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the allen ancient DNa Resource 
(aaDR) a curated compendium of 
ancient human genomes
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Iosif Lazaridis  1,4, Iñigo Olalde  1,6, Nick Patterson2,4 & David Reich  1,2,3,4 ✉

More than two hundred papers have reported genome-wide data from ancient humans. While 
the raw data for the vast majority are fully publicly available testifying to the commitment of the 
paleogenomics community to open data, formats for both raw data and meta-data differ. There is 
thus a need for uniform curation and a centralized, version-controlled compendium that researchers 
can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA 
Resource (AADR), which aims to provide an up-to-date, curated version of the world’s published ancient 
human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which 
almost all ancient individuals have been assayed. the aaDR has gone through six public releases at 
the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals 
with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable 
descriptor of the aaDR.

Background & Summary
The first genome-wide ancient DNA data were published in 20101–3. However, it was only in 2015 with the 
advent of large-scale studies of Holocene genomes, in-solution enrichment of ancient DNA libraries for targeted 
single nucleotide polymorphisms (SNPs)4–6, and the introduction of automated protocols and liquid handling 
robots for processing of ancient DNA libraries7,8, that the number of individuals with genome-wide data began 
to increase rapidly. Between 2010 and 2014, data from an average of about 10 individuals with genome-wide data 
were published each year. Between 2015 and 2017, the numbers increased to about 200 annually. Since 2018, 
data from thousands of individuals have been published every year (Fig. 1). About 67% of the data are from 
Europe and Russia, a proportion that has held relatively steady since the beginning of the field of ancient DNA. 
The proportion of data from East Asia has grown from about 1% of all data in 2015 to 8% today. The proportion 
of data from Africa has grown from none in 2014 to 3% today (Fig. 1).

A challenge in analyzing ancient DNA data is that it has been reported over hundreds of independent studies. 
Thus, while raw sequence data for more than 99% of individuals9 are fully available in public repositories such 
as ENA10 and SRA11, the uploaded data exist in diverse formats, as do the meta-data such as archaeological, 
chronological, and geographic information. Some resources exist which consolidate subsets of publicly available 
ancient DNA data, including a Y-chromosome database with assembled information from nearly two thousand 
ancient Eurasian individuals12, a mitochondrial DNA database with more than two thousand individuals13, and 
the Online Ancient Genome Repository14 which copies publicly available data and encapsulates each dataset 
into an archived tar file. However, none of these provide a regularly curated dataset that attempts to include all 
published data in an easily co-analyzable format, such as a single genotype file with complete annotations in a 
single tab-delimited form.

Sources of data. To bring data generated outside our own laboratory into the AADR, we usually start with 
available sequences from a public repository, most often the European Nucleotide Archive (https://www.ebi.
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ac.uk/ena), following accession numbers given in the published papers. In some cases we start with alternatively 
formatted versions that we request directly from the authors. All source articles are cited in the reference list of 
this paper. For data generated in our laboratory, we start from our own raw sequence files, which are the basis for 
data uploaded to established public repositories.

Methods
The raw data generated outside our laboratory come in diverse formats, usually fastq files (for raw sequence 
data) or bams (for either unaligned reads or reads aligned to a reference genome)15. A challenge is that there can 
be considerable variation in fastq and bam files, reflecting the formatting, filtering and processing choices made 
by researchers in generating data. This includes:

 (a) Base calls and associated quality scores in raw sequences are often modified by the researchers who gen-
erated the data. One common modification is to recalibrate base quality scores16. Another modification 
is to ignore information from the ends of sequences, either by masking terminal bases in the sequences 
that are uploaded and marking them as “N”, or clipping (removing) them altogether17. This reduces error 
rates associated with cytosine deamination typical of ancient DNA data. However, it also means that users 
cannot make choices about whether to use the valuable data that have been masked and clipped (such as 
sites unaffected by deamination). In addition, this procedure has the effect of making it difficult to identify 
damaged molecules which are a strong indicator that those molecules indeed are ancient and not derived 
from some potential contaminating modern human source.

 (b) Sequences may be aligned to different human reference genomes, typically hg19, hs37d5, or hg20, each 
with their own unique coordinate systems. To build a homogeneous dataset, we therefore have to map to 
a unified coordinate system, currently based on hg1918–20. A further challenge is that chromosomes may 
have inconsistent naming conventions (for example ‘chr1’ v. ‘1’, or ‘chrMT’ v. ‘MT’ v. ‘chrM’), or the sorting 
order of chromosomes can differ. This results in practical difficulties in merging datasets.

 (c) Data may be deposited either (i) by library, or (ii) by-individual with multiple libraries in a single file. If 
data are deposited by library, then it may be necessary to identify and perform a merging step. There are 
pitfalls that arise in such merging, as in some cases “readgroup” names (a tag which groups reads togeth-
er) are the same across individuals, and so joint processing of many individuals can inadvertently lead to 
in-silico contamination.

Fig. 1 Growth in world’s published human genome-wide ancient DNA data. (A) By year of publication (broken 
down by geography). (B) By date (color and symbol both indicate geographic location). (C) By geography 
(using same color and symbol scheme as in previous panel).
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Filtering of data. To add data to the AADR, we manually process the dataset from each individual, tailoring 
the processing procedure according to the characteristics of the data. We create a bam file aligned to the hg19 
genome reference sequence. The bam files used to generate AADR constitute tens of terabytes in size altogether. 
We process these bams to produce genotypes at a set of about 1.23 million SNPs that have been assayed for nearly 
all published individuals with ancient DNA data. For the great majority of ancient DNA datasets, the genotypes 
are “pseudohaploid”, meaning that we represent the individual by a randomly sampled sequence at each analyzed 
position. For the small fraction of individuals for whom coverage is sufficient to allow full genotyping, we also 
release diploid genotypes21,22.

combining datasets. To increase the usefulness of the AADR, we have added into the AADR data from 
diverse modern humans, including shotgun sequencing data from sets of individuals included within the 1000 
Genomes Project23, the Simons Genome Diversity Project24, and the Human Genome Diversity Project25 To inte-
grate these data, we had to address challenges of different reference genomes (for example transforming from 
hg20 to hg19 coordinates). There are 6399 modern individuals with shotgun data in the v54.1 AADR release.

We also integrated a dataset of 4114 modern individuals genotyped on the Affymetrix Human Origins array 
at approximately ~600,000 SNPs26. This is a sufficiently valuable dataset that the AADR provides two releases: 
one on all 1.23 million targets (excluding the Human Origins data), and one on just the Human Origins targets.

Since the v52.2 release, we have also maintained a mitochondrial repository, which now includes mitochon-
drial genomes for 4122 ancient individuals in the AADR.

technical Validation
Prior to each release, several steps are performed to verify that new and updated data components have been 
added correctly and are co-analyzable with the full datasets.

An initial assessment considers coverage of each individual and evidence for contamination, updating anno-
tations as needed. In addition, we manually curate the genotypes to check that the data from each individual has 
sensible population genetic properties, by looking for potential outliers based on ADMIXTURE27 and principal 
components analysis28.

curation of metainformation and integration of ongoing community feedback. Because we are 
trying to keep AADR current, we err on the side of inclusivity, and thus try to bring data into the dataset even 
when meta-information and metrics are incomplete. Each AADR release updates meta-information and iden-
tifiers as appropriate. We rely on ongoing curation of the dataset as well as feedback from the user community 
which we invite through communication with the corresponding authors, to identify individuals with erroneous 
meta-information or corrupted genetic data, which we then seek to correct in subsequent releases.

Data Record
The AADR dataset is available at Harvard Dataverse29 (https://dataverse.harvard.edu/dataverse/reich_lab). The 
latest release at the time of writing and peer review is 8.0.

Each data release consists of three standard files in EIGENSTRAT format (.ind,.snp, and.geno). We also 
include an annotation file that is rich in meta-information for the dataset (.anno). The.anno file includes 
meta-data manually extracted from the papers reporting the data, in some cases supplemented by information 
that appeared later or that reflect clarifications from authors or the user community. For archaeological infor-
mation, we attempt to provide:

•	 Skeletal codes and grave numbers and sometimes other identifiers, always also including the code used for 
genetic analysis.

•	 Latitude and longitude.
•	 Location information, with a separate column for “Political entity” such as country, and locality information.
•	 Chronological information in a standard format. When a radiocarbon date is available, we include the labo-

ratory number and calibrated 95.4% confidence interval obtained in OxCal v4.4.2 using either the IntCal20 
or SHCal20 calibration curve (if we make an alternative choice, it is explicitly explained in a “Methods for 
Determining Date” column). We also report the posterior mean and standard deviation of the calibrated radi-
ocarbon date. When no radiocarbon date is available, we present a date uncertainty range based on archae-
ological context, usually rounded to the nearest 50 or 100 years, and quote the mean and standard deviation 
assuming a uniform distribution over its range (the standard deviation of a uniform distribution is the range 
of that distribution divided by the square root of 12).

•	 We include an estimate of the age of the individual at their death based on physical anthropology when we 
are able to obtain it.

•	 We include a group name for the individual, using a naming convention that aims to be systematic30.
•	 Data from individuals generated using shotgun sequencing methods have a suffix “.SG” (for pseudohaploid 

representations) or “.DG” (for diploid representations).
•	 We include many metrics computed on the genetic data, including not just amount of data (such as average 

coverage assayed at the subset of 1.15 million autosomal sites targeted in the 1.23 million SNP enrichment 
assays), but also molecular sex determination, cytosine-to-thymine rate in the final nucleotide31, fraction 
of the genome in multi-megabase runs of homozygosity32, identification of close relatives in the dataset (in 
a dedicated “family information” column), and estimates of contamination33,34. We have added additional 
metrics in each release to further improve the usefulness of the dataset.

•	 When data from an individual have been published in multiple studies using the same methodology such as 
in-solution enrichment, the AADR typically includes only the best quality version which is usually the latest 
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one (for such individuals, the “publication” columns in the.anno file notes the date of the publication that first 
reported data from the individual, as well as the publication that report the version that is actually included 
within the AADR). For some individuals, we include multiple representations of data, for example from 
shotgun sequencing, in-solution enrichment, restricted to UDG-treated libraries, or restricted to sequences 
showing characteristic ancient DNA damage to reduce the possible impact of contaminating sequences (“_d” 
suffix). The different versions have unique “Version IDs” but the same “Master ID” (which seeks to uniquely 
identifies an individual). These IDs may change from data release to data release; if data from two different 
Master IDs are found to come from the same individual, they are merged into a single Master ID.

•	 The group name may include a suffix that mark individuals such as potentially contaminated (“_contam”), or 
as a population genetic outlier (“_o”), or as having relatively little data (low coverage – “lc”).

citation guidance. Researchers who use the AADR as the starting point for analyses are encouraged to give 
two citations for the individual datasets: (1) this paper, and (2) the AADR Dataverse citation29 specifying the ver-
sion of the AADR downloaded. Citing the AADR paper is not a substitute for citing the original publications that 
produced data, which should be specifically referenced in each publication. Supplementary Data Table 1 provides 
the full list of references in the component papers for the v54.1 release, and will be updated at Dataverse for each 
new release going forward29.

All source articles are additionally cited in the reference list of this paper1–6,8,25,26,35–260.

code availability
The pipeline used for processing raw data generated within the Reich lab is available in the ‘Workflow Description 
Language’ (WDL) here: https://github.com/DReichLab/adna-workflow, and includes individual python scripts 
for components of the pipeline.
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