
Efficient implementation of modern entropy stable
and kinetic energy preserving discontinuous

Galerkin methods for conservation laws
Hendrik Ranocha

*1

, Michael Schlottke-Lakemper
†2

, Jesse Chan
‡3

,

Andrés M. Rueda-Ramírez
§4

, Andrew R. Winters
¶5

, Florian Hindenlang
6

,

and Gregor J. Gassner
**7

1

Applied Mathematics, University of Hamburg, Germany

2

High-Performance Computing Center Stuttgart, University of Stuttgart, Germany

3

Computational and Applied Mathematics, Rice University, USA

4

Department of Mathematics and Computer Science, University of Cologne, Germany

5

Computational Mathematics, Division of Applied Mathematics, Linköping University, Sweden

6

Max Planck Institute for Plasma Physics, NMPP division, Garching, Germany

7

Department of Mathematics and Computer Science, Center for Data and Simulation Science,

University of Cologne, Germany

April 4, 2022

Many modern discontinuous Galerkin (DG) methods for conservation laws make

use of summation by parts operators and flux differencing to achieve kinetic energy

preservation or entropy stability. While these techniques increase the robustness of

DG methods significantly, they are also computationally more demanding than stan-

dard weak form nodal DG methods. We present several implementation techniques

to improve the efficiency of flux differencing DG methods that use tensor product

quadrilateral or hexahedral elements, in 2D or 3D respectively. Focus is mostly given

to CPUs and DG methods for the compressible Euler equations, although these tech-

niques are generally also useful for other physical systems including the compressible

Navier-Stokes and magnetohydrodynamics equations. We present results using two

open source codes, Trixi.jl written in Julia and FLUXO written in Fortran, to demon-

strate that our proposed implementation techniques are applicable to different code

bases and programming languages.

Key words. flux differencing, entropy stability, conservation laws, summation by parts, discon-

tinuous Galerkin

*

ORCID: 0000-0002-3456-2277

†

ORCID: 0000-0002-3195-2536

‡

ORCID: 0000-0003-2077-3636

§

ORCID: 0000-0001-6557-9162

¶

ORCID: 0000-0002-5902-1522

ORCID: 0000-0002-0439-249X

**

ORCID: 0000-0002-1752-1158

1

https://orcid.org/0000-0002-3456-2277
https://orcid.org/0000-0002-3195-2536
https://orcid.org/0000-0003-2077-3636
https://orcid.org/0000-0001-6557-9162
https://orcid.org/0000-0002-5902-1522
https://orcid.org/0000-0002-0439-249X
https://orcid.org/0000-0002-1752-1158

1 Introduction

Stability and robustness of numerical methods are key to efficient and reliable simulations. How-

ever, these properties are not trivial to obtain, in particular for high-order methods. Usually,

techniques to improve the stability and (numerical) robustness also increase the computational

complexity and costs. Thus, special care must be taken when implementing these methods to

avoid losing (too much) efficiency in practice [25, 41].

In this article, we focus on so-called flux differencing schemes. These methods have their origins

in the second-order accurate entropy-conserving methods of Tadmor [68, 69] and have successfully

been extended to high-order methods in periodic [40] and bounded domains [10, 15, 46]. Flux

differencing methods are not only useful for constructing entropy-conservative or -dissipative

(EC/ED) methods but also to recover split forms used, for example, in finite difference methods

[24]. While flux differencing methods are central-type schemes without explicit dissipation, they

have been demonstrated to increase the robustness of numerical methods significantly [3, 19, 34,

59, 64, 65, 76]. Thus, these schemes can be used as baseline methods to which dissipation can be

added in a controlled manner [16, 17].

Flux differencing methods require two key ingredients: a discrete derivative operator satisfying

the summation by parts (SBP) property and a two-point numerical flux. The SBP property guaran-

tees a discrete equivalent of integration by parts and allows to transfer properties of the numerical

flux to high-order methods, e.g., entropy conservation, preservation of the kinetic energy [9, 20,

32, 47] or important (quasi-) steady states including pressure equilibria [52] and lake-at-rest-type

states for the shallow water equations [49, 75, 77].

SBP operators originate in finite difference methods [39]. Due to their attractive properties, they

have recently received a lot of interest. Many common numerical schemes can be formulated in

terms of SBP operators, including finite difference methods [39, 66], finite volume methods [42,

43], continuous Galerkin methods [1, 28, 29], discontinuous Galerkin (DG) methods [5, 6, 21], and

flux reconstruction methods [30, 54]. Thus, they can be used to analyze a broad range of numerical

methods in a unified fashion [50, 53]. For background information on SBP operators and further

references, we recommend the review articles [14, 67].

This article presents our experience with efficient implementation techniques for flux differenc-

ing methods based on our open source projects Trixi.jl [56, 61] (written in Julia [4]) and FLUXO
1

(written in Fortran), e.g., [60]. These two codes are written in different languages and use different

approaches in many aspects. In this respect, we posit that the techniques discussed in this article

are general and can be applied successfully to other (open or closed source) DG codes such as

FLEXI [38] and SSDC [44]. Additionally, many of the techniques can also be applied directly to

other SBP schemes including finite difference methods.

We begin our discussion with a brief introduction to SBP methods in Section 2. There, we also

describe broad techniques for the efficient implementation of flux differencing schemes applicable

to general conservation laws. Next, we focus on specific aspects related to the compressible Euler

equations in Section 3. These apply directly to the advective components of related models such

as the compressible Navier-Stokes equations and magnetohydrodynamics. Having established a

solid basis of efficient implementation techniques, we present some baseline performance bench-

marks in Section 4. In Section 5, we compare flux differencing to overintegration, another common

technique to increase the robustness of DG methods. Next, we discuss extensions of the efficient

implementation for entropy-based flux differencing DG methods to general nodal distributions

in Section 6. Thereafter, we discuss more invasive optimizations specifically tuned for the com-

pressible Euler equations and related models in Section 7. This discussion includes technical

optimizations whose complexity depends on the programming language. In Section 8, we in-

vestigate SIMD (single instruction, multiple data) optimizations and present related performance

improvements. Finally, we summarize and discuss our results in Section ??.

1https://gitlab.com/project-fluxo/fluxo

2

https://gitlab.com/project-fluxo/fluxo

The code and instructions to reproduce all numerical results shown in this article are available

in our reproducibility repository [55]. We use explicit time integration methods from the Julia

library OrdinaryDiffEq.jl [45] for Trixi.jl.

2 Summation by parts operators and flux differencing

Consider a hyperbolic conservation law

𝜕𝑡𝑢(𝑡 , 𝑥) +
𝑑∑
𝑗=1

𝜕𝑗 𝑓
𝑗(𝑢(𝑡 , 𝑥)) = 0, 𝑡 ∈ (0, 𝑇), 𝑥 ∈ Ω, (2.1)

where the conserved variables are 𝑢 : [0, 𝑇] × Ω → Υ ⊂ R𝑐
. The conservation law (2.1) must be

supplemented by initial and boundary conditions. Since our techniques for an efficient imple-

mentation will concentrate on volume terms and internal interfaces, we do not present details of

boundary conditions here. Moreover, we will suppress the dependency on time 𝑡 ∈ [0, 𝑇] and

space coordinates 𝑥 ∈ Ω ⊂ R𝑑
in the following.

Entropy estimates for conservation laws are based on the chain rule and symmetry properties

of the differential operator with respect to the 𝐿
2

scalar product. Thus, these two ingredients are

mimicked discretely by two-point numerical fluxes and appropriate SBP derivative operators. We

consider the method of lines and first discretize (2.1) in space. The spatial semidiscretization uses a

division of the domainΩ into non-overlapping elementsΩ𝑙 . The numerical solution is represented

by a vector in a finite dimensional space on each element. For example, DG methods typically use

polynomial spaces [27, 35]. On each element, SBP operators are applied.

Definition 2.1. A 𝑝-th order accurate derivative matrix 𝐷𝑗 satisfies ∀𝑘 ∈ {0, . . . , 𝑝} : 𝐷𝑗𝑥𝑥𝑥
𝑘
𝑗 = 𝑘𝑥𝑥𝑥

𝑘−1

𝑗 ,

with the convention 𝑥𝑥𝑥
0

= 111. We say 𝐷𝑗 is consistent if 𝑝 ≥ 0. ⊳

Definition 2.2. A (first-derivative) SBP operator on a 𝑑-dimensional element Ω𝑙 consists of con-

sistent first-derivative matrices 𝐷𝑗 , 𝑗 ∈ {1, . . . , 𝑑}, a symmetric and positive-definite matrix 𝑀

approximating the scalar product on 𝐿
2(Ω𝑙), a restriction operator 𝑅 approximating the restriction

of functions on the volume Ω𝑙 to the boundary 𝜕Ω𝑙 , a symmetric and positive-definite matrix 𝐵

approximating the scalar product on 𝐿
2(𝜕Ω𝑙), and multiplication operators 𝑁𝑗 representing the

multiplication of functions on 𝜕Ω𝑙 by the 𝑗-th component of the outer unit normal 𝑛 such that

𝑀𝐷𝑗 + 𝐷
𝑇
𝑗 𝑀 = 𝑅

𝑇
𝐵𝑁𝑗𝑅. (2.2)

We refer to 𝑀 as a mass matrix or norm matrix
2

. ⊳

Example 2.3. We mainly focus on tensor product elements using nodal Legendre-Gauss-Lobatto

(LGL) bases since they are SBP operators with diagonal mass matrix 𝑀 including the boundary

nodes [21]. In particular, the boundary operators 𝑅
𝑇
𝐵𝑁𝑗𝑅 are diagonal. The resulting method is

often called discontinuous Galerkin spectral element method (LGL-DGSEM). ⊳

Interface coupling between elements is usually performed via numerical fluxes in DG methods.

We write normal vectors as 𝑛 ∈ S𝑑−1

, where S𝑑−1

is the unit sphere in R𝑑
.

Definition 2.4. A (Cartesian) numerical flux in the 𝑗-th coordinate direction is a Lipschitz con-

tinuous mapping 𝑓
num,j

: Υ
2 → R𝑐

satisfying ∀𝑢 ∈ Υ : 𝑓
num,j(𝑢, 𝑢) = 𝑓

𝑗(𝑢). It is symmetric if

∀𝑢
1
, 𝑢

2
∈ Υ : 𝑓

num,j(𝑢
1
, 𝑢

2
) = 𝑓

num

𝑗 (𝑢
2
, 𝑢

1
). A directional numerical flux is a Lipschitz continuous

mapping 𝑓
num

: Υ
2 × S𝑑−1 → R𝑐

satisfying ∀𝑢 ∈ Υ, 𝑛 ∈ S𝑑−1

: 𝑓
num(𝑢, 𝑢, 𝑛) =

∑𝑑
𝑗=1

𝑛 𝑗 𝑓
𝑗(𝑢) and

∀𝑢
in
, 𝑢

out
∈ Υ, 𝑛 ∈ S𝑑−1

: 𝑓
num(𝑢

in
, 𝑢

out
, 𝑛) = − 𝑓

num(𝑢
out

, 𝑢
in
,−𝑛). It is symmetric if ∀𝑢

1
, 𝑢

2
∈ Υ, 𝑛 ∈

S𝑑−1

: 𝑓
num(𝑢

1
, 𝑢

2
, 𝑛) = 𝑓

num(𝑢
2
, 𝑢

1
, 𝑛). ⊳

2

The term “mass matrix” is common for finite element methods. In the finite difference SBP community, the name

“norm matrix” is more common.

3

We assume that the conservation law (2.1) is equipped with an entropy function 𝑈 and corre-

sponding entropy fluxes 𝐹
𝑗
satisfying 𝜕𝑢𝑈 ·𝜕𝑢 𝑓

𝑗
= 𝜕𝑢𝐹

𝑗
. We denote the entropy variables as𝑤 = 𝜕𝑢𝑈

and the flux potentials as 𝜓 𝑗
= 𝑤 · 𝑓 𝑗 − 𝐹

𝑗
. Then, EC/ED fluxes are given as follows [69].

Definition 2.5. A Cartesian numerical flux is EC if ∀𝑢− , 𝑢+ ∈ Υ : (𝑤(𝑢+) − 𝑤(𝑢−)) · 𝑓
num,j(𝑢− , 𝑢+) −

(𝜓 𝑗(𝑢+) − 𝜓 𝑗(𝑢−)) = 0 and ED if ≤ holds instead of equality. A directional numerical flux is EC if

∀𝑢
in
, 𝑢

out
∈ Υ, 𝑛 ∈ S𝑑−1

: (𝑤(𝑢
out

) − 𝑤(𝑢
in
)) · 𝑓 num(𝑢

in
, 𝑢

out
, 𝑛) − ∑𝑑

𝑗=1
𝑛 𝑗(𝜓

𝑗(𝑢
out

) − 𝜓 𝑗(𝑢
in
)) = 0 and

ED if ≤ holds instead of equality. ⊳

Collecting numerical fluxes at the interface between a given element and its neighbors in 𝑓𝑓𝑓
num

,

a typical strong form DG formulation on one element can be written as

𝜕𝑡𝑢𝑢𝑢 +
𝑑∑
𝑗=1

𝐷𝑗 𝑓𝑓𝑓
𝑗 + 𝑀

−1

𝑅
𝑇
𝐵
©­« 𝑓𝑓𝑓 num −

𝑑∑
𝑗=1

𝑁𝑗𝑅𝑓𝑓𝑓
𝑗ª®¬ = 000. (2.3)

This mimicks, for all polynomials 𝑣 of degree 𝑝, the variational form of (2.1)∫
Ω𝑙

𝑣 · 𝜕𝑡𝑢 +
∫
Ω𝑙

𝑣 · 𝜕𝑗 𝑓
𝑗 +

∫
𝜕Ω𝑙

©­« 𝑓 num −
𝑑∑
𝑗=1

𝑛 𝑗 𝑓
𝑗ª®¬ = 0. (2.4)

Flux differencing methods replace the volume term

∑𝑑
𝑗=1

𝐷𝑗 𝑓𝑓𝑓
𝑗
by another volume term VOLVOLVOL using

so-called volume fluxes 𝑓
vol

[24], which are symmetric numerical fluxes, resulting in

𝜕𝑡𝑢𝑢𝑢 +VOLVOLVOL + 𝑀
−1

𝑅
𝑇
𝐵
©­« 𝑓𝑓𝑓 num −

𝑑∑
𝑗=1

𝑁𝑗𝑅𝑓𝑓𝑓
𝑗ª®¬ = 000, VOLVOLVOL𝑖 =

𝑑∑
𝑗=1

∑
𝑘

2(𝐷𝑗)𝑖 ,𝑘 𝑓
vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘). (2.5)

Here, the sum

∑
𝑘 is performed over all degrees of freedom on the given element. In the following,

we assume that the mass matrix 𝑀 and the boundary operators 𝑅
𝑇
𝐵𝑁𝑗𝑅 are diagonal. Then,

this flux differencing form can be rewritten in locally conservative form; it is EC/ED if the volume

fluxes are EC and the surface fluxes are EC/ED [5, 24]. Moreover, it is of the same order of accuracy

as the derivative operator for general symmetric volume fluxes [11, 46].

On Legendre-Gauss-Lobatto tensor product elements with polynomials of degree 𝑝, the volume

terms of the flux differencing form (2.5) require asymptotically (𝑝 + 1)-times more flux evaluations

than the classical strong form (2.3), see Table 1. However, the asymptotic number of floating point

operations without computing fluxes is the same for both volume terms (basically one matrix

vector product along each line in a tensor product layout per spatial dimension).

Table 1: Computational complexity of strong form and flux differencing volume terms on Legendre-Gauss-

Lobatto tensor product elements in 𝑑 spatial dimensions using polynomials of degree 𝑝. Pointwise

fluxes are used in the strong form, while two-point fluxes are used in the flux differencing formu-

lation.

Strong form (2.3) Flux differencing (2.5)

Flux evaluations 𝑑(𝑝 + 1)𝑑 𝒪
(
𝑑(𝑝 + 1)𝑑+1

)
Floating point operations (without fluxes) 𝒪

(
𝑑(𝑝 + 1)𝑑+1

)
𝒪

(
𝑑(𝑝 + 1)𝑑+1

)
Having introduced the basic form of flux difference semidiscretizations (2.5), we next present

techniques for their efficient implementation. Most of these implementation aspects are designed

to reduce the total number of operations, based on the hypothesis that the evaluation of fluxes 𝑓
𝑗

and volume fluxes 𝑓
vol

is expensive, which holds for the compressible Euler equations and related

models.

4

2.1 Separation of volume and surface terms

Using the SBP property (2.2), the strong form (2.3) is equivalent to the classical weak form semidis-

cretization [37]

𝜕𝑡𝑢𝑢𝑢 −
𝑑∑
𝑗=1

𝑀
−1

𝐷
𝑇
𝑗 𝑀𝑓𝑓𝑓

𝑗 + 𝑀
−1

𝑅
𝑇
𝐵𝑓𝑓𝑓

num

= 000. (2.6)

The weak form (2.6) is slightly more computationally attractive as no additional pointwise flux

evaluations are required for the surface terms. The same efficiency optimization can be achieved

for flux differencing discretizations by rewriting the volume terms in (2.5) to use the flux differencing
operator

𝐷𝑗 = 2𝐷𝑗 − 𝑀
−1

𝑅
𝑇
𝐵𝑁𝑗𝑅, (2.7)

which is skew-symmetric with respect to 𝑀, see Section 2.2 below. Indeed, since we assume that

the mass matrix and the boundary operators are diagonal, 𝑀
−1

𝑅
𝑇
𝐵𝑁𝑗𝑅 is also diagonal. Thus,∑

𝑘

(𝐷𝑗)𝑖 ,𝑘 𝑓
vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘) =

∑
𝑘

2(𝐷𝑗)𝑖 ,𝑘 𝑓
vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘) − (𝑀−1

𝑅
𝑇
𝐵𝑁𝑗𝑅)𝑖 ,𝑖 𝑓

vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢 𝑖). (2.8)

From the consistency of the volume flux 𝑓
vol,j

, the last term in (2.8) simplifies to be(
𝑀

−1

𝑅
𝑇
𝐵𝑁𝑗𝑅𝑓𝑓𝑓

𝑗
)
𝑖
, (2.9)

which is exactly the surface flux term in (2.5). Hence, an optimized version of (2.5) that uses the

flux differencing operators 𝐷𝑗 (2.7) takes the form

𝜕𝑡𝑢𝑢𝑢 +VOLVOLVOL + 𝑀
−1

𝑅
𝑇
𝐵𝑓𝑓𝑓

num

= 000, VOLVOLVOL𝑖 =

𝑑∑
𝑗=1

∑
𝑘

(𝐷𝑗)𝑖 ,𝑘 𝑓
vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘). (2.10)

2.2 Symmetry properties of numerical fluxes and SBP operators

The flux differencing matrix 𝐷𝑗 (2.7) is skew-symmetric with respect to 𝑀. Indeed, the SBP

property (2.2) yields

𝑀𝐷𝑗 = 2𝑀𝐷𝑗 − 𝑅
𝑇
𝐵𝑁𝑗𝑅 = −2𝐷

𝑇
𝑗 𝑀 + 𝑅

𝑇
𝑁

𝑇
𝑗 𝐵𝑅 = −(𝑀𝐷𝑗)

𝑇
. (2.11)

In particular, the diagonal entries (𝐷𝑗)𝑖 ,𝑖 are zero. Thus, exploiting the symmetry of the volume

fluxes, it suffices to compute two-point volume fluxes 𝑓
vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘) only for combinations with, say,

𝑖 < 𝑘. This saves more than half of the total number of volume flux evaluations.

2.3 Sparsity structure of tensor product operators and curvilinear coordinates

Given one-dimensional SBP operators 𝐷𝑗 ,1𝐷 , two-dimensional SBP operators on the tensor product

domain can be constructed as 𝐷
1
= 𝐷

1,1𝐷 ⊗ I and 𝐷
2
= I ⊗𝐷

2,1𝐷 . Thus, they are naturally sparse.

Exploiting this sparsity structure is a fundamental step in an efficient implementation. This is

easily possible on a Cartesian mesh using the flux differencing form (2.5) directly with Cartesian

volume fluxes. Here, we describe how to transfer the same efficiency to curvilinear meshes.

We restrict this section to two spatial dimensions to make the presentation simpler. Assume we

are given a Cartesian reference quadrilateral with coordinates 𝜉𝑖
and a mapped curved version

with coordinates 𝑥
𝑖
. The discrete Jacobian in 2D can be calculated directly as

𝐽𝐽𝐽 = (𝐽𝑎𝐽𝑎𝐽𝑎)2
2
(𝐽𝑎𝐽𝑎𝐽𝑎)1

1
− (𝐽𝑎𝐽𝑎𝐽𝑎)1

2
(𝐽𝑎𝐽𝑎𝐽𝑎)2

1
, (2.12)

5

where

(𝐽𝑎𝐽𝑎𝐽𝑎)1
1
= diag

(
𝐷

2,𝜉𝑥
2𝑥
2

𝑥
2
)
, (𝐽𝑎𝐽𝑎𝐽𝑎)1

2
= −diag

(
𝐷

2,𝜉𝑥
1𝑥
1

𝑥
1
)
, (𝐽𝑎𝐽𝑎𝐽𝑎)2

1
= −diag

(
𝐷

1,𝜉𝑥
2𝑥
2

𝑥
2
)
, (𝐽𝑎𝐽𝑎𝐽𝑎)2

2
= diag

(
𝐷

1,𝜉𝑥
1𝑥
1

𝑥
1
)
,

(2.13)

are the components of scaled contravariant basis vectors (𝐽𝑎)𝑛𝑗 in 2D [35, Chapter 6], 𝑥
𝑖𝑥
𝑖

𝑥
𝑖

is the

vector containing the nodal values of the curvilinear coordinates of an element, and 𝐷𝑗 ,𝜉 are tensor

product SBP operators on the Cartesian reference coordinates 𝜉 𝑗
. Using these ingredients, SBP

operators on the curved element can be constructed as [2]

𝐷𝑗 ,𝑥 =
1

2

𝐽𝐽𝐽
−1

𝑑∑
𝑛=1

(
(𝐽𝑎𝐽𝑎𝐽𝑎)𝑛𝑗 𝐷𝑛,𝜉 + 𝐷𝑛,𝜉(𝐽𝑎𝐽𝑎𝐽𝑎)

𝑛
𝑗

)
, 1 ≤ 𝑗 ≤ 𝑑. (2.14)

The curvilinear SBP operators (2.14) in the volume terms of the flux differencing form (2.5) are linear

combinations of the underlying Cartesian SBP operators. Specifically, the entry corresponding to

nodes 𝑖 and 𝑘 is

(𝐷𝑗)𝑖 ,𝑘 =
1

2𝐽𝑖

𝑑∑
𝑛=1

(∑
𝑙

(
(𝐽𝑎𝐽𝑎𝐽𝑎)𝑛𝑗

)
𝑖 ,𝑙

(
𝐷𝑛,𝜉

)
𝑙 ,𝑘

+
∑
𝑙

(
𝐷𝑛,𝜉

)
𝑖 ,𝑙

(
(𝐽𝑎𝐽𝑎𝐽𝑎)𝑛𝑗

)
𝑙 ,𝑘

)
, (2.15)

where we used that 𝐽𝐽𝐽 is diagonal. Since (𝐽𝑎𝐽𝑎𝐽𝑎)𝑛𝑗 is diagonal, too,

(𝐷𝑗)𝑖 ,𝑘 =
1

2𝐽𝑖

𝑑∑
𝑛=1

((
(𝐽𝑎𝐽𝑎𝐽𝑎)𝑛𝑗

)
𝑖 ,𝑖

(
𝐷𝑛,𝜉

)
𝑖 ,𝑘

+
(
𝐷𝑛,𝜉

)
𝑖 ,𝑘

(
(𝐽𝑎𝐽𝑎𝐽𝑎)𝑛𝑗

)
𝑘,𝑘

)
. (2.16)

This can be abbreviated as

(𝐷𝑗)𝑖 ,𝑘 =
1

𝐽𝑖

𝑑∑
𝑛=1

𝛼
𝑗 ,𝑛

𝑖,𝑘
(𝐷𝑛,𝜉)𝑖 ,𝑘 , 1 ≤ 𝑗 ≤ 𝑑, (2.17)

where 𝛼
𝑗 ,𝑛

𝑖,𝑘
= 1

2

(
((𝐽𝑎)𝑛𝑗)𝑖 +((𝐽𝑎)𝑛𝑗)𝑘

)
, which is the arithmetic average of the scaled contravariant basis

vectors at nodes 𝑖 and 𝑘. Thus, the volume terms are recast to be

𝑑∑
𝑗=1

∑
𝑘

2(𝐷𝑗)𝑖 ,𝑘 𝑓
vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘) =

1

𝐽𝑖

𝑑∑
𝑗=1

∑
𝑘

2

(𝑑∑
𝑛=1

𝛼
𝑗 ,𝑛

𝑖,𝑘
(𝐷𝑛,𝜉)𝑖 ,𝑘

)
𝑓

vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘). (2.18)

If implemented in this form, we need only compute Cartesian volume fluxes instead of directional

ones, which is usually slightly more efficient. However, the form given in (2.18) loses the sparsity

of the individual tensor product operators. Thus, it is advantageous to rearrange terms as

𝑑∑
𝑗=1

∑
𝑘

2

(𝑑∑
𝑛=1

𝛼
𝑗 ,𝑛

𝑖,𝑘
(𝐷𝑛,𝜉)𝑖 ,𝑘

)
𝑓

vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘) =
𝑑∑

𝑛=1

∑
𝑘

2(𝐷𝑛,𝜉)𝑖 ,𝑘
(𝑑∑
𝑗=1

𝛼
𝑗 ,𝑛

𝑖,𝑘
𝑓

vol,j(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘)
)
. (2.19)

The sum over the Cartesian volume fluxes is effectively a directional volume flux 𝑓
vol(𝑢𝑢𝑢 𝑖 , 𝑢𝑢𝑢𝑘 , 𝛼

·,𝑛
𝑖,𝑘
)

in the direction of the arithmetic average of the contravariant basis vectors at nodes 𝑖 and 𝑘.

In this form, the sparsity structure of the underlying Cartesian tensor product SBP operators is

completely retained. Since the evaluation of volume fluxes is usually relatively expensive and the

evaluation of directional volume fluxes is only marginally more expensive than the computation

of their Cartesian equivalents, it is advantageous to use the latter form (2.19). Of course, the usual

care must be taken to ensure free-stream preservation etc. in multiple space dimensions when

computing the contravariant basis vectors [36, 71]. Moreover, the techniques discussed in the

previous Sections 2.1 and 2.2 can still be applied.

6

2.4 Discussion

The impact of the optimizations discussed in this section depend on the complexity of the numerical

fluxes. For relatively expensive volume fluxes, such as EC fluxes for the compressible Euler

equations, taking advantage of the symmetry (Section 2.2) and sparsity (Section 2.3) properties are

most important. These optimizations should always be applied before focusing on problem-specific

optimizations like the ones discussed in the following section. On top of these optimizations,

common efficient implementation techniques for discontinuous Galerkin methods still apply. For

example, it is usually efficient to compute the numerical fluxes at surfaces once per surface (instead

of once per element) and use them to update the right-hand side on CPUs.

3 Compressible Euler equations

To discuss further efficient implementation strategies we consider the compressible Euler equations

𝜕𝑡
©­­«
𝜚
𝜚𝑣𝑖
𝜚𝑒

ª®®¬ +
𝑑∑
𝑗=1

𝜕𝑗
©­­«

𝜚𝑣 𝑗
𝜚𝑣 𝑗𝑣𝑖 + 𝑝𝛿𝑖 𝑗
(𝜚𝑒 + 𝑝)𝑣 𝑗

ª®®¬ = 0, 1 ≤ 𝑖 ≤ 𝑑, (3.1)

as an example system of conservation laws. Here, 𝜚 is the fluid density, 𝑣 the velocity, 𝑒 the specific

total energy, and 𝑝 the pressure. We assume a perfect gas law with ratio of specific heats 𝛾, i.e.,

𝑝 = (𝛾 − 1)
(
𝜚𝑒 − 1

2

𝜚 |𝑣 |2
)
. (3.2)

3.1 Logarithmic mean

Since the seminal work of Ismail and Roe [31] on affordable EC fluxes for the compressible Euler

equations, the logarithmic mean

{{𝑎}}
log

= [[𝑎]]/[[log(𝑎)]] (3.3)

has played a crucial role. Indeed, it is even necessary if some desirable additional properties are

to be satisfied [52]. Here, we have used the common jump notation

[[𝑎]] = 𝑎+ − 𝑎−. (3.4)

Since a naive implementation of the logarithmic mean (3.3) is subject to floating point accuracy

issues, special care must be taken when 𝑎+ ≈ 𝑎−. Here, we present an efficient version based on

Algorithm 1 presented in [31].

Since divisions are more expensive (in terms of latency and inverse throughput) than multipli-

cations on modern (CPU) hardware [18], this algorithm can be improved by re-writing divisions

in terms of cheaper multiplications, even if more additions are required on top; these can be com-

bined into fused multiply-add (FMA) instructions. The resulting optimized implementation of the

logarithmic mean is given in Algorithm 2.

Another variant of Algorithm 2 replaces the division in the “if” branch by a multiplication using

a polynomial approximation of 1/log(·). For example, the term

(𝑎− + 𝑎+)/
(
2 + 𝑢 · (2/3 + 𝑢 · (2/5 + 𝑢 · 2/7))

)
(3.5)

can be replaced by

(𝑎− + 𝑎+) ·
(
1/2 + 𝑢 · ((−1/6) + 𝑢 · ((−2/45) + 𝑢 · (−22/945)))

)
(3.6)

without changing other parts of Algorithm 2. Our benchmarks indicate that this does not result

in significant performance differences on the hardware currently available to us.

7

Algorithm 1 Computation of the logarithmic mean as described by Ismail and Roe [31].

Require: Input 𝑎− , 𝑎+ > 0

Ensure: Stable approximation of the logarithmic mean {{𝑎}}
log

𝜉 = 𝑎−/𝑎+
𝑓 = (𝜉 − 1)/(𝜉 + 1)
𝑢 = 𝑓 · 𝑓
𝜀 = 10

−4 ⊲ for 64 bit floating point numbers

if 𝑢 < 𝜀 then
𝐹 = 1 + 𝑢/3 + 𝑢 · 𝑢/5 + 𝑢 · 𝑢 · 𝑢/7

else
𝐹 = (log(𝜉)/2)/ 𝑓

end if
return (𝑎− + 𝑎+)/(2𝐹)

Algorithm 2 Optimized computation of the logarithmic mean.

Require: Input 𝑎− , 𝑎+ > 0

Ensure: Stable approximation of the logarithmic mean {{𝑎}}
log

𝑢 = (𝑎− · (𝑎− − 2𝑎+) + 𝑎+ · 𝑎+)/(𝑎− · (𝑎− + 2𝑎+) + 𝑎+ · 𝑎+) ⊲ equivalent to 𝑓
2

, 𝑓 = 𝜉−1

𝜉+1
, 𝜉 =

𝑎−
𝑎+

𝜀 = 10
−4

if 𝑢 < 𝜀 then
return (𝑎− + 𝑎+)/

(
2 + 𝑢 · (2/3 + 𝑢 · (2/5 + 𝑢 · 2/7))

)
⊲ use Horner’s rule

else
return (𝑎+ − 𝑎−)/log(𝑎+/𝑎−)

end if

Some EC numerical fluxes for the compressible Euler equations presented in the following

sections contain also the inverse logarithmic mean, i.e., factors of the form 1/{{𝑎}}
log

. Since the

computation of the logarithmic mean in Algorithm 2 already contains a division in the last step, it

is advantageous to avoid the additional division and also implement Algorithm 3 for computing

the inverse logarithmic mean.

Algorithm 3 Optimized computation of the inverse logarithmic mean.

Require: Input 𝑎− , 𝑎+ > 0

Ensure: Stable approximation of the inverse logarithmic mean 1/{{𝑎}}
log

𝑢 = (𝑎− · (𝑎− − 2𝑎+) + 𝑎+ · 𝑎+)/(𝑎− · (𝑎− + 2𝑎+) + 𝑎+ · 𝑎+) ⊲ equivalent to 𝑓
2

, 𝑓 = 𝜉−1

𝜉+1
, 𝜉 =

𝑎−
𝑎+

𝜀 = 10
−4

if 𝑢 < 𝜀 then
return

(
2 + 𝑢 · (2/3 + 𝑢 · (2/5 + 𝑢 · 2/7))

)
/(𝑎− + 𝑎+) ⊲ use Horner’s rule

else
return log(𝑎+/𝑎−)/(𝑎+ − 𝑎−)

end if

3.2 Numerical fluxes for the compressible Euler equations

As described in Section 2.3, it is advantageous to use directional volume fluxes for flux differencing

on non-Cartesian meshes. First, we present such a directional form of the non-EC flux of Shima

8

et al. [62], which is kinetic energy and pressure equilibrium preserving.

𝑓𝜚 = {{𝜚}}{{𝑣 · 𝑛}},
𝑓𝜚𝑣 = 𝑓𝜚{{𝑣}} + {{𝑝}}𝑛,

𝑓𝜚𝑒 = 𝑓𝜚
((𝑣 ; 𝑣))

2

+ {{𝑝}}{{𝑣 · 𝑛}} 1

𝛾 − 1

+ ((𝑝 ; 𝑣 · 𝑛)),
(3.7)

where we introduced the arithmetic mean

{{𝑎}} = 𝑎+ + 𝑎−
2

(3.8)

and the product mean

((𝑎 ; 𝑏)) = 𝑎+ · 𝑏− + 𝑎− · 𝑏+
2

= 2{{𝑎}} · {{𝑏}} − {{𝑎 · 𝑏}}. (3.9)

The version (3.7) already clarifies how common subexpressions can be used efficiently. In the

spirit of Section 3.1, modern hardware will benefit from avoiding divisions by storing 1/(𝛾 − 1)
and turning the division by 𝛾 − 1 into a multiplication.

Next, we present a directional version of the EC flux of Ranocha [46–48], which is also kinetic

energy and pressure equilibrium preserving.

𝑓𝜚 = {{𝜚}}
log

{{𝑣 · 𝑛}},
𝑓𝜚𝑣 = 𝑓𝜚{{𝑣}} + {{𝑝}}𝑛,

𝑓𝜚𝑒 = 𝑓𝜚
((𝑣 ; 𝑣))

2

+ 𝑓𝜚
1

{{𝜚/𝑝}}
log

1

𝛾 − 1

+ ((𝑝 ; 𝑣 · 𝑛)).
(3.10)

The direct and inverse logarithmic means should use Algorithms 2 and 3, respectively. Moreover,

the inverse logarithmic mean in (3.10) can also be rewritten as

1

{{𝜚/𝑝}}
log

=
log

(
(𝜚+/𝑝+)/(𝜚−/𝑝−)

)
𝜚+/𝑝+ − 𝜚−/𝑝−

= 𝑝+𝑝−
log

(
(𝜚+𝑝−)/(𝜚−𝑝+)

)
𝜚+𝑝− − 𝜚−𝑝+

= 𝑝+𝑝−
1

{{𝜚+𝑝− , 𝜚−𝑝+}}log

(3.11)

to further avoid divisions, resulting in a speed-up on modern hardware. Nevertheless, EC fluxes

such as (3.10) involving the logarithmic mean are computationally more demanding than fluxes

using only the arithmetic mean such as (3.7). Thus, we will sometimes refer to them as “cheap”

(flux of Shima et al.) and “expensive” (flux of Ranocha) fluxes. The same optimizations described

here can also be applied successfully to other entropy-conserving two-point fluxes, e.g., the ones

of Ismail and Roe [31] or Chandrashekar [9].

4 Numerical experiments

Here, we present numerical experiments and benchmarks ranging from microbenchmarks of sin-

gle numerical flux evaluations to full simulation runs. The code and instructions to reproduce all

numerical results shown in this article are available in our reproducibility repository [55]. The

benchmark results shown in this paper were obtained on a dual socket compute node with two

2.5 GHz Intel® Xeon® Gold 6248 20-core processors and 384 GiB RAM, except where noted oth-

erwise. We only report serial performance using one core; neither shared memory parallelization

(multiple threads, e.g., OpenMP) nor distributed memory parallelization (e.g., MPI) is used. The

Trixi.jl code was executed using version v1.7.0 of Julia [4] with bound checking disabled and other-

wise default options of the official binaries. FLUXO was compiled in Releasemode with the Intel®

Fortran Compiler 19.1.3, i.e., using the flags-O3, -xHost, -shared-intel, -inline-max-size=1500,
-no-inline-max-total-size, and -no-prec-div, which generates code optimized for the current

9

processor architecture. Note that we are at an optimization level where the particular instruc-

tion set used can make a noticeable difference in the performance. For example, restricting the

Fortran compiler to AVX2 reduces the performance index described below by up to 19 %. Since

the preferred vector width for the LLVM version shipped with Julia v1.7 is 256 bits, all numerical

experiments conducted with Trixi.jl only use the AVX2 instruction set.

4.1 Baseline performance results on Cartesian and curved meshes

Meshes and numerical algorithms for PDEs support different geometric features such as curved

coordinates, nonconforming interfaces, and an unstructured connectivity. Sacrificing some of these

features can increase the performance and reduce code complexity. Here, we compare different

mesh types available in Trixi.jl and the standard mesh type of FLUXO to provide guidance as

to whether practitioners might choose to drop certain geometric features for performance if the

problem setup allows it. Specifically, we compare the serial performance on

• the TreeMesh, a Cartesian, ℎ-nonconforming, tree-structured mesh of Trixi.jl,

• the StructuredMesh, a curved, conforming, structured mesh of Trixi.jl,

• the P4estMesh, a curved, ℎ-nonconforming, unstructured mesh of Trixi.jl,

• the three-dimensional, curved, ℎ-nonconforming, unstructured mesh of FLUXO.

Trixi.jl and FLUXO implement all efficient implementation techniques discussed in Sections 2 and

3. On top of that, for the compressible Euler equations FLUXO precomputes primitive variables,

1/𝜚 , and |𝑣 |2 at all nodes before computing the volume flux terms. Such an invasive optimization

improves the performance further, as discussed in Section 7.1. Furthermore, both Trixi.jl and

FLUXO use explicit inlining of volume fluxes (and setting the polynomial degree at compile time

for FLUXO), as discussed in Section 7.3. Since FLUXO is natively a 3D code, 2D results will only

be shown for Trixi.jl.

For these performance benchmarks, we use the isentropic vortex setup, a widely used benchmark

problem [63] with an analytical solution. We use slightly different parameters than the original

setup to make sure that all possible paths in the logarithmic mean are followed. In particular, we

strongly increase the strength of the vortex to 𝜀 = 20. Hence, the initial conditions read as

𝑇 = 𝑇
0
− (𝛾 − 1)𝜀2

8𝛾𝜋2

exp

(
1 − 𝑟

2
)
, 𝜚 = 𝜚

0
(𝑇/𝑇

0
)1/(𝛾−1)

,

𝑣 = 𝑣
0
+ 𝜀

2𝜋
exp

(
(1 − 𝑟

2)/2

)
(−𝑥

2
, 𝑥

1
, 0)𝑇 ,

(4.1)

in 3D and its 2D analog, where 𝑟 is the distance from the origin, 𝑇 = 𝑝/𝜚 the temperature, 𝜚
0
= 1

the background density, 𝑣
0
= (1, 1, 0)𝑇 the background velocity, 𝑝

0
= 10 the background pressure,

𝛾 = 1.4, and 𝑇
0
= 𝑝

0
/𝜚

0
the background temperature. The domain [−5, 5]𝑑 is equipped with

periodic boundary conditions.

While all meshes allow more features, we restrict them to a simple Cartesian, conforming, struc-

tured setup here. We use eight elements per coordinate direction. The LGL-DGSEM discretizations

use flux differencing with the same numerical flux in the volume and at the interfaces. The spatial

semidiscretization is integrated in Trixi.jl for 50 time steps using the nine-stage, fourth-order FSAL

Runge-Kutta method of [51] with error-based step size control using a tolerance of 10
−8

. In FLUXO,

we integrate in time for 90 time steps using the five-stage, fourth-order Runge-Kutta method of [33]

with CFL-based step size control. This ensures that both codes use the same number of right-hand

side (RHS) evaluations.

For baseline performance benchmarks, we use the performance index PID as the measure of

runtime efficiency.

10

Definition 4.1. The performance index PID is defined as the runtime of one evaluation of the spatial

semidiscretization divided by the total number of degrees of freedom #DOF. Here and in the

following, each DG volume node counts as a single DOF, i.e., #DOF is given by (𝑝 + 1)𝑑 times the

number of elements. ⊳

That is, a lower PID means a faster execution of the code. For all PID benchmarks, we average

the wall clock time per RHS evaluation over a complete simulation and take the mean value (and

standard deviation) of five runs.

Trixi.jl, TreeMesh Trixi.jl, StructuredMesh Trixi.jl, P4estMesh FLUXO

2 4 6 8 10 12 14 16

0

0.5

1

1.5

·10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(a) 2D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

0

2

4

·10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(b) 3D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

0

1

2

3

·10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(c) 2D, flux of Ranocha (3.10).

2 4 6 8 10 12 14 16

0

2

4

6

·10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(d) 3D, flux of Ranocha (3.10).

Figure 1: Runtime per right-hand side evaluation and degree of freedom for different mesh types and fluxes,

using the LGL-DGSEM discretization with flux differencing of the compressible Euler equations.

The baseline PID results are visualized in Figure 1. As expected based on the number of

operations, the PID increases linearly with the polynomial degree 𝑝 (see Table 1; the computational

complexity 𝒪
(
𝑑(𝑝 + 1)𝑑+1

)
needs to be divided by the number of DOFs per element, (𝑝 + 1)𝑑, to get

the scaling of the PID). The current handling of unstructured meshes in the P4estMesh of Trixi.jl

compared to the StructuredMesh has no visible impact in 2D and only a minor impact of approx.

5 % in 3D. In contrast, the Cartesian TreeMesh can improve the performance significantly by up to

33 % for cheap volume fluxes and up to 20 % for expensive volume fluxes involving logarithmic

mean values; the impact in 2D is reduced by approx. ten percentage points.

Moreover, these benchmarks show that the serial performance results of FLUXO (written in

Fortran) and Trixi.jl (written in Julia) are similar. These comparisons are based on compiling

FLUXO with all available performance tuning options, including explicit inlining of the volume

fluxes and setting the polynomial degree (and node type) as constant at compile time. Thus, these

numerical results demonstrate that Julia can be used for performance-critical scientific computing.

Therefore, we will present most microbenchmarks using only Julia code in the following. This

11

also simplifies the presentation in the accompanying repository [55] since it is easier to work with

a high-level language (Julia) and a library-based approach (Trixi.jl).

4.2 Different versions of numerical fluxes

We perform microbenchmarks comparing different versions of numerical fluxes for the compress-

ible Euler equations. In particular, we benchmark the optimized directional fluxes presented in

Section 3.2 and their corresponding Cartesian versions. Since the compressible Euler equations are

rotationally invariant, a common approach to compute numerical fluxes in arbitrary directions is to

rotate the states into the first coordinate direction, compute the standard Cartesian flux there, and

rotate the resulting flux back, see [72, Section 16.7.3]. We also benchmark this approach including

the on-the-fly computation of an appropriate rotation matrix (tangent vectors) from a given normal

direction/vector, see Algorithm 4. Additionally, we benchmark an optimized alternative thereof

with precomputed rotation matrix.

Algorithm 4 Computation of rotated numerical fluxes.

Require: Input states 𝑢
in
, 𝑢

out
, normal direction �̃�, Cartesian numerical flux 𝑓

num

Ensure: Numerical flux 𝑓
num(𝑢

in
, 𝑢

out
; �̃�)

Normalize the normal direction 𝑛 = �̃�/∥�̃�∥
Compute 𝑑 − 1 orthonormal tangent vectors 𝑡𝑖 ⊥ 𝑛 to get the rotation matrix (𝑛, 𝑡𝑖)

𝑇

Rotate states 𝑢
in
, 𝑢

out
to first coordinate direction, resulting in rotated states 𝑢− , 𝑢+

Compute the Cartesian numerical flux 𝑓
num,1(𝑢− , 𝑢+)

Rotate the flux 𝑓
num,1(𝑢− , 𝑢+) back from first coordinate direction to obtain 𝑓

num(𝑢
in
, 𝑢

out
; 𝑛)

return 𝑓
num(𝑢

in
, 𝑢

out
; �̃�) = 𝑓

num(𝑢
in
, 𝑢

out
; 𝑛)∥�̃�∥

Table 2: Microbenchmarks of different versions of numerical fluxes for the compressible Euler equations.

Cartesian Directional Rotated

(on the fly) (precomputed)

Flux of Shima et al. (3.7), 2D 7.7 ± 0.1 ns 9.1 ± 0.2 ns 18.0 ± 0.3 ns 11.8 ± 0.2 ns

Flux of Shima et al. (3.7), 3D 9.5 ± 0.2 ns 12.1 ± 0.2 ns 53.4 ± 0.4 ns 18.7 ± 0.3 ns

Flux of Ranocha (3.10), 2D 33.2 ± 0.3 ns 34.8 ± 0.3 ns 42.1 ± 0.3 ns 37.4 ± 0.3 ns

Flux of Ranocha (3.10), 3D 35.4 ± 0.3 ns 39.7 ± 0.3 ns 82.1 ± 0.4 ns 46.0 ± 0.3 ns

LLF flux, 2D 18.3 ± 0.3 ns 19.9 ± 0.2 ns 28.3 ± 0.2 ns 21.2 ± 0.2 ns

LLF flux, 3D 19.7 ± 0.2 ns 21.5 ± 0.2 ns 68.2 ± 0.4 ns 27.7 ± 0.4 ns

HLL flux, 2D 21.1 ± 0.2 ns 21.4 ± 0.2 ns 31.6 ± 0.3 ns 25.4 ± 0.3 ns

HLL flux, 3D 23.3 ± 0.2 ns 22.9 ± 0.3 ns 79.0 ± 0.4 ns 34.6 ± 0.3 ns

The results of these microbenchmarks are shown in Table 2. The symmetric numerical fluxes used

for the volume terms behave as follows. The Cartesian fluxes are usually the most efficient versions,

followed directly by the directional approach without rotation. Depending on the computational

complexity of the numerical flux, the Cartesian version is between 5 % and 20 % more efficient

than the directional version. The rotated version with precomputed terms is significantly more

expensive than the directional version, usually between 10 % (2D, expensive flux) and 2× (3D,

cheap flux). Finally, the on-the-fly version without precomputed rotation matrix is significantly

more expensive than the rotated version with precomputed terms, approximately between 10 %

(2D, expensive flux) and 3× (3D, cheap flux).

For these comparisons we also benchmarked simple versions of the local Lax-Friedrichs/Rusanov

flux (LLF) and the HLL flux [26]. Such numerical fluxes are usually used at interfaces to introduce

additional dissipation. The runtimes of these fluxes is between the cheap flux of Shima et al. (3.7)

12

and the expensive EC flux of Ranocha (3.10). Thus, we continue to focus on the volume terms

using flux differencing in this article.

The key messages of these microbenchmarks are as follows. First, the improved performance of

the Cartesian mesh reported in Section 4.1 is not only caused by the different versions of numerical

fluxes but also by the reduced amount of operations necessary to deal with general curvilinear

coordinates. Second, a direct implementation of directional numerical fluxes is often preferable

compared to an implementation that uses rotations; if the latter should nevertheless be used, the

necessary rotation terms should be computed in advance, particularly for 3D implementations.

5 Comparison to overintegration

Another common strategy to increase the robustness of LGL-DGSEM discretizations is overintegra-

tion, i.e., interpolating the numerical solution to a higher polynomial degree, using standard weak

form volume terms there, and projecting orthogonally on the given polynomial degree. A com-

parison of overintegration and flux differencing based DG methods for under-resolved turbulence

is presented in [76].

Here, we perform microbenchmarks of the volume terms using flux differencing LGL-DGSEM

and overintegration with different polynomial degrees. For the overintegration, we follow the

procedure presented in, e.g., [22]. The interpolation and projection steps use sum factorization and

efficient multiplication kernels using tools from LoopVectorization.jl
3

, which is on par with (and

sometimes faster than) optimized BLAS libraries such as Intel MKL for matrix multiplications at

these sizes [12]. The numerical solution is initialized on a Cartesian TreeMeshwith a single element

for the isentropic vortex initial condition described in Section 4.1.

The results are visualized in Figure 2. The three-dimensional case is most relevant in practice.

There, flux differencing with an inexpensive volume flux, such as the one of Shima et al. (3.7), is

cheaper than any overintegration for small polynomial degrees 3 ≤ 𝑝 ≤ 5. For 5 < 𝑝 ≤ 7, flux

differencing is between overintegration with one or two additional nodes per coordinate direction.

For an expensive volume flux involving logarithmic mean values, flux differencing is still between

overintegration with one or two additional nodes per coordinate direction for 𝑝 ∈ {3, 4}. For 𝑝 > 5,

flux differencing is between overintegration with internal polynomial degrees of ⌊3𝑝/2⌋ and 2𝑝.

In 2D, flux differencing is relatively more expensive than in 3D. Nevertheless, cheap volume fluxes

make it still faster than overintegration with 2𝑝.

The key message of these benchmarks is that flux differencing is competetive with overintegra-

tion, in particular in 3D, and it has stability guarantees that the overintegration strategy typically

does not have. For the most practically relevant case for computational fluid dynamics (3D, poly-

nomial degree ≤ 3), flux differencing can be faster than overintegration of the volume terms with

a single additional degree of freedom per coordinate direction. Moreover, there exist several cases

where overintegration fails to provide appropriate robustness while flux differencing schemes are

stable [76]. Additionally, analogous to the comparison of Legendre-Gauss and Legendre-Gauss-

Lobatto quadrature rules in discontinuous Galerkin spectral element methods, overintegration

comes at the cost of increased stiffness of the semidiscretization, resulting roughly in a factor of

two in time step restrictions of explicit time integration methods [23]. Moreover, many overin-

tegration variants apply a similar procedure also to surface terms, making them more expensive

than the standard surface terms used for flux differencing methods.

6 Gauss collocation methods and entropy projections

In addition to entropy stable schemes based on (2.5), it is possible to construct entropy stable

schemes based on generalized SBP operators [13]. These include, for example, collocation schemes

3https://github.com/JuliaSIMD/LoopVectorization.jl

13

https://github.com/JuliaSIMD/LoopVectorization.jl

flux differencing OI, 𝑝 + 1 OI, 𝑝 + 2 OI, ⌊3𝑝/2⌋ OI, 2𝑝

2 4 6 8 10 12 14 16

10
−6

10
−5

Polynomial degree

T
i
m

e
[
s
e
c
]

(a) 2D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

10
−5

10
−4

10
−3

10
−2

Polynomial degree

T
i
m

e
[
s
e
c
]

(b) 3D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

10
−6

10
−5

10
−4

Polynomial degree

T
i
m

e
[
s
e
c
]

(c) 2D, flux of Ranocha (3.10).

2 4 6 8 10 12 14 16

10
−5

10
−4

10
−3

10
−2

Polynomial degree

T
i
m

e
[
s
e
c
]

(d) 3D, flux of Ranocha (3.10).

Figure 2: Microbenchmarks of overintegration (OI) vs. flux differencing volume terms of DG discretizations

with polynomials of degree 𝑝 for the the compressible Euler equations.

constructed on Legendre-Gauss nodes [8]. These schemes can be written in the form [7]

𝜕𝑡𝑢𝑢𝑢 + �
VOLVOLVOL + 𝑀

−1

𝑅
𝑇
𝐵𝑓𝑓𝑓

num

= 000. (6.1)

The operators 𝑀, 𝑅, 𝐷𝑗 are defined as in Section 2. However, one key difference between (2.5) and

(6.1) is that it is no longer assumed that volume nodes include nodes on the boundary. Instead,

the boundary restriction operator 𝑅 now maps from interior nodes to boundary nodes, resulting

in a fully dense matrix. As a result, the volume terms must be modified to retain both high

order accuracy and entropy stability. Recall that 𝑢 denotes the mapping from entropy variables

to conservative variables and 𝑤 denotes the mapping from conservative variables to entropy

variables. Then, the volume terms
�
VOLVOLVOL are computed via

�
VOLVOLVOL = 𝑀

−1

[
I

𝑅

]𝑇
𝑓𝑓𝑓

hybrid

, 𝑓𝑓𝑓
hybrid

𝑖
=

𝑑∑
𝑗=1

∑
𝑘

2(𝑄ℎ,𝑗)𝑖 ,𝑘 𝑓
vol,j(�̃̃��̃�𝑢 𝑖 , �̃̃��̃�𝑢𝑘),

𝑄ℎ,𝑗 =
1

2

[
𝑀𝐷𝑗 − (𝑀𝐷𝑗)

𝑇
𝑅
𝑇
𝐵𝑁𝑗

−𝐵𝑁𝑗𝑅 0

]
, �̃̃��̃�𝑢 =

[
𝑢𝑢𝑢

𝑢
(
𝑅𝑤(𝑢𝑢𝑢)

)] , (6.2)

where 𝑘 sums over the combined set of both volume and surface quadrature points. Here, �̃̃��̃�𝑢

is the “entropy projection”, and 𝑄ℎ,𝑗 denotes the hybridized SBP operator with respect to the 𝑗th

coordinate direction [6]. Entropy stable schemes constructed on the Legendre-Gauss nodes can be

alternatively formulated in terms of “correction” terms on the surface, allowing an implementation

14

which keeps the volume term VOLVOLVOL from (2.5) untouched:

𝜕𝑡𝑢𝑢𝑢 +VOLVOLVOL + 𝑀
−1

(
𝑅
𝑇
𝐵𝑓𝑓𝑓

num +
[

I

𝑅

]𝑇
𝑓𝑓𝑓

corr

)
= 000,

𝑓𝑓𝑓
corr

𝑖 =

𝑑∑
𝑗=1

∑
𝑘

(𝐵ℎ,𝑗)𝑖 ,𝑘 𝑓
vol,j(�̃̃��̃�𝑢 𝑖 , �̃̃��̃�𝑢𝑘), 𝐵ℎ,𝑗 =

[
0 𝑅

𝑇
𝐵𝑁𝑗

−𝐵𝑁𝑗𝑅 0

]
,

(6.3)

where 𝑘 sums again over the combined set of both volume and surface quadrature points and 𝐵ℎ,𝑗

denotes a hybridized boundary matrix.

The efficient implementation of (6.1) and (6.3) needs special care to avoid unnecessary flux

evaluations and multiplications by zero. This can be achieved by using sparse matrix formats and

the tensor product structure within both Legendre-Gauss and Legendre-Gauss-Lobatto bases on

tensor product elements. We note that Trixi.jl uses (6.1) for the implementation, while FLUXO uses

(6.3). In the results of this section, we only use the entropy-conservative scheme, using the flux of

Ranocha (3.10) in the flux differencing volume terms and for the surface fluxes.

3 4 5 6 7 8 9 10 11 12 13 14 15

0

1 · 10
−7

2 · 10
−7

3 · 10
−7

4 · 10
−7

5 · 10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

2D

3 4 5 6 7 8 9 10 11 12 13 14 15

0

1 · 10
−7

2 · 10
−7

3 · 10
−7

4 · 10
−7

5 · 10
−7

Polynomial degree

3D

Volume integral Entropy projection Surface integral Interface flux Other

Figure 3: PID breakdowns for two and three dimensional benchmarks using a Legendre-Gauss collocation

solver.

Figure 3 shows PID values (broken down by subroutines) for 2D and 3D Legendre-Gauss collo-

cation solvers of degree 3, . . . , 15 in Trixi.jl. For all polynomial degrees studied here, we observe

that the volume integral strongly dominates computational runtime. This step is dominated by

flux evaluations, but also includes a “lifting” of face contributions to volume nodes when com-

puting (6.2) or (6.3). The next most expensive step is the entropy projection, which makes up a

smaller share of the overall runtime as 𝑝 increases. For example, for 𝑝 > 10 in both two and three

dimensions, the cost of the entropy projection is close to the combined cost of all subroutines aside

from flux differencing volume terms.

The relative costs (as percentage of PID) of flux differencing and the entropy projection depend

strongly on the polynomial degree 𝑝; a higher polynomial degree increases the relative cost of flux

differencing compared to the entropy projection. In 2D, these relative costs range from approx.

66 % (flux differencing) and 11 % (entropy projection) for 𝑝 = 3 to approx. 91 % (flux differencing)

and 4 % (entropy projection) for 𝑝 = 15. In 3D, these relative costs range from approx. 65 % (flux

differencing) and 14 % (entropy projection) for 𝑝 = 3 to approx. 89 % (flux differencing) and 6 %

(entropy projection) for 𝑝 = 15.

15

Trixi.jl, SBP Trixi.jl, GaussSBP Trixi.jl, P4estMesh FLUXO, GaussSBP

2 4 6 8 10 12 14 16

0

2

4

6

·10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(a) 2D.

2 4 6 8 10 12 14 16

0

0.5

1

·10
−6

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(b) 3D.

Figure 4: Runtime per right-hand side evaluation and degree of freedom for different mesh/node types and

entropy-conservative DG discretizations using the flux (3.10) for the compressible Euler equations.

Figure 4 compares PID results for several different implementations of entropy-conservative

LGL-DGSEM (Trixi.jl, SBP, which uses affine mappings, and P4estMesh, which uses curvilinear

mappings) and Legendre-Gauss collocation methods (Trixi.jl, GaussSBP, which uses affine map-

pings, and FLUXO, GaussSBP, which uses curvilinear mappings) in both two and three dimensions.

We observe that the Legendre-Gauss collocation schemes are between 1.5× and 5×more expensive

than LGL-DGSEM, with the gap in performance closing as the order of approximation increases

in three dimensions. We note that these results imply that the estimate of the cost of Legendre-

Gauss collocation in [8] was optimistic
4

, as it did not take into account additional steps such as the

entropy projection, interpolation of solution values to face nodes, and lifting of face contributions

to volume nodes.

Finally, we note that the implementation of entropy-conservative Legendre-Gauss collocation

schemes in Trixi.jl are slightly less optimized compared to the implementation of LGL-DGSEM

schemes. First, for compatibility with analysis and visualization routines, Gauss schemes in

Trixi.jl store the solution at Legendre-Gauss-Lobatto nodes and interpolate to Legendre-Gauss

nodes prior to each right hand side evaluation. This interpolation can be performed in an efficient

tensor product fashion, though this does still result in some overhead. The second difference is

that Legendre-Gauss schemes compute surface fluxes locally on each element, as done in [27],

which results in fluxes being computed twice per face. In contrast, the implementation of LGL-

DGSEM in Trixi.jl computes surface fluxes only once per face then passes the computed fluxes

to adjacent elements. Based on the PID results reported in Figure 3, however, we do not expect

these implementational differences to drastically change the overall runtime of Legendre-Gauss

collocation methods.

7 More invasive optimizations

The optimizations discussed hitherto are noninvasive in the sense that they can be applied to any

flux differencing implementations. Sometimes, it can be beneficial to specialize the implementa-

tions even further for specific conservation laws — often at the cost of increased code complexity.

We discuss precomputing primitive variables and certain logarithms needed in EC fluxes for

4

In [8], it was shown that the number of flux evaluations for a degree 𝑝 entropy-conservative Legendre-Gauss scheme

is slightly less than the number of flux evaluations required for a degree (𝑝 + 1) entropy-conservative LGL-DGSEM

method. Since the cost for entropy-conservative flux differencing schemes is typically dominated by flux evaluations,

it was argued that a degree 𝑝 entropy-conservative Legendre-Gauss scheme will be roughly the cost of a degree

(𝑝 + 1) entropy-conservative LGL-DGSEM method.

16

the compressible Euler equations. Moreover, we present some technical optimization techniques

such as inlining volume fluxes explicitly. All numerical experiments in this section are based on

LGL-DGSEM implementations in Trixi.jl and FLUXO.

7.1 Precomputing primitive variables for the compressible Euler equations

Here, we benchmark the performance gains of volume terms by precomputing the primitive vari-

ables (𝜚 , 𝑣, 𝑝) for the compressible Euler equations (3.1). All implementation techniques discussed

so far can of course be used to improve the efficiency of flux differencing algorithms using the

conservative variables 𝑢 = (𝜚 , 𝜚𝑣, 𝜚𝑒) directly. However, several divisions and other arithmetic

operations necessary to compute the primitive variables from the conservative variables can be

saved by precomputing them. For this task, we use efficient specialized implementations based on

LoopVectorization.jl.

The benchmark setup is the same as in Section 5, i.e., we benchmark the total runtime of the

volume term computation for a single element on the Cartesian TreeMesh of Trixi.jl initialized with

the isentropic vortex initial condition (4.1).

2D 3D

2 4 6 8 10 12 14 16

0.7

0.8

0.9

1

Polynomial degree

R
e
l
a
t
i
v
e

r
u

n
t
i
m

e

(a) Relative runtime obtained by precomputing primitive

variables for the flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

0.7

0.8

0.9

1

Polynomial degree

R
e
l
a
t
i
v
e

r
u

n
t
i
m

e

(b) Relative runtime obtained by precomputing primitive

variables for the flux of Ranocha (3.10).

2 4 6 8 10 12 14 16

10
−6

10
−5

10
−4

10
−3

Polynomial degree

T
i
m

e
[
s
e
c
]

(c) Absolute timings using the flux of Shima et al. (3.7) with

conserved variables.

2 4 6 8 10 12 14 16

10
−6

10
−5

10
−4

10
−3

Polynomial degree

T
i
m

e
[
s
e
c
]

(d) Absolute timings using the flux of Ranocha (3.10) with

conserved variables.

Figure 5: Microbenchmarks of precomputing the primitive variables compared to using the conserved vari-

ables (baseline) for flux differencing volume terms of LGL-DGSEM discretizations with polyno-

mials of degree 𝑝 for the compressible Euler equations.

The results of this comparison are shown in Figure 5. Clearly, precomputing the primitive

variables improves the efficiency of the volume term computations significantly, approximately

between 5 % and 25 % (on this computer system). Usually, 3D computations benefit more from this

invasive optimization than 2D computations. Moreover, relatively cheap numerical fluxes such as

the one of Shima et al. (3.7) benefit more than relatively expensive EC fluxes.

17

These runtime improvements come at the cost of additional memory requirements. Naively

computing primitive variables at all volume nodes on a Cartesian mesh in 3D requires additional

memory 5 · #DOF. Since any time integration method will also require at least the same amount of

temporary storage, this would at most increase the memory requirements by one half. However, a

curved mesh requires storing the curvilinear coordinate information (contravariant basis vectors),

which requires 9 · #DOF memory. Thus, the additional storage requirement is at most approx. one

quarter. This can be further reduced by computing and storing the primitive variables only for a

single element before computing the corresponding volume terms.

7.2 Precomputing logarithms for the compressible Euler equations

In addition to precomputing the primitive variables, one may also be interested in computing other

auxiliary quantities used in the evaluation of numerical fluxes. For example, the evaluation of EC

fluxes for the compressible Euler equations requires computing the logarithmic mean of density

and pressure, which in turn requires computing the natural logarithm of density and pressure at

two sets of solution states. Computing logarithms (and other special functions) is significantly

more expensive than performing basic arithmetic operations. For example, on a 2019 Macbook

Pro laptop (with a 2.3 GHz Intel® Core™ i9 processor), computing log(𝑥) + log(𝑦) takes between

11.5 ± 3.8 ns, while computing a simpler arithmetic operation such as 2𝑥 + 3𝑦 takes 1.7 ± 0.4 ns.

For a degree 𝑝 approximation on a single tensor product element in 𝑑 dimensions, computing

entropy-conservative two-point fluxes for the compressible Euler equations requires 𝒪
(
𝑑(𝑝+1)𝑑+1

)
logarithm evaluations. Precomputing logarithms for density and pressure reduces this to 𝒪

(
(𝑝 +

1)𝑑
)

evaluations, as logarithms are computed once for each solution node instead of once for each

pair of nodes. We perform microbenchmarks for the entropy-conservative flux (3.10) similar to

those in Section 7.1. Specifically, we precompute logarithms of density and pressure in addition

to precomputing the primitive variables.

2D 3D

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

1.2

isentropic vortex initial condition

sinusoidal initial condition

random initial condition

Polynomial degree

R
e
l
a
t
i
v
e

c
h

a
n

g
e

i
n

r
u

n
t
i
m

e

Figure 6: Relative runtime when precomputing both logarithms and primitive variables compared to pre-

computing only primitive variables (baseline) for flux differencing volume terms of LGL-DGSEM

discretizations using the flux of Ranocha (3.10) with polynomials of degree 𝑝 for the compressible

Euler equations.

Figure 6 shows relative runtimes when precomputing both primitive variables and logarithms

(compared with precomputing only the primitive variables). We tested three initial conditions:

18

the isentropic vortex (4.1), a random initial condition, and a sinusoidal initial condition

𝜚(𝑥, 𝑦, 0) = 2 + sin(𝜋𝑥/5) sin(𝜋𝑦/5), (in 2D)

𝜚(𝑥, 𝑦, 𝑧, 0) = 2 + sin(𝜋𝑥/5) sin(𝜋𝑦/5) sin(𝜋𝑧/5), (in 3D)

𝑝 = 𝜚𝛾 .

(7.1)

For the isentropic vortex, we observe relatively modest speedup of roughly 10 %. In contrast, we

observe more significant speedups for the sinusoidal initial condition (between 25 % and 55 %) and

for the random initial condition (between 60 % and 75 %). This is because Algorithms 2 and 3 for

computing logarithmic means do not evaluate logarithms between two solution states if the density

or pressure are close to each other (instead, a high order Taylor approximation is evaluated). Thus,

precomputing logarithms does not yield any speedup (and in fact is slightly slower) when the

solution is near-constant.

For the isentropic vortex initial condition, the solution is compactly supported and thus constant

in a large percentage of the domain (especially in 3D). As a result, we observe very modest gains in

the overall runtime. For the sinusoidal and random initial conditions, the solution varies globally

over the entire domain, and we observe more significant speedup when precomputing logarithms.

7.3 Defining options at compile time

The techniques discussed so far are at the level of the mathematical description of the algorithms.

While we will mostly stay at this high level in this article, we would like to point out that an efficient

implementation will also require appropriate programming techniques. The effort required to

achieve these goals depends on the specific programming language. Here, we briefly investigate

the use of inlining of the volume fluxes and setting the polynomial degree at compile time in

FLUXO.

In traditional scientific computing languages such as Fortran, C, and C++, the code is compiled

prior to execution. To avoid users having to modify and/or compile the source code multiple

times to change simulation options (such as the polynomial degree or the volume flux), a common

practice is to read all simulation parameters from a text file and assign them at runtime.

The definition of functions used many times throughout the simulation at runtime implies

the repeated evaluation of switch statements during the computation or the use of procedure

pointers or type polymorphism. The repeated evaluation of switch statements might increase

code complexity and deteriorate performance. Moreover, even though procedure pointers and

polymorphic types can be used to simplify code, many compilers and their branch predictors fail

at inlining functions that use them, which also affects performance.

FLUXO allows the user to specify the polynomial degree and the volume flux at runtime for

flexibility, but also provides the possibility to define these and other options at compile time

to improve performance of long runs. Of course, the coexistence of compile time and runtime

specifications increases code complexity.

Figure 7 shows computed PID values obtained with LGL-DGSEM of FLUXO for the isentropic

vortex setup introduced in Section 4.1. Setting the volume flux at compile time enables more

compiler optimizations such as inlining and thus increases the performance by approx. 5 %. Setting

also the polynomial degree at compile time options allows more optimizations, resulting in a

speedup of up to 15 %.

Julia [4] uses a “just ahead of time” (or “just in time”) compiler approach. In particular, user de-

fined functions can be inlined into library code without additional programming effort. Currently,

the Julia compiler uses a heuristic to determine whether a function should be inlined. Program-

mers can hint the compiler to inline a function by prepending the function definition by the macro

@inline.

Figure 8 shows the effect of inlining volume fluxes in Trixi.jl. As expected, the relative improve-

ment of this optimization is better for cheap volume fluxes such as the one of Shima et al. (3.7).

19

𝑝 (r); volume flux (r) 𝑝 (r); volume flux (c) 𝑝 (c); volume flux (c)

2 4 6 8 10 12 14 16

2

4

6

8

·10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

Figure 7: Influence of setting the volume flux and the polynomial degree 𝑝 at compile time (c) or at runtime (r)

on the PID of FLUXO for entropy-conservative LGL-DGSEM discretizations using the flux of

Ranocha (3.10) for the compressible Euler equations.

Trixi.jl, TreeMesh Trixi.jl, StructuredMesh Trixi.jl, P4estMesh

2 4 6 8 10 12 14 16

0.4

0.5

0.6

0.7

Polynomial degree

R
e
l
a
t
i
v
e

P
I
D

w
i
t
h

i
n

l
i
n

i
n

g

(a) 2D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

0.4

0.5

0.6

0.7

Polynomial degree

R
e
l
a
t
i
v
e

P
I
D

w
i
t
h

i
n

l
i
n

i
n

g

(b) 3D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

0.6

0.8

Polynomial degree

R
e
l
a
t
i
v
e

P
I
D

w
i
t
h

i
n

l
i
n

i
n

g

(c) 2D, flux of Ranocha (3.10).

2 4 6 8 10 12 14 16

0.6

0.8

Polynomial degree

R
e
l
a
t
i
v
e

P
I
D

w
i
t
h

i
n

l
i
n

i
n

g

(d) 3D, flux of Ranocha (3.10).

Figure 8: Relative performance obtained by inlining the volume fluxes for flux differencing volume terms of

LGL-DGSEM discretizations with polynomials of degree 𝑝 for the compressible Euler equations.

The absolute PID with inlining is visualized in Figure 1.

Additionally, inlining is more important on the curved meshes of Trixi.jl. There, it can reduce the

PID by up to approx. 2× (compared to approx. 25 % on the Cartesian TreeMesh).

20

8 Explicit SIMD optimizations

The operational intensity of flux differencing volume terms is relatively high. Thus, we expect

to be in the compute bound regime in a standard roofline model [74] of standard CPUs. This is

the reason why we described several optimizations that reduce the amount of work and increase

runtime performance. To further increase the (serial) performance, instruction level parallelization

is required. To make optimal use of modern CPUs, utilizing SIMD (single instruction, multiple

data) instructions is key. However, current compiler and code generation techniques are often not

advanced enough to handle all expressions efficiently. Thus, some manual intervention is needed

to write SIMD-friendly code. Here, we focus on implementations based on LoopVectorization.jl in

Trixi.jl. The same kind of optimizations are also effective for auto-vectorization by decent Fortran

compilers in FLUXO.

Trixi.jl is written as a research code accessible to students and newcomers. In particular, some

design choices are based on the goal to make setting up new physical models easy. Thus, physics

including (numerical) fluxes is handled pointwise by small (inlined) functions and the global

solution uses an array of structures (AoS) memory layout. To enable efficient SIMD optimizations

at the element level, we permute array dimensions effectively to an array of structures of arrays

(AoSoA), i.e., we use a temporary structure of arrays for a single element. Loops in a tensor

product ansatz are structured to keep the triangular part at the outermost loop (making use of the

skew-symmetry of the flux differencing operator (2.7)) and plain loops over all nodes in the inner

part for SIMD vectorization. Moreover, the memory is rearranged to ensure the first dimension is

one of the dimensions to which SIMD instructions can be applied (since Julia uses a Fortran-style

column-major memory layout by default). Such a rearrangement of memory is also crucial for

Fortran compilers to optimize similar parts in FLUXO [57].

Moreover, we precompute primitive variables before computing the flux differencing volume

terms (cf. Section 7.1). For the EC flux requiring logarithmic means, we also precompute loga-

rithms of the density 𝜚 and the pressure 𝑝. In contrast to the results reported in Section 7.2, this

step becomes more important even for the isentropic vortex initial condition. Scalar logarithm

implementations are often based on algorithms including table lookups and conditional branches,

e.g., [70]. In contrast, logarithm implementations optimized for SIMD instructions are usually

more demanding and cannot use fast paths. We observed up to ca. 2× speed-up by precomputing

logarithms on an Intel® Core™ i7-8700K (CPU from 2017 with AVX2) for the isentropic vortex

initial condition.

All of these specializations are available for the fluxes of Shima et al. (3.7) and Ranocha (3.10)

on 2D and 3D meshes in recent versions of Trixi.jl. The benchmarks reported thus far do not use

these SIMD optimizations.

Table 3: Performance metrics of 3D flux differencing volume terms in Trixi.jl using SIMD optimizations on

an Intel® Core™ i7-8700K (CPU from 2017 with AVX2).

TreeMesh StructuredMesh P4estMesh

Flux of Shima et al. (3.7)

Vectorization ratio in % 98.36 98.85 98.85

Absolute performance in Gflops/s 21.44 18.51 18.44

Relative to peak performance in % 29.09 25.12 25.02

Flux of Ranocha (3.10)

Vectorization ratio in % 99.09 99.26 99.26

Absolute performance in Gflops/s 18.80 15.28 15.25

Relative to peak performance in % 25.51 20.74 20.69

We used LIKWID [73] via its Julia interface LIKWID.jl to measure some performance metrics of

the new volume terms optimized for SIMD instructions. For this, we used the same setup as in

21

Section 5 with polynomials of degree 𝑝 = 3. We used a single batch computing the volume terms

5 · 10
3

times on an Intel® Core™ i7-8700K (CPU from 2017 with AVX2). The results are shown in

Table 3. For all numerical fluxes and meshes, we achieved vectorization ratios of more than 98 %.

This includes all required memory rearrangements described above.

We used the same setup with LIKWID to estimate the percentage of peak performance of

floating point operations per second. We used the LIKWID benchmark tool to estimate the

peak performance for fused multiply-add (FMA) instructions and measured the floating point

performance of the flux differencing volume terms in Trixi.jl. The results are also shown in Table 3.

Given that the estimated peak performance uses only FMAs and is rather optimistic while the

actual algorithm involves other operations including divisions and logarithms for the EC flux, the

obtained performance results are quite good. The volume terms on the curved meshes require

additional memory rearrangements of the contravariant basis vectors (due to the choice of AoS

style memory layouts described above). Together with the increased memory loads, this explains

the reduced peak performance of flux differencing on curved meshes.

The results with and without SIMD optimizations described in this section are embedded into an

empirical roofline model shown in Figure ??. Again, the measurements have been performed using

LIKWID, following their tutorial on creating an empirical roofline model. The peak performance

has been estimated using FMA instructions and the maximum bandwidth has been estimated by

load instructions (using LIKWID benchmark tools for both). First, note that the volume terms

with SIMD optimizations have a reduced operational intensity compared to the plain versions.

This is due to the fact that we precompute primitive variables and logarithms. Second, the

SIMD-optimized versions have a higher performance. On the system we used for this benchmark,

many data points (in particular for the cheaper non-EC flux) are under the slant of the roof, i.e.,

the regime that is usually characterized as limited by memory bandwidth. However, note that

the peak performance is estimated by pure FMA instructions while the numerical fluxes involve

more expensive operations such as divisions. Finally, these measurements are only valid when

considering a single process operating on the CPU. In case of a parallel simulation, all processes on

a single node need to share the same memory bandwidth. This can affect the serial performance

of each process and skew the results further towards the memory-bound regime.

The new PID measurements including precomputing terms and SIMD optimizations are shown

in Figure ??. In contrast to the baseline results shown in Figure 1, the PID does not scale linearly

with the polynomial degree. In 2D, the PID is approximately linearly decreasing for 𝑝 ∈ {3, . . . , 7}.
After the local minimum at 𝑝 = 7, the PID plateaus again at a higher level. In 3D, a rough linear

trend of the PID can still be observed. However, the PID plateaus for small polynomial degrees

up to 𝑝 = 6 or 𝑝 = 7, depending on the mesh type and numerical flux.

Figure ?? shows the relative PID improvements obtained by SIMD optimizations of the flux dif-

ferencing volume terms, i.e., the ratio of the PID from Figures ?? and 1. The trends described above

are even more visible here. In particular, the speedup obtained by all optimizations (precomputing

terms and using SIMD optimizations) improves for low polynomial degrees. In 2D, the speedup

shows a local optimum at 𝑝 = 7.

Note that the PID measures also the time needed for other parts of the right-hand side compu-

tations. In particular, the cost of surface terms increases relatively as the volume terms become

cheaper. Some SIMD optimizations could also be applied to surface terms to further increase the

total speedup. However, we restrict our attention to the flux differencing volume terms in this

article.

In total, precomputing variables and using SIMD optimizations improves the PID in 2D between

20 % (low polynomial degree, cheap volume flux) and 3× (𝑝 = 7, EC volume flux). In 3D, the

speedup obtained by these optimizations is between 30 % (low polynomial degree, cheap volume

flux) and 3× (high polynomial degree, EC flux).

22

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

20

40

60

80

TreeMesh
StructuredMesh

P4estMesh

TreeMesh, SIMD

StructuredMesh,

SIMD

P4estMesh, SIMD

Operational intensity in Flops/Byte

A
t
t
a
i
n

a
b
l
e

G
fl

o
p

s
/

s

(a) Flux of Shima et al. (3.7).

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

20

40

60

80

TreeMesh
StructuredMeshP4estMesh

TreeMesh, SIMD

StructuredMesh, SIMD

P4estMesh, SIMD

Operational intensity in Flops/Byte

A
t
t
a
i
n

a
b
l
e

G
fl

o
p

s
/

s

(b) Flux of Ranocha (3.10).

Figure 9: Empirical roofline model [74] measured using LIKWID [73] for the flux differencing volume terms

of the 3D compressible Euler equations using polynomials of degree 𝑝 = 3 and 8 elements per

coordinate direction on an Intel® Core™ i7-8700K (CPU from 2017 with AVX2). Results are shown

on the TreeMesh (circles), StructuredMesh (squares), and the P4estMesh (diamonds) of Trixi.jl.

9 Summary and conclusions

We discussed techniques for the efficient implementation of flux differencing schemes, focusing on

the compressible Euler equations and discontinuous Galerkin methods. Starting with a high-level

description of the algorithms, we presented general modifications of the equations typically pre-

sented in research articles as first step towards an efficient implementation. All of these techniques

are freely available in our open source codes Trixi.jl and FLUXO as well as our reproducibility

repository [55].

We concentrated on the serial performance of flux differencing for the compressible Euler equa-

tions in 2D and 3D. Most of the techniques presented in this article are agnostic to the code base and

23

Trixi.jl, TreeMesh Trixi.jl, StructuredMesh Trixi.jl, P4estMesh

2 4 6 8 10 12 14 16

0

2

4

·10
−8

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(a) 2D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

0

1

2

·10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(b) 3D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

0

0.5

1

·10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(c) 2D, flux of Ranocha (3.10).

2 4 6 8 10 12 14 16

0

1

2

·10
−7

Polynomial degree

T
i
m

e
/

R
H

S
/

D
O

F
[
s
e
c
]

(d) 3D, flux of Ranocha (3.10).

Figure 10: Runtime per right-hand side evaluation and degree of freedom for different mesh types and

LGL-DGSEM discretizations with SIMD optimizations of the volume terms for the compressible

Euler equations.

programming language, as demonstrated by results obtained with Julia and Fortran. Extensions

to non-conservative terms as well as MPI parallelization will be discussed elsewhere, since these

questions are largely orthogonal to the issues discussed here. In the MPI parallel case, one would

usually expect a sublinear scaling up to a full single node due to memory bandwidth and cache

competition followed by a (close to) ideal scaling when adding more nodes, as shown in [58].

From these general performance optimizations, we compared flux differencing to a simple ver-

sion of overintegration. In general, flux differencing is quite competitive in terms of runtime

performance. In addition, it comes with less strict explicit time step restrictions and is robust

for many setups where overintegration fails [76]. For practically relevant parameters for compu-

tational fluid dynamics (3D, polynomials of degree 𝑝 = 3), flux differencing is even faster than

overintegration with a single additional node per coordinate direction.

We also discussed more invasive optimizations including memory layout adaptation for SIMD

techniques. While these are rather code-specific, they can provide great benefits on modern

hardware. Using a compromise of legacy code layout and SIMD optimizations, we could achieve

the following performance indices PID (time per right-hand side evaluation and degree of freedom)

for flux differencing discretizations of the compressible Euler equation in 3D with polynomials of

degree 𝑝 = 3 in Trixi.jl on an Intel® Core™ i7-8700K (CPU from 2017 with AVX2): 2.6 × 10
−8

s

on a Cartesian mesh and 4.3 × 10
−8

s on an unstructured, curved mesh for standard split form

discretizations using the flux of Shima et al. [62]; 4.2 × 10
−8

s on a Cartesian mesh and 6.5 × 10
−8

s

on an unstructured, curved mesh for entropy-based discretizations using the flux of Ranocha [46–

48].

24

??

2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

Polynomial degree

R
e
l
a
t
i
v
e

P
I
D

w
i
t
h

S
I
M

D

(a) 2D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

Polynomial degree

R
e
l
a
t
i
v
e

P
I
D

w
i
t
h

S
I
M

D

(b) 3D, flux of Shima et al. (3.7).

2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

Polynomial degree

R
e
l
a
t
i
v
e

P
I
D

w
i
t
h

S
I
M

D

(c) 2D, flux of Ranocha (3.10).

2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

Polynomial degree

R
e
l
a
t
i
v
e

P
I
D

w
i
t
h

S
I
M

D

(d) 3D, flux of Ranocha (3.10).

Figure 11: Relative runtime improvements obtained by SIMD optimizations of the volume terms for different

mesh types and LGL-DGSEM discretizations for the compressible Euler equations.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under

Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-

Structure, and through the DFG research unit “SNuBIC” (FOR 5409; project number 463312734).

Hendrik Ranocha was supported by the Daimler und Benz Stiftung (Daimler and Benz founda-

tion, project number 32-10/22).

This work has received funding from the European Research Council through the ERC Starting

Grant “An Exascale aware and Un-crashable Space-Time-Adaptive Discontinuous Spectral Element

Solver for Non-Linear Conservation Laws” (Extreme), ERC grant agreement no. 714487 (Gregor J.

Gassner, Michael Schlottke-Lakemper, and Andrés Rueda-Ramírez).

Andrew R. Winters was supported through Vetenskapsrådet, Sweden grant agreement 2020-

03642 VR.

Jesse Chan was supported through the United States National Science Foundation under awards

DMS-1719818 and DMS-1943186.

The authors gratefully acknowledge the computing time provided on the supercomputer NEC

Vulcan by the High-Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart,

Germany.

References

[1] R. Abgrall, J. Nordström, P. Öffner, and S. Tokareva. “Analysis of the SBP-SAT Stabilization

for Finite Element Methods Part I: Linear problems.” In: Journal of Scientific Computing 85.2

(2020), pp. 1–29. doi: 10.1007/s10915-020-01349-z. arXiv: 1912.08108 [math.NA].

25

https://doi.org/10.1007/s10915-020-01349-z
https://arxiv.org/abs/1912.08108

[2] O. Ålund and J. Nordström. “Encapsulated high order difference operators on curvilinear

non-conforming grids.” In: Journal of Computational Physics 385 (2019), pp. 209–224. doi:

10.1016/j.jcp.2019.02.007.

[3] M Bergmann, C Morsbach, and G Ashcroft. “Assessment of Split Form Nodal Discontinuous

Galerkin Schemes for the LES of a Low Pressure Turbine Profile.” In: Direct and Large Eddy
Simulation XII. Vol. 27. ERCOFTACSeries. Cham: Springer Nature, 2020, pp. 365–371. doi:

10.1007/978-3-030-42822-8_48.

[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A Fresh Approach to Numerical

Computing.” In: SIAM Review 59.1 (2017), pp. 65–98. doi: 10.1137/141000671. arXiv: 1411.
1607 [cs.MS].

[5] M. H. Carpenter, T. C. Fisher, E. J. Nielsen, and S. H. Frankel. “Entropy Stable Spectral

Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces.” In: SIAM
Journal on Scientific Computing 36.5 (2014), B835–B867. doi: 10.1137/130932193.

[6] J. Chan. “On discretely entropy conservative and entropy stable discontinuous Galerkin

methods.” In: Journal of Computational Physics 362 (2018), pp. 346–374. doi: 10.1016/j.jcp.
2018.02.033.

[7] J. Chan. “Skew-symmetric entropy stable modal discontinuous Galerkin formulations.” In:

Journal of Scientific Computing 81.1 (2019), pp. 459–485. doi: 10.1007/s10915-019-01026-w.

[8] J. Chan, D. C. D. R. Fernández, and M. H. Carpenter. “Efficient entropy stable Gauss col-

location methods.” In: SIAM Journal on Scientific Computing 41.5 (2019), A2938–A2966. doi:

10.1137/18M1209234.

[9] P. Chandrashekar. “Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes

for Compressible Euler and Navier-Stokes Equations.” In: Communications in Computational
Physics 14.5 (2013), pp. 1252–1286. doi: 10.4208/cicp.170712.010313a.

[10] T. Chen and C.-W. Shu. “Entropy stable high order discontinuous Galerkin methods with

suitable quadrature rules for hyperbolic conservation laws.” In: Journal of Computational
Physics 345 (2017), pp. 427–461. doi: 10.1016/j.jcp.2017.05.025.

[11] J. Crean, J. E. Hicken, D. C. D. R. Fernández, D. W. Zingg, and M. H. Carpenter. “Entropy-

stable summation-by-parts discretization of the Euler equations on general curved elements.”

In: Journal of Computational Physics 356 (2018), pp. 410–438. doi:10.1016/j.jcp.2017.12.015.

[12] C. Elrod. Roadmap to Julia BLAS and Linear Algebra. https://www.youtube.com/watch?v=
KQ8nvlURX4M. Talk presented at JuliaCon 2021. virtual, 2021.

[13] D. C. D. R. Fernández, P. D. Boom, and D. W. Zingg. “A generalized framework for nodal

first derivative summation-by-parts operators.” In: Journal of Computational Physics 266 (2014),

pp. 214–239. doi: 10.1016/j.jcp.2014.01.038.

[14] D. C. D. R. Fernández, J. E. Hicken, and D. W. Zingg. “Review of summation-by-parts

operators with simultaneous approximation terms for the numerical solution of partial

differential equations.” In: Computers & Fluids 95 (2014), pp. 171–196. doi: 10.1016/j.
compfluid.2014.02.016.

[15] T. C. Fisher, M. H. Carpenter, J. Nordström, N. K. Yamaleev, and C. Swanson. “Discretely

conservative finite-difference formulations for nonlinear conservation laws in split form:

Theory and boundary conditions.” In: Journal of Computational Physics 234 (2013), pp. 353–

375. doi: 10.1016/j.jcp.2012.09.026.

[16] U. S. Fjordholm, S. Mishra, and E. Tadmor. “Arbitrarily High-Order Accurate Entropy Stable

Essentially Nonoscillatory Schemes for Systems of Conservation Laws.” In: SIAM Journal on
Numerical Analysis 50.2 (2012), pp. 544–573. doi: 10.1137/110836961.

26

https://doi.org/10.1016/j.jcp.2019.02.007
https://doi.org/10.1007/978-3-030-42822-8_48
https://doi.org/10.1137/141000671
https://arxiv.org/abs/1411.1607
https://arxiv.org/abs/1411.1607
https://doi.org/10.1137/130932193
https://doi.org/10.1016/j.jcp.2018.02.033
https://doi.org/10.1016/j.jcp.2018.02.033
https://doi.org/10.1007/s10915-019-01026-w
https://doi.org/10.1137/18M1209234
https://doi.org/10.4208/cicp.170712.010313a
https://doi.org/10.1016/j.jcp.2017.05.025
https://doi.org/10.1016/j.jcp.2017.12.015
https://www.youtube.com/watch?v=KQ8nvlURX4M
https://www.youtube.com/watch?v=KQ8nvlURX4M
https://doi.org/10.1016/j.jcp.2014.01.038
https://doi.org/10.1016/j.compfluid.2014.02.016
https://doi.org/10.1016/j.compfluid.2014.02.016
https://doi.org/10.1016/j.jcp.2012.09.026
https://doi.org/10.1137/110836961

[17] D. Flad and G. Gassner. “On the use of kinetic energy preserving DG-schemes for large eddy

simulation.” In: Journal of Computational Physics 350 (2017), pp. 782–795. doi: 10.1016/j.
jcp.2017.09.004.

[18] A. Fog. Instruction tables. Lists of instruction latencies, throughputs and micro-operation breakdowns
for Intel, AMD, and VIA CPUs. Version 2021-08-17, accessed 2021-10-19. Aug. 2021. url:

https://www.agner.org/optimize/instruction_tables.pdf.

[19] G. J. Gassner and A. R. Winters. “A Novel Robust Strategy for Discontinuous Galerkin

Methods in Computational Fluid Mechanics: Why? When? What? Where?” In: Frontiers in
Physics 8 (2021), p. 612. doi: 10.3389/fphy.2020.500690.

[20] G. J. Gassner. “A kinetic energy preserving nodal discontinuous Galerkin spectral element

method.” In: International Journal for Numerical Methods in Fluids 76.1 (2014), pp. 28–50. doi:

10.1002/fld.3923.

[21] G. J. Gassner. “A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization

and Its Relation to SBP-SAT Finite Difference Methods.” In: SIAM Journal on Scientific Com-
puting 35.3 (2013), A1233–A1253. doi: 10.1137/120890144.

[22] G. J. Gassner and A. D. Beck. “On the accuracy of high-order discretizations for underre-

solved turbulence simulations.” In: Theoretical and Computational Fluid Dynamics 27.3-4 (2013),

pp. 221–237. doi: 10.1007/s00162-011-0253-7.

[23] G. J. Gassner and D. A. Kopriva. “A Comparison of the Dispersion and Dissipation Errors

of Gauss and Gauss-Lobatto Discontinuous Galerkin Spectral Element Methods.” In: SIAM
Journal on Scientific Computing 33.5 (2011), pp. 2560–2579. doi: 10.1137/100807211.

[24] G. J. Gassner, A. R. Winters, and D. A. Kopriva. “Split Form Nodal Discontinuous Galerkin

Schemes with Summation-By-Parts Property for the Compressible Euler Equations.” In:

Journal of Computational Physics 327 (2016), pp. 39–66. doi: 10.1016/j.jcp.2016.09.013.

[25] J.-L. Guermond, M. Kronbichler, M. Maier, B. Popov, and I. Tomas. “On the implementation

of a robust and efficient finite element-based parallel solver for the compressible Navier-

Stokes equations.” In: Computer Methods in Applied Mechanics and Engineering 389 (Feb. 2022),

p. 114250. doi: 10.1016/j.cma.2021.114250. arXiv: 2106.02159 [math.NA].

[26] A. Harten, P. D. Lax, and B. van Leer. “On Upstream Differencing and Godunov-Type

Schemes for Hyperbolic Conservation Laws.” In: SIAM Review 25.1 (1983), pp. 35–61. doi:

10.1137/1025002.

[27] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis,
and Applications. Vol. 54. Texts in Applied Mathematics. New York: Springer Science &

Business Media, 2007. doi: 10.1007/978-0-387-72067-8.

[28] J. E. Hicken. “Entropy-stable, high-order summation-by-parts discretizations without inter-

face penalties.” In: Journal of Scientific Computing 82.2 (2020), p. 50. doi: 10.1007/s10915-
020-01154-8.

[29] J. E. Hicken, D. C. D. R. Fernández, and D. W. Zingg. “Multidimensional Summation-By-

Parts Operators: General Theory and Application to Simplex Elements.” In: SIAM Journal on
Scientific Computing 38.4 (2016), A1935–A1958. doi: 10.1137/15M1038360.

[30] H. T. Huynh. “A Flux Reconstruction Approach to High-Order Schemes Including Discontin-

uous Galerkin Methods.” In: 18th AIAA Computational Fluid Dynamics Conference. American

Institute of Aeronautics and Astronautics. 2007. doi: 10.2514/6.2007-4079.

[31] F. Ismail and P. L. Roe. “Affordable, entropy-consistent Euler flux functions II: Entropy

production at shocks.” In: Journal of Computational Physics 228.15 (2009), pp. 5410–5436. doi:

10.1016/j.jcp.2009.04.021.

27

https://doi.org/10.1016/j.jcp.2017.09.004
https://doi.org/10.1016/j.jcp.2017.09.004
https://www.agner.org/optimize/instruction_tables.pdf
https://doi.org/10.3389/fphy.2020.500690
https://doi.org/10.1002/fld.3923
https://doi.org/10.1137/120890144
https://doi.org/10.1007/s00162-011-0253-7
https://doi.org/10.1137/100807211
https://doi.org/10.1016/j.jcp.2016.09.013
https://doi.org/10.1016/j.cma.2021.114250
https://arxiv.org/abs/2106.02159
https://doi.org/10.1137/1025002
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1007/s10915-020-01154-8
https://doi.org/10.1007/s10915-020-01154-8
https://doi.org/10.1137/15M1038360
https://doi.org/10.2514/6.2007-4079
https://doi.org/10.1016/j.jcp.2009.04.021

[32] A. Jameson. “Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dy-

namics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in

a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes.” In: Journal of Scientific
Computing 34.2 (2008), pp. 188–208. doi: 10.1007/s10915-007-9172-6.

[33] C. A. Kennedy and M. H. Carpenter. Fourth Order 2N-Storage Runge-Kutta Schemes. Technical

Memorandum NASA-TM-109112. NASA Langley Research Center, Hampton VA 23681-0001,

United States: NASA, June 1994.

[34] B. F. Klose, G. B. Jacobs, and D. A. Kopriva. “Assessing standard and kinetic energy conserv-

ing volume fluxes in discontinuous Galerkin formulations for marginally resolved Navier-

Stokes flows.” In: Computers & Fluids (2020), p. 104557. doi: 10.1016/j.compfluid.2020.
104557.

[35] D. A. Kopriva. Implementing Spectral Methods for Partial Differential Equations: Algorithms for
Scientists and Engineers. New York: Springer Science & Business Media, 2009. doi: 10.1007/
978-90-481-2261-5.

[36] D. A. Kopriva. “Metric identities and the discontinuous spectral element method on curvilin-

ear meshes.” In: Journal of Scientific Computing 26.3 (2006), pp. 301–327. doi: 10.1007/s10915-
005-9070-8.

[37] D. A. Kopriva and G. J. Gassner. “On the Quadrature and Weak Form Choices in Collocation

Type Discontinuous Galerkin Spectral Element Methods.” In: Journal of Scientific Computing
44.2 (2010), pp. 136–155. doi: 10.1007/s10915-010-9372-3.

[38] N. Krais, A. Beck, T. Bolemann, H. Frank, D. Flad, G. Gassner, F. Hindenlang, M. Hoffmann, T.

Kuhn, M. Sonntag, and C.-D. Munz. “FLEXI: A high order discontinuous Galerkin framework

for hyperbolic-parabolic conservation laws.” In: Computers & Mathematics with Applications
81 (2021), pp. 186–219. doi: 10.1016/j.camwa.2020.05.004.

[39] H.-O. Kreiss and G. Scherer. “Finite Element and Finite Difference Methods for Hyperbolic

Partial Differential Equations.” In: Mathematical Aspects of Finite Elements in Partial Differential
Equations. Ed. by C. de Boor. New York: Academic Press, 1974, pp. 195–212.

[40] P. G. LeFloch, J.-M. Mercier, and C. Rohde. “Fully Discrete, Entropy Conservative Schemes

of Arbitrary Order.” In: SIAM Journal on Numerical Analysis 40.5 (2002), pp. 1968–1992. doi:

10.1137/S003614290240069X.

[41] M. Maier and M. Kronbichler. “Efficient parallel 3D computation of the compressible Euler

equations with an invariant-domain preserving second-order finite-element scheme.” In:

ACM Transactions on Parallel Computing 8.3 (2021), pp. 1–30. doi: 10.1145/3470637.

[42] J. Nordström and M. Björck. “Finite volume approximations and strict stability for hyperbolic

problems.” In: Applied Numerical Mathematics 38.3 (2001), pp. 237–255. doi: 10.1016/S0168-
9274(01)00027-7.

[43] J. Nordström, K. Forsberg, C. Adamsson, and P. Eliasson. “Finite volume methods, unstruc-

tured meshes and strict stability for hyperbolic problems.” In: Applied Numerical Mathematics
45.4 (2003), pp. 453–473. doi: 10.1016/S0168-9274(02)00239-8.

[44] M. Parsani, R. Boukharfane, I. R. Nolasco, D. C. D. R. Fernández, S. Zampini, B. Hadri, and

L. Dalcin. “High-order accurate entropy-stable discontinuous collocated Galerkin methods

with the summation-by-parts property for compressible CFD frameworks: Scalable SSDC

algorithms and flow solver.” In: Journal of Computational Physics 424 (2021), p. 109844. doi:

10.1016/j.jcp.2020.109844.

[45] C. Rackauckas and Q. Nie. “DifferentialEquations.jl – A Performant and Feature-Rich Ecosys-

tem for Solving Differential Equations in Julia.” In: Journal of Open Research Software 5.1 (2017),

p. 15. doi: 10.5334/jors.151.

28

https://doi.org/10.1007/s10915-007-9172-6
https://doi.org/10.1016/j.compfluid.2020.104557
https://doi.org/10.1016/j.compfluid.2020.104557
https://doi.org/10.1007/978-90-481-2261-5
https://doi.org/10.1007/978-90-481-2261-5
https://doi.org/10.1007/s10915-005-9070-8
https://doi.org/10.1007/s10915-005-9070-8
https://doi.org/10.1007/s10915-010-9372-3
https://doi.org/10.1016/j.camwa.2020.05.004
https://doi.org/10.1137/S003614290240069X
https://doi.org/10.1145/3470637
https://doi.org/10.1016/S0168-9274(01)00027-7
https://doi.org/10.1016/S0168-9274(01)00027-7
https://doi.org/10.1016/S0168-9274(02)00239-8
https://doi.org/10.1016/j.jcp.2020.109844
https://doi.org/10.5334/jors.151

[46] H. Ranocha. “Comparison of Some Entropy Conservative Numerical Fluxes for the Euler

Equations.” In: Journal of Scientific Computing 76.1 (July 2018), pp. 216–242. doi: 10.1007/
s10915-017-0618-1. arXiv: 1701.02264 [math.NA].

[47] H. Ranocha. “Entropy Conserving and Kinetic Energy Preserving Numerical Methods for the

Euler Equations Using Summation-by-Parts Operators.” In: Spectral and High Order Methods
for Partial Differential Equations ICOSAHOM 2018. Ed. by S. J. Sherwin, D. Moxey, J. Peiró, P. E.

Vincent, and C. Schwab. Vol. 134. Lecture Notes in Computational Science and Engineering.

Cham: Springer, Aug. 2020, pp. 525–535. doi: 10.1007/978-3-030-39647-3_42.

[48] H. Ranocha. “Generalised Summation-by-Parts Operators and Entropy Stability of Numeri-

cal Methods for Hyperbolic Balance Laws.” PhD thesis. TU Braunschweig, Feb. 2018.

[49] H. Ranocha. “Shallow water equations: Split-form, entropy stable, well-balanced, and posi-

tivity preserving numerical methods.” In: GEM – International Journal on Geomathematics 8.1

(Apr. 2017), pp. 85–133. doi: 10.1007/s13137-016-0089-9. arXiv: 1609.08029 [math.NA].

[50] H. Ranocha. “SummationByPartsOperators.jl: A Julia library of provably stable semidis-

cretization techniques with mimetic properties.” In: Journal of Open Source Software 6.64

(Aug. 2021), p. 3454. doi: 10.21105/joss.03454. url: https://github.com/ranocha/
SummationByPartsOperators.jl.

[51] H. Ranocha, L. Dalcin, M. Parsani, and D. I. Ketcheson. “Optimized Runge-Kutta Methods

with Automatic Step Size Control for Compressible Computational Fluid Dynamics.” In:

Communications on Applied Mathematics and Computation (Nov. 2021). doi: 10.1007/s42967-
021-00159-w. arXiv: 2104.06836 [math.NA].

[52] H. Ranocha and G. J. Gassner. “Preventing pressure oscillations does not fix local linear

stability issues of entropy-based split-form high-order schemes.” In: Communications on Ap-
plied Mathematics and Computation (Aug. 2021). doi: 10.1007/s42967-021-00148-z. arXiv:

2009.13139 [math.NA].

[53] H. Ranocha, D. Mitsotakis, and D. I. Ketcheson. “A Broad Class of Conservative Numerical

Methods for Dispersive Wave Equations.” In: Communications in Computational Physics 29.4

(Feb. 2021), pp. 979–1029. doi: 10.4208/cicp.OA-2020-0119. arXiv: 2006.14802 [math.NA].

[54] H. Ranocha, P. Öffner, and T. Sonar. “Summation-by-parts operators for correction procedure

via reconstruction.” In: Journal of Computational Physics 311 (Apr. 2016), pp. 299–328. doi:

10.1016/j.jcp.2016.02.009. arXiv: 1511.02052 [math.NA].

[55] H. Ranocha, M. Schlottke-Lakemper, J. Chan, A. M. Rueda-Ramírez, A. R. Winters, F. Hin-

denlang, and G. J. Gassner. Reproducibility repository for Efficient implementation of modern
entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws.
https://github.com/trixi-framework/paper-2021-EC_performance. Dec. 2021. doi:

10.5281/zenodo.5792576.

[56] H. Ranocha, M. Schlottke-Lakemper, A. R. Winters, E. Faulhaber, J. Chan, and G. J. Gassner.

“Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing.”

In: Proceedings of the JuliaCon Conferences 1.1 (Jan. 2022), p. 77. doi: 10.21105/jcon.00077.
arXiv: 2108.06476 [cs.MS].

[57] T. T. Ribeiro. Final report on HLST project OPT-DG2. Final Report. Boltzmannstraße 2, 85748

Garching, Germany: Max-Planck-Institut für Plasmaphysik, Oct. 2020.

[58] M. Rogowski, L. Dalcin, M. Parsani, and D. E. Keyes. “Performance analysis of relaxation

Runge-Kutta methods.” In: The International Journal of High Performance Computing Applica-
tions (May 2022). doi: 10.1177/10943420221085947.

[59] D. Rojas, R. Boukharfane, L. Dalcin, D. C. D. R. Fernández, H. Ranocha, D. E. Keyes, and

M. Parsani. “On the robustness and performance of entropy stable discontinuous collocation

methods.” In: Journal of Computational Physics 426 (Feb. 2021), p. 109891. doi: 10.1016/j.
jcp.2020.109891. arXiv: 1911.10966 [math.NA].

29

https://doi.org/10.1007/s10915-017-0618-1
https://doi.org/10.1007/s10915-017-0618-1
https://arxiv.org/abs/1701.02264
https://doi.org/10.1007/978-3-030-39647-3_42
https://doi.org/10.1007/s13137-016-0089-9
https://arxiv.org/abs/1609.08029
https://doi.org/10.21105/joss.03454
https://github.com/ranocha/SummationByPartsOperators.jl
https://github.com/ranocha/SummationByPartsOperators.jl
https://doi.org/10.1007/s42967-021-00159-w
https://doi.org/10.1007/s42967-021-00159-w
https://arxiv.org/abs/2104.06836
https://doi.org/10.1007/s42967-021-00148-z
https://arxiv.org/abs/2009.13139
https://doi.org/10.4208/cicp.OA-2020-0119
https://arxiv.org/abs/2006.14802
https://doi.org/10.1016/j.jcp.2016.02.009
https://arxiv.org/abs/1511.02052
https://github.com/trixi-framework/paper-2021-EC_performance
https://doi.org/10.5281/zenodo.5792576
https://doi.org/10.21105/jcon.00077
https://arxiv.org/abs/2108.06476
https://doi.org/10.1177/10943420221085947
https://doi.org/10.1016/j.jcp.2020.109891
https://doi.org/10.1016/j.jcp.2020.109891
https://arxiv.org/abs/1911.10966

[60] A. M. Rueda-Ramírez, S. Hennemann, F. J. Hindenlang, A. R. Winters, and G. J. Gassner.

“An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations.

Part II: Subcell finite volume shock capturing.” In: Journal of Computational Physics 444 (2021),

p. 110580. doi: 10.1016/j.jcp.2021.110580.

[61] M. Schlottke-Lakemper, A. R. Winters, H. Ranocha, and G. J. Gassner. “A purely hyperbolic

discontinuous Galerkin approach for self-gravitating gas dynamics.” In: Journal of Com-
putational Physics 442 (June 2021), p. 110467. doi: 10.1016/j.jcp.2021.110467. arXiv:

2008.10593 [math.NA].

[62] N. Shima, Y. Kuya, Y. Tamaki, and S. Kawai. “Preventing spurious pressure oscillations

in split convective form discretization for compressible flows.” In: Journal of Computational
Physics (2020), p. 110060. doi: 10.1016/j.jcp.2020.110060.

[63] C.-W. Shu. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for
Hyperbolic Conservation Laws. Final Report NASA/CR-97-206253. Institute for Computer Ap-

plications in Science and Engineering, NASA Langley Research Center, Hampton VA United

States: NASA, Nov. 1997.

[64] B. Sjögreen and H. Yee. “High order entropy conservative central schemes for wide ranges of

compressible gas dynamics and MHD flows.” In: Journal of Computational Physics 364 (2018),

pp. 153–185. doi: 10.1016/j.jcp.2018.02.003.

[65] B. Sjögreen, H. C. Yee, and D. Kotov. “Skew-symmetric splitting and stability of high order

central schemes.” In: Journal of Physics: Conference Series. Vol. 837. 1. IOP Publishing. 2017,

p. 012019. doi: 10.1088/1742-6596/837/1/012019.

[66] B. Strand. “Summation by Parts for Finite Difference Approximations for 𝑑/𝑑𝑥.” In: Journal
of Computational Physics 110.1 (1994), pp. 47–67. doi: 10.1006/jcph.1994.1005.

[67] M. Svärd and J. Nordström. “Review of summation-by-parts schemes for initial-boundary-

value problems.” In: Journal of Computational Physics 268 (2014), pp. 17–38. doi: 10.1016/j.
jcp.2014.02.031.

[68] E. Tadmor. “Entropy stability theory for difference approximations of nonlinear conservation

laws and related time-dependent problems.” In: Acta Numerica 12 (2003), pp. 451–512. doi:

10.1017/S0962492902000156.

[69] E. Tadmor. “The numerical viscosity of entropy stable schemes for systems of conservation

laws. I.” In: Mathematics of Computation 49.179 (1987), pp. 91–103. doi: 10.1090/S0025-5718-
1987-0890255-3.

[70] P.-T. P. Tang. “Table-driven implementation of the logarithm function in IEEE floating-point

arithmetic.” In: ACM Transactions on Mathematical Software (TOMS) 16.4 (1990), pp. 378–400.

doi: 10.1145/98267.98294.

[71] P. Thomas and C. Lombard. “Geometric conservation law and its application to flow compu-

tations on moving grids.” In: AIAA journal 17.10 (1979), pp. 1030–1037. doi: 10.2514/3.61273.

[72] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction.

Berlin Heidelberg: Springer, 2009. doi: 10.1007/b79761.

[73] J. Treibig, G. Hager, and G. Wellein. “LIKWID: A lightweight performance-oriented tool suite

for x86 multicore environments.” In: 2010 39th International Conference on Parallel Processing
Workshops. IEEE. 2010, pp. 207–216. doi: 10.1109/ICPPW.2010.38.

[74] S. Williams, A. Waterman, and D. Patterson. “Roofline: an insightful visual performance

model for multicore architectures.” In: Communications of the ACM 52.4 (2009), pp. 65–76. doi:

10.1145/1498765.1498785.

30

https://doi.org/10.1016/j.jcp.2021.110580
https://doi.org/10.1016/j.jcp.2021.110467
https://arxiv.org/abs/2008.10593
https://doi.org/10.1016/j.jcp.2020.110060
https://doi.org/10.1016/j.jcp.2018.02.003
https://doi.org/10.1088/1742-6596/837/1/012019
https://doi.org/10.1006/jcph.1994.1005
https://doi.org/10.1016/j.jcp.2014.02.031
https://doi.org/10.1016/j.jcp.2014.02.031
https://doi.org/10.1017/S0962492902000156
https://doi.org/10.1090/S0025-5718-1987-0890255-3
https://doi.org/10.1090/S0025-5718-1987-0890255-3
https://doi.org/10.1145/98267.98294
https://doi.org/10.2514/3.61273
https://doi.org/10.1007/b79761
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1145/1498765.1498785

[75] N. Wintermeyer, A. R. Winters, G. J. Gassner, and D. A. Kopriva. “An entropy stable nodal

discontinuous Galerkin method for the two dimensional shallow water equations on un-

structured curvilinear meshes with discontinuous bathymetry.” In: Journal of Computational
Physics 340 (2017), pp. 200–242. doi: 10.1016/j.jcp.2017.03.036.

[76] A. R. Winters, R. C. Moura, G. Mengaldo, G. J. Gassner, S. Walch, J. Peiro, and S. J. Sherwin. “A

comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes

for under-resolved turbulence computations.” In: Journal of Computational Physics 372 (2018),

pp. 1–21. doi: 10.1016/j.jcp.2018.06.016.

[77] A. R. Winters and G. J. Gassner. “A comparison of two entropy stable discontinuous Galerkin

spectral element approximations for the shallow water equations with non-constant topog-

raphy.” In: Journal of Computational Physics 301 (2015), pp. 357–376. doi: 10.1016/j.jcp.
2015.08.034.

31

https://doi.org/10.1016/j.jcp.2017.03.036
https://doi.org/10.1016/j.jcp.2018.06.016
https://doi.org/10.1016/j.jcp.2015.08.034
https://doi.org/10.1016/j.jcp.2015.08.034

	Introduction
	Summation by parts operators and flux differencing
	Separation of volume and surface terms
	Symmetry properties of numerical fluxes and SBP operators
	Sparsity structure of tensor product operators and curvilinear coordinates
	Discussion

	Compressible Euler equations
	Logarithmic mean
	Numerical fluxes for the compressible Euler equations

	Numerical experiments
	Baseline performance results on Cartesian and curved meshes
	Different versions of numerical fluxes

	Comparison to overintegration
	Gauss collocation methods and entropy projections
	More invasive optimizations
	Precomputing primitive variables for the compressible Euler equations
	Precomputing logarithms for the compressible Euler equations
	Defining options at compile time

	Explicit SIMD optimizations
	Summary and conclusions

