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Abstract	

The	event-related	potential/field	component	N400(m)	has	been	widely	used	as	a	neural	index	for	

semantic	prediction.	It	has	long	been	hypothesized	that	feedback	information	from	inferior	frontal	

areas	plays	a	critical	role	in	generating	the	N400.	However,	due	to	limitations	in	causal	connectivity	

estimation,	direct	testing	of	this	hypothesis	has	remained	difficult.	Here,	magnetoencephalography	

(MEG)	data	was	obtained	during	a	classic	N400	paradigm	where	the	semantic	predictability	of	a	fixed	

target	noun	was	manipulated	in	simple	German	sentences.	To	estimate	causality,	we	implemented	a	

novel	 approach	based	on	machine	 learning	 and	 temporal	 generalization	 to	 estimate	 the	 effect	 of	

inferior	 frontal	 gyrus	 (IFG)	 on	 temporal	 areas.	 In	 this	method,	 a	 support	 vector	machine	 (SVM)	

classifier	is	trained	on	each	time	point	of	the	neural	activity	in	IFG	to	classify	less	predicted	(LP)	and	

highly	predicted	(HP)	nouns	and	then	tested	on	all	 time	points	of	superior/middle	temporal	sub-

regions	activity	(and	vice	versa,	to	establish	spatio-temporal	evidence	for	or	against	causality).	The	

decoding	 accuracy	 was	 significantly	 above	 chance	 level	 when	 the	 classifier	 was	 trained	 on	 IFG	

activity	and	tested	on	future	activity	in	superior	and	middle	temporal	gyrus	(STG/MTG).	The	results	

present	new	evidence	for	a	model	predictive	speech	comprehension	where	predictive	IFG	activity	is	

fed	 back	 to	 shape	 subsequent	 activity	 in	 STG/MTG,	 implying	 a	 feedback	 mechanism	 in	 N400	

generation.	In	combination	with	the	also	observed	strong	feedforward	effect	from	left	STG/MTG	to	

IFG,	our	findings	provide	evidence	of	dynamic	feedback	and	feedforward	influences	between	IFG	and	

temporal	areas	during	N400	generation.		
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Introduction	

Lexical	semantic	prediction	has	been	associated	with	an	event-related	response	component	

termed	N400	(Kutas	and	Hillyard,	1980,	1989;	Federmeier,	2007;	Lau	et	al.,	2009;	Lau	et	al.,	2013b;	

Lau	et	al.,	2013a).	N400	amplitude	is	sensitive	to	the	previous	context,	and	its	amplitude	is	reliably	

reduced	following	a	supportive	or	predictive	context	(Kutas	and	Hillyard,	1984;	Federmeier	et	al.,	

2007;	Kutas	and	Federmeier,	2011;	Wlotko	and	Federmeier,	2012).		

Using	MEG,	several	approaches	have	been	taken	to	identify	the	brain	network	underlying	the	

N400m,	 the	 magnetic	 counterpart	 of	 N400	 observed	 in	 EEG.	 Generally,	 the	 results	 suggest	 left	

hemispheric	 dominance	 and	 involvement	 of	 temporal	 and	 inferior	 frontal	 sources	 in	 N400(m)	

generation	(Halgren	et	al.,	2002;	Marinkovic	et	al.,	2003;	Pulvermüller	et	al.,	2005;	Maess	et	al.,	2006;	

Pylkkanen	 and	McElree,	 2007;	 Salmelin,	 2007;	 Dikker	 and	 Pylkkanen,	 2012).	 Despite	 numerous	

studies	on	N400,	the	information	flow	between	regions	appearing	to	contribute	to	N400	generation	

has	remained	elusive.	

Theoretical	 models	 on	 language	 processing	 suggest	 that	 superior	 and	 middle	 temporal	

regions	 perform	 bottom-up	 processing	 while	 inferior	 frontal	 areas	 send	 top-down	 feedback	 to	

temporal	areas	to	support	lexical-semantic	processing	(Engel	et	al.,	2001;	Badre	et	al.,	2005;	Badre	

and	Wagner,	 2007;	 Lau	 et	 al.,	 2008).	 In	 neurophysiological	 studies,	 these	 kinds	 of	 directional	 or	

"causal"	influences	are	often	characterized	as	effective	connectivity.		However,	due	to	methodological	

challenges	 of	 causality	 estimation	 from	 neuroimaging	 data,	 testing	 hypotheses	 regarding	 the	

interregional	influences	during	N400	generation	has	remained	difficult.		

A	 small	 number	 of	 previous	 N400	 studies	 have	 estimated	 fronto-temporal	 directional	

influences	using	a	model-driven	method	known	as	Granger	causality	(Cope	et	al.,	2017;	Schoffelen	et	

al.,	2017).	The	Granger	causality	analysis	 tests	whether	 information	 from	the	past	activity	of	one	

region	 can	 predict	 future	 activity	 in	 another	 better	 than	 its	 own	past	 using	 single	 variable	 auto-

regressive	models	(Granger	and	Hatanaka,	1964).	For	example,	 in	an	MEG	experiment	with	word	

reading	task,	the	Granger	causality	method	identified	inferior	frontal	cortex	and	anterior	temporal	

regions	 to	 receive	 widespread	 input	 and	 middle	 temporal	 regions	 to	 send	 widespread	 output	
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(Schoffelen	 et	 al.,	 2017)	 .	 In	 parallel,	 bi-directional	 Granger-causal	 relationships	 were	 observed	

between	 temporal	 and	 frontal	 sources	 in	 matching	 between	 degraded	 spoken	 words	 with	 the	

previously	 shown	 visual	 word	 (Cope	 et	 al.,	 2017).	 However,	 the	 limitation	 of	 model-driven	

approaches	such	as	Granger	causality,	or	its	analogue	"dynamic	causal	modeling",	is	that	they	require	

assumptions	of	the	temporal	and	spatial	covariance	of	the	sources,	which	are	difficult	to	estimate	in	

the	presence	of	noise	and	with	a	limited	amount	of	data.		

Here,	 to	 address	 the	 critical	 barriers	 on	 causality	modeling,	we	 therefore	 implemented	 a	

novel	data-driven	approach	to	estimate	the	causal	connections	between	frontal	and	temporal	areas	

during	N400	generation.	We	used	data	from	a	classic	N400	paradigm	with	simple	German	sentences	

where	 the	 final	noun	was	highly	predicted	 (HP)	or	 less	predicted	 (LP)	by	 the	previous	verb.	Our	

method	is	based	on	the	temporal	generalization	technique	(King	and	Dehaene,	2014),	which	uses	

machine	learning.	In	this	method	a	classifier	is	trained	on	one	cortical	area’s	activity	and	each	time	

point	to	discriminate	between	HP	and	LP.	This	classifier	is	then	tested	in	another	cortical	area	across	

all	time	points	following	temporal	generalization	idea.		

This	method	allows	us	to	quantify	that	how	much	information	from	one	area	is	predictive	of	

activity	 in	another	area	and	 future	 time	points.	Our	method’s	concept	 is,	 thus,	 similar	 to	Granger	

causality	 in	principle	but	 it	 is	 fully	data	driven	and	based	on	multivariate	analysis.	We	tested	this	

method	in	the	context	of	a	study	pursuing	better	understanding	of	the	complex	dynamics	of	feedback	

and	 feedforward	 information	 flow	 within	 fronto-temporal	 language	 network	 during	 auditory	

perception	of	speech.		
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Materials	and	Methods	

Participants	

In	total,	twenty-one	right-handed	German	native	speakers	(11	female)	participated	in	a	MEG	

experiment	(age	range:	20-32	years,	median:	27)	(Oldfield,	1971).	The	participants	reported	having	

no	hearing	deficits	or	neurological	diseases	and	 they	gave	a	written	 informed	consent	before	 the	

experiment.	The	study	was	conducted	in	accordance	with	the	declaration	of	Helsinki,	and	it	received	

ethical	approval	 from	the	ethics	commission	of	the	University	of	Leipzig	(Ref.	059-11-07032011).	

Other,	more	rudimentary	aspects	of	this	data	set	have	been	analyzed	and	published	in	(Maess	et	al.,	

2016;	Mamashli	et	al.,	2019a).	

	

Stimuli		

Stimuli	were	short	German	sentences	[e.g.	He	drives	the	car,	German:	Er	fährt	das	Auto],	which	

were	grouped	based	on	the	cloze	probability	values	of	the	nouns.	Cloze	probability	is	the	probability	

that	mother	tongue	speakers	would	select	this	word	to	complete	the	given	context	(Taylor,	1953).	

Nouns	with	a	cloze	probability	>50%	were	considered	as	having	high	semantic	predictability	(HP),	

[e.g.	He	drives	 the	 car,	German:	Er	 fährt	 das	Auto]	 and	 those	with	 a	 cloze	probability	<24%	were	

considered	to	have	low	semantic	predictability	(LP),	[e.g.	He	gets	the	car,	German:	Er	kriegt	das	Auto]	

(Maess	et	al.,	2016).		

Design	and	procedure	

In	 a	 dimly	 lit	 shielded	 room,	 MEG	 data	 were	 measured	 with	 a	 306	 channel	 Neuromag	

Vectorview	device	(Elekta,	Helsinki,	Finland),	at	500	Hz	sampling	rate	using	a	bandwidth	of	160	Hz	

(Vacuumschmelze	 Hanau,	 Germany).	 Each	 participant’s	 individual	 hearing	 thresholds	 were	

determined	for	both	ears	separately	using	a	subpart	of	one	of	the	sentences.	Stimuli	were	presented	

at	 48	 dB	 sensation	 level	 (i.e.,	 above	 the	 mean	 individual	 hearing	 threshold).	 Each	 experimental	

session	consisted	of	five	recording	blocks.	All	stimuli	were	randomized	and	presented	in	the	first	two	
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blocks.	Using	a	different	randomization,		stimuli	were	repeated	in	blocks	three	and	four.	The	onsets	

of	all	sentences,	and	the	onsets	of	the	verbs	and	the	nouns	were	specifically	marked.	To	control	for	

the	accuracy	of	the	MEG	inverse	solutions,	a	sequence	of	simple	tones	(200	ms	length	and	500	Hz	

pitch)	was	presented	during	the	fifth	block	with	a	stimulus	onset	asynchrony	(SOA)	of	2200	ms,	at	

the	same	loudness	level	as	the	sentence	stimuli.		

During	each	measurement	block,	participants	were	instructed	to	fixate	a	visually	projected	

cross,	to	listen	carefully	to	the	presented	sentences,	and	to	stay	motionless.	The	fixation	cross	was	

presented	 from	 700	ms	 before	 onset	 until	 700	ms	 after	 the	 offset	 of	 each	 sentence.	 To	 keep	

participants	engaged	with	the	listening,	in	15%	of	the	sentences,	the	same	or	an	alternative	sentence,	

was	spoken	by	a	male	voice.	Participants’	(incidental)	were	asked	to	judge	whether	the	two	preceding	

sentences	(female	and	male	voice)	were	the	same	by	a	button	press.	A	symbolic	face	was	provided	to	

inform	participant’s	response-to-button-alignment:	one	happy	and	one	sad	face,	presented	on	the	

left	and	right	side	of	the	screen.		Participants	answered	“yes”	with	pressing	the	button	at	the	side	of	

the	 happy	 face	 and	 “no”	 with	 the	 other	 using	 their	 thumb.	 The	 symbolic	 faces	 was	 randomly	

presented	on	right	or	left	and	counterbalanced	over	all	stimuli	in	each	block.		

Data	preprocessing	

Signal	space	separation	(SSS)	method	was	used	to	suppress	environmental	interference	of	

the	MEG	data	(Elekta-Neuromag	Maxfilter	software)	(Taulu	et	al.,	2004;	Taulu	and	Simola,	2006)	and	

also	 to	 transform	 the	 data	 from	 each	 block	 into	 the	 same	 head	 position	 (Taulu	 et	 al.,	 2004).	 To	

suppress	cardiac	and	eye	artifacts,	signal	space	projection	was	used	(Gramfort	et	al.,	2014).	Data	were	

extracted	into	single	trials	lasting	1.4	seconds,	ranging	from	400	ms	before	noun	onset	to	1000	ms	

following	it.	MEG	data	were	filtered	with	a	low	pass	filter	of	25	Hz	using	MNE-C	(fft-based	filter)	and	

a	highpass	of	0.5	Hz	with	a	filter	size	of	8192.		Epochs	were	rejected	if	the	peak-to-peak	amplitude	

exceeded	150	μV,	1	pT/cm,	and	3	pT	in	any	of	the	electrooculogram,	gradiometer,	and	magnetometer	

channels,	respectively.	To	equalize	the	signal-to-noise	ratio	in	each	condition	(i.e.,	HP	and	LP),	the	
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number	of	trials	in	the	lesser	populated	condition	was	used	to	analyze	both	conditions.	The	median	

of	the	used	trials	was	97.5	and	the	minimum	number	of	trials	was	79.		

Source	estimation	

Each	participant's	cortical	surface	representation	was	reconstructed	from	3D	structural	MRI	

data	using	FreeSurfer	(http://surfer.nmr.mgh.harvard.edu).	The	cortical	surface	was	decimated	to	a	

grid	 of	 10242	dipoles	 per	 hemisphere,	 i.e.,	with	 approximate	 spacing	 of	 5	mm	between	 adjacent	

source	 locations	on	 the	cortical	surface.	The	MEG	 forward	solution	was	computed	using	a	single-

compartment	 boundary-element	 model	 (BEM)	 assuming	 the	 shape	 of	 the	 intracranial	 space	

(Hämäläinen	and	Sarvas,	1987).	The	inner	skull	surface	triangulations	was	generated	from	the	T1-

weighted	MR	images	of	each	participant	with	the	Freesurfer	"wastershed"	algorithm.	The	cortical	

current	 distribution	 was	 estimated	 using	 a	 depth-weighted,	 minimum-norm	 estimate	 (MNE)	

(http://www.martinos.org/martinos/userInfo/data/sofMNE.php	(Lin	et	al.,	2006))	assuming	a	fixed	

orientation	of	the	source,	perpendicular	to	the	individual	cortical	mesh.	The	noise-covariance	matrix	

used	 to	 calculate	 the	 inverse	 operator	 was	 estimated	 from	 data	 collected	 from	 empty	 room	

recordings	prior	and	 following	 the	 recordings	with	each	subject.	To	 reduce	 the	bias	of	 the	MNEs	

towards	superficial	currents,	we	used	depth	weighting.	In	other	words,	the	source	covariance	matrix	

was	adjusted	to	favor	deep	source	locations.	

Inter-subject	cortical	surface	registration	for	group	analysis	

Each	 participant’s	 inflated	 cortical	 surface	 was	 registered	 to	 an	 average	 cortical	

representation	 (FsAverage	 in	 FreeSurfer)	 by	 optimally	 aligning	 individual	 sulcal-gyral	 patterns	

computed	in	FreeSurfer	(Fischl	et	al.,	1999a).	To	provide	more	accurate	inter-subject	alignment	of	

cortical	 regions	 than	 volume-based	 approaches,	 we	 used	 a	 surface-based	 registration	 technique	

based	on	folding	patterns	(Fischl	et	al.,	1999b;	Van	Essen	and	Dierker,	2007).	
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Region	identification	and	analysis	

The	analysis	were	focused	on	six	cortical	areas	of	 the	FreeSurfer	Desikan-Killiany	Atlas	 in	

both	 hemispheres,	which	 are	 believed	 to	 constitute	 the	most	 critical	 parts	 of	 semantic	 language	

networks	(Lau	et	al.,	2008;	Price,	2010;	Friederici,	2011),	including	bilateral	superior	temporal	gyrus	

(STG),	middle	 temporal	 gyrus	 (MTG),	 and	 inferior	 frontal	 gyrus	 (IFG)	 including	Brodmann	 areas	

BA44,	BA45	and	BA47.	In	addition,	we	used	an	automatic	routine	(mris_divide_parcellation)	available	

in	the	Freesurfer	package	(equal	size	principle)	to	break	each	large	region	into	smaller	equal	size	

sub-regions;	 i.e.,	 all	 sub-regions	 in	 all	 regions	 were	 of	 approximately	 the	 same	 size—thereby	

increasing	the	spatial	specificity	for	further	analysis	(Mamashli	et	al.,	2017;	Mamashli	et	al.,	2019b;	

Mamashli	et	al.,	2019c;	Mamashli	et	al.,	2020;	Mamashli	et	al.,	2021a;	Mamashli	et	al.,	2021b),	as	areas	

can	lead	to	temporal	signal	cancellations.	Furthermore,	we	grouped	the	sub-regions	into	anterior	and	

posterior	parts	of	each	cortical	region,	e.g.,	STG	will	be	divided	into	anterior	STG	(aSTG)	and	posterior	

STG	(pSTG).	 In	total,	we	had	six	regions	of	 interest	(ROI)	 in	each	hemisphere:	aSTG,	pSTG,	aMTG,	

pMTG,	aIFG	and	pIFG	(Figure	1).		

	

	

Figure	1:	ROIs	and	sub-regions	or	sub-ROIs	in	left	and	right	hemisphere.	
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Sub-region	time	series	extraction	

Epochs	were	extracted	and	averaged	across	all	vertices	within	each	sub-region,	to	compute	

the	mean	sub-region	time	course,	generating	𝑿(Λ, 𝑇, 𝑁),	where	Λ	is	the	number	of	vertices,	T	is	the	

number	 of	 time	 points,	 and	 N	 is	 the	 number	 of	 epochs.	 Since	 the	 individual	 vertex	 (dipole)	

orientations	is	ambiguous,	these	time	series	were	first	aligned	with	the	dominant	component	of	the	

multivariate	source	time	course,	and	then	averaged	to	calculate	the	sub-region	mean.	In	order	to	align	

the	sign	of	the	time	series	across	vertices,	we	first	concatenate	all	the	epochs	for	each	vertex	in	a	

single	time	series	and	then	computed	an	SVD	of	the	data	𝐗! = 𝐔𝚺𝐕𝐓.	 	The	sign	of	the	dot	product	

between	the	first	left	singular	vector	U	and	all	other	time-series	in	a	sub-region	was	computed.	If	this	

sign	was	negative,	we	inverted	the	time-series	before	averaging	over	all	time	courses	of	a	sub-region.	

Finally,	temporal	data	of	each	sub-region	was	arranged	as	a	2D	matrix	[epochs	X	time].		

Inter-regional	temporal	generalization	Multivariate	Pattern	Analysis	(MVPA)	

Here,	we	use	a	data-driven	multivariate	approach	to	estimate	the	causal	connection	between	

two	regions.	Multivariate	pattern	analysis	has	been	used	before	both	using	MEG	(King	and	Dehaene,	

2014;	Cichy	and	Pantazis,	2017;	Mohsenzadeh	et	al.,	2018;	Hatamimajoumerd	et	al.,	2020)	and	fMRI	

(Hatamimajoumerd	et	al.,	2022)	 ,	where	a	classifier	 is	 trained	 in	one	experimental	 condition	and	

tested	in	another	condition.	In	contrast,	here,	a	classifier	is	trained	to	learn	the	difference	between	

conditions	at	one	point	of	time	in	one	region	and	then	tested	in	at	another	point	of	time	in	another	

region.			

To	accomplish	this,	an	SVM	classifier	is	trained	across	two	conditions	(LP	vs	HP)	in	ROI1	using	the	

sub-ROI	activities	as	features	at	each	time	point.	This	classifier	is	then	tested	in	ROI2	and	across	all	

time	points	using	temporal	generalization	idea.	This	process	is	replicated	for	all	time	points	of	ROI1	

and	eventually	provides	the	temporal	generalization	matrix	for	each	ROI	pair.	The	time	window	was	

from	-200ms	to	800ms.	We	focused	our	analysis	on	the	within	hemisphere	ventral	and	dorsal	path	

in	language	processing	to	investigate	the	information	flow	from	anterior	IFG	to	anterior	temporal	

areas	(e.g.,	aIFG	to	aSTG/aMTG)	and	posterior	IFG	to	posterior	temporal	(e.g.,	pIFG	to	pSTG/pMTG).	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580183doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580183
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

Similarly,	we	 tested	 the	 opposite	 direction	 from	 temporal	 to	 IFG	 (e.g.,	 pSTG/pMTG	 to	 pIFG).	 For	

simplicity,	we	refer	these	patterns	to	as	"directional	connections".	In	total,	we	tested	eight	directional	

connections	 in	 each	 hemisphere.	 To	 increase	 the	 signal-to-noise	 ratio,	 we	 randomly	 selected	 10	

epochs,	averaged	within	each	condition,	and	bootstrapped	this	100	times	(Cichy	and	Pantazis,	2017).	

A	schematic	display	of	the	method	is	shown	in	Figure	2.		

	

	

	

Figure	2:	A	schematic	display	of	the	method.	(A)	Examples	of	ROIs	and	sub-ROIs	in	pIFG	and	pSTG.	SVM	

classifier	is	trained	on	four	features	from	four	sub-ROIs	activity	in	pIFG	to	classify	LP	from	HP	conditions	

and	then	tested	on	the	four	features	extracted	from	pSTG	sub-ROI	activity.	Similarly,	the	same	process	

was	done	from	pSTG	to	pIFG.	(B)	SVM	classifier	is	trained	at	each	time	point	of	pIFG	activity	and	tested	

on	 all	 time	 points	 of	 pSTG.	 The	 accuracy	 of	model	 from	 pSTG	 test	 data	 is	 used	 to	 create	 temporal	

generalization	matrix.	Here,	one	time	point	t0	and	t1	are	shown	as	an	example.		

	

Statistical	analysis	

For	each	directional	connectivity	between	a	pair	of	ROIs,	cluster-based	statistics	were	applied	(Maris	

and	Oostenveld,	2007).	We	used	P	<	0.025	as	the	initial	threshold,	1000	permutations,	and	one-tailed	

one-sample	t-tests	as	the	test	statistics	against	the	chance	level	for	binary	classifier.	We	estimated	

the	empirical	chance	 level	using	simulations	by	shuffling	 the	 labels	100	times	and	performed	the	
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temporal	generalization	 for	all	subjects	and	connections.	The	temporal	generalization	matrix	was	

flattened	and	gained	10000	shuffled	accuracies.	To	generate	a	null	distribution,	values	were	pooled	

across	all	subjects	and	connections.	The	null	distribution	was	Gaussian	with	mean	at	0.5.	Therefore,	

the	empirical	chance	 level	 for	our	case	was	0.5.	Thus,	we	used	0.5	as	 the	chance	 level	 in	our	 test	

statistic.	In	addition,	to	correct	for	16	directional	connectivity	tests,	we	applied	false	discovery	rate	

(FDR)	method	at	0.025	thresholds.	The	0.025	thresholds	were	chosen	to	account	for	the	one-tailed	t-

test.	For	each	connection,	we	considered	the	first	3	clusters	as	they	represent	the	strongest	effect.	In	

summary,	we	applied	FDR	on	16	×	3=	48	tests.	
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Results	

	

Information	flow	from	temporal	areas	to	IFG	

	

We	tested	for	across-areal	generalization	by	training	the	classifier	on	MTG	and	STG	evoked	

response	activity	and	then	testing	this	classifier	on	IFG	activity.	Any	cluster	above	the	diagonal	shows	

how	earlier	 time	 in	 temporal	 areas	 affect	 future	 time	 in	 frontal,	which	we	 interpret	 as	 reflecting	

feedforward-type	 influences.	 We	 observed	 this	 pattern	 in	 five	 out	 of	 6	 significant	 connections	

(Figure	3).	These	patterns	included	from	influences	from	the	left	pSTG	to	left	pIFG,	left	pMTG	to	left	

pIFG,	left	aMTG	to	left	aIFG,	right	pSTG	to	right	pIFG,	and	right	pMTG	to	right	pIFG.	The	left	pSTG	

influenced	 pIFG	 processing	 at	multiple	 time	 intervals	 started	 from	 250ms	 and	 extended	 later	 to	

500ms	(Figure	3A).	From	the	left	pMTG	to	pIFG	and	from	the	left	aMTG	to	aIFG,	there	was	a	continous	

feedforward	 effect	 from	 50ms	 to	 450	 and	 500ms	 respectively	 (Figure	 3C-D).	 In	 the	 case	 of	

connectivity	patterns	from	the	right	pSTG	to	pIFG	and	from	the	right	pMTG	to	pIFG,	the	feedforward	

effects	were	more	discontinous	(Figure	3E-F).	

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580183doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580183
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 14	

	

Figure	 3:	 Temporal	 generalization	 decoding	matrix	 averaged	 over	 all	 subjects.	 The	 white	 contour	

indicates	significant	decoding	values	against	the	chance	level.	SVM	classifier	is	trained	on	(A)	left	pSTG	

and	tested	on	left	pIFG,	(B)	left	pMTG	and	tested	on	left	pIFG,	(C)	right	aSTG	and	right	aIFG,	and	(D)	

right	pMTG	and	right	pIFG.	
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Information	flow	from	IFG	to	temporal	areas	

	

Analogously	to	the	above	section,	we	tested	for	across-areal	generalization	by	training	the	

classifier	on	IFG	evoked	response	activity	and	then	testing	this	classifier	on	STG	and	MTG	activity.	

We	 found	 significantly	 larger	 than	 chance	 level	 (50%)	 accuracy	 in	 6	 connections	 corrected	 for	

multiple	comparisons	(Figure	4).	These	included	left	aIFG	to	left	aSTG,	 left	aIFG	to	left	aMTG,	left	

pIFG	to	left	pMTG,	right	pIFG	to	right	pMTG,	right	pIFG	to	right	pSTG,	and	right	aIFG	to	right	aSTG.	

The	temporal	generalization	dynamics	were	different	in	each	connection.	When	the	cluster	expands	

above	the	diagonal,	it	shows	that	at	each	time,	the	classifier	trained	in	IFG	is	predictive	of	future	time	

points	 in	 temporal-cortex	 areas.	 We	 interpret	 these	 kinds	 of	 patterns	 as	 reflecting	 feedback	

influences	from	IFG	to	temporal	areas.	From	left	aIFG	to	left	aSTG	and	aMTG,	there	were	effects	up	to	

250ms	and	450ms	respectively	that	started	as	early	as	50ms	and	were	sustained	for	at	least	200ms	

(Figure	4A-B).	The	effect	from	left	pIFG	to	pMTG	started	later	around	250ms	and	continued	for	about	

200ms	and	affected	time	interval	after	450ms	(Figure	4C).	The	earliest	frontal	effect	seemed	to	start	

from	right	pIFG	to	pMTG	and	pSTG	(Figure	4D-E),	where	the	influence	on	pMTG	lasted	longer	time	

up	to	400ms,	whereas	in	pSTG	up	to	around	150ms.	There	was	also	a	continuous	effect	from	right	

aIFG	to	aSTG	around	200ms	for	a	short	duration.	Furthermore,	from	right	aIFG	to	aSTG,	there	was	a	

small	effect	before	200ms.			

Those	connections	that	are	significant	in	both	directions	are	plotted	side-by-side	in	Figure	S1	

for	a	better	comparison.	
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Figure	 4:	 Temporal	 generalization	 decoding	matrix	 averaged	 over	 all	 subjects.	 The	 white	 contour	

indicates	significant	decoding	values	against	the	chance	level.	SVM	classifier	is	trained	on	(A)	left	pIFG	

and	tested	on	left	pSTG,	(B)	left	pIFG	and	tested	on	left	pMTG,	(C)	left	aIFG	and	tested	on	left	aSTG,	(D)	

left	aIFG	and	tested	on	left	aMTG,	(E)	right	aIFG	and	tested	on	right	aSTG,	and	(F)	right	aIFG	and	tested	

on	right	aMTG.	 (G)	The	ROIs	and	 the	significant	connections	 from	A	 to	F	are	displayed	 in	a	cortical	

surface	representation.	
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Discussion	

	

In	this	study,	we	used	a	novel	approach	to	investigate	feedforward	and	feedback	influences	

between	 inferior	 frontal	 and	 temporal	 cortex	areas,	using	 source	estimates	of	 event-related	MEG	

responses	to	low-predictability	vs.	high-predictability	nouns.		

Our	 rationale	 rests	 on	 the	 utility	 of	 temporal	 generalization	 methods	 in	 multivariate	

classification	of	brain	data	from	specific	brain	areas:	The	idea	is	that	when	the	classifier	performance	

exceeds	chance	level	in	the	testing	area	at	future	time	points,	this	means	that	brain	activity	in	the	

training	area	contain	information	that	helps	predicting	the	LP	vs	HP	condition	future	time	points	in	

the	testing	area.	By	examining	 instances	when	the	classifier	training	was	based	at	an	earlier	time	

period	 than	 the	 testing,	 we	 made	 inferences	 on	 potential	 directional	 influences	 in	 language	

processing	underlying	N400	generation.	

We	here	have	presented	evidence	for	both	feedforward	influences	from	STG/MTG	to	IFG	and	

feedback	influences	from	IFG	to	STG/MTG	in	both	hemispheres.	The	strongest	feedforward	effects	

were	observed	from	the	left	pSTG/pMTG	to	the	left	pIFG	and	from	the	left	aMTG	to	the	left	aIFG.	In	

parallel,	strongest	feedback	effects	were	from	the	left	aIFG	to	the	left	aSTG/aMTG	and	from	the	right	

pIFG	 to	 the	 right	 pSTG/pMTG.	 These	 results	 provide	 evidence	 that	 feedforward	 and	 feedback	

influences	are	transferred	through	both	ventral	and	dorsal	pathways	and	they	are	not	restricted	to	a	

certain	path.	Dorsal	and	ventral	are	the	two	main	structural	pathways	for	language	processing.	The	

ventral	pathway	connects	the	temporal	cortex	to	inferior	frontal	regions	via	extreme	fiber	capsule	

system	(EFCS)	and	uncinate	fascile	(UF)	and	the	dorsal	pathway	connects	the	posterior	frontal	area	

to	posterior	part	of	the	temporal	cortex	via	arcuate	fascile	(AF)	and	the	superior	longitudinal	fascicle	

(SLF)	(Friederici,	2012).	Moreover,	our	results	suggest	that	feedforward	influences	are	mostly	left	

lateralized	whereas	 feedback	 influences	 are	 present	 in	 both	 hemispheres.	 In	 our	 previous	 study	

(Maess	et	al,	2016),	 focused	on	 the	evoked	responses	of	 the	verbs	and	 the	nouns,	we	observed	a	

reduction	of	the	N400	response	for	highly	predicted	nouns	as	expected	and	the	opposite	pattern	for	
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the	noun-preceding	verbs.	Highly	predictive	verbs	yielded	stronger	N400	amplitude	compared	to	

less	predictive	verbs.	Enhanced	activity	for	highly	predictive	relative	to	less	predictive	verbs,	were	

interpreted	 to	 reflect	 pre-activations	 of	 semantic	 features	 associated	 with	 the	 expected	 nouns.	

Therefore,	it	is	interesting	that	feedback	influences	start	at	a	very	early	latencies,	almost	immediately	

after	the	stimulus	onset.	In	contrast,	the	majority	of	feedforward	influences	started	at	least	with	a	

100	ms	delay.			

A	number	of	competing	models	have	been	proposed	on	top-down	and	bottom-up	influences	

between	 temporal	 and	 frontal	 areas	 during	 sentence	 comprehension	 (Friederici	 2012).	 Verifying	

such	models	has	been	difficult	due	to	the	complications	in	estimating	causality	in	human	recordings.	

Indeed,	to	date,	only	a	few	previous	studies	have	estimated	the	causal	connections	between	temporal	

and	frontal	areas	in	predictive	speech	processing	using	more	classic	techniques.	Cope	et	al.	(2017)	

found	 bi-directional	 fronto-temporal	 causal	 connections	 using	 Granger	 causality	 in	 distinct	

frequency	bands	when	spoken	words	were	matched	with	visual	presentation.	Using	similar	method	

in	 a	 reading	 task,	 Schoffelen	 et	 al.	 (2017)	 found	 feedforward	 connection	 from	 pMTG	 to	 IFG	 and	

feedback	and	feedforward	connections	between	IFG	and	aMTG.	A	recent	study	(Schroen	et	al.,	2023)	

using	 a	 subset	 of	 our	 stimulus	 material	 investigated	 temporo-frontal	 causal	 influences	 with	 a	

combined	 transcranial	magnetic	 stimulation	 and	 electroencephalography	 approach.	 Interestingly,	

using	this	completely	different	approach,	they	also	observed	early	feedforward	influences	from	left	

pSTG	to	left	IFG	and	late	feedback	influences	(300-500ms)	from	left	IFG	to	left	pSTG.	Consistent	with	

these	 previous	 results,	 the	 present	 results	 highlight	 the	 importance	 of	 bidirectional	 interactions	

between	functionally	specialized	brain	regions	to	facilitate	complex	language	processing	(Friederici	

2012).	 Our	 novel	 inter-regional	 temporal	 generalization	 could	 facilitate	 quantitative	 testing	 of	

theoretical	models	proposed	for	language	processing	in	general	(Hickok	and	Poeppel,	2004,	2007;	

Friederici,	2011)	and	N400	processing	in	particular	(Lau	et	al.,	2008).		

Estimating	 feedback	 and	 feedforward	 influences	 using	 neuroimaging	 data	 has	 been	

challenging.	One	of	the	inherent	properties	of	these	connections	is	that	feedforward	influence	is	time-

locked	and	stimulus-driven,	whereas	feedback	influences	associated	with	cognitive	processing	can	
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be	presumed	 to	 jitter	 in	 time	and	vary	more	prominently	 subject	by	 subject,	 for	example,	due	 to	

individual	differences	in	cognitive	capacities.	The	more	pronounced	variability	within	and	between	

individuals	 weakens	 the	 estimated	 representations	 of	 feedback	 influences	 in	 time	 relative	 to	

feedforward	influences,	making	their	quantitative	estimation	harder.	This	could	be	one	of	the	factors	

why	in	the	present	study,	the	average	decoding	accuracy	was	stronger	in	feedforward	than	feedback	

connections.		

	

Conclusion	

In	summary,	we	implemented	a	novel	method	to	estimate	feedback	and	feedforward	influences	using	

cross-regional	temporal	generalization	in	MEG	decoding.	Aiming	to	understand	the	information	flow	

in	N400	generation	in	a	simple	language	paradigm,	we	found	IFG	feeding	back	to	STG/MTG	bilaterally	

and	 STG/MTG	 feeding	 forward	 to	 IFG	 left-lateralized.	 Our	 results	 are	 consistent	 with	 the	 long-

standing	 but	 empirically	challenging	 notion	 that	 dynamic	 feedback	 and	 feedforward	 influences	

between	IFG	and	temporal	areas	drive	N400	generation.		

.		
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Figure	S1:	Significant	connections	that	are	bi-directional.	The	left	panel	shows	the	feedforward	effects	

and	the	right	panel	is	the	feedback	effects.		
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