(0), ⟨OaVα⟩T T

[λ] = ⟨OaVα⟩(0). (4.27)
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3-point. The non-zero three-point functions in the seed theory are

⟨O0(x1)Vα(x2, y2)V−α(x3, y3)⟩(0) = − iαx23
x12x13

e
α2 y23

x23 ,

⟨O1(x1, y1)Vα(x2, y2)V−α(x3, y3)⟩(0) = −iα
(
y12
x2

12
− y13
x2

13

)
e

α2 y23
x23 .

(4.28)

Their first-order corrections are

⟨O0(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩(1)
T T

= 20πiα4 y23
x3

23
⟨O0(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩(0), (4.29)

and

⟨O1(x1, y1)Vα(x2, y2)V−α(x3, y3)⟩(1)
T T

= 2πiα3x2
23e

α2 y23
x23

[ 2x23
x13x12

(
y13

x3
12x

2
13

+ y23
x3

21x
2
23

)
+ y13
x2

12x
4
13

− y12
x2

13x
4
12

+ y23
6x12x13 − x2

23
x2

13x
2
12x

4
23

+ y23
3x13 + x23
x12x2

13x
4
23

+ 5α2 y23
x5

23

(
y13
x2

13
− y12
x2

12

)]
,

(4.30)

respectively. Their second-order corrections are

⟨O0VαV−α⟩(2)
T T

= −πα6 y23
x5

23

(
400πα2 y23

x23
− 756i

)
⟨O0VαV−α⟩(0) (4.31)

and

⟨O1(x1, y1)Vα(x2, y2)V−α(x3, y3)⟩(2)
T T

= 2πα5x4
23e

α2 y23
x23

{ 12x23
x12x6

13

[
y12
x4

12

(
x13
x12

+ 1
)
+ y23
x7

23

(
5x3

13 + 5x2
13x23 + 3x13x

2
23 + x3

23

)]
− 5

2

[
y32

x12x13x5
23

(
70
x3

23
− 5
x23x13x12

+ x23
x2

13x
2
12

(
2− x2

23
x13x12

))
+ y12
x12x4

13
− y13
x13x4

12

]

− 252
(
y12
x2

12
− y13
x2

13

)
y23
x9

23

}
+ 40π2i

y23
x23

α7e
α2 y23

x23

{(
y12
x2

12
− y13
x2

13

)( 1
x2

12x
2
13

+ 5
2α

5 y23
x5

23

)
+ y23

x2
23 − 6x12x13
x2

12x
2
13x

4
23

+ 2x23
x4

12x13

[
y23
x3

23
(x23 + x21)−

y13
x3

13
(x13 + x12)

]}
(4.32)

respectively.

4.3 JTµ deformation

The JTµ deformation can be constructed from the affine current j and the stress tensor
growing in the seed theory as

∂L[λ]

∂λµ
= ϵαβj

α
[λ]T

β[λ]
µ = jy

[λ]T
x[λ]
µ − jx

[λ]T
y[λ]
µ (4.33)

In a perturbative level, since the composite operator of JTµ deformation is a vector operator
with two components, the quantities needed to be computed should be expanded by the
power of two coupling constants λ0, λ1, and they might be mixed while implementing the
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Taylor expansion, which will make the problem more complex. However, things will become
much easier if the two coupling constants are not mixed. Fortunately, in the case we discussed
here, we will prove that the contribution of λ0 is zero, or in other words, there is only one
coupling constant λ1. We expand the quantities as follows

L[λ] =
∞∑

n=0

1
n!λ

µ1 · · ·λµnLµ1···µn ,

Tα[λ]
µ =

∞∑
n=0

1
n!λ

µ1 · · ·λµn(Tα
µ)µ1···µn ,

jα
[λ] =

∞∑
n=0

1
n!λ

µ1 · · ·λµn(jα)µ1···µn ,

(4.34)

where the extra indices µ1 · · ·µn are all symmetrical, namely

Lµ1···µn = L(µ1···µn), (Tα
µ)µ1···µn = (Tα

µ)(µ1···µn), (jα)µ1···µn = (jα)(µ1···µn). (4.35)

Then the recursion relation like (3.3) can be derived as

Lµ1···µnµn+1 = ϵαβ

n∑
i=0

Ci
n(jα)µi+1···µn(T β

µn+1)µ1···µi

=
n∑

i=0
Ci

n

[
(jy)µi+1···µn(T x

µn+1)µ1···µi − (jx)µi+1···µn(T y
µn+1)µ1···µi

] (4.36)

where

(Tα
µ)µ1···µn = ∂Lµ1···µn

∂(∂αϕ)
∂µϕ− δα

µLµ1···µn , (jβ)µi+1···µn = −
∂Lµi+1···µn

∂(∂βϕ)
, (4.37)

and (Tα
µ)µ1···µi = T

α[0]
µ for i = 0 while (jβ)µi+1···µn = jβ

[0] for i = n. We then prove that

(jx)µ1···µn = −∂Lµ1···µn

∂(∂xϕ)
= 0, ∀n ∈ N (4.38)

by using induction on n. For n = 0, then

Lµ1···µn

∣∣
n=0 = L[0], jx

µ1···µn

∣∣
n=0 = jx

[0] = −
∂L[0]
∂(∂xϕ)

= 0, (4.39)

which clearly satisfies the n = 0 case in (4.38). Suppose (4.38) is true for n less than m+ 1

(jx)µ1···µn = −∂Lµ1···µn

∂(∂xϕ)
= 0, n = 0, 1, 2, · · ·m, (4.40)

then the m + 1-th order of Lagrangian is

Lµ1···µmµm+1 =
m∑

i=0
Ci

n(jy)µi+1···µm(T x
µm+1)µ1···µi (4.41)

From the definition (4.37), together with the induction hypothesis (4.40), one can easily
express the currents lower than m + 1-th order as

(jy)µi+1···µm = −
∂Lµi+1···µm

∂(∂yϕ)
, (4.42)

(T x
µm+1)µ1···µi =

∂Lµ1···µi

∂(∂xϕ)
∂µm+1ϕ− δx

µm+1Lµ1···µi = −δx
µm+1Lµ1···µi , (4.43)
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which indicate that they are all independent with ∂xϕ because of (4.40)

∂(jy)µi+1···µm

∂(∂xϕ)
= −

∂2Lµi+1···µm

∂(∂xϕ)∂(∂yϕ)
= 0, (4.44)

∂(T x
µm+1)µ1···µi

∂(∂xϕ)
= −δx

µm+1

∂Lµ1···µi

∂(∂xϕ)
= 0. (4.45)

Thus we deduce that the current in the m + 1-th order correction as

(jx)µ1···µm+1 = −
∂Lµ1···µm+1

∂(∂xϕ)
= 0 (4.46)

Thus the eq. (4.38) has been proved, in other words, only jy
[λ] contribute to the corrections of

deformation. It turns out that the n-th order correction of the deformed Lagrangian is

Lµ1···µn =
n∑

i=0
Ci

n(jy)µi+1···µn(T x
µn+1)µ1···µi , ∀n ∈ N. (4.47)

By using the definition of the currents (4.37), one obtains

(T x
x)µ1···µn = −Lµ1···µn , (T x

y)µ1···µn = 0,

(jy)µi+1···µn = −∂Lµ1···µn

∂(∂yϕ)
, (jx)µi+1···µn = 0

(4.48)

which indicates that

T x[λ]
y = 0, jx

[λ] = 0, (4.49)

or in other words, the only choice of the vector index µ in the definition (4.33) must be
µ = x, otherwise, the r.h.s. of (4.33) will vanish

∂L[λ]

∂λ1 = jy
[λ]T

x[λ]
x ,

∂L[λ]

∂λ0 = jy
[λ]T

x[λ]
y = 0. (4.50)

So the coupling constant λ0 will not appear in the definition (4.33). Hence, the corrections
of currents will no longer depend on λ0 either since they are all derived from the Lagrangian.

4.3.1 Deformed Lagrangian

Since all of the quantities in the deformed story only depend on λ1, then (4.34) will no
longer be the double-coefficient expansion. For convenience, we substitute λ for λ1, and
use (4.49) to rewrite the definition (4.33) as

∂L[λ]

∂λ
= jy

[λ]T
x[λ]
x . (4.51)

Then the expansion (4.34) should be rewritten as

L[λ] =
∞∑

n=0

λn

n! L
(n), T x[λ]

x =
∞∑

n=0

λn

n! T
x(n)
x , jy

[λ] =
∞∑

n=0

λn

n! j
y
(0), (4.52)

– 22 –



J
H
E
P
0
4
(
2
0
2
4
)
1
3
8

like we did in TT case. Then the recursion relation can be simply rewritten as

L(n+1) =
n∑

i=0
Ci

nj
y
(n−i)T

x(i)
x , T x(i)

x = −L(i), jy
(n−i) = −∂L

(n−i)

∂(∂yϕ)
. (4.53)

Then the deformed Lagrangian can be derived order by order from the above recursion relation.
For example, we show the result for the first several orders of the deformed Lagrangian

L(0) = (∂yϕ)2, L(1) = 2(∂yϕ)3, L(2) = 10(∂yϕ)4, L(3) = 84(∂yϕ)5,

L(4) = 1008(∂yϕ)6, L(5) = 15840(∂yϕ)7, L(6) = 308880(∂yϕ)8,

L(7) = 7207200(∂yϕ)9, L(8) = 196035840(∂yϕ)10,

L(9) = 6094932480(∂yϕ)11, L(10) = 213322636800(∂yϕ)12.

(4.54)

These terms can also be cast into a general form,

L(n) = 21+2n

(1 + n)(2 + n)
Γ
(

3
2 + n

)
Γ
(

3
2

) (∂yϕ)n+2, (4.55)

where Γ(x) is Gamma-function, which has been introduced while discussing T T̄ deforma-
tion. Then, implementing the summation (4.52) gives the closed form of the JTµ deformed
Lagrangian

L[λ] =
∞∑

n=0
λnL(n) = 1− 2λ∂yϕ−

√
1− 4λ∂yϕ

2λ2 . (4.56)

Similarly to (4.16), this Lagrangian also indicates that the JTµ deformation maps the local
BMS free scalar to a non-local theory, aligning with the well-known characteristic of an
irrelevant deformation.

4.3.2 Deformed correlation functions

By expanding the action as S[λ] =
∑

n
λn

n! S
(n), where S(n) =

∫
dxdyL(n), one can similarly

derive the corrections for the deformed correlation function as

⟨Xn⟩
JTµ

[λ] =
∞∑

n=0

λn

n! ⟨Xn⟩(n), (4.57)

where the corrections are formally the same as (3.6) (3.7) and (3.8)

⟨Xn⟩(0) = ⟨Xn⟩
JTµ

[λ=0] = ⟨Xn⟩ (4.58)

⟨Xn⟩(1)
JTµ

=
〈
S(1)

〉
⟨Xn⟩ −

〈
S(1)Xn

〉
, (4.59)

⟨Xn⟩(2)
JTµ

=
〈
S(1)S(1)Xn

〉
−
〈
S(1)S(1)

〉
⟨Xn⟩+

〈
S(2)

〉
⟨Xn⟩ −

〈
S(2)Xn

〉
+ 2

〈
S(1)

〉2
⟨Xn⟩ − 2

〈
S(1)

〉〈
S(1)Xn

〉
(4.60)

...
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The first two corrections of the action are (4.54)

S(1) = 2
∫

dxdy(∂yϕ)3, S(2) = 10
∫

dxdy(∂yϕ)4 (4.61)

which are the corrections of action in the classical level. Similar to the discussion of TT ,
to derive the corrected correlation functions perturbatively, the above corrections of action
should be promoted to quantum level by using normal ordering. However, things will become
more complex in JTµ case than that in TT case, because the JTµ deformation is triggered by
U(1) current and stress tensor, which indicates that the deformed action in quantum level is
not only dependent on the stress tensor T,M in the seed theory, but it also depends on the
un-deformed U(1) current Jx(= J). We have proved that the JTµ deformed Lagrangian of
the free scalar is independent with ∂xϕ, such that the deformed quantities are not dependent
on T . The first-order correction here must match the most generic case discussed in the
subsection 3.2 with Jy = 0 here, namely the first-order correction is always quantized as

S(1) =
∫

dxdyL(1), L(1) = −JM (4.62)

Then the first-order corrected JTµ deformed correlator is

⟨Xn⟩(1)
JTµ

=
∫

dxdy⟨JMXn⟩ (4.63)

Unlike TT case, (∂yϕ)4 can be quantized as JJM or MM in JTµ deformation. So the
quantization of the second order correction can be expressed as the linear combination of∫

dxdyJJM and
∫

dxdyMM . Fortunately, the coefficient in front of them can be uniquely
fixed. We can see this precisely from the recursion relation (4.53)

L(2) = jy
(0)T

x(1)
x + jy

(1)T
x(0)
x = JJM −M

(
∂J

∂(∂yϕ)
M + J

∂M

∂(∂yϕ)

)
, (4.64)

where we used

T x(1)
x = −L(1) = JM, jy

(0) = J, T x(0)
x = −M, jy

(1) =
∂J

∂(∂yϕ)
M + J

∂M

∂(∂yϕ)
.

As we discussed before, ∂J
∂(∂yϕ) ,

∂M
∂(∂yϕ) only depend on J,M , so the quantization of ∂J

∂(∂yϕ) ,
∂M

∂(∂yϕ)
are unique

∂J

∂(∂yϕ)
= −2, ∂M

∂(∂yϕ)
= 2 : ∂yϕ := −J (4.65)

Therefore
S(2) =

∫
dxdyL(2), L(2) = 2(JJM +MM). (4.66)

Then the second order corrected JTµ deformed correlator is

⟨Xn⟩(2)
JTµ

=
∫

dxdy
∫

dx′dy′⟨JM(x, y)JM(x′, y′)Xn⟩

− 2
∫

dxdy⟨JJM(x, y)Xn⟩ − 2⟨Xn⟩(1)
T T

(4.67)
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Then we can use the Ward identities (2.17) and (2.21) Fi = 0 to compute the generic form
of ⟨Xn⟩(1)

JTµ
and ⟨Xn⟩(2)

JTµ
in free scalar case as

⟨Xn⟩(1)
JTµ

= −2π
∑
i ̸=j

yij

x2
ij

Gi(ξj + xij∂yj )⟨Xn⟩ (4.68)

and

⟨Xn⟩(2)
JTµ

= − 2⟨Xn⟩(1)
T T

+ 4π2

∑
i ̸=j

yij

x2
ij

Gi(ξj + xij∂yj )

2

⟨Xn⟩

+ 4πi
{ ∑

i ̸=j ̸=k

GiGj

xij

[
yik

x2
ik

(ξk + xik∂yk
)− yjk

x2
jk

(ξk + xjk∂yk
)
]

+ 2
∑
i ̸=j

GiGj
yij

x3
ij

(ξj + xij∂yj )−
∑
i ̸=j

G2
i

yij

x3
ij

(ξj + 2xij∂yj )
}
⟨Xn⟩

(4.69)

where ⟨Xn⟩(1)
T T

has been derived in (3.14).

4.3.3 Examples
Then we need to manifest the deformed poles by showing some examples, like we did in TT

deformation. We will compute the deformed correlators whose seeds have been presented
in (4.13).

Correlators full of vertex operators. The first-order correction consisting of n-point
vertex operators is

⟨
n∏

k=1
Vαk

(xk, yk)⟩
(1)
JTµ

= πi
∑
i ̸=j

yij

x2
ij

αiαj

(
− αj + xij

∑
s( ̸=j)

αs

xsj

)
⟨

n∏
k=1

Vαk
(xk, yk)⟩(0) (4.70)

The second order correction is

⟨
n∏

p=1
Vαp(xp,yp)⟩(2)

JTµ

=−2⟨Xn⟩(1)
T T

−π2
[∑

i ̸=j

yij

x2
ij

αiαj

(
αj−xij

∑
s( ̸=j)

αs

xsj

)]2
⟨Xn⟩

+2πi
{ ∑

i ̸=j ̸=k

αiαjαk

xij

[
yik

x2
ik

(
αk−xik

∑
s( ̸=k)

αs

xsk

)
− yjk

x2
jk

(
αk−xjk

∑
s( ̸=k)

αs

xsk

)]

+
∑
i ̸=j

αiαj
yij

x3
ij

[
α2

j +αiαj−xij(2αi+αj)
∑

s( ̸=j)

αs

xsj

]}
⟨

n∏
p=1

Vαp(xp,yp)⟩

(4.71)

The first and second-order corrections are all factorized.

2-point. Note that the two-point functions in (4.13) vanishes while inserting the operators Gi

defined in (4.12). Therefore, the first-order correction for two-point functions all vanished, and
the second-order corrections ⟨X2⟩(2)

JTµ
= −2⟨X2⟩(1)

T T
, which are the first-order corrections of TT

deformation derived in (4.25). Moreover, (4.25) shows that ⟨X2⟩(1)
T T

are all vanished. Therefore,
the first-order and second-order correction of the two-point functions all vanished, namely

⟨X2⟩(1)
JTµ

= 0, ⟨X2⟩(2)
JTµ

= 0. (4.72)
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3-point. The first-order corrections of the three-point functions presented in (4.13) are

⟨O0(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩(1)
JTµ

= −6πiα3 y23
x2

23
⟨O0(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩ (4.73)

and

⟨O1(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩(1)
JTµ

=2πα2
[
y12
x2

12

(
2x12
x23

−1
)
− y13
x2

13

(
2x13
x23

+1
)]

⟨Vα(x⃗2)V−α(x⃗3)⟩(0)

+ 2πiα
x12x13x23

[(
y23
x23

+ y12
x12

− y13
x13

)
x2

12−
(
y23
x23

+ y13
x13

− y12
x12

)
x2

13

]
⟨O0(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩(0)

+2πiα
(

x23
x12x13

−3α2 y23
x2

23

)
⟨O1(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩(0) (4.74)

The second-order corrections are

⟨O0VαV−α⟩(2)
JTµ

= −12πα4 y23
x3

23

(
7i+ 3πα2 y23

x23

)
⟨O0VαV−α⟩(0) (4.75)

and

⟨O1(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩(2)
JTµ

= iα3
[
y23
2x23

( 1
x2

12
− 1
x2

13
+ 2
x12x13

+ 24πi
x23x12

)
+ 4πi

(
y12
x3

12
− y13
x3

13

)
− 1
x23

(
α2

2
y23
x23

+ 8πi
)(

y12
x2

12
+ y13
x2

13

)
− 8πiy13
x12x13

( 1
2x13

+ 1
x23

)

−
(
y12
x12

− y13
x13

)(
x2

23
2x2

12x
2
13

+ 5α2 y23
x3

23
+ 3
x2

23

)]
⟨Vα(x⃗2)V−α(x⃗3)⟩(0)

+ α2
[(

y12
x12

− y13
x13

)( 1
x2

12
− 1
x2

13

)(
1 + 8πix12x13

x2
23

)
− y23
x12x13x23

+ 1
x23

(
8πi+ 3α2 y23

x23

)(
y12
x2

12
− y13
x2

13

)
+ 16πi y23

x3
23

x2
12 + x2

13
x12x13

− 8πi
(
y12
x2

12
+ y13
x2

13

)( 1
x12

+ 1
x13

)
+ 4πi

(
y12
x3

12
+ y13
x3

13

)
− y23
x3

23

(
6α2 y23

x23
+ 2

)(
x2

23
x12x13

+ 2
)]

⟨O0(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩(0)

+ 3α4 y23
x23

[ 1
x2

23

(
3α2 y23

x23
+ 2 + 12πi

)
− 1
x12x13

]
⟨O1(x⃗1)Vα(x⃗2)V−α(x⃗3)⟩(0)

(4.76)

4.4 Root-T T deformation

The data of the seed theory is (4.1)

L(0) = (∂yϕ)2 =M. (4.77)

As discussed before, the first-order correction to the Lagrangian is proportion to L(0)

L(1) = L(0) =M. (4.78)

– 26 –



J
H
E
P
0
4
(
2
0
2
4
)
1
3
8

Then the first-order correction to the stress tensor is

T
A(1)
B = ∂L(1)

∂(∂Aϕ)
∂Bϕ− δA

BL(1) = T
A(0)
B . (4.79)

From (3.42), one can then derive the second-order correction to the Lagrangian as

L(2) = 1
2
√
M2

1∑
i=0

(1
2T

A(i)
B T

B(1−i)
A − 1

4T
A(i)
A T

B(1−i)
B

)
= 1
M

(1
2T

A(0)
B T

B(0)
A − 1

4T
A(0)
A T

B(0)
B

)
=M = L(0).

(4.80)

This gives us an insight that each order of the Lagrangian is proportional to L(0), namely

L(n) = anL(0), T
A(n)
B = anT

A(0)
B , a0 = 1, (4.81)

where an-s are real numbers.
This can be proved by using induction on the correction order n. To get start, the (4.81) is

right for n = 0, 1, 2 with a0 = a1 = a2 = 1. Then, suppose (4.81) is true for ∀n = 1, 2, · · · , n0.
So the relation (3.42) can be rewritten as

∞∑
n=0

λn

n! L
(n+1) =

{
M2

[
1 +

n0∑
n=1

λn

n!

(
n∑

i=1
aian−iC

n
n0

)]

+
∞∑

n=n0+1

λn

n!

[
n∑

i=0
Ci

n

(1
2T

A(i)
B T

B(n−i)
A − 1

4T
A(i)
A T

B(n−i)
B

)]} 1
2

,

(4.82)

where the second line of the above equation will contribute to the higher power of λ after
the Taylor expansion, while the first line will contribute to the λn0 power, which indicates
that L(n0+1) is also proportion to L(0). Thus TA(n0+1)

B is also proportion to TA(0)
B with the

same coefficient as L(n0+1). Therefore the eq. (3.42) has been proven.
Then the deformed Lagrangian and stress tensor can be rewritten as the following

factorized form

L[λ] = f(λ)L(0), T
A[λ]
B = f(λ)TA(0)

B , (4.83)

where

f(λ) =
∞∑

n=0

λn

n! an. (4.84)

Plugging this into the definition of the deformation, one obtains

f ′(λ)L(0) =
√

1
2T

A[λ]
B T

B[λ]
A − 1

4
(
T

A[λ]
A

)2
= f(λ)M = f(λ)L(0). (4.85)

Therefore the constraint of f(λ)

f ′(λ) = f(λ) (4.86)
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It is worth noting that when λ = 0, the Lagrangian will degenerate to the seed theory, which
indicates that f(0) = 1. Thus, one can simply work out the solution of the above equation

f(λ) = eλ. (4.87)

Inserting this back to the factorized formula (4.83), one then obtains the deformed data

L[λ] = eλL(0), T
A[λ]
B = eλT

A(0)
B . (4.88)

This indicates that all an-s are equal to 1. This is a trivial effect to the action since we
can rescale it to remove the constant eλ. Then the deformed correlators defined in (3.4)
are not affected by the

√
TT deformation, namely

⟨Xn⟩
√

T T
[λ] = ⟨Xn⟩[0]. (4.89)

Finally, we should remark that the result we derived here does not contradict the first-order
correction computation because they are from different perspectives. On the one hand,
the computation of the correlator (4.89) is the non-perturbative version. It turns out that
the

√
TT deformed BMS free scalar model is still the BMS invariant field theory, which is

consistent with the property of a non-perturbative marginal deformation. Moreover, since
the action is invariant under scaling transformation, the

√
TT deformed free scalar model is

the same as its seed theory. On the other hand, the generic first-order correction of the
√
TT

discussed in subsection 3.3 is computed from the perturbative method, which may break
the BMS symmetry. So it is normal to use some extra terms. Specifically, while keeping
the factor eλ in (4.88) to perturbatively compute the first-order correction for the

√
TT

deformed free scalar model, the result will be the same as the generic first-order correction
of the

√
TT discussed in subsection 3.3.

5 Deforms for free Fermion model

5.1 Data of seed theory

The action of the BMS free fermion model is constructed by the field ψa = (ψ1, ψ2) as [85, 89]

S(0) =
∫

dxdyL(0), L(0) = ψ1∂xψ1 −
1
2ψ2∂yψ1 −

1
2ψ1∂yψ2, (5.1)

with the following equation of motion (EoM)

∂yψ1 = 0, 2∂xψ1 = ∂yψ2. (5.2)

By using the definition (3.3), the prototype of stress tensor can be derived as

T µ(0)
ν = ∂L(0)

∂(∂µψa)
∂νψa − δµ

νL(0) =
(
−ψ1∂xψ1 −1

2ψ2∂xψ1 − 1
2ψ1∂xψ2

ψ1∂yψ1
1
2ψ2∂yψ1 + 1

2ψ1∂yψ2

)
. (5.3)

This, however, is not in the same form as the standard expression of (2.6), which is derived
from the invariance of the BMS transform. In addition, it is even not a conserved current
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since (2.7) is seemingly not satisfied. Fortunately, the standard stress tensor can be derived
by plugging the EoM (5.2) into its prototype (5.3) as

Tµ(0)
ν =

(
M T

0 −M

)
, M = −ψ1∂xψ1, T = −1

2ψ2∂xψ1 −
1
2ψ1∂xψ2, (5.4)

which satisfies the conservation law (2.7) and is consistent with the standard form of stress
tensor (2.6). The enlarged symmetry of BMS free Fermion model is triggered by the dilation
symmetry D′ of the seed action (5.1), where [90]

D′ : (x, y) → (x,Dy), (ψ1, ψ2) → (D− 1
2ψ1, D

1
2ψ2), (5.5)

whose Noether currents are

J
µ(0)
D′ = Tµ(0)

y y − Jµ
(0), Jµ

(0) =
∂L(0)

∂(∂µψa)
Fa, Fa = 1

2(−ψ1, ψ2). (5.6)

The BMS symmetry is enlarged by a dimension 1 current Jµ
(0), whose components are

Jy
(0) = J (0)

x = −1
2 : ψ1ψ2 :, Jx

(0) = −J (0)
y = 0. (5.7)

The generators yielded from the stress tensor and Jµ
(0) form the BMS Kac-Moody algebra,

which is a specific case of (2.18), see the details in [85, 90]. In BMS free Fermion model,
there are 3 kinds of primary fields: identity operators (singlet) with ∆ = ξ = 0; Fermion field
(multiplet) ψ = (ψ1, ψ2)T with conformal weight ∆ = 1

2 and boost charge ξ = 0; composite
operator P = −2Jy

(0) =: ψ1ψ2 : (singlet) with ∆ = 1, ξ = 0. With the OPEs between the fields

ψ1(x1)ψ1(x2) ∼ 0, ψ2(x1, y1)ψ2(x2, y2) ∼ −2y12
x2

12
,

ψ1(x1)ψ2(x2, y2) ∼ ψ2(x1, y1)ψ1(x2) ∼
1
x12

,

(5.8)

one can easily check that the OPEs between the currents and the primary operators as

T (x′, y′)ψ1(x) ∼
ψ1(x)

2(x′ − x)2 + ∂xψ1(x)
x′ − x

,

T (x′, y′)ψ2(x, y) ∼
ψ2(x, y)
2(x′ − x)2 − 2(y′ − y)

(x′ − x)3ψ1(x′)

+ ∂xψ2(x, y)
x′ − x

− y′ − y

(x′ − x)2∂yψ2(x, y),

M(x′)ψ1(x) ∼ 0, M(x′)ψ2(x, y) ∼
ψ1(x)

(x′ − x)2 + ∂yψ2(x, y)
x′ − x

; (5.9)

T (x′, y′)P (x, y) ∼ P (x, y)
(x′ − x)2 + ∂xP (x, y)

x′ − x
− y′ − y

(x′ − x)2∂yP (x, y),

M(x′)P (x, y) ∼ ∂yP (x, y)
x′ − x

; (5.10)
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P (x1, y1)P (x1, y1) ∼
1
x2

12
− y12
x12

∂y2P (x2, y2), P (x2, y2)ψ1(x2) ∼
ψ1(x1)
x12

,

P (x1, y1)ψ2(x2, y2) ∼ −ψ2(x2)
x12

+ 2 y12
x2

12
ψ1(x2) + 2 y12

x12
∂x2ψ1(x2). (5.11)

Comparing with (2.17), one can easily deduce that ψi is a multiplet with weight ∆ = 1
2 and

vanished boost charge while P is a singlet with conformal weight ∆ = 1 and vanished boost
charge. Moreover, it is easy to verify that OPEs between the components of stress tensor
also consist with (2.10) with cL = 1 and cM = 0.

Similarly, the correlators of the primaries in free Fermion can be derived from the OPEs
between the fields

⟨ψ1(x1)ψ2(x2, y2)⟩(0) = 1
x12

, ⟨ψ2(x1, y1)ψ2(x2, y2)⟩(0) = −2y12
x2

12
,

⟨ψ1(x1)ψ2(x2, y2)P (x3, y3)⟩(0) = − 1
x23x13

.

(5.12)

Other combinations of two-point and three-point functions of primaries are all vanished.

5.2 T T deformation

As derived in (3.3), the recursion relation of the deformed Lagrangian is

L(n+1) = 1
2

n∑
i=0

Ci
n

(
Tµ(i)

µ T ν(n−i)
ν − Tµ(i)

ν T ν(n−i)
µ

)
,

Tµ(n)
ν = ∂L(n)

∂(∂µψa)
∂νψa − δµ

νL(n), n = 1, 2, · · · .
(5.13)

With the explicit form of the stress tensor in seed theory Tµ(0)
ν derived in (5.4), the deformed

Lagrangian can be computed order by order. It is easy to verify that the first-order correction
of the Lagrangian is MM , which is consistent with the discussion in the section 3. However,
one can immediately obtain that L(0) vanishes since MM = (ψ1∂xψ1)2 = 0. This is because
the Grassmann numbers ψ1 and ∂xψ1 should not appear twice. Therefore, the first-order
correction to the components of the stress tensor all vanished

Tµ(1)
ν = 0, (5.14)

indicating that the second-order correction to the Lagrangian and stress tensor vanish, which
can be easily verified as

L(2) = 1
2
[
Tµ(0)

µ T ν(1)
ν + Tµ(1)

µ T ν(0)
ν − Tµ(0)

ν T ν(1)
µ − Tµ(1)

ν T ν(0)
µ

]
= 0

Tµ(2)
ν = ∂L(2)

∂(∂µψa)
∂νψa − δµ

νL(2) = 0.
(5.15)

By induction on n, one can verify that all the correction terms vanish

L(n) = 0, Tµ(n)
ν = 0, ∀n = 1, 2, · · · , (5.16)
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causing the Lagrangian and the correlators of BMS free Fermion model to be unchanged
through the T T̄ flow, namely

L[λ] = L(0), ⟨Xn⟩[λ]
T T

= ⟨Xn⟩(0). (5.17)

Until now, we have not used the EoM for the corrected terms. Actually if one imposes the
definition of Tµ(n)

ν in (5.13) for Tµ(0)
ν , namely substitute T µ(0)

ν for Tµ(0)
ν

L(1) = 1
2
[
T x(0)

x T y(0)
y + T y(0)

y T x(0)
x − T x(0)

y T y(0)
x − T x(0)

y T y(0)
x

]
= ψ1ψ2∂xψ1∂yψ1,

(5.18)

one can also derive that Tµ(1)
ν = 0 without the EoM of fields. Then (5.17) can be re-derived

by induction on n of L(n).
The TT deformation will change the theory in normal circumstances. However, the

result here has shown that the TT deformed free Fermion model is a fixed point through
the TT flow. This is not strange, since the structure of the Fermion model requires that
correct terms with multi-M are all zero. Moreover, the deformed data only contain M and
are independent of T . Therefore all corrections of TT are vanished.

5.3 JTµ deformation

The definition of JTµ is (4.33). With the expansion similar to (4.34), one can similarly deduce
the recursion relation of the deformed Lagrangian as

Lµ1···µnµn+1 =
n∑

i=0
Ci

n

[
(Jy)µi+1···µn(T x

µn+1)µ1···µi − (Jx)µi+1···µn(T y
µn+1)µ1···µi

]
, (5.19)

where

(Tα
µ)µ1···µn = ∂Lµ1···µn

∂(∂αψa)
∂µψa − δα

µLµ1···µn ,

(Jβ)µi+1···µn = 1
2
∂Lµi+1···µn

∂(∂βψ2)
ψ2 −

1
2
∂Lµi+1···µn

∂(∂βψ1)
ψ1.

(5.20)

Similarly, the BMS free Fermion model is also a fixed point for JTµ flow. To see this,
we just need to compute the first-order correction of the Lagrangian. Having discussed
in subsection 5.2, the on-shell condition should not be implemented while computing the
corrections order by order, namely one should substitute the off-shell stress tensor of the
seed theory (5.3) for Tµ(0)

ν here, instead of (5.4). The first-order correction of the Lagrangian
should be λµLµ = λyLy + λxLx, where

Ly = Jy
(0)T

x(0)
y − Jx

(0)T
y(0)
y = 1

4ψ1ψ2(ψ2∂xψ1 + ψ1∂xψ2) (5.21)

and
Lx = Jy

(0)T
x(0)
x − Jx

(0)T
y(0)
x = −1

4ψ1ψ2(ψ2∂yψ1 + ψ1∂yψ2). (5.22)
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Then one can easily deduce that the above two equations have all vanished since ψ1 or ψ2
appears twice on the right-hand side of both equations. Therefore even without implementing
the on-shell condition, the first-order corrections still vanished

Ly = 0, Lx = 0. (5.23)

Then, by using mathematical induction, one can easily prove that the higher-order corrections
have also vanished, namely

Lµ1···µn ≡ 0, ∀n ≥ 1. (5.24)

This yields that the JTµ deformed Lagrangian and deformed correlators remain unchanged

L[λ] = L(0), ⟨Xn⟩[λ]
JTµ

= ⟨Xn⟩(0), (5.25)

which means that BMS free Fermion model is also a fixed point through JTµ flow.

5.4 Root-T T deformation

5.4.1 Deformed Lagrangian

The recursion relation can be derived from (3.42), with T
µ(0)
ν in (5.4)

∞∑
n=0

λn

n! L
(n+1) =

√√√√M2 +
∞∑

n=1

λn

n!

n∑
i=0

Ci
n

(1
2T

A(i)
B T

B(n−i)
A − 1

4T
A(i)
A T

B(n−i)
B

)

Tµ(n)
ν = ∂L(n)

∂(∂µψa)
∂νψa − δµ

νL(n), n = 1, 2, · · · .

(5.26)

Note that in the free Fermion case, MM is zero while the
√
MM =M is formally non-zero.

So the first-order correction is

L(1) =M = −ψ1∂xψ1, (5.27)

which consists of the generic discussion in section 3. Then the first-order correction of the
components of the stress tensor are

T y(1)
y = −M, T x(1)

y = −ψ1∂yψ1, T y(1)
x = T x(1)

x = 0. (5.28)

So the second order correction is

L(2) = M−1

4
[
2TA(0)

B T
B(1)
A − T

A(0)
A T

B(1)
B

]
= −M2 . (5.29)

One can prove that the corrected terms L(n) with n = 1, 2, · · · are all proportional to L(1)

by induction on n with the coefficient bn for n-th order. We have verified that this is true
for n = 1, 2. Suppose this proposition is true for all n = 1, 2, · · · , n0, namely

L(n) = bnM = bnL(1), n = 1, 2, · · · , n0. (5.30)

So the n-th order correction of the stress tensor is proportional to T
µ(1)
ν

T
A(n)
B = bnT

A(1)
B , n = 1, 2, · · · , n0. (5.31)
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Then the formula (5.26) can be divided into the following form

∞∑
n=0

λn

n! L
(n+1) =

{
M2 +

n0∑
n=1

λn

n!

[
bn

(
T

A(0)
B T

B(1)
A − 1

2T
A(0)
A T

B(1)
B

)

+
(

n−1∑
i=1

Ci
n

2 bibn−i

)(
T

A(1)
B T

B(1)
A − 1

2T
A(1)
A T

B(1)
B

)]

+
∞∑

n=n0+1

λn

n!

n∑
i=0

Ci
n

(1
2T

A(i)
B T

B(n−i)
A − 1

4T
A(i)
A T

B(n−i)
B

)} 1
2

,

(5.32)

which can be rewritten as the following form with the expression of Tµ(1)
ν and Tµ(0)

ν in (5.28)
and (2.6)

∞∑
n=0

λn

n! L
(n+1) =

{
M2

[
1 +

n0∑
n=1

λn

n!

(
n−1∑
i=1

Ci
n

4 bibn−i − bn

)]

+
∞∑

n=n0+1

λn

n!

n∑
i=0

Ci
n

(1
2T

A(i)
B T

B(n−i)
A − 1

4T
A(i)
A T

B(n−i)
B

)} 1
2

.

(5.33)

After expanding the square root near M by the power of λ and reading off the coefficient in
front of the λn0 in the right-hand side, which comes from the first line of the above equation,
one can deduce that the n0 + 1-th order correction of the deformed Lagrangian at n0 + 1-th
order is also proportional to M(= L(1)). Therefore the all-order corrected Lagrangian and
stress tensor can be expressed as

L[λ] = L(0) + g(λ)M, T
A[λ]
B = T

A(0)
B + g(λ)TA(1)

B . (5.34)

Plugging them into the definition of the root-TT deformation (3.40) and (3.41), one can
derive a constraint for the function g(λ) as

g′(λ) = 1
2 |g(λ)− 2| (5.35)

Similarly, the Lagrangian will degenerate to the seed theory L(0), so g(0) = 0. Together with
the constraints (5.27) and (5.29), the function g(λ) can be fixed as

g(λ) = 2− 2e−
λ
2 . (5.36)

Unfortunately, if we substitute T µ(0)
ν for Tµ(0)

ν , as we did in subsection 5.2, the off-shell terms
within the square root will not form a perfect square. Consequently, the definition of the√
TT deformation for the BMS fermion model becomes ill-defined, as the square root of

certain Grassmann numbers lacks a clear definition. Before proceeding further, it is worth
noting that the flow of the fields is not taken into account, which does not pose any issues
within the perturbative approach.
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5.4.2 Deformed correlator

The deformed correlators can be computed by path integral as

⟨Xn⟩
√

T T
[λ] =

〈
e−g(λ)

∫
dxdyM(x)Xn

〉
= exp

[
2πig(λ)

∑
k

yk∂yk

]
⟨Xn⟩

= exp
[
4πi

(
1− e−

λ
2
)∑

k

yk∂yk

]
⟨Xn⟩,

(5.37)

where we used the Ward identity (2.17) in the second line, and the integral here is the
same as we did in subsection 3.3. Now the rest of this sub-subsection is to manifest the
extra poles generated from the deformation by using the data of the seed theory derived
in (5.12), instead of leaving the derivative ∂yk

-s here. Apart from ⟨ψ2ψ2⟩ in (5.12), others
are all independent on yk, indicating that

⟨ψ1(x1)ψ2(x2, y2)⟩
√

T T
[λ] = ⟨ψ1(x1)ψ2(x2, y2)⟩(0),

⟨ψ1(x1)ψ2(x2, y2)P (x3, y3)⟩
√

T T
[λ] = ⟨ψ1(x1)ψ2(x2, y2)P (x3, y3)⟩(0).

(5.38)

Since ⟨ψ2(x1, y1)ψ2(x2, y2)⟩(0) is proportional to y12, together with the fact that
∑

k yk∂yk

is the identity operator of y12, one can easily verify that

⟨ψ2(x1, y1)ψ2(x2, y2)⟩
√

T T
[λ] = exp

[
4πi

(
1− e−

λ
2
)]

⟨ψ2(x1, y1)ψ2(x2, y2)⟩(0). (5.39)

Therefore, the only impact of the
√
TT deformation on ⟨ψ2(x1, y1)ψ2(x2, y2)⟩ is a mere phase

factor. This assures us that the BMS symmetries of the correlators in the BMS-free Fermion
case remain intact despite the deformation. This phenomenon can be observed explicitly from
the Lagrangian perspective by redefining the field ψ1 as ψ′

1 = (1−g(λ))ψ1 = (2e−
λ
2 −1)ψ1. In

this redefinition, combined with (5.27), (5.36) and (5.1), the
√
TT deformed Lagrangian (5.34)

can be expressed as

L[λ] = 1
2e−

λ
2 − 1

(
ψ′

1∂xψ
′
1 −

1
2ψ2∂yψ

′
1 −

1
2ψ

′
1∂yψ2

)
. (5.40)

This formulation is essentially a rescaling of the undeformed Lagrangian (5.1) with field
(ψ′

1, ψ2), which can be interpreted as a dilation transformation with D = 2e−
λ
2 − 1 as defined

in (5.5). Consequently, the deformed action remains unaffected since the factor 1
2e−

λ
2 −1

can always be absorbed through coordinates rescaling, which is similar as the discussion in
subsection 4.4. This highlights that the BMS symmetries of the

√
TT deformed correlator

remains preserved. This outcome is expected because the
√
TT deformation is a marginal

deformation that preserves the original symmetries of the seed theory. As a result, the
√
TT

deformed BMS-free Fermion model can be considered a well-defined marginal deformed theory
that still qualifies as a BMSFT even after deformation.

In conclusion, as emphasized in subsection 4.4, it is important to reiterate that the
deformed correlators considered here encompass all order corrections and are cast into closed
forms. This non-perturbative approach differs significantly from the perturbative method
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discussed in section 3. However, it is crucial to note that this disparity does not imply a
contradiction. Perturbative and non-perturbative methods operate at different levels, and
upon closer examination, it becomes evident that the first-order corrections obtained from
expanding the aforementioned results by power of λ are identical to those derived from the
perturbative method in section 3. Notably, the non-perturbative approach offers greater
precision and comprehensiveness compared to its perturbative counterpart. Consequently,
the perturbative method runs the risk of compromising the symmetries inherent in the
original theory.

6 Conclusion

In this paper, we introduce various types of irrelevant and marginal deformations in the
BMSFT to evaluate the several types of action and lowest-order corrections to correlation
functions. Firstly, we define these irrelevant and marginal deformations properly which
is non-lorentize type of deformation. Based on the deformations, we apply the standard
perturbative field theory approach to analyze the universal first-order corrections to the
correlation functions of seed theories, which, based on our analysis, are only factorized for
two-point and three-point functions consisting of singlet primary operators. In addition, we
also investigate the flow effects of the deformations by calculating the higher order corrections
for some specific case, e.g., free BMS Boson and Fermion theories, since the first-order
corrections do not flow the seed theory while the higher order corrections depend on different
seed theories. Particularly, we provide the all-order corrected Lagrangian for the deformations
for these two cases, and compute the higher-order corrections of the deformed correlation
functions systematically. As the classification of the RG, the irrelevant deformation might
flow the seed theory to different theories while the well-defined marginal deformations will
not. Specifically, the irrelevant TT and JTµ deformations will indeed flow the local BMS
free scalar theory to the non-local, and string-like theories, which can be observed from both
classic levels, namely the all-order corrected Lagrangian

L[λ]scalar
T T

=

√
4λ(∂yϕ)2 + 1− 1

2λ , L[λ]scalar
JTµ

= 1− 2λ∂yϕ−
√
1− 4λ∂yϕ

2λ2 , (6.1)

and the quantum level, namely the higher-order corrections of the deformed correlators.
However, the TT or JTµ deformed free BMS Fermion model does not have any corrections
for both classic (Lagrangian) and quantum (Correlator) level, because of the Grassmann
structure of the Fermion. Besides, the

√
TT deformation for free BMS scalar and Fermion

are well-defined and exact marginal deformation since they are essentially scale transforms
for the Lagrangian

L[λ]scalar√
T T

= eλL[0]scalar√
T T

,

L[λ]fermion√
T T

= L(0) + 2
(
1− e−

λ
2
)
M

= 1
2e−

λ
2 − 1

L[0]fermion√
T T

[ψ′
1, ψ2],

(6.2)

which preserves the original BMS symmetries since the actions are scale invariant and the
scale factors can be absorbed by coordinates rescaling.
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A Seed BMSFT from UR limit

A.1 Algebras from UR limit

In this subsection, we discuss the BMS algebra (2.4) and NLKM algebra (2.18). The BMS
algebra can be derived from Virasoro algebra by implementing the UR limit. For generators
in 2D CFT

Ln = −zn+1∂z, Ln = −z̄n+1∂z̄, (z, z̄) = (x+ iy, x− iy) (A.1)

which satisfies the Virasoro algebra after the central extension

[Ln,Lm] = (n−m)Ln+m + c

12n(n
2 − 1)δn+m,0,

[L̄n, L̄m] = (n−m)L̄n+m + c̄

12n(n
2 − 1)δn+m,0,

[Ln, L̄m] = 0.

(A.2)

By choosing the following UR limit

y → ϵy, x→ x, ϵ→ 0, (A.3)

together with

Ln = lim
ϵ→0

(Ln − L̄−n), Mn = lim
ϵ→0

ϵ(Ln + L̄−n). (A.4)

cL = lim
ϵ→0

(c− c̄), cM = lim
ϵ→0

ϵ(c+ c̄), (A.5)

the Virasoro algebra will then recover (2.4).
Similarly, the NLKM can also be derived from the UR limit of the Virasoro Kac-Moody

algebra. The holomorphic part of the Virasoro Kac-Moody algebra is

[Ln,Lm] = (m− n)Lm+n + c

12(m
3 −m)δm+n,0, [Lm, j

a
n] = −nja

m+n,

[ja
m, j

b
n] = ifabcjc

m+n +mkδm+n,0δ
ab.

(A.6)

where the anti-holomorphic part is similar. By choosing the UR limit as (A.3), (A.4),
and (A.5), together with

Ja
m = ja

m + j̄a
−m, Ka

m = ϵ(ja
m − j̄a

−m) (A.7)
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and

F abc = 1
2(f

abc + f̄abc), Gabc = 1
2ϵ(f

abc + f̄abc), (A.8)

k1 = k − k̄, k2 = ϵ(k + k̄), (A.9)

the NLKM (2.18) will be explicitly re-derived.

A.2 OPEs from UR limit

In this subsection, we discuss the Ward identities of the stress tensor in BMSFT and its OPE
with the primary operators. We also need to give singlet and the multiplet result.

Singlets. The OPE between 2 operators is related to their commutators from the radial
quantization

A =
∮
a(z)dz, B =

∮
b(w)dw

[A,B] =
∮

0
dw

∮
w
dza(z)b(w), [A, b(w)] =

∮
w
dza(z)b(w).

(A.10)

The OPEs between the components of the stress tensor can be derived from (2.4) as

L(x′)L(x) ∼ cL

2(x′ − x)4 + 2L(x)
(x′ − x)2 + ∂xL(x)

x′ − x
, M(x′)M(x) ∼ 0,

L(x′)M(x) ∼M(x′)L(x) ∼ cM

2(x′ − x)4 + 2M(x)
(x′ − x)2 + ∂xM(x)

x′ − x
.

(A.11)

The OPE between the singlet primary operators O and the stress tensor can be derived
from the UR limit. In CFT, we have

[Ln,O] =
(
(n+ 1)hzn + zn+1∂z

)
O, [L̄n,O] =

(
(n+ 1)h̄z̄n + z̄n+1∂z̄

)
O. (A.12)

By using UR limit (A.4), we obtain

[Ln,O(x, y)] =
[
xn+1∂x + (n+ 1)xny∂y + (n+ 1)xn∆+ n(n+ 1)xn−1yξ

]
O(x, y),

[Mn,O(x, y)] =
[
xn+1∂y + (n+ 1)xnξ

]
O(x, y), n ≥ −1. (A.13)

Then the OPE between the components of stress tensor and O can be easily derived
from (A.10) as

T (x, y)Ok(xk, yk) ∼
∆kOk

(x− xk)2 − 2(y − yk)ξkOk

(x− xk)3 + ∂xk
Ok

x− xk
− (y − yk)∂yk

Ok

(x− xk)2

M(x)Ok(xk, yk) ∼
ξkOk

(x− xk)2 + ∂yk
Ok

x− xk
. (A.14)

We can only roughly see the pole structure by using the UR limit method. More precisely,
the pole structure can be observed by using the standard path integral method, which is
equivalent to substitute ∆x̃k = x− xk − iε(y − yk) for x− xk, 0 < ε≪ 1, see details in [62].
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Multiplets. Similarly, for multiplets, we have

T (x, y)Oia(xi, yi) ∼
∆Oia

(∆x̃i)2 − 2(y − yi)(ξi ·Oi)a

(∆x̃i)3 + ∂xiOia

∆x̃i
− (y − yi)∂yiOia

(∆x̃i)2

M(x)Oia(xi, yi) ∼
(ξi ·Oi)a

(∆x̃i)2 + ∂yiOia

∆x̃i
.

(A.15)

B Deformations from UR limit

In this appendix, we give some insights that the deformations for BMSFT can also be derived
from UR limit of the deformations for CFT. Without losing generality and keeping simplicity,
we will mainly focus on the discussion of TT deformation. Suppose each order of TT deformed
relativistic CFTs are consisted of stress tensors T (0)

zz , T
(0)
z̄z̄ in the seed theories. The UR limit

will link the coordinate in relativistic CFT (z, z̄) and that in BMSFT (x, y) as

z = x+ ϵy +O(ϵ2), z̄ = x− ϵy +O(ϵ2). (B.1)

The ϵ here is equivalent to iε in footnote 1. The relation between volume element is

−2ϵdxdy = d2z. (B.2)

Note that T (0)
zz and T

(0)
z̄z̄ can be expanded by Virasoro generators as

T (0)
zz (z) =

∑
n∈Z

z−n−2Ln, T
(0)
z̄z̄ (z̄) =

∑
n∈Z

z̄−n−2L̄n. (B.3)

Then, by using (A.4), (B.1) and (2.8), one obtains

T (0)
zz + T

(0)
z̄z̄ =

∑
n

(z−n−2Ln + z̄−n−2L̄n)

=
∑

n

x−n−2
[(

1− (n+ 2)y
x
ϵ

)
Ln +

(
1 + (n+ 2)y

x
ϵ

)
L̄n

]
+O(ϵ2)

= L(x) + y∂xM(x) +O(ϵ2) = T (x, y).

(B.4)

Similarly,

T (0)
zz − Tz̄(0)z̄ =

∑
n

(z−n−2Ln − z̄−n−2L̄n)

=
∑

n

x−n−2
[(

1− (n+ 2)y
x
ϵ

)
Ln −

(
1 + (n+ 2)y

x
ϵ

)
L̄n

]
+O(ϵ2) = 1

ϵ
M(x).

(B.5)

Therefore, the UR limit yields

ϵT (0)
zz = −ϵT (0)

z̄z̄ = M

2 . (B.6)

So we just need to substitute M for T (0)
zz and T

(0)
z̄z̄ for BMSFT, which indicates that the

correction terms for TT deformed BMSFT consist entirely of M raised to different powers.
This is consistent with our proposal in the main text.

– 38 –



J
H
E
P
0
4
(
2
0
2
4
)
1
3
8

Specifically, the TT deformed scalar model for BMSFT and relativistic CFT are exactly
associated with each other by UR limit. In the classic level, the action of the un-deformed
relativistic free scalar model is

S
(0)
relativistic = −1

2

∫
d2z∂zϕc∂z̄ϕc. (B.7)

The corresponding stress tensor in the relativistic seed theory is

T (0)
zz = (∂zϕc)2, T

(0)
z̄z̄ = (∂z̄ϕc)2, T

(0)
zz̄ = 0. (B.8)

Together with the definition of M in (4.5) and the relation (B.6), one obtains the relation
between the scalar fields in relativistic CFT and BMSFT

ϕc = ϵ
1
2ϕ, (B.9)

which is the same as the rescaling in [53, 73]. The deformed action in relativistic CFT is [8]

S
[λ′]
relativistic = −1

2

∫
d2zL[λ′]

relativistic, L[λ′]
relativistic =

√
4λ′∂zϕc∂z̄ϕc + 1− 1

2λ′ (B.10)

Then, by taking UR limit, the action becomes

S
[λ′]
relativistic

∣∣∣
UR

→
∫

dxdy

√
4λ

ϵ (∂yϕc)2 + 1− 1
2λ =

∫
dxdy

√
4λ(∂yϕ)2 + 1− 1

2λ , (B.11)

where λ = λ′/ϵ is the coupling constant of deformed BMSFT. Therefore, at the classic
level, the deformed free scalar model of BMSFT can also be derived from that of relativistic
CFT by taking the UR limit. In the quantum level, the TT deformed correlators have been
discussed in [91, 92] if the seed theory is relativistic CFT.6 One can easily check that the
quantum corrections of the correlators of the relativistic free scalar correlators will fall off
to the BMS free scalar derived in (4.20).

C Integral scheme

This appendix develops a scheme to work out the integral proposed in (3.11). Through the
analytical continuation, the integral of x for ak > 0 can be extended to a contour integral
surrounding the upper half plane with the anticlockwise direction. Notice that the contour
integral is trivial while considering all of the poles simultaneously∮

x1∼xn

dx∏n
k=1(x̃− x̃k)ak

= 0, (C.1)

which means that the poles should be placed in different half-plane, or the result will be
zero, where the subscript x1 ∼ xn under the “

∮
” denotes the residue needs to be computed.

Moreover, the extra term iϵ(y − yk) inside the pole of x̃ requires that the integral of y should
be divided by (yk, yk+1) with k = 1, · · · , n − 1, because, for y > yk, the pole xk is in the

6Or, one can use the deformed partition function of relativistic free Boson in [86] to derive the deformed
correlators of relativistic CFT.
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upper half plane, which is inside of the contour of x, while for y < yk, the pole xk is in the
lower half-plane, which is outside of the contour of x. After the range of y has already been
divided, the extra term iϵ(y − yk) can be removed safely by ϵ → 0 since it will no longer
contribute to the integral of x. Therefore the area integral can be rewritten as

If
a1···an

=
∫ ∞

−∞
dyf(y − yi)

∫ ∞

−∞

dx∏n
k=1(∆x̃k)ak

∣∣∣∣
ϵ→0

=
n−1∑
j=1

∫ yj+1

yj

dyf(y − yi)
∮

xj+1∼xn

dx∏n
k=1(x− xk)ak

= −
n−1∑
j=1

∫ yj+1

yj

dyf(y − yi)
∮

x1∼xj

dx∏n
k=1(x− xk)ak

.

(C.2)

This can be rewritten more beautifully, see the following Lemma and its corollary

Lemma C.1. Suppose y1 < y2 < · · · < yn, and (·) denotes the pole structure without iϵ(y−yk)
for simplicity. Then (C.2) can be rewritten as

∫
dydx(·) = −

n−1∑
j=1

∫ yn

yj

dy
∮

xj

dx(·). (C.3)

Proof. This can be easily proved by combining the contour integrals with the same pole xj

together.

Corollary C.1. By using (C.1), we can easily prove that for any k ∈ {1, · · · , n}, (C.3) can
be rewritten as ∫

dxdy(·) = −
∑
j ̸=k

∫ yk

yj

dy
∮

xj

dx(·), (C.4)

Proof. We divide (C.2) into j ≥ k and j < k

∫
dxdy(·) = −

n−1∑
j=k

+
k−1∑
j=1

∫ yj+1

yj

dy

∮
x1∼xj

dx(·)

=
n−1∑
j=k

∫ yj+1

yj

dy

∮
xj+1∼xn

dx(·)−
k−1∑
j=1

∫ yk

yj

dy

∮
xj

dx(·)

=
n−1∑
j=k

∫ yj+1

yk

dy

∮
xj+1

dx(·)−
k−1∑
j=1

∫ yk

yj

dy

∮
xj

dx(·)

=
n∑

j=k+1

∫ yj

yk

dy

∮
xj

dx(·)−
k−1∑
j=1

∫ yk

yj

dy

∮
xj

dx(·)

= −
n∑

j=k+1

∫ yk

yj

dy

∮
xj

dx(·)−
k−1∑
j=1

∫ yk

yj

dy

∮
xj

dx(·),

where we used (C.1) in the second step.
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Since yk can be chosen as any operator there is no need to constrain y1 < · · · < yn while
using (C.4). Therefore (C.2) is

If
a1···an

=
n∑

j=1

∫ yk

yj

dyf(y − yi)
∮

xj

dx∏n
i=1(x− xi)ai

(C.5)

Then the integrals can be easily computed. In TT ,
√
TT case, one will meet f = 1

cases, namely to compute

Ia1···an = 1
(a1 − 1)! · · ·

1
(an − 1)!∂x1 · · · ∂xnIx1···xn . (C.6)

The new quantity If
x1···xn is introduced for simplicity

Ix1···xn = −
n∑

j=1
yij

∮
xi

dx∏n
k=1(x− xk)

, (C.7)

where we choose the reference point as yk = yi. This kind of integrals can be computed
by using residue theorem as

Ix1···xn = 2πi yji∏
k( ̸=i) xik

(C.8)

Here we present the integrals that appeared in the main text

I4040 =
(
y14

∮
x1
+y24

∮
x2
+y34

∮
x3

)
dx

(x−x1)4(x−x3)4

= 2πi
6
(
y14∂

3
x1+y34∂

3
x3

) 1
x4

13
= 2πi

6 y13∂
3
x1

1
x4

13
=−40πi y13

x7
13
, (C.9)

I1313 =2πi
[

y14
x3

12x13x3
14
+ y34
x3

32x31x3
34
−y24

6x2
12x

2
23+x2

24x
2
13+3x21x23x42(x12+x32+x42)

x3
12x

3
23x

5
24

]
,

(C.10)

I2222 = y14

∮
x1

dx∏4
i=1(x−xi)2 +(1↔ 2)+(1↔ 3)= ∂x1

2πiy14
x2

12x
2
13x

2
14
+(1↔ 2)+(1↔ 3)

=−4πi
[
y14

( 1
x3

12x
2
13x

2
14
+ 1
x2

12x
3
13x

2
14
+ 1
x2

12x
2
13x

3
14

)]
+(1↔ 2)+(1↔ 3), (C.11)

I3030 =
(
y14

∮
x1
+y24

∮
x2
+y34

∮
x3

)
dx

(x−x1)3(x−x3)3 = ∂2
x1

πiy13
x3

13
=12πi y13

x5
13
, (C.12)

I2020 =
(
y14

∮
x1
+y24

∮
x2
+y34

∮
x3

)
dx

(x−x1)2(x−x3)2 = ∂x1
2πiy13
x2

13
=−4πi y13

x3
13
, (C.13)

I1212 =2πi
[

y14
x2

12x13x2
14
+ y34
x2

32x31x2
34
+y24

2x12x23+x24(x12+x32)
x2

12x
2
23x

3
24

]
, (C.14)

I1111 = y14

∮
x1

dx∏4
i=1(x−xi)

+(1↔ 2)+(1↔ 3)= 2πiy14
x12x13x14

+(1↔ 2)+(1↔ 3). (C.15)
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Then, in JTµ deformation, one might meet f = (y−yi)n (n ≥ 0, 1 ≤ i ≤ n) case, namely

If
a1···an

= 1
(a1 − 1)! · · ·

1
(an − 1)!∂x1 · · · ∂xnIf

x1···xn
. (C.16)

The new quantity If
x1···xn is introduced for simplicity

If
x1···xn

= −
n∑

j=1

∫ yi

yj

dy(y − yi)n
∮

xi

dx∏n
k=1(x− xk)

. (C.17)

This can easily be calculated by using the residue theorem as

If
x1···xn

= − 2πi
n+ 1

yn+1
ji∏

k( ̸=i) xik
. (C.18)

Here we will not show some specific examples since the procedure is the same as that of f = 1
case. The integrals in TT case can be easily re-derived by setting n = 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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