
 
 

Biophysical cues in breast cancer 
metastasis and dormancy 

 
 
 

vorgelegt von 
Dipl. Ing.  

Hubert Mordehaï Taïeb 
ORCID: 0000-0002-7530-8988 

 
 

an der Fakultät III ‐ Prozesswissenschaften 
der Technischen Universität Berlin 

zur Erlangung des akademischen Grades 
 

Doktor der Ingenieurwissenschaften 
– Dr.‐Ing. – 

 
genehmigte Dissertation 

 
 
 
 
 

 
 

Promotionsausschuss: 
 

Vorsitzende: Prof. Dr. Sina Bartfeld 
Gutachterin: Dr. Amaia Cipitria 
Gutachter: Prof. Dr. Roland Lauster 
Gutachter: Dr. Tom Robinson 
 
 
Tag der wissenschaftlichen Aussprache: 24.02.2022 

 
 

Berlin 2022 
 

https://orcid.org/0000-0002-7530-8988


ii 
 

 
 
  



 

i 
 

Zusammenfassung 

Das Wiederauftreten von Brustkrebs und die Bildung von Metastasen sind oft 

mit einer schlechten Prognose verbunden. Die Ausbreitung von Krebszellen in 

sekundäre Organe ist sehr häufig und die zehnjährige Verzögerung, die beim 

Wiederauftreten beobachtet wird, ist ein Zeichen für eine Ruhephase, in der die Zellen 

in einem Wachstumsstillstand verharren, darauf wartend durch einen Auslöser in ihrer 

Mikroumgebung reaktiviert zu werden. Während der Invasion sekundärer Organe 

bewegen sich die Zellen durch Kapillaren, die durch Gradienten sowohl im 

osmotischen Druck als auch im Flüssigkeitsstrom gekennzeichnet sind. Wir stellen die 

Hypothese auf, dass diese beiden biophysikalischen Faktoren die Ruhephase von 

Krebszellen beeinflussen könnten, indem sie die Progression des Zellzyklus 

anpassen. 

Daher brauchen wir eine Möglichkeit, die Dynamik des Zellzyklus unter 

kontrollierten Bedingungen zu überwachen. Dank technisch ausgereifter Systeme wie 

dem fluoreszierenden ubiquitinierungs-basierten Zellzyklus-Indikator (FUCCI) ist es 

heute möglich, Zellproliferation, Migration, Veränderungen der Kernmorphologie und 

die Dynamik einzelner Zellzyklen markierungsfrei und quantitativ in Echtzeit zu 

untersuchen. Es fehlt jedoch noch eine automatisierte und standardisierte Methode 

zur Verarbeitung der umfangreichen Datenmenge (Zeitraffer-Multikanalaufnahmen). In 

dieser Arbeit stellen wir die dafür von uns entwickelte Software vor: FUCCItrack, eine 

halbautomatische All-in-One-Software zur Segmentierung, Verfolgung und 

Visualisierung von FUCCI-modifizierten Zelllinien. Eine benutzerfreundliche, 

vollständig grafische Benutzeroberfläche ermöglicht die Aufzeichnung und quantitative 

Analyse der kollektiven Zellproliferation, als auch einzelner Zellinformationen, 

einschließlich Migration und Veränderungen der Zellkern- oder Zellmorphologie in 

Abhängigkeit vom Zellzyklus. Um eine vollständige Kontrolle über die Analyse zu 

ermöglichen, enthält FUCCItrack auch Funktionen zur Identifizierung von Fehlern und 

manuellen Korrekturen. Wir glauben, dass mit dieser Software eine neue Gruppe von 
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Anwendern, die mit der Bildverarbeitung nicht vertraut sind, von den großartigen 

FUCCI-Systemen und anderen Zellzyklusreportern profitieren kann. 

Als nächstes konzentrierten wir uns auf die Rolle des osmotischen Drucks im 

Zusammenhang mit der Ruhephase von Brustkrebszellen, wobei wir die Zelllinie MDA-

MB-231, die wir genetisch mit FUCCI2 (MDA-FUCCI2) modifiziert haben, als Modell 

für stark metastasierenden Brustkrebs verwendeten. In der Tat moduliert der 

osmotische Druck die Vermehrung und den Wachstumsstopp von Bakterien, 

Hefezellen und Samen. In Geweben erfolgt die osmotische Regulierung über Blut- und 

Lymphkapillaren und auf der Ebene der einzelnen Zelle spielen Wasser- und 

Osmoregulation eine entscheidende Rolle. Die Auswirkungen des osmotischen 

Drucks auf die Dynamik des Zellzyklus einer einzelnen Zelle sind jedoch nach wie vor 

nur unzureichend bekannt. Ausgestattet mit dem von uns entwickelten Werkzeug 

untersuchen wir die Auswirkungen des osmotischen Drucks auf die Dynamik des 

Zellzyklus, das Kernwachstum, die Proliferation, die Migration und die 

Proteinexpression einzelner Zellen durch quantitative Zeitrafferaufnahmen mit dem 

FUCCI2-System, einer Variante des ursprünglichen FUCCI-Systems mit anderen 

Fluorophoren. Die Einzelzelldaten zeigen, dass sich unter hyperosmotischem Stress 

verschiedene Zellsubpopulationen mit beeinträchtigtem Kernwachstum, verzögertem 

oder wachstumsgestopptem Zellzyklus und verminderter Migration entwickeln. Dieser 

Zustand ist bei leichtem hyperosmotischem Stress reversibel. Die Zellen kehren dann 

zu ihrer normalen Zellzyklusdynamik, Proliferation und Migration zurück. Somit kann 

der osmotische Druck den reversiblen Wachstumsstillstand und die Reaktivierung von 

menschlichen proliferativen Zellen modulieren. 

Schließlich wollten wir untersuchen, wie metastatische Krebszellen auf eine 

Flüssigkeitsströmung reagieren, die den Bereich der sinusförmigen Kapillaren 

nachahmt. Daher beobachteten wir die Auswirkungen einer solchen Strömung und der 

daraus resultierenden Scherspannung, die aus der numerischen Strömungsmechanik 

abgeleitet wurde, auf den Verlauf des metastatischen Zellzyklus, die Migration, das 

Zell- und Kernvolumen sowie die Form. Einzelne FUCCI2-Zellen werden mit einer 

maßgeschneiderten mikrofluidischen Vorrichtung eingefangen und verschiedenen 

laminaren Strömungen ausgesetzt. Die quantitative Zeitraffer-Bildgebung mit 2D-

Epifluoreszenz- und 3D-Konfokalmikroskopie wird mit FUCCItrack, unserer selbst 

entwickelten Software, durchgeführt, während die 3D-Zeitraffer-Segmentierung der 

Zellen und Kerne mit Deep Learning erfolgt, um die Bildverarbeitung zu optimieren. 
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Wir zeigen, dass auf der Ebene einer einzelnen Zelle eine Erhöhung des 

Flüssigkeitsstroms zu einer kürzeren S/G2/M-Phase, einer etwas längeren G1-Phase 

und einem insgesamt kürzeren Zellzyklus führt. Die Zunahme des Flüssigkeitsstroms 

beschleunigt die Zellmigration, ohne dass eine Vorzugsrichtung in Bezug auf die 

Stromlinien des Flusses besteht. Die konfokale 3D-Zeitraffer-Bildgebung von MDA-

FUCCI2-Zellen zeigt keine signifikanten Auswirkungen des Flüssigkeitsstroms auf das 

Zell- und Kernvolumen während des gesamten Zellzyklus. Die Formanalyse zeigt 

jedoch eine leichte Abnahme der Kernausdehnung, die jedoch nicht mit einer 

Abnahme der Zellausdehnung einhergeht. Insgesamt bieten diese Daten neue 

Einblicke in die potenziellen Auswirkungen des Flüssigkeitsstroms auf der Ebene der 

einzelnen Zelle, aber sie liefern keine Beweise dafür, dass der sinusförmige 

Flüssigkeitsstrom ein biophysikalischer Hinweis ist, der die Ruhephase ermöglicht. 
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Abstract 

Breast cancer recurrence and metastasis are often followed by a poor 

prognosis. Dissemination of cancer cells to secondary organs is very frequent and the 

decade delay observed in recurrence is a sign of dormancy, where cells stay in a 

growth arrested phase, waiting for a trigger in their microenvironment to reactivate 

them. During the invasion of secondary organs, cells travel through capillaries, which 

are characterized by gradients in both osmotic pressure and fluid flow. This thesis 

hypothesizes that these two biophysical factors could influence cancer dormancy by 

modulating cell cycle progression. 

Hence, we need a way to monitor cell cycle dynamics under controlled 

conditions. Thanks to sophisticated systems, such as the fluorescent ubiquitination-

based cell cycle indicator (FUCCI), it is now possible to study cell proliferation, 

migration, as well as changes in nuclear morphology and single cell cycle dynamics, 

all label free and quantitatively in real time. However, an automated and standardized 

method to process the large dataset (time lapse imaging with multiple channels) is still 

missing. In this work, we introduce the software we developed: FUCCItrack, an all-in-

one, semi-automated software to segment, track and visualize FUCCI modified cell 

lines. A complete user-friendly graphical user interface is presented to record and 

quantitatively analyze both collective cell proliferation as well as single cell information, 

including migration and changes in nuclear or cell morphology as a function of cell 

cycle. To enable full control over the analysis, FUCCItrack also contains features for 

identification of errors and manual corrections. We believe that with this software, a 

new slew of users not familiar with image processing could profit from the great FUCCI 

systems, as well as other cell cycle reporters. 

Next, we focused on the role of osmotic pressure in the context of breast cancer 

cell dormancy using the MDA-MB-231 cell line, which we genetically modified with 

FUCCI2 (MDA-FUCCI2) as model of highly metastatic breast cancer. Indeed, osmotic 

pressure modulates proliferation and growth arrest of bacteria, yeast cells, and seeds. 

In tissues, osmotic regulation takes place through blood and lymphatic capillaries and, 

at a single cell level, water and osmoregulation play a critical role. However, the effect 
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of osmotic pressure on single cell cycle dynamics remains poorly understood. 

Equipped with this new tool we developed, FUCCItrack, we investigate the effect of 

osmotic pressure on single cell cycle dynamics, nuclear growth, proliferation, migration 

and protein expression, by quantitative time lapse imaging of single cells using the 

FUCCI2 system, which is a variant of the original FUCCI, using different fluorophores. 

Single cell data reveals that under hyperosmotic stress, distinct cell subpopulations 

emerge with impaired nuclear growth, delayed or growth arrested cell cycle and 

reduced migration. This state is reversible for mild hyperosmotic stress, where cells 

return to regular cell cycle dynamics, proliferation and migration. Thus, osmotic 

pressure can modulate the reversible growth arrest and reactivation of human 

proliferative cells. 

Finally, we aimed to investigate how metastatic cancer cells would react to fluid 

flow, mimicking the region of sinusoidal capillaries. Hence, we observed the effect of 

such flow, and its resulting shear stress derived from computational fluid dynamics, on 

metastatic cell cycle progression, migration, cell and nuclear volume, as well as shape. 

FUCCI2 cells are trapped to capture single cells using a customized microfluidic device 

and exposed to different laminar flows. Quantitative time lapse imaging in both 2D 

epifluorescence and 3D confocal microscopy is performed using FUCCItrack, our own 

developed software, while 3D time lapse cell/nuclear segmentation is done with deep 

learning to streamline the image processing. We show that at a single cell level, 

increase in fluid flow leads to shorter S/G2/M phase, slightly longer G1 phase and an 

overall shorter cell cycle. Increase in fluid flow accelerates cell migration without any 

preferential direction with respect to the flow streamlines. 3D time lapse confocal 

imaging of MDA-FUCCI2 cells reveals no significant effect of fluid flow on cell and 

nuclear volume throughout the cell cycle. However, shape analysis reveals a slight 

decrease in nuclear elongation, which is not accompanied by a decrease in cell 

elongation. Collectively, those data provide new insights into the potential impact of 

fluid flow at a single cell level but does not support evidence for the sinusoidal fluid 

flow as a dormancy permissive biophysical cue. 
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Chapter 1 Background and significance 

“The seeds are invisible. They sleep in the secret of the earth 

until one of them takes a fancy to wake up.” 

Le petit prince, Antoine de Saint-Exupéry 

 

This chapter gives an overview of the necessary concepts to understand this thesis as 

well as a review of the current literature. The chapter describes the motivation to 

investigate breast cancer metastasis and specifically, cellular dormancy, with a focus 

on the interaction with the microenvironment and the biophysical cues associated with 

it. 

1.1 Breast cancer metastasis, dormancy and biophysical cues 

Despite the immense effort, resources and scientific progress in the last decades, most 

cancer deaths can be attributed to metastases [1]. Tumor metastasis entails a suit of 

specific biological processes that ultimately disseminate tumor cells from a primary site 

to a distant location [2]. Tumor cells must invade surrounding tissue from the primary 

tumor, escape to the lymphatics or the bloodstream (intravasation), survive until they 

physically arrest somewhere to extravasate into a tissue and finally grow at the new 

site (Figure 1-1) [3]. Recurrence is often observed for breast cancer, both with (41 %) 

and without treatment (54 %) and even after the surgical removal of the primary 

tumor [4]. Bone is among the preferred target sites for metastasis in advanced breast 

cancer and is rarely curable occurring for more than with 70 % of patients with 

metastatic breast cancer [5, 6]. 

Interestingly, the recurrence is extremely variable in time with a delay ranging from 

months up to decades after initial primary tumor removal [4], and with rare recurrence 

after 25 years [7]. The term dormancy was coined to describe the state of non-

proliferation of disseminated tumor cells (DTCs) maintained by different pathways [8-

10]. In particular, cellular dormancy corresponds to a reversible growth arrest strongly 

regulated by the interaction of isolated DTCs with their microenvironment [9, 11]. 
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Indeed, dormancy permissive locations in the body, or niches have been found to 

restrain tumor growth or induce dormancy [12], such as the perivascular region in the 

case of breast tumor dormancy [13]. Preclinical models are now targeting specifically 

this step of the metastatic process to understand how dormant cells avoid classical 

therapy [14] since the years before recurrence offer a therapeutic window to avoid or 

delay clinical detectable metastasis. Other translational approaches are to target 

signaling pathways that could maintain a dormant state [15] or, in contrast, to develop 

synthetic lethal drugs to target dormant tumor cells [16]. 

 

 
Figure 1-1 The metastatic progression of cancer. 
Reproduced  with permission from Springer Nature. 

 

It is fascinating to note that more than a hundred years ago, Stephen Paget described 

the tumor cells as the “seed” and the host environment as the “soil” and hypothesized 

that their interaction could determine metastatic outcome [17]. Understanding the 

homing to a new microenvironment and how this new biophysical soil contributes to 

progression of cancers (particularly breast cancer) is of great importance and has been 

documented before [13, 18-20]. It was thus shown that microenvironmental conditions 

such as upregulation of signaling factors like transforming growth factor (TGF)-βII [21], 

interferon-γ [22], or bone morphogenetic protein 4 (BMP4), as well as BMP7 [23] were 

involved in cancer dormancy. Today more than ever, understanding the 
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microenvironment and its impact on cellular dormancy to prevent metastasis 

occurrence remains an ongoing challenge that is being tackled by many 

researchers [10]. Even though It is not yet completely clear how DTCs can use ECM-

derived cues to trigger dormancy, and eventually maintain it upon reactivation, recent 

work discovered that dormant cancer cells can build a type III collagen-enriched ECM 

niche to sustain tumor dormancy [24]. 

Despite the staggering amount of literature on biochemical on dormancy, very little is 

known about the impact of the different biophysical cues in breast cancer cell 

dormancy. It has been shown that increased hypoxia from the primary tumor could 

trigger a dormant phenotype [25] and create a subpopulation of dormant DTCs evading 

therapy, eventually leading to cancer relapse. Investigation on other cues such as 

osmotic pressure or fluid flow and their role in cellular dormancy remains unexplored. 

However, the role of the local biophysical microenvironment in cellular function and 

processes has been increasingly acknowledged. Beyond genetically driven 

intracellular factors, biophysical cues regulate cell metabolism, growth arrest and 

proliferation [26-28]. It has been shown that compressive mechanical force inhibits 

spheroid growth due to volume constraints [29]. At a single cell level, mitotic cells in 

three dimensional (3D) microenvironments generate protrusive forces that deform the 

ECM, and failure to do so arrests mitosis [30]. For this reason, the deformability and 

viscoelastic properties of the 3D confining matrices play a key role on cell cycle 

progression, whereby fast stress relaxation favors cell cycle progression and spheroid 

growth [31]. Stiffness of the ECM, topography and biomechanical force have gained 

traction in the recent years for their role in modulating fundamental cell properties, such 

as cell fate, self-renewal, motility or homing [32]. 

Other cues such as osmotic pressure can modulate proliferation and growth arrest of 

diverse organisms such as bacteria [33], yeast cells [34], and seeds [35, 36]. 

Moreover, in tissues, osmotic regulation takes place through blood and lymphatic 

capillaries which are also important cell niches likely to harbor non-cycling quiescent 

stem cells [37, 38]. Thus, how osmotic regulation affects breast cancer cell dormancy 

is yet to be discovered (please refer to the introduction of Chapter 4 for more details). 

One other important aspect of metastasis and dormancy is the ability of DTCs to resist 

a large range and variation of fluid flow and shear stress when passing through blood 

vessels or the lymphatic system before extravasation [39] (Figure 1-2). Especially, 

extravasation of DTCs occurs mainly in capillaries which are regions that permits cell 
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physical arrest, and this can be by mainly two ways. Firstly, DTCs can arrest by 

occlusion (Figure 1-2A1), but potentially causing cell cluster squeezing (Figure 1-2A2), 

or they can actively adhere with endothelial cells (Figure 1-2B). These arrested cells 

will suffer from an increased levels of shear stress that can cause cell fragmentation 

(Figure 1-2C) and an alteration of the vessel permeability. Subsequently, several 

extravasation alternatives are possible. Cancer cells could pass through the walls of 

the blood-vessels without visible rupture, thus undergoing diapedesis (Figure 1-2D), 

be extruded through flow-dependent endothelial remodeling (Figure 1-2E) or stay and 

divide to form intraluminal metastases (Figure 1-2F). After extravasation, certain 

cancer cells will remain dormant for years to decades (Figure 1-2G). Please refer to 

the introduction of Chapter 5 for more details. 

 

 
Figure 1-2 Tumor cell extravasation is a flow-dependent process. 
Reproduced [39] with permission from Springer Nature. 

 

From the primary tumor site to the metastatic niche, DTCs go through a cascade of 

changes in the environment that surrounds them. In this thesis, we focus on two 

biophysical cues, namely: osmotic pressure and fluid flow and we investigate their 

impact on cell cycle progression and dormancy. 
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1.2 FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indicator) 

Real time analysis of cell cycle dynamics in proliferating cells has proven difficult in the 

past because common cell markers such as 5-ethynyl-2’-deoxyuridine (EdU), PCNA 

or Ki67 require fixation of the sample and rely on immunofluorescent stainings [40]. 

Several cell cycle reporters emerged in the last decade [41-47] to monitor in real time 

cell cycle phases and partially address the sample fixation requirement. In this section, 

we focus on reviewing what are the common cell cycle reporters and introducing 

FUCCI, the most promising one [48], that is at the center of our work. 

In this thesis, FUCCI can refer to the FUCCI technology in general or the original 

FUCCI reporter, and FUCCI2 to a sub type of FUCCI, used for this work. 

1.2.1 Common cell cycle indicators 

Several methods have been developed to see and determine the cell cycle status using 

fluorescent proteins. Observing mitotic cells in real time has proven possible thanks to 

functional nuclear proteins such as histone H2B attached to green fluorescent protein 

(GFP) [41]. Building on this construct, red fluorescent protein (RFP) was tagged to 

cytoplasmic proteins by others, to monitor the nuclear and cytoplasmic interaction 

during mitosis [43]. This improvement over the initial histone H2B provided more 

information but still lacked the potential to resolve cell cycle phases. Nuclear 

localization signal (NLS) was then used to visualize the cell cycle transition from G1 

phase to S phase in real time [42, 47]. To resolve the S to G2 phase in real time, PCNA 

linked to fluorescent proteins was used in further approaches [44, 46]. Förster or 

fluorescence resonance energy transfer (FRET) sensors have also been coupled to 

cyclin-dependent kinases (CDKs) to monitor cell cycle transition [45]. One common 

characteristic of all the above-mentioned methods is that they allow visualization of 

parts of the cell cycle, but never the whole cycle in real time. 

1.2.2 FUCCI history 

Only in the last decade has the FUCCI system emerged [49], which allows imaging of 

cell cycle dynamics by visualizing individual G1 and S/G2/M phases both in vitro and 

in vivo, in real time and without external label [50-52]. This enables a wide range of 

studies aimed at understanding cell behavior in more depth such as cell deformability 

and proliferation as a function of cell cycle dynamics [53] or tumor spheroid growth 
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within compliant vs. stiff hydrogels [54]. Additionally, mathematical models of FUCCI 

systems are created to relate cell migration [55] or tumor spheroid formation [56] with 

cell cycle dynamics. The original FUCCI probe used mKO2-hCdt1 (30/120) for the G1 

phase and mAG-hGeminin (1/110) for the S/G2/M phase [49]. This was later improved 

with the FUCCI2 cell cycle reporter, which employed mCherry-hCdt1 (30/120) for G1 

and mVenus-hGeminin (1/110) for S/G2/M phase (Figure 3-4A) [57]. FUCCI2 offers 

enhanced contrast and the possibility to spectrally distinguish the signals from the 

widely used fluorophore GFP for applications such as parallel monitoring of protein 

subcellular localization and/or signaling events [57]. However, FUCCI or FUCCI2 

cannot be used to separate the cells in the G0 phase from those in G1 since Cdt1 is 

thought to be expressed in both phases [49]. This led to the development of new 

systems adding to the original FUCCI system, whereby cells in the G0 phase were 

separated from those in G1. This construct used mVenus-p27K- for G0, mCherry-

hCdt1 (30/120) for G1 and AmCyan-hGem (1/110) for S/G2/M [58]. Other groups also 

developed FUCCI4, a set of four fluorescence indicators that could resolve 

independently every single phase of the cell cycle (G1, S, G2 and M) [59], which 

traditional FUCCI or FUCCI2 could not separate. To the best of our knowledge, FUCCI 

is the most useful and complete tool to visualize all phases of the cell cycle dynamics 

in real time [60]. 

1.3 Imaging techniques & artificial intelligence 

1.3.1 Epifluorescence microscopy 

Epifluorescence microscopy (EM), also referred as wide-field fluorescence microscopy 

(WFM), is one of the most frequently used techniques in cell biology. It is similar to 

conventional light microscopy but with additional specific features suitable for 

fluorescence imaging. In EM, both the illuminated and emitted light are traveling 

through identical objective lens. The source (mercury lamp or more recently LEDs) 

passes through an excitation filter which only allows a band of wavelength 

corresponding to the excitation wavelength of the fluorophore. The illuminated light 

(high intensity) then passes through the objective lens, illuminates the sample and 

excites the fluorophore in the sample that would subsequently emit light (weak 

intensity). This emitted light travels back to the objective lens and through a dichroic 

mirror, whose purpose is to separate the high intensity illuminated light from the weak 
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intensity emitted light. The emission filter then ensures that only the wavelengths 

emitted from the specific fluorophore pass through. This then reaches the camera 

where an image is captured. This setup ensures the darkest background for 

fluorescence imaging to obtain the best contrast image from the emitted light. EM are 

usually cheaper and more accessible than more advanced techniques such as 

confocal microscopy but have the disadvantages of collecting light from many focal 

planes. 

1.3.2 Confocal microscopy 

Confocal microscopy (CM) has been developed to overcome the limitations of 

conventional EM. CM eliminates the out of focus light and therefore improves the 3D 

sectioning capabilities compared to wide-field microscopy [61]. Laser scanning 

confocal microscopy (CLSM) is a common CM configuration based on point 

illumination. It generates images by scanning a focused laser beam inside the 

specimen and rejecting out of focus light by using a pinhole, thereby collecting only 

information from the focal area and increasing axial resolution. The resulting two-

dimensional (2D) sections of multiple depths are combined to create a 3D image, often 

also referred to as z-stack. As a limitation, the optical arrangement of rejecting out of 

focus light and hence detecting only a portion of the emitted light ultimately can lead 

to excessive photo bleaching or even photo toxicity on living cells [61]. 

The spatial resolution of a confocal microscope depends on the numerical aperture 

(NA) of the objective, the size of the pinhole and the wavelength of the excitation light. 

The axial resolution of a confocal fluorescence microscope is lower than along the 

lateral direction due to diffraction. However, diffraction can be reduced using objective 

lenses with high NA at the expense of shorter working distances. 

1.3.3 From imaging to automatic segmentation 

The impressive advances in imaging techniques and fluorescent probes recently 

shaped a new area in biological sciences where researchers can access temporal and 

spatial variations in living organisms. Dynamic measurements are now possible in 

living cells in real time ranging from single molecules [62] to multi-channel fluorescent 

probes such as FUCCI [49], and for an extended periods of time in situ [63]. In parallel 

to the technological improvements and higher number of dimensions imaged (2D, 3D 

and 3D time lapse), there is an increasing demand in the field of image analysis to 
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quantify these large data sets. Image segmentation is a task defined by an 

identification of parts of an image corresponding to a distinct feature or object such as 

the nucleus or the cell membrane in living cells. 

Recently, image segmentation in living science has been well performed by deep 

learning techniques where classical imaging processing methods sometimes showed 

their limits. In addition, the recent technological improvement of hardware and software 

have dramatically improved deep learning (DL) performance and training time [64]. 

Deep learning is a type of machine learning in which a mathematical model or “neural 

network” with many parameters is being optimized to perform classification tasks 

directly from images, text or sound. When applied to images, deep learning algorithms 

can be used to extract certain features of the original image in what is called semantic 

segmentation. The term "deep" refers to the number of layers in the mathematical 

model or network - the more layers, the deeper the network. A layer is a group of 

different mathematical functions (linear or not) that are being applied to an image to 

extract features presented during the training of the network. The layers are 

interconnected via nodes with each layer using the output of the result from the 

mathematical operation of previous layers as its input. 

Convolutional neural networks (CNN) are often used for image recognition because of 

their performance [65]. In these networks, individual nodes are sensible only in a 

restricted region of the total image (receptive field), which means the image is divided 

in patches for feature extraction. Moreover, the receptive fields of diverse nodes 

partially overlap such that they cover the entire image. 

A CNN needs to be trained (please see the section 5.2.8 for more details on training 

of our network). Briefly, users present to the DL algorithm two inputs. One is the raw 

images such as fluorescence images that contains spatial features such as a nucleus, 

or a cell membrane. The second is a binary image that corresponds to the 

segmentation of the raw image for the targeted feature (called ground truth and often 

obtained manually). Initially, the DL algorithm will run the raw image through the 

untrained network and compare the output which is the segmentation with the ground 

truth. An optimization function is then used to modify the parameters of the network to 

reduce as much as possible the difference between the output segmentation and the 

ground truth (the training). 
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Many of researchers in the field of biology and biomedical imaging now use the neural 

network U-net [66, 67] because of its excellent segmentation result with only few initial 

images needed for training [68-70]. 
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Chapter 2 Objectives and thesis structure 

“I am nothing, I know, but I compose my nothing with a little piece of everything.” 

Le Rhin – Lettres à un ami, Victor Hugo 

 

The overall goal of this work is to elucidate the role of biophysical cues, in particular 

osmotic pressure and fluid flow, on cell cycle progression in the context of breast 

cancer dormancy and metastasis. This thesis has three specific objectives. 

The first goal is to provide an open-source software for analysis of cell cycle reporters, 

FUCCItrack, which includes a graphical user interface to make it accessible to the 

highest number of researchers. It is meant to provide an efficient, reliable, standardized 

and automatic way to analyze quantitatively time lapse images. This is covered in the 

third chapter, which begins with a summary of the functionality and then presents the 

results that can be obtained with FUCCI time lapse cell culture experiments. The 

Appendix A includes a complete user guide of the software. 

Every chapter contains its own introduction, methods, results, discussion and limitation 

section. 

The second goal is to use this software to investigate the behavior of metastatic breast 

cancer cells under two biophysical cues, osmotic pressure and fluid flow, and discover 

their influence on breast cancer dormancy. This is described in the fourth chapter, 
which documents the effect of osmotic stress on breast cancer cell behavior using 

quantitative FUCCI2 time lapse imaging on collective and single cell. In the fifth 
chapter, we present our approach to use a microfluidic device along with 

computational fluid dynamics (CFD) to study the interaction of breast cancer cells with 

fluid flow. Using FUCCI2 time lapse imaging in 2D, the first part explores the effects of 

single cell cycle dynamics and migration. With FUCCI2 time lapse imaging in 3D, the 

second part focuses on time-resolved volume and shape dynamics analysis of the cell 

and the nucleus under flow. 

Finally, the third goal of this thesis is to provide evidence that new deep learning 

methods and 3D confocal microscopy, coupled with an automated simulation 
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framework, can be beneficial to produce a more accurate model of mechanical stress 

impacting breast cancer cells under flow. This is described in the fifth chapter. 
The thesis ends with the sixth chapter that is a summary and final discussion of the 

main results and an outlook towards possible future directions. 
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Chapter 3 FUCCItrack: one software to track them all 

“One ring to rule them all, one ring to find them, one ring to bring them all 

and in the darkness bind them.” 

The Fellowship of the Ring, J. R. R. Tolkien 

 

All the work presented in the thesis takes advantages of the FUCCI2 system. Because 

there is a lack of automated tools to process FUCCI/FUCCI2 related data, the following 

chapter is intended to provide an overview on the software that was developed for the 

analysis of quantitative FUCCI2 time lapse imaging. We introduce FUCCItrack, an all-

in-one, semi-automated software to segment, track and visualize FUCCI2 modified cell 

lines. A complete user-friendly graphical user interface (GUI) is presented to record 

and quantitatively analyze both collective cell proliferation as well as single cell 

information, including migration and changes in nuclear or cell morphology as a 

function of the cell cycle status. To enable full control over the analysis, FUCCItrack 

also contains features for identification of errors and manual corrections. 

3.1 Introduction 

Conventional cell tracking used to be a manual task [71], with users needing to select 

each cell at a time, frame by frame. This approach was inherently time consuming, 

especially when looking at long time lapse imaging, and prone to different bias, due to 

subjective definition of the center of the cell or user inconsistencies. More recently, 

many platforms proposed automatic single-cell tracking with different technical 

solutions [72], both from an open-source initiative on FIJI (ImageJ) or other 

platforms [73-75], and from proprietary software. These tools are useful to track cell 

migration, however, they often cannot handle cell division in a consistent, user-

independent manner. This may result in incorrect tracking of daughter cells, without 

the possibility to inspect, edit or adjust the tracking. 

This is where the FUCCI cell cycle reporter has an extraordinary benefit with respect 

to simpler live cell staining. During the G1 phase, only the fluorophore mCherry-Cdt1 
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(30/120) is expressed. Expression of the fluorophore mVenus-hGeminin (10/110) 

inside the nucleus indicates the beginning of the S/G2/M phase (Figure 3-4A). Indeed, 

by expressing first the fluorophore mCherry then mVenus, it provides a defined pattern 

to track single cells and stop the tracking when the intensity for mVenus drops due to 

the cell division. This not only allows monitoring of the cell cycle dynamics, but also 

tracking cell migration parameters such as trajectory and velocity, as a function of cell 

cycle state, in a single setup and in real time [63]. Paradoxically, this benefit can also 

turn into a disadvantage, since it means that the fluorophore used for tracking does not 

have a constant intensity over time for each cell. Alternating fluorescence channels 

(mCherry/mVenus) with an inherent intensity variability make traditional automatic 

image processing more complicated to implement. 

To the best of our knowledge, only three software solutions have been reported to treat 

FUCCI time lapse datasets in an automatic or semi-automatic way [76-78]. One is not 

publicly available [78], one requires multiples applications to be run (Fiji and 

Columbus) [77], and the latest one was released recently on MATLAB [76]. The latter 

can perform migration analysis and includes a FUCCI plug-in to extract nuclear 

intensity and obtain cell cycle duration. However, the software is focused on tracking 

cell migration and does not perform any segmentation of the nucleus or cell shape. It 

also does not use the full potential of the FUCCI system to automatically detect cell 

division since the tracking is independent from the FUCCI intensity. In addition, it is 

impossible to extract collective cell proliferation parameters such as number of cells 

over time and remains targeted to single cell behavior only. FUCCItrack allows users 

to perform rapid and efficient automatic nucleus segmentation, as well as cell shape 

segmentation if an additional fluorophore is used, to then investigate cell cycle 

dynamics, proliferation, migration and morphology as a function of time and cell cycle 

state. 

3.2 Materials and methods 

3.2.1 FUCCI2 cell line generation 

Lentiviral particle production 
Lentiviral vectors mCherry-hCdt1(30/120)/pCSII-EF-MCS (DDBJ/EMBL/GenBank, 

AB512478) and mVenus-hGeminin(1/100)/pCSII-EF-MCS (DDBJ/EMBL/GenBank, 

AB512479) were purchased from the Riken Brain Science Institute, Japan (Dr. Atsushi 
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Miyawaki, head of provider laboratory, and Dr. Hiroyuki Miyoshi, developer of pCSII-

EF-MCS). Lentiviral particles were generated by co-transfection of HEK-293TN cells 

(System Biosciences) with mCherry-hCdt1(30/120)/pCSII-EF-MCS or mVenus-

hGeminin(1/100)/pCSII-EF-MCS lentiviral vectors, alongside the packaging plasmid 

psPAX2 (Addgene plasmid, #12260) and the envelope plasmid pMD2.G (Addgene 

plasmid, #12259). The culture supernatant was collected and concentrated by 

ultracentrifugation at 22 000 rotation per minute (RPM) for 3 h (Beckman L7-55 with 

SW32Ti rotor) at 4°C. The virus titer was estimated by transduction on HeLa cells and 

subsequent flow cytometric analysis for fluorescent protein expression. This work was 

done in collaboration with Manfred Gossen and Jörg Contzen at the Charité University 

Hospital Berlin. 

Lentiviral transduction and generation of MDA-FUCCI2 and MCF7-FUCCI2 cells 
Human metastatic breast cancer cells MDA-MB-231 (ATCC, #HTB-26) and MCF7 

(#HTB-22) with the FUCCI2 reporter (MDA-FUCCI2 and MCF7-FUCCI2, respectively) 

were used during this thesis. MDA-FUCCI2 and MCF7-FUCCI2 cells stably expressing 

FUCCI2 reporters mCherry-hCdt1 (30/120) (red fluorescence) and mVenus-hGeminin 

(1/110) (green fluorescence) were obtained as follows. Parental cell lines MDA-MB-

231 and MCF7 were sequentially infected with lentiviral particles containing mVenus-

hGeminin (1/110) at a multiplicity of infection (MOI) of six (MDA-MB-231) or five 

(MCF7), followed by mCherry-hCdt1 (30/120) at a MOI of three. Successfully 

transduced cells were identified by expression of mCherry, mVenus or simultaneous 

mVenus and mCherry fluorescence, sorted with a FACSAriaTM II flow cytometer 

(Becton Dickinson) and expanded for in vitro experiments. This work was done in 

collaboration with Manfred Gossen and Jörg Contzen at the Charité University Hospital 

Berlin. 

Characterization MDA-FUCCI2 vs. MDA-MB-231 parental cell line 
At the MPICI, we performed characterization of MDA-FUCCI2 vs. parental cell line 

MDA-MB-231 (Figure 3-1) to verify that the genetic modification did not significantly 

change cell attachment, migration and proliferation. For the cell migration assay, two-

chambered silicone cell culture inserts (Ibidi, #80209, area of 0.22 cm2 per chamber) 

were placed in a 24 well plate (Thermo Fischer, #142475). Both MDA-FUCCI2 and 

MDA-MB-231 were seeded with a density of 50 000 cells in a total volume of 70 µL 

media. Cells were allowed to adhere for 5 h before the silicone chamber was removed 
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to create a reproducible cell-free area of 500 ± 50 µm (Figure 3-1D). Non-adherent 

cells were washed away by rinsing once with media. Afterwards cells were incubated 

in 2 mL media and the gap closure was monitored for 20 h using an inverted 

microscope (Zeiss AxioObserver 7, 10x objective) with a live cell imaging system 

(Okolab, UNO-T-H-CO2). The cell-free gap area was quantified in percent of the initial 

cell-free gap area using MATLAB (Figure 3-1B). To assess cell proliferation kinetics, 

38 000 cells in 2 mL media were seeded in 24 well plates and the number of cells at 

days 1, 2, 3 and 4 were quantified (Figure 3-1C) using a cell counter (Scepter™ 2.0, 

Millipore). Finally, to determine cell attachment, the same Ibidi inserts were used. Both 

cell types were seeded with a density of 2200 cells in 70 µL and imaged directly after 

seeding using the same inverted microscope for a duration of 4 h. A custom-made 

MATLAB code was used to count round cells (Figure 3-1A), corresponding to 

suspended cells before they adhere. No significant differences were found between 

the generated MDA-FUCCI2 and the MDA-MB-231 parental cell line regarding cell 

attachment, migration and proliferation. 

 

 

Figure 3-1 Characterization of MDA-FUCCI2 vs. MDA-MB-231 parental cell line. 
(A) Attachment assay where cells were seeded in a closed compartment and imaged 

for 4 h every 30 minutes (N = 4 wells). Initially (t = 0 h), all cells were round and in 

suspension and, with time, the number of suspended cells decreased as they 
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attached and spread on the bottom of the well. (B) Wound healing assay showing 

the coverage of the gap created by the Ibidi inserts as a function of time. 

(C) Proliferation assay, representing the number of cells as a function of time, 

measured with a cell counter (N = 6 wells for each group). (D) Fluorescent image 

representing the beginning of the migration assay (t = 0 h), scale bar is 200 µm. Data 

in A and C are mean ± standard deviation. 

3.2.2 Cell culture 

MDA-FUCCI2 and MCF7-FUCCI2 were cultured in low glucose Dulbecco’s modified 

eagle’s medium (Sigma, #D6046) supplemented with 1 % penicillin/streptomycin 

(Gibco, #15140-122, 104 units/mL of penicillin and 10 mg/mL of streptomycin) and 

10 % fetal bovine serum superior (Sigma, #S0615). MCF7-FUCCI2 were additionally 

supplemented with 0.1 % insulin (Sigma, #l2643-50MG). They were grown at 37 °C 

with 5 % CO2 on NuncTM 100 x 17 mm petri dishes (Thermo Fischer, #150350) with 

regular passaging. The cell line MDA-MB-231 is a mutant p53 cell line, whereas MCF7 

is a wild-type p53 cell line [79]. 

3.2.3 Cell actin staining 

Some experiments were performed using the SiR-Actin Kit (Spirochrome, #SC-001) 

which is a live F-actin cell staining. Briefly, after passaging a 1000 µL cell suspension 

of 600 000 cells/mL was incubated in a 1.5 mL Eppendorf for 6 h with the cell culture 

media containing the SiR-Actin at a concentration of 100 nmol/L. The cell suspension 

was mixed every 1.5 h. Cells were then seeded for experiments with the media 

containing the SiR-Actin to allow a consistent F-actin staining over time and throughout 

the different cell generations. 

3.2.4 Time lapse image acquisition 

The 2D images were acquired using a Zeiss AxioObserver 7 epifluorescence and a 

10x, 0.45 numerical aperture (NA) objective (Zeiss, #420641-9910-000). One field of 

view was taken for each well/condition in the center of the well. Fluorescence channels 

mVenus, mCherry and SiR-Actin were recorded with 100 % LED intensity at 511, 555 

and 630 nm illumination wavelength, respectively. The following filter sets used were: 

(i) Zeiss #46 HE (500/25 nm excitation and 535/30 nm emission) for mVenus, (ii) Zeiss 

#45 (560/40 nm excitation and 630/75 nm emission) for mCherry and (iii) Zeiss #50 
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(640/30 nm excitation and 690/50 nm emission) for SiR-Actin. All fluorescence 

channels were recorded at 300 ms exposure time. The phase contrast channel was 

recorded with transmitted light at 20 % light intensity and without any filter set. Time 

lapse images were acquired with intervals of 30 minutes for 90 h. 

3.3 FUCCItrack software description and workflow 

3.3.1 FUCCItrack software installation 

FUCCItrack is built with MATLAB (R2019b, v 9.7) and is open-source, available as the 

(a) MATLAB App/Toolbox and (b) MATLAB source code or (c) a standalone application 

(MATLAB does not need to be installed to use the software). The application can be 

run on Windows, macOS or GNU/Linux operating systems. 

(a) MATLAB App/Toolbox. This can be found at https://github.com/hubert-

taieb/FUCCItrack. Users should download the “FUCCItrack.mlapinstall” file, 

open MATLAB, go to the APPS tab and click “Install App”. Select the 

downloaded file and then install it. It is possible to open it from the APPS tab 

or via the command line. 

(b) MATLAB source code. Users should download the package 

“FUCCItrack_2021.02_source_code.rar” at https://github.com/hubert-

taieb/FUCCItrack and extract the files. Then open MATLAB and go to the 

folder containing the package. Directly run “FUCCItrack_V2021_02.mlapp” 

within the MATLAB command line. 

(c) Standalone application. The executable can be found at 

https://github.com/hubert-taieb/FUCCItrack under “FUCCItrack_installer.exe”. 

Directly open the file from the explorer and follow the instructions. 

3.3.2 Software description and workflow 

FUCCItrack is a GUI that is tailored for the FUCCI2 system, but also extensible to other 

two-color fluorophore combinations. The complete workflow is described in Figure 3-2 

and refers to the five main independent modules to analyze collective as well as single 

FUCCI2 cells. There is one additional concatenation module, which is optional and 

described below. Some modules are fully automatic, and others are semi-automatic, 

with options for manual corrections. FUCCItrack also allows to save and reopen a 

https://github.com/hubert-taieb/FUCCItrack
https://github.com/hubert-taieb/FUCCItrack
https://github.com/hubert-taieb/FUCCItrack
https://github.com/hubert-taieb/FUCCItrack
https://github.com/hubert-taieb/FUCCItrack
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session with the application returning to the previously saved state. See the 

Appendix A for a complete user’s guide of FUCCItrack. 

 
Figure 3-2 Workflow and user interface of FUCCItrack. 
(A) Workflow describing the use of FUCCItrack, from loading to visualization. 

(B) Single cell panel describing the segmentation and tracking user interface. 

 

Data loading module 
Processing of the images begins by loading the native microscope data as described 

in Figure 3-2A(i) (Zeiss .”czi” or Leica “.lif” file). This allows to automatically extract the 

metadata, such as the spatial resolution and time interval, and the fluorescence/phase 

contrast channels used in the experiment. It also avoids having any data loss due to 

compression needed for precise quantification. If the native microscope data is not 

available, FUCCItrack can load multi-tiff stacks (the layers of the stacks representing 

different time intervals) or sequential-tiff images. For this, the user must specify 
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manually the pixel size (in µm/pixel), the time interval (in h) and ensures the microscopy 

images were exported without data compression. The preferred mode of import is to 

use the raw microscopy files (.czi or .lif) that use open-source OME bio-formats 

library [80] since it requires less user input and is more standardized. 

For FUCCI2 datasets, the minimal requirement is to have at least two fluorescence 

channels for the nucleus (named mCherry and mVenus), and one for the cell itself 

(phase contrast image and/or SiR-Actin fluorescence for example). Epifluorescence 

2D images were used for this chapter but maximum projection of 3D confocal image 

stacks or individual slices also yields similar results, as described in Chapter 5. Using 

these inputs, FUCCItrack then runs at two different levels: (i) collective and (ii) single 

cell level. 

Collective module 
The collective level allows users to extract the cell number as a function of time in a 

fully automated way (Figure 3-2A(ii)). Despite its simplicity, this counting method can 

already give valuable information on the cell proliferation under any experimental 

conditions, using 2D epifluorescence microscopy in real time. 

FUCCItrack makes use of the fluorescence channels visualizing the nucleus and 

automatically counts the number of cells as a function of time, using an adaptive 

thresholding approach based on a mean local intensity [81]. This adaptive thresholding 

is necessary for two reasons. In the FUCCI2 system, the fluorophores are attached to 

proteins that are getting degraded or produced over time. This means that two cells on 

the same field of view can have different intensity levels at the same time even though 

they are both in the same cell cycle phase. Moreover, the absolute mCherry and 

mVenus maximum intensities that a cell reaches during its cell cycle is not the same 

throughout a population of cells. For these reasons, it is not possible to use a global 

thresholding approach with one cut-off value for the intensity. Instead, an automatically 

defined local threshold is computed and yields the best segmentation results. 

In addition, since the two fluorophores are cell cycle reporters, the collective level 

permits to gain insight on the fraction of mCherry+ and mVenus+ cells at a given time 

point based on the two fluorescence channels segmented. An extra-step to verify 

whether the same cell is present in both channels is then applied and cells are 

categorized as mCherry+/mVenus- (G1 phase) or mVenus+ (S/G2/M phase). This 

module gives an overview of the cell proliferation behavior as well as fractions of cells 
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in distinct G1 or S/G2/M cell cycle phases (Figure 3-3) but does not provide any 

tracking of single cells over time. 

 
Figure 3-3 Cell proliferation of MDA-FUCCI2 human breast cancer cells at 
collective level. 
(A) Time lapse of MDA-FUCCI2 over 90 h of imaging. Scale bars are 200 µm. 

(B) Number of cells as a function of time obtained from the automatic collective 

segmentation. (C) Fraction of mCherry+/mVenus- (G1 phase) and mVenus+ (S/G2/M 

phase) cells at the beginning and at the end of the 90 h of imaging. 

Single cell module 
Automatic collective segmentation cannot track mitosis events efficiently. However, the 

single cell module seen in Figure 3-2A(iii) allows tracking single cells and segmenting 

shapes of nuclei, as well as cell shape automatically. It opens a new realm of 

information to study single cell cycle dynamics, migration (trajectory and velocity), and 

changes in nuclear and cell morphology throughout several generations of cells. 
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The tracking module is presented in Figure 3-2B. The user is invited to select a cell of 

interest manually (“Seed cells” button) to specify which cell from the field of view should 

be tracked. Starting from the current frame and after pressing “Run”, the automatic 

segmentation and tracking of this cell over time starts (Figure 3-2A(iii), Figure 3-2B). 

After seeding the cell of interest, information about the segmented nucleus in both 

fluorescence channels is recorded, including coordinates of center of mass, area and 

FUCCI intensities. To track the cells in the next frame, the software uses a localized 

search region around the previous position. The size of this search region can be 

changed by the user, depending on the specifics of the cell line and interval used for 

imaging. A local adaptative threshold method is used to segment both mCherry and 

mVenus fluorescence channels in this search region. It then compares the several 

segmented nuclei found (coming from the cell of interest or others nearby) with the one 

in the previous frame in term of distance, fluorescence intensity, and shape. The 

algorithm then picks the candidate that is the most similar to the previous time point. If 

the algorithm fails to find the corresponding nucleus from one frame to the other, it is 

possible to use the “Manual centering” option to manually correct the cell tracking, 

while the rest of the segmentation proceeds automatically. 

As presented in Figure 3-2B and described more in detail in the Appendix A, the user 

can run segmentation tasks on the datasets using two different panels. One for cell 

shape (if a live cell actin or cell membrane staining is used such as SiR-Actin), and one 

for the nucleus. If users have a live cell actin or cell membrane staining or analog, they 

can select the “Cell shape” to perform cell shape segmentation. When using the option 

to detect already segmented neighbor cells, the tracking accuracy improves with the 

number of already segmented cells. After the division of the original manually seeded 

cell, the user is invited to register cell division by using the “Divide” button, followed by 

the “Seed daughter cells”. This automatically seeds the two daughter cells for further 

tracking and creates the lineage between cell generations. 

Users can choose to perform automatic cell shape segmentation if a specific 

fluorescent dye is present in their experiment or manual segmentation using the phase 

contrast/bright field images. This remains optional, and users can also use FUCCItrack 

to only perform tracking and segmentation of nuclei. 
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Processing module 
The processing module allows users to extract the information from cell tracking and 

segmentation to receive information on cell cycle dynamics, migration parameters and 

shape analysis. 

Once the segmentation is performed, either automatically or with manual corrections, 

the intensity values inside the nuclear mask of each channel are extracted. The mean 

intensity inside the nucleus is computed to determine the duration of the cell cycle 

phases in the “Processing” tab (Figure 3-2A(iv)). The intensity curves are normalized 

by the maximum intensity reached during its cell cycle, in each mCherry and mVenus 

channels independently, due to the variability between cells and fluorescence 

channels. From these curves the durations of the cell cycle phases can be obtained 

(Figure 3-4A, Figure 3-4B). The beginning of the S/G2/M phase is then defined as the 

time when the intensity of mVenus exceeds 5 % (this value can be modified by the 

user depending on their cell lines) of the maximum intensity. The same method applies 

for the beginning of the G1 phase (Figure 3-4B). The software computes the cell cycle 

dynamics parameters (tG1, tS/G2/M, tCell cycle) for each single cell tracked and the result 

can be exported as text file. 

The information about the position over time of every cell tracked is also available from 

the segmentation data for further cell migration-related analysis (Figure 3-5). Indeed, 

after segmentation, the position of each nucleus is determined by computing the center 

of mass of the resulting mask. Basic trajectory analysis can be computed automatically 

by pressing the “Add tracks” button, including cell migration speed, displacement, total 

distance traveled, directionality and mean square displacement (using the package 

msdanalyzer [82]). When FUCCI2 datasets are used, it is possible to extract these 

migration parameters as a function of the cell cycle status. All results can be exported 

in a text file. 

Finally, because of the segmentation data, cell and nuclear morphological information 

can be used in correlation with the cell cycle phases. The processing module performs 

morphological analyses of those data and calculates nuclear and cell area, equivalent 

diameter and elongation over time (Figure 3-6). For this application, only daughter cells 

are used, and the area is normalized by the area at 2 h after division (this can be 

adjusted by users). Frames corresponding to 2 h before the next division are excluded 

from the analysis, since they usually represent cells rounding up before division. 



FUCCItrack: one software to track them all 
 

24 
 

Visualization and saving module 
In addition to the processing module, FUCCItrack also contains a dedicated module 

for automatic data visualization (Figure 3-2A(v)). All figures presented in this chapter 

have been created automatically with the software (Figure 3-3 to Figure 3-6) and 

exported as vector and pixel-based files for maximum quality. 

More functions allow users to create movies automatically, showing only the region 

where the cell migrated over time, with its trace overlaid on the microscope images, or 

a movie centered on the cell over time. 

Concatenation module 
The description above relates to one time lapse cell imaging experiment contained in 

one file. However, a concatenation module is also available. This module allows users 

to first run the application with a file from one experiment and then append another file 

that corresponds to the follow-up of the last time point of the previous experiment. This 

allows users to change environmental conditions (by even removing the plate from the 

microscope to change conditions) and still be able to match the cells in both 

experiments by correlating their position, thereby capturing changes in cell behavior 

under a dynamic environment. This module was extensively used for the reactivation 

experiments as described in the Chapter 4. 

3.4 Results 

3.4.1 Collective level 

Here we demonstrate the functionality of FUCCItrack by tracking, segmenting and 

analyzing MDA-FUCCI2 breast cancer cells but the software could be used with other 

cell lines such as MCF7-FUCCI2. With the automatic collective module, the cell 

proliferation or the number of cells as a function of time is evaluated (Figure 3-3A, 

Figure 3-3B). Thirty initial cells in the field of view proliferate to 120 cells at the end of 

the experiment, after 90 h. Because the counting method can be applied to the 

mCherry and mVenus channel independently, the user can evaluate the number of 

cells that express only mCherry (mCherry+/mVenus-, defined as G1 cells) or mVenus 

(mVenus+, defined as S/G2/M cells) as demonstrated in Figure 3-3C. Initially and after 

90 h, the ratio of cells in G1 and S/G2/M phases remains roughly constant at 60 % and 

40 % respectively, indicating a normal proliferation. The results are obtained 
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completely automatically, which makes this software a powerful tool to quantify cell 

proliferation easily and efficiently in real time. 

 

3.4.2 Cell cycle dynamics 

In total, 11 cells were randomly selected for single cell tracking at the beginning of the 

experiment (Figure 3-2B). The user can choose to exclude cells due to fluorescence 

intensity problems (fluorescence intensity missing for mCherry or mVenus) or cells 

leaving the field of view during the tracking. The 11 selected cells and their 

descendants were tracked during the 90 h of live imaging. An illustrative example with 

cell #8 is given in Figure 3-4B and Figure 3-4C. Users can display the average 

fluorescence intensity inside the segmented nucleus for both mCherry (red line) and 

mVenus (green line), with the shaded red and green areas corresponding to the 

standard deviation inside the nucleus. From the total of 35 cells that were tracked, the 

median of the G1 phase was 14 hours, the median of the S/G2/M phase was 25 hours, 

and the total cell cycle duration median was 36 hours (Figure 3-4D). 

 
Figure 3-4 Single cell tracking with the FUCCI2 system. 
(A) FUCCI2 cartoon representing the mCherry (red) and mVenus (green) 

fluorescence of the nucleus during the cell cycle. (B) Normalized fluorescence 

intensity in mCherry (red) and mVenus (green) for cell #8, with the corresponding 
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duration of the phases. (C) Corresponding fluorescence images of the segmented 

nucleus over time. Scale bar is 25 µm. (D) Duration in hours of the cell cycle phases: 

G1 (red), S/G2/M (green) and total cell cycle (blue) for N = 11 cells. The FUCCI2 

cartoon was adapted from Sakaue-Sawano et al. [49], Copyright (2008), with 

permission from Elsevier. 

3.4.3 Migration and shape analysis 

From MDA-FUCCI2 tracked cells, cell migration related parameters can be computed 

throughout their cell cycle. First, the trajectories of cells are displayed in Figure 3-5A 

exhibiting a random cell migration. The mean square displacement (MSD) is evaluated 

for every cell and shown in Figure 3-5B, with a median migration speed of 0.20 µm/min 

(Figure 3-5C). The median displacement (distance between the beginning and the end 

of the trajectory) is 69 µm (Figure 3-5D) whereas the median of the total accumulated 

distance traveled during their trajectory is 500 µm (Figure 3-5E). Finally, the 

directionality, measured as the ratio of the displacement and the total distance, is 0.18 

(Figure 3-5F), far less than 1 corresponding to a perfectly directed motion. 

 

 
Figure 3-5 Cell migration analysis with the FUCCI2 system. 
(A) Trajectories of MDA-FUCCI2 cells during their cell cycle. (B) Corresponding 

mean square displacement (MSD) for every cell tracked. (C-F) Boxplots showing the 

heterogeneity between MDA-FUCCI2 cells (n = 24) according to four migration 
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features of (C) migration speed, (D) displacement (distance from beginning to end 

of trajectory), (E) total distance (total trajectory length) and (F) directionality (ratio of 

the displacement to total distance). 

 

Based on the nuclear segmentation, the nuclear shape evolution over time can be 

investigated, such as projected area throughout the cell cycle progression. The nuclear 

projected area is normalized to the first frame 2 h after division for each cell so that 

only the increase in area during the cell cycle is taken into account as presented in 

Figure 3-6B, due to variability between cells. 

 

 
Figure 3-6 Cell and nuclear shape analysis. 
(A) Overlay of nuclei (red/green) and cell F-actin (magenta) as a function of time for 

cell #1. Scale bar is 100 µm. (B) Normalized nuclear area as a function of time for 

dividing cells (n = 24). 

3.5 Discussion 

Here we report FUCCItrack: an application that can be installed within MATLAB or as 

a standalone application and offering an all-in-one platform to perform segmentation 

of cell and nucleus, tracking, processing and visualization of cell cycle dynamics, along 

with migration and shape analyses. It provides non-programmers with a reliable and 

quantitative solution with a minimum effort as most processes are automatized. The 

gathering of all these tools into a common robust application diminishes the workload 

in comparison to more common manual tracking methods. We added the capability to 

generate graphics and movies from within the software directly. In addition, all results 

can be exported as text files to be further processed or analyzed by other tools. 
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FUCCItrack is modular in its construction, which will facilitate future upgrades to 

include more features such as 3D cell tracking and segmentation. 

We released FUCCItrack as a standalone application to avoid any dependency on 

MATLAB licensing to reach as many people as possible, and with its original source 

code to remain transparent. The source code is properly commented to offer guidance 

to fellow programmers who would like to modify it. 

We tested FUCCItrack on other computers and other exploitation system with one of 

our datasets to make sure of its compatibility in an alpha test, but we are aware that 

upon release, unexpected complications may arise. That is why we linked the release 

to a public repository such as GitHub, so that FUCCItrack can be maintained over the 

years. 

The software was first developed and improved extensively throughout the years to 

perform quantitative time lapse imaging and to answer relevant biological questions 

presented in Chapter 4 and Chapter 5 related to the effect of osmotic pressure and 

fluid flow on breast cancer cell cycle. 

3.6 Limitations 

The FUCCItrack software has been specifically developed to work with FUCCI2, as 

this was the system that was available to us for our experiment design. This means 

that in its current state there is a rigid requirement to use three channels (one for 

mCherry, one for mVenus and another for the phase contrast or any live cell dye). To 

bypass this limitation, researchers who only image with fluorescence channels can just 

copy the images from one of the channels into the “Phase” contrast folder before 

loading the images (see Appendix A FUCCItrack user’ guide for more information). 

This way, FUCCItrack can still be used, even though no cell segmentation could be 

performed. 

Other than this, we adapted the software so that any new users with FUCCI or FUCCI2 

time lapse images could use it right away. Other researchers with different cell cycle 

reporters may need to adapt the source code. 
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Chapter 4 Osmotic pressure and human metastatic cells 

“Pressure: pushing down on me, 

Pressing down on you, no man asks for.” 

Under pressure, Queen & David Bowie 

 

Biophysical cues such as osmotic pressure modulate proliferation and growth arrest of 

bacteria, yeast cells, and seeds. In tissues, osmotic regulation takes place through 

blood and lymphatic capillaries and, at a single cell level, water and osmoregulation 

play a critical role. However, the effect of osmotic pressure on single cell cycle 

dynamics remains poorly understood. In this chapter, we investigate the effect of 

osmotic pressure on single cell cycle dynamics, nuclear growth, proliferation, migration 

and protein expression, by quantitative time lapse imaging of single metastatic cells 

genetically modified with FUCCI2. 

4.1 Introduction 

Osmotic pressure is a biophysical cue that modulates cell function. Osmotic pressure 

changes have been widely associated with growth arrest and proliferation in plants and 

seeds [35, 36], and more recently in bacteria [33] and yeast [34]. In human physiology, 

osmotic regulation is present in multiple phenomena. Tissue architecture results from 

an equilibrium between forces that expand tissue volume, such as osmotic or 

hydrostatic fluid pressure, and forces that will counterbalance this expansion, such as 

tension in the extracellular matrix or contractile forces by cells [83]. Osmotic gradients 

also arise through the lymphatic system and in blood capillaries in the bone marrow. 

Specifically, a net positive balance of hydrostatic and osmotic pressure drives fluids 

out of arterioles, while a negative balance drives fluid back into the venules [84-86]. At 

a cellular level, osmoregulation is a crucial phenomenon that allows cells to respond 

to changes in ion concentration in their microenvironment through transmembrane 

proteins responsible for water/ion transport [87, 88]. In a seminal work by Weitz and 

colleagues, it was shown that variations in external osmotic pressure can induce 
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changes in cell volume, intracellular molecular crowding as a result of water efflux, 

changes in cell stiffness and ultimately impact mesenchymal stem cell differentiation 

in the osteogenic or adipogenic lineage [89]. 

Yet, the effect of osmotic pressure on single cell cycle dynamics, in particular growth 

arrest and reactivation, remains poorly understood. Its effect on bulk cell proliferation 

has been reported, with hyperosmotic pressure resulting in reduced overall 

proliferation of various human metastatic cells [12, 90]. However, less is known about 

how the osmotic pressure affects single cell cycle dynamics. Quantitative and real-time 

tracking of the cell cycle dynamics is possible with the FUCCI system and is 

increasingly used to detect non-dividing cells in the context of cancer therapies [48]. 

Here, we hypothesize that osmotic pressure can play a role in human cell niches likely 

to harbor non-cycling quiescent cells by modulating the reversible growth arrest and 

reactivation into a proliferative state. To test this hypothesis, we use a highly 

proliferative human metastatic cell line, which we genetically engineered with FUCCI2 

to perform quantitative time lapse imaging of the different phases of the cell cycle at a 

single cell level. 

4.2 Materials and methods 

4.2.1 Cell culture 

Cell culture was performed exactly as described above in section 3.2.2. The cell line 

MDA-FUCCI2 was used as a model for highly metastatic breast cancer cells and is a 

mutant p53 cell line, whereas the MCF7-FUCCI2 cell line was used as a model for 

weakly metastatic breast cancer cells and is a wild-type p53 [79]. 

4.2.2 Osmotic pressure 

Conventional methods such as vapor-pressure depression or freezing-point method 

are hardly applicable to measure osmotic pressure values in vivo [91, 92]. Recently, a 

novel biomaterial-based osmotic pressure sensor was developed to possibly fill the 

gap and enable measurements of osmotic pressure [93]. Osmotic pressure values 

used in this study were based on those used in previous works [30, 89, 94, 95], and 

were below acute hyperosmotic stress values that lead to cell death [96]. 

Increase of osmotic pressure was controlled by adding sterile 300 Da polyethylene 

glycol (PEG 300) (VWR, #8.17002.5000) or D-Sorbitol (Sigma, #240850) into the cell 
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culture media. We used PEG 300 because it is the most used osmolyte and is not 

absorbed by the cells. Also, the low molecular weight PEG was used to do not alter 

the viscosity of PEG and limits the number of confounding variables. 

In addition, we used D-Sorbitol which is commonly used [94, 97-101] as a different 

osmolyte to verify if our results were PEG specific. 

Osmolality as a function of PEG 300 concentration was measured with a freezing point 

osmometer (Gonotec, Osmomat 3000, Figure 4-1) to reach the targeted hyperosmotic 

stress: 380 mOsm/kg (PEG+, 1.5 % wt/vol PEG 300) and 460 mOsm/kg (PEG++, 

3 % wt/vol PEG 300). The same osmolality values were reached with D-Sorbitol using 

60 mmol/L (Sorbitol+) or 140 mmol/L (Sorbitol++). 

 

 

Figure 4-1 Osmolality as a function of PEG 300 concentration in cell culture 
media. 
Normal cell culture media has an osmolality of 320 mOsm/kg (control). Two 

hyperosmotic pressures were used in this thesis: 380 mOsm/kg (1.5 wt/vol %, PEG+) 

and 460 mOsm/kg (3 wt/vol %, PEG++). The curve represents the mean (n = 3) and 

the shaded area is the standard deviation. 

4.2.3 Time lapse experiments protocol 

To understand the role of osmotic pressure in cell proliferation, MDA-FUCCI2 cells 

were cultured and observed in the presence of PEG 300. 

From regular passaging petri dishes, MDA-FUCCI2 cells were washed with phosphate 

buffered saline (PBS), detached with trypsin (PAN-Biotech, #38220000) and 

centrifuged at 300 g for 5 minutes. Cells were then resuspended with cell culture media 
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only (control), or with additional 1.5 % wt/vol PEG 300 (380 mOsm/kg, PEG+) or with 

3 % wt/vol PEG 300 (460 mOsm/kg, PEG++). They were then seeded at 7500 cells/mL 

(200 µL) on a 96 well glass bottom microplate (Greiner Bio-one, #655892) and allowed 

to equilibrate and adhere for 24 hours at 37 °C with 5 % CO2 before imaging. The cell 

seeding density was chosen so that the wells remained subconfluent until the end of 

the imaging period, to reduce possible errors during single cell tracking. After 24 h, 

cells were placed in a stage top incubator with similar culture conditions (Okolab, UNO-

T-H-CO2) mounted on an inverted epifluorescence microscope (Zeiss, AxioObserver 

7) for long-term time lapse imaging. Similar procedure was used with MCF7-FUCCI2 

cells. 

4.2.4 Time lapse Image acquisition 

All images were acquired with a Zeiss AxioObserver 7 and a 10x, 0.3 NA objective 

(Zeiss, #420341-9911-000) or a 10x, 0.45 NA (Zeiss, #420641-9910-000). One field of 

view was taken for each well/condition in the center of the well. Both fluorescence 

channels mVenus and mCherry were recorded with 100 % LED intensity at 511 nm 

and 555 nm illumination wavelength, respectively. The filter set Zeiss, #46 HE (500/25 

excitation and 535/30 emission) was used to image mVenus and the filter set Zeiss, 

#45 (560/40 excitation and 630/75 emission) to image mCherry, both were recorded at 

300 ms exposure. In addition, phase contrast image was also recorded. Images were 

acquired every 30 minutes for 90 h. 

4.2.5 Proliferation assay 

Using the time lapse imaging of MDA-FUCCI2, cell number as a function of time was 

obtained with the FUCCItrack software. For each frame, both fluorescence channels 

mCherry and mVenus were independently segmented using an adaptative threshold 

approach. Then each cluster of pixels, representing each nucleus, was measured in 

terms of number of pixels. All clusters smaller than 4 µm in radius were discarded. This 

process was done automatically for all frames to obtain the curves indicating the 

number of cells as a function of time (Figure 4-2). Using these curves, the proliferation 

rate was computed as the slope of a linear fit (y = ax + b, from 0 to 30 h or unless 

stated otherwise). 
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Figure 4-2 Proliferation assay: number of cells as function of time. 
(A) Average and standard deviation of the cell number as a function of time among 

all repeats (N = 43, 30 and 43 wells for the control, PEG+ and PEG++ groups 

respectively). (B) Details of each curve per well as indicated by the box in panel A. 

Theses curves are used to compute a linear fit (y = ax + b) from 0 to 30 h, and the 

slopes correspond to the data in Figure 4-3, defined as proliferation rate. 

4.2.6 Single cell tracking and cell cycle dynamics 

Automatic single cell tracking and cell cycle dynamics quantification was done using 

the FUCCItrack software. Mitosis events were tracked from the beginning of the 

experiment and up to 30 h. Single cell cycle dynamics were then recorded for the first 

generation of daughter cells, where time 0 h for each single cell was defined by the 

first frame after division of the parent cell. This way, the total duration of the cell cycle 

could be measured from beginning to mitosis. This was necessary as the readout tG1 

and tCell cycle are defined with respect to the beginning of the cell cycle. Briefly, the nuclei 

were automatically segmented, and the nuclear fluorescence intensity as well as 

nuclear area was being recorded over time. To account for cell variability, the intensity 

for each channel was independently normalized with respect to its maximum value 

during the whole cell cycle, for each channel mCherry and mVenus separately. Using 

the normalized nuclear intensity as a function of time, the duration of cell cycle, G1 and 

S/G2/M phases were quantified as shown in Figure 4-6A (right middle panel). For the 
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cell subpopulation “G1 incomplete” scenario (the S/G2/M phase never started), the tG1 

was taken as the duration between the start of cell cycle and the end of the experiment 

(90 h) and was then only a lower limit for the actual duration and not an exact value 

like for all other cell subpopulations. 

4.2.7 Immunofluorescence 

After 90 h of imaging, cells were washed with PBS and fixed by adding 200 µL per well 

of a 4 % paraformaldehyde (Boster, #AR1068) solution for 30 minutes at room 

temperature. After washing twice with a 3 % wt/v bovine serum albumin in PBS, cells 

were permeabilized with 0.1 % wt/v Triton-X-100 (Sigma-Aldrich, #T8787) in PBS for 

10 minutes at room temperature. After two washing cycles, cells were incubated for 

17 h in the fridge, either with a 305 ng/mL p21 Waf1/Cip1 primary antibody (Cell 

Signaling Technology Europe, #2947S) in a dilution buffer containing PBS + 3 % wt/v 

BSA + 0.1 % Triton-X-100, or with a 1.25 µg/mL Ki67 primary antibody (Abcam, 

#ab15580) in the same dilution buffer. For each experimental group, two wells were 

used as negative controls to verify the specificity of the secondary antibody. For this, 

we did not add the primary antibody in the negative controls, but only the buffer 

solution. After washing twice, all cells were incubated for 1 h at room temperature in 

10 µg/mL Alexa Fluor 647 goat anti-rabbit antibody (Life Technologies, #A21244) in 

the same dilution buffer. After two washing steps, cells were imaged using the same 

microscope and settings as described above. A custom-made MATLAB application 

was developed named ImmunoFinder (Appendix B) to count the number of p21/Ki67 

positive cells. Briefly, the two channels from the FUCCI2 reporter were artificially 

merged and used to localize the cells. The negative controls of p21 and Ki67 were then 

used to determine the background signal of the secondary antibody and thereby define 

the threshold for positive p21 or Ki67 signal. The application contains a graphical user 

interface to be usable by everyone without prior programming skills required as visible 

in Appendix B. 

4.2.8 Reactivation experiments 

Because dormancy is a reversible mechanism, we wanted to observe how the highly 

metastatic breast cancer cells react when removing the osmotic stress. For this we 

designed reactivation experiments that followed the initial time lapse osmotic stress 

experiments. 
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After the 90 h initial experiment under the three different conditions (control, PEG+ and 

PEG++), the media was renewed in all groups with standard cell culture media. Then 

time lapse imaging was performed during additional 90 h, at the exact same location. 

Similar analyses were performed to extract the MSD, migration speed, and single cell 

cycle dynamics. To do so, mitosis events were tracked from the beginning of the 

reactivation and up to 30 h. Single cell cycle dynamics were then recorded for the first 

generation of daughter cells. This way, the cell cycle total duration for each cell could 

be measured. This defines the time = 0 h in Figure 4-10 and Figure 4-11. 

4.2.9 Statistical analysis 

All the data presented in this chapter comes from up to five biological repeats for the 

three experimental groups each. We define a biological repeat as an experiment that 

was done with a different batch of thawed cell. All data were analyzed using MATLAB. 

The plots represent the median, 1st and 3rd quartiles and extrema. Statistical analysis 

was done with respect to the control using a non-parametric two-tailed Wilcoxon rank 

sum test except when stated otherwise, n.s: p > 0.05, *: p < 0.05, **: p < 0.01 and ***: 

p < 0.001. 

4.3 Results 

4.3.1 Hyperosmotic stress slows down cell proliferation 

Osmolality values ranged from control values (320 mOsm/kg, with only cell culture 

media) to mild hyperosmotic stress (380 mOsm/kg, PEG+) and high hyperosmotic 

stress (460 mOsm/kg, PEG++) and the cells were monitored every 30 minutes for a 

period of 90 h (Figure 4-3A). 
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Figure 4-3 Increase of osmotic pressure slows down proliferation of MDA-
FUCCI2. 
(A) Time lapse of MDA-FUCCI2 cells exposed to three different osmolalities: 

320 mOsm/kg (control), 380 mOsm/kg (PEG+) and 460 mOsm/kg (PEG++). Scale 

bars are 200 µm. (B) Number of cells at time 0 and after 90 h of imaging (5 biological 

repeats and N = 43, 30 and 43 number of wells for the control, PEG+ and PEG++ 

groups, respectively). (C) Proliferation rates are taken as the slopes of the curves 

indicating the number of cells as a function of time (Figure 4-2), in the range between 

0 and 30 h. 

 

Using the FUCCI2 reporter, the number of cells as a function of time was monitored in 

real-time. After 90 hours, both mild and high conditions significantly impaired 

proliferation (Figure 4-3B) when compared to the control, with a decrease of around 

four-folds for the highest hyperosmotic stress (PEG++). In addition, the kinetics of cell 

proliferation was assessed by calculating the proliferation rate as the slope of the 

curve: number of cells as a function of time (Figure 4-2), in the linear range, between 

0 to 30 h. The interval of 30 h was determined based on the duration of a total cycle in 

control condition (Figure 4-7B). Notably, already from an early time-point, cell cycle 
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dynamics were highly reduced (Figure 4-3C). These findings were reproduced with the 

weakly metastatic human breast cancer cell line MCF7-FUCCI2 (Figure 4-4). Namely, 

that hyperosmotic stress significantly reduced both proliferation (Figure 4-4B) and cell 

cycle dynamics (Figure 4-4C). 

 

 
Figure 4-4 Increase of osmotic pressure slows down proliferation of MCF7-
FUCCI2. 
(A) Time lapse of MCF7-FUCCI2 cells exposed to three different osmolalities: 

320 mOsm/kg (control), 380 mOsm/kg (PEG+) and 460 mOsm/kg (PEG++). Scale 

bars are 200 µm. (B) Number of cells at time 0 and after 90 h of imaging (one  

biological repeat and N = 7, 8 and 8 number of wells for the control, PEG+ and PEG++ 

groups, respectively). (C) Proliferation rates are taken from the slope of the curves 

indicating the number of cells as a function of time, in the range between 0 and 30 h. 

 

The same osmolality values were applied with D-sorbitol over a period of 90 h: control 

values (320 mOsm/kg, with only cell culture media), mild hyperosmotic stress 

(380 mOsm/kg, Sorbitol+), and high hyperosmotic stress (460 mOsm/kg, Sorbitol++) 

(Figure 4-5). Analogous to the results obtained with PEG, cell proliferation was 
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significantly impaired when compared to the control (Figure 4-5B). In addition, the initial 

rate of cell proliferation was highly reduced at early time points (Figure 4-5C). 

 

 
Figure 4-5 Increase of osmotic pressure via sorbitol slows down proliferation 
of MDA-FUCCI2. 
(A) Time lapse of MDA-FUCCI2 cells exposed to three different osmolalities: 

320 mOsm/kg (control), 380 mOsm/kg (Sorbitol+) and 460 mOsm/kg (Sorbitol++). 

Scale bars are 200 µm. (B) Number of cells at time 0 and after 90 h of imaging (1 

biological repeat and N = 8, 8 and 8 number of wells for the control, Sorbitol+ and 

Sorbitol++ groups, respectively). (C) Proliferation rates are taken from the slopes of 

the curves indicating the number of cells as a function of time, in the range between 

0 and 30 h. 
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4.3.2 Single cell analysis of cell cycle dynamics reveals osmotically driven 
impaired nuclear growth and delayed or growth arrested cell 
subpopulations 

After the observation that hyperosmotic pressure reduced the overall cell proliferation, 

we next focused on single cell cycle dynamics of MDA-FUCCI2. Firstly, mitosis events 

were tracked from the beginning of the experiment and up to 30 hours. Single cell cycle 

dynamics were then recorded for the first generation of daughter cells and used in 

Figure 4-6 and Figure 4-7, where time 0 h for each single cell corresponds to the first 

frame after division of the parent cell. During the G1 phase of the cell cycle, only 

mCherry fluorescence is expressed in the nucleus as it is linked to the Cdt1 protein, 

while as soon as the S/G2/M phase starts, the mVenus fluorescence can be detected 

as it is linked to the Geminin protein (Figure 4-6A). Hence, by measuring the 

fluorescence intensity inside the nucleus over time, the duration of the G1 phase (tG1, 

Figure 4-7D), the S/G2/M phase (tS/G2/M, Figure 4-7C) and the whole cell cycle (tcell cycle, 

Figure 4-7B) were evaluated. 
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Figure 4-6 At a single cell level, increase in osmotic pressure leads to the 
emergence of distinct cell subpopulations. 
(A-C) Normalized FUCCI2 fluorescence intensity inside of segmented nuclei (middle 

panels), corresponding fluorescence images over time (bottom panels) and cartoons 

(top panels) representing the cell cycle phases in three different cell subpopulation: 

(A) cell cycle with mitosis complete (“Mitosis complete”), (B) cell cycle with 

prolonged time in G1 until the cells start the S/G2/M phase (“G2 incomplete”) and 

(C) the cells remain in G1 for the whole duration of the experiment (“G1 incomplete”). 

The time 0 h for each single cell corresponds to the first frame after division of the 

parent cell. Scale bars are 50 µm. The FUCCI2 cartoons were adapted from Sakaue-

Sawano et al. [49], Copyright (2008), with permission from Elsevier 

 

Under control conditions, all MDA-FUCCI2 cells took 30 h (median) to run through a 

full cell cycle (Figure 4-7B). Interestingly, under hyperosmotic pressure cell cycle 

dynamics were altered resulting in three different cell subpopulations: (i) the cells could 

divide but the cell cycle was prolonged (“Mitosis complete”, Figure 4-6A right side), (ii) 

the cells had initiated the G2 phase (“G2 incomplete”, Figure 4-6B) or (iii) the cells 

stayed arrested in G1 (“G1 incomplete”, Figure 4-6C). The duration of the experiment 

of 90 hours corresponds to three times the cell cycle duration under control conditions. 
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For the cell subpopulation “Mitosis complete”, the osmotically-driven delay in the cell 

cycle was manifested with an increase in the duration of the whole cell cycle (Figure 

4-7B), the S/G2/M phase (Figure 4-7C) and G1 phase (Figure 4-7D, “Mitosis 

complete”), with a delay proportional to the applied osmotic pressure. All cells of the 

control group completed mitosis, whereas only 67 % and 25 % of the mild PEG+ and 

high PEG++ hyperosmotic groups respectively managed to do so (Figure 4-7E, “Mitosis 

complete”). Notably, the cell cycle duration could increase up to two-folds between the 

control and the most osmotically stressed group (PEG++). 

The cell subpopulation “G2 incomplete” was found in 5 % of the cells in the PEG+ group 

and 14 % of the cells in the PEG++ group (Figure 4-7E). This indicates that these cells 

were highly delayed in their cell cycle progression, as shown by the time spent in G1, 

with 11 hours for the control group, 43 h for the PEG+ and 55 h for the PEG++ (Figure 

4-7D, “G2 incomplete”). 

Strikingly, a significant fraction of MDA-FUCCI2 cells (28 % and 62 % for PEG+ and 

PEG++ respectively, Figure 4-7E) did not even enter the S/G2/M phase (defined as 

subpopulation “G1 incomplete”) for the whole duration of the experiment . Since the 

cell cycle duration in the control group was 30 hours (Figure 4-7B), all the cells could 

have divided three times during the experiment. Instead, the cells in this subpopulation 

never expressed mVenus-hGeminin (1/110). For this reason, the cells in the 

subpopulation “G1 incomplete” are considered to be growth-arrested. 

Remarkably, for the cell subpopulation “Mitosis complete” in all three experimental 

groups, the nuclear area increased over time up to roughly two-folds (Figure 4-7A, 

“Mitosis complete”). However, for both cell subpopulation “G2 incomplete” and 

“G1 incomplete”, under both PEG+ and PEG++, the nuclear growth was impaired 

throughout the whole experiment (Figure 4-7A, “G1 incomplete” and “G2 incomplete”). 

Those cells were not dead as they maintained a reduced migratory activity during this 

prolonged G1 phase (Figure 4-8). 
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Figure 4-7 Increase in osmotic pressure leads to impaired nuclear growth and 
delayed or arrested cell cycle. 
(A) Normalized nuclear area as a function of time for the three experimental groups 

and the three different cell subpopulations. The line is the average, and the shaded 

area is the standard deviation. (B) Duration of the whole cell cycle (time from division 

to division) for the cell subpopulation “Mitosis complete” (N = 34, 57 and 15 cells for 

the control (red), PEG+ (violet) and PEG++ (green) groups). (C) Duration of the 

S/G2/M phase, for the cell subpopulation “Mitosis complete” (N = 39, 61 and 24 cells 

for the control, PEG+ and PEG++ groups, respectively). (D) Duration of the G1 phase 

in the three different cell subpopulations: “Mitosis complete”, “G2 incomplete” and 

“G1 incomplete”, for the control, PEG+, PEG++, groups, respectively. (E) Fraction of 

cells in the three different cell subpopulations, for the groups: control, PEG+ and 

PEG++. 
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4.3.3 Cell migration is slowed down but not arrested under osmotic 
pressure 

To investigate whether this prolonged cell cycle and reduced proliferation correlated 

with decreased cell mobility, we examined single cell migration using the FUCCI2 

marker. The center of the nucleus of every cell was tracked and their trajectories were 

recorded over time (Figure 4-8A). MSD and migration speed were analyzed for the 

three different groups (control, PEG+ and PEG++). Under osmotic stress, both MSD 

and migration speed decreased drastically with respect to the control (Figure 4-8B, 

Figure 4-8C). This indicates that the cells under osmotic pressure were less migratory, 

stayed in a near neighborhood and moved slower than the control group, with median 

migration speed of 0.42, 0.18 and 0.16 µm/min for the control, PEG+ and PEG++, 

respectively. In addition to reduced proliferation and prolonged cell cycle, cell migration 

was strongly impaired under hyperosmotic pressure. 

 
Figure 4-8 Migration is strongly reduced under hyperosmotic condition. 
(A) Cell trajectories over the duration of the experiment (90 h), 3 biological repeats 

and N = 54, 111 and 118 for the control, PEG+ and PEG++ groups, respectively. Each 

color represents the path of one cell. (B) Mean square displacement of the first 20 h 

of the cell cycle (MSD, in µm²). The thick line represents the average MSD, and the 

shadow is the standard deviation. (C) Migration speed (µm/min) of single cells taken 

as the median of instantaneous cell speeds over their trajectories. 
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4.3.4 Expression levels of Cyclin-dependent kinase inhibitor protein p21 
and proliferation marker Ki67 validate the FUCCI2 observations 

The FUCCI2 reporter was used to monitor in real-time single cell cycle dynamics under 

osmotic stress. To further confirm the previous findings describing cell subpopulations 

with delayed or growth-arrested cell cycle, immunofluorescence staining was 

performed for the cyclin-dependent kinase inhibitor protein p21 and the proliferation 

marker Ki67 after 90 hours of PEG exposure. Protein expression was detected using 

a fluorescently labeled secondary antibody (AF467). For clarity, FUCCI2 images were 

artificially indicated in white and AF647 images in magenta (Figure 4-9A, Figure 4-9B). 

Higher levels of osmotic pressure led to a significant increase in the number of p21 

positive cells from 30 % for the control, to 59 % for PEG+ and to 66 % for the PEG++ 

conditions (Figure 4-9C). In accordance with that finding, the number of positive cells 

for the proliferation marker Ki67 showed a significant drop when increasing osmotic 

pressure (Figure 4-9D). 
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Figure 4-9 Osmotically driven delayed or growth arrested cells shows a higher 
expression of p21 and lower expression of Ki67. 
(A) p21 immunofluorescence (magenta, AF647) overlaid with FUCCI2 fluorescent 

(artificially indicated as white) cells for the control, PEG+ and PEG++ groups, after 

90 h. Scale bars are 200 µm. (B) Ki67 immunofluorescence (magenta, AF647) 

overlaid with FUCCI2 fluorescent (artificially indicated as white) cells for the control, 

PEG+ and PEG++ groups, after 90 h. Scale bars are 200 µm. (C) Fraction of p21 

positive cells on three biological repeats and N = 10 wells. (D) Fraction of Ki67 

positive cells on three biological repeats and N = 10 wells. 

 

4.3.5 Releasing the osmotic pressure reactivates cell proliferation and 
migration 

We next investigated whether this delay or arrest of cell cycle, accompanied by a 

reduction in migratory activity, was a reversible effect. To do so, after 90 h under 

control, PEG+ and PEG++ conditions, the media was renewed in all groups with 

standard cell culture media (Figure 4-10B). That is, after 90 h, all cells were exposed 

to the same osmotic pressure as in the control (320 mOsm/kg). The cells were then 

monitored for another additional 90 h and the same analyses as with the previous 
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experiments were performed (Figure 4-10A). The proliferation rate was measured as 

the slope of the curve indicating cell number as a function of time but taken at different 

times intervals: 60 to 90 h (cells at the end phase of the hyperosmotic pressure 

experiment), 90 to 120 h (early phase of reactivation), and 150 to 180 h (late phase of 

reactivation). The proliferation rate of the PEG+ group increased over time at the early 

phase of reactivation (90 - 120 h) (Figure 4-10C, violet) and, at the late phase 

(150 - 180 h) it reached values similar to the one of the control group (60 - 90 h). Cells 

in the PEG+ group also recovered their MSD (Figure 4-10D), as well as their migration 

speed (Figure 4-10E) and they reached values similar to the control during the first part 

of the experiment. To our surprise, the cells in the PEG++ group did not recover from 

the osmotic stress and the proliferation rate stayed low even at the late phase of 

reactivation (Figure 4-10C, green). 
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Figure 4-10 Reversible recovery of cell proliferation and migration upon 
osmotic reactivation. 
(A) Time lapse of MDA-FUCCI2 cells, previously exposed to 320 mOsm/kg (control), 

380 mOsm/kg (PEG+) and 460 mOsm/kg (PEG++) for 90 h, followed by exposure to 

control osmolality. Scale bars are 200 µm. (B) Illustration of the reactivation 

experiment pursuing the time lapse experiment for another 90 h but replacing the 

cell culture media with control osmolality. (C) Proliferation rates are taken as the 

slopes of the curves indicating the number of cells as a function of time in the range 

between 60 - 90 h (under osmotic pressure), 90 – 120 h (early phase of reactivation) 

and 150 – 180 h (late phase of reactivation), two biological repeats, N = 22 wells for 

each group. (D) MSD of cells that were previously in PEG+ (dashed line) in 

comparison with the previous data for the control and PEG+ groups (from Figure 

4-8B). The thick line represents the average MSD and the shadow the standard 

deviation. (E) Migration speed of cells that were previously in PEG+ (PEG+ reactiv., 

dashed box) in comparison with the previous data for the control and PEG+ group 

(from Figure 4-8C). 
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In addition to the recovery of properties such as proliferation and migration, single cell 

cycle dynamics also returned to values resembling control conditions upon reactivation 

(Figure 4-11A). Similar to single cell cycle analyses during osmotic pressure, for 

reactivation experiments mitosis events were tracked from the beginning of 

reactivation and up to 30 h. Single cell dynamics were then recorded for the first 

generation of daughter cells. Interestingly, the duration of the cell cycle after 

reactivation significantly shortened with respect to the previous hyperosmotic condition 

and was almost fully returning to control values, with a median value of 33 h for the 

reactivation group against 30 h for the control (Figure 4-11B). The S/G2/M phase after 

reactivation was also significantly decreased and fully recovered to control values 

(Figure 4-11C). However, the G1 phase duration remained unchanged after 

reactivation and was therefore still significantly longer than the control (Figure 4-11D), 

although the data dispersion was strongly reduced and resembled the control values. 
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Figure 4-11 Reactivation and return to control single cell cycle dynamics upon 
releasing the osmotic stress. 
(A) Cartoon of the effect of reactivation on single cell cycle dynamics (top panel), 

normalized FUCCI2 fluorescence intensity (middle panel), with corresponding 

fluorescence images before and after reactivation (bottom panel). (B) Duration of the 

whole cell cycle (time from division to division) for the cell subpopulation “Mitosis 

complete”, before and after reactivation (N = 34, 57 and 23 cells for the control (red), 

PEG+ (violet) and PEG+ reactiv. (violet dashed), respectively). (C) Duration of the 

S/G2/M phase for the cell subpopulation “Mitosis complete”, before and after 

reactivation (N = 39, 61 and 23 cells for the control (red), PEG+ (violet) and PEG+ 

reactiv. (violet dashed) groups, respectively). (D) Duration of the G1 phase for the 

cell subpopulation “Mitosis complete”, before and after reactivation (N = 34, 57 and 

23 cells for the control (red), PEG+ (violet) and PEG+ reactiv. (violet dashed) groups, 

respectively). 
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4.4 Discussion 

Together, our findings identify osmotic pressure as a key biophysical cue modulating 

single cell cycle dynamics that can induce reversible growth arrest and reactivation of 

human metastatic cells. Quantitative time lapse imaging of single cell cycle dynamics 

reveals that, upon exposure to hyperosmotic stress, distinct cell subpopulations 

emerge with delayed or even growth-arrested cell cycle. This effect is reversible for 

mild hyperosmotic pressure and cells can return to regular cell cycle dynamics, 

proliferation and migration upon release of the osmotic pressure (see graphical 

summary in Figure 4-12). This is in agreement with similar phenomena observed 

previously with bacteria [33], yeast cells [34] and plant seeds [35, 36], but has barely 

been explored in the context of human cells. Our findings highlight the importance of 

the local biophysical microenvironment, specifically osmotic pressure, particularly in 

human cell niches likely to harbor non-cycling quiescent cells such as lymphatic and 

blood capillaries in the bone marrow. 

We show that hyperosmotic stress drastically impacts highly metastatic MDA-MB-231 

cells as well as weakly metastatic MCF7 human breast cancer cells, with a drop in the 

proliferation rate proportional to the osmotic pressure applied. These results are not 

specific to PEG, and analogous results are obtained when sorbitol is used as an 

osmolyte. This is in agreement with previous observations with prostate cancer cells, 

where osmotic pressure was linked to a dormant state, but only when seeded at very 

low (clonogenic) cell density [94]. More recently, Miermont et al. [95] also observed 

this drop in proliferation due to hyperosmotic stress in metastatic cell lines, including 

MDA-MB-231 breast cancer cells, using bulk cell analyses based only on 

immunofluorescence staining of proliferation markers. Since p53 has previously been 

related to cell cycle delay or apoptosis [102-105], the use of a mutant p53 cell line such 

as MDA-MB-231 could partially explain the reduced proliferation under hyperosmotic 

stress. However, new experiments performed with the wild-type p53 MCF7-FUCCI2 

cell line, and data from the literature with the wild-type p53 T24 cell line [95], also show 

a reduced proliferation under hyperosmotic stress. Nam et al. [31] investigated cell 

cycle progression under 3D mechanical confinement using hydrogels, with an 

additional osmotic pressure effect, using static single cell EdU proliferation assays. 

They found that fast relaxing gels allowed for cell cycle progression, and this was 

slowed down or arrested for cells within slow relaxing gels, or within fast relaxing gels 
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with an additional osmotic pressure effect. However, to obtain a better understanding 

of the effects of osmotic pressure on single cell cycle dynamics, a quantitative real-

time single cell imaging approach was lacking. 

We took advantage of the FUCCI2 reporter to assess single cell cycle dynamics as 

well as nuclear growth in real-time, with unconfined cells under hyperosmotic 

conditions and upon release of the osmotic stress. FUCCI2 reporter was developed by 

Sakaue-Sawano et al. [49, 57] and is increasingly used to study cell cycle progression 

and especially quiescence [106-110]. Based on single cell analyses, we could 

distinguish three different cell subpopulations emerging upon exposure to mild (PEG+) 

and high (PEG++) osmotic pressure. The subpopulation “Mitosis complete” exhibited 

prolonged total cell cycle duration (up to two-folds longer than control conditions), with 

regular nuclear growth. In contrast, the subpopulations “G2 incomplete” and 

“G1 incomplete” showed impaired nuclear growth, accompanied by prolonged G1 

phase for the former (up to five-folds longer than control conditions), and cell cycle 

arrest in G1 for the latter. The fraction of the subpopulation “Mitosis complete” dropped 

with increasing osmotic pressure (68 % and 25 %, for PEG+ and PEG++), while an 

increase was observed with higher osmotic pressure in the fraction of the 

subpopulation “G2 incomplete” (5 % and 13 %, for PEG+ and PEG++). Barnet et 

al. [111] also observed that the cell populations capable of surviving long-term 

dormancy were heterogeneous and contained cycle-arrested cells mixed with 

proliferating cells. The emergence of these different subpopulations of cells under the 

same biophysical microenvironment highlights the power of single cell analyses in real-

time to better understand the dynamics of growth arrest and reactivation of highly 

proliferative human metastatic cells. 

These results were validated with bulk analyses of a collective of cells based on 

immunofluorescence staining. The osmotic stress resulted in a drop in the proliferation 

marker Ki67 and an increase of the cyclin dependent kinase inhibitor protein p21 

expression, which was proportional to the osmotic pressure applied. It has been shown 

that p21 expression can be an indicator for cell cycle arrest while inhibiting 

apoptosis [112]. This cell cycle arrest caused by high p21 expression can happen in 

both G1 phase, but also in G2 phase by mediation of cyclin B1 degradation in presence 

of DNA damage [113, 114]. In addition, the proliferation-associated protein Ki67 is a 

common method to visualize growth arrested cells [40, 115, 116]. Our 

immunofluorescence results show that 80 % of cells under mild osmotic pressure are 
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Ki67 positive, while the other 20 % are Ki67 negative and therefore not cycling (Figure 

4-9D). This bulk analysis correlates with our findings from the dynamic single cell 

FUCCI analyses in Figure 4-7E, with a fraction of 28 % cells in G1 incomplete. Both 

p21 and Ki67 results on bulk analyses agree with the trends detected by summing up 

the results of the FUCCI2 single cell tracking. Here we quantified a decreasing 

subpopulation “Mitosis complete” (67 % and 25 %), increasing subpopulation 

“G2 incomplete” (5 % and 13 %) and “G1 incomplete” (28 % and 62 %), from mild 

(PEG+) to high (PEG++) osmotic pressure.  

Under hyperosmotic stress, cell migration decreased drastically for both mild and high 

osmotic stress. It has been previously reported that hyperosmotic stress was involved 

in a reduction or suppression of protrusive activity [117] which is necessary for cells to 

migrate [118]. An increase in osmotic stress proved to be responsible for a reduction 

of lamellipodia area [119]. Conversely, a reduction in osmotic stress, enhanced 

lamellipodial formation, as shown by an epithelial gap closure assay [120]. These 

reported effects of osmotic pressure on filopodia and lamellipodia formation could 

explain our findings of reduced cell migration under hyperosmotic stress. 

An essential characteristic of the herein-described cell cycle arrest and reactivation is 

its reversibility. For the mild hyperosmotic pressure condition, the MDA-FUCCI2 cells 

resumed proliferation, migration and partially cell cycle dynamics upon releasing the 

osmotic pressure. Unlike previous studies [94], this is to the best of our knowledge the 

first study quantitatively monitoring the reversibility of the cancer cell cycle arrest and 

return to active proliferation, in real-time and at a single cell level. 

One possible mechanism linking osmotic regulation with cell behavior could be the cell 

and nuclear size. In the context of mesenchymal stem cell biology, it has been shown 

that variations in external osmotic pressure can induce changes in cell volume, 

intracellular molecular crowding as a result of water efflux, changes in cell stiffness and 

ultimately impact mesenchymal stem cell differentiation in the osteogenic or 

adipogenic lineage [89]. Furthermore, a recent and important study shows that cell 

division requires the nuclear size-dependent dilution of the cell cycle inhibitor 

retinoblastoma protein, which is enabled by nuclear growth during the G1 phase [121]. 

Remarkably, in our study we show that cells exhibiting impaired nuclear growth did not 

complete mitosis, under both mild and high hyperosmotic pressure; while cells that 

divided, showed a nuclear growth comparable to control conditions. These findings 
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suggest that a biophysical cue such as osmotic pressure could modulate single cell 

cycle dynamics by impairing nuclear growth. 

While the focus of this chapter has been the effect of osmotic pressure on single cell 

cycle dynamics using highly proliferative human metastatic cells as a model system, 

its implications can be extended to a broader physiological context. It is known that 

gradients in osmotic pressure and hydrostatic pressure drive fluids out of arterioles and 

back into the venules [84][86]. Such gradients could contribute to the spatial 

distribution of quiescent hematopoietic stem cells (HSC) in the neighborhood of 

capillaries in the bone marrow [37][38]. From a disease state point of view, growth-

arrested human metastatic breast cancer cells have been associated to stable 

vasculature, while reactivation and proliferation have been linked to sprouting new 

vessels [13]. Sprouting neovasculature is characterized by a looser and more 

permeable capillary wall, resulting in a lower osmotic pressure gradient [122]. These 

findings describing the effect of osmotic pressure on reversible cell growth arrest and 

reactivation can have implications in a broader context such as stem cell quiescence 

vs. proliferation, or human disease like cancer dormancy and metastasis. 

4.5 Graphical summary 

 
Figure 4-12 Effect of osmotic stress on breast metastatic cells 

 

4.6 Limitations 

The presented chapter shows the in vitro implication of hyperosmotic stress 

microenvironment and its impact on breast cancer cell dormancy. We show the impact 

of hyperosmotic stress on one of the most aggressive metastatic cell lines and could 
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demonstrate that under certain conditions, the cell cycle was greatly delayed or 

completely arrested, in a reversible fashion. 

Despite using more than one cell line with the MDA-FUCCI2 and MCF7-FUCCI2, the 

use of cell lines greatly limits the reach of our results and conclusion. Pursuing similar 

analyses with primary cells or with many different cancer cell lines would be highly 

beneficial. 

Relying on FUCCI2 cell lines is also a limitation since it can represent a lot of work to 

generate the cell line in a stable manner. This work was done in collaboration with 

colleagues at the Charité University Hospital. 

The experiments also required access to sophisticated and stable hardware such as a 

completely motorized EM with a top stage incubator for long term experiments (up to 

8 days for the reactivation experiments). 

Moreover, despite the efforts we made to observe, quantify and document events in 

the most accurate way the effect of hyperosmotic stress on breast cancer cell 

dormancy, the work in this thesis does not provide a mechanistic explanation of the 

biology behind the observed results. We believe the work done in this chapter is still 

beneficial for starting more biologically oriented research of the effect of osmotic stress 

on breast cancer cell. 

Finally, the fact that we performed all our experiment in a perfectly controlled, in vitro 

2D tissue culture plate is a rough simplification of what the microenvironment can look 

like in vivo. 

By lowering the complexity of the system to a 2D glass plate, we could model and 

focus one specific effect of an otherwise more complete environment. How the 

response to osmotic stress would interact with other biophysical cues of the 

microenvironment or even other cells present in the system remains unknown and to 

be discovered. 
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Chapter 5 Single cell under fluid flow in a microfluidic 
device 

“I can go… with the flow, 

don't say it doesn't matter anymore.” 

Go with the flow, Queens of the stone age 

Cancer cells can metastasize to secondary organs at early stages of the disease. 

Metastatic cancer cells travel through capillaries characterized by gradients in both 

osmotic pressure and fluid flow. Chapter 4 was dedicated to the role of osmotic 

pressure and here we investigate the effect of sinusoidal fluid flow, and its resulting 

shear stress derived from computational fluid dynamics, on metastatic cell cycle 

progression, migration, cell and nuclear volume as well as shape. 

5.1 Introduction 

There are many molecular pathways that drive metastasis [123], but it is becoming 

more acknowledged that mechanical forces can also be responsible for tumor 

progression [124-126]. Part of these mechanical cues are fluid flow-based cell 

responses. This is because before creating a metastasis, the tumor cells are exposed 

to three main body fluids: blood, lymph and interstitial fluid [127-129]. The terms 

“hemodynamic” or “mechanical” theory describe the notion that fluid-based mechanics 

could shape metastasis. It was thus shown that the frequency of metastasis in height 

classical target organs correlated with organ arterial blood flow [130]. In the context of 

brain cancer, it has been reported that fluid flow could stimulate invasion as well as 

proliferation [131, 132]. On the other hand, after extravasation it was demonstrated 

that specific cancer cells could remain dormant for years to decades in niches [13]. 

Metastatic onset or dormancy requires physical intravascular arrest of DTCs before 

they actively extravasate to the interstitial matrix , where they can stay dormant [10] or 

generate life-threatening metastasis [134]. 

Given that the bone marrow (BM) is a preferential site for breast cancer metastasis 

and that stable microvasculature can provide a dormant niche [13], this region appears 
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to be of great interest to study the impact of fluid flow on breast cancer cell dormancy. 

The BM microvasculature is composed of a fairly irregular network of connected 

sinusoidal microvessels, located in the BM cavities of bones [135, 136]. In long bone, 

these microvessels connect to a complex and irregular network of sinusoidal 

capillaries [37, 135]. Recently, intravital two-photon imaging was used in vivo to 

quantify blood flow dynamics and velocities in these sinusoidal capillaries [137], thus 

providing an accurate basis for determining fluid flow profiles in this region. To mimic 

these condition, microfluidics is an important technique that allows the control over a 

tunable fluid flow and shear stress, while monitoring the behavior of cancer cells in 

vitro [138, 139]. 

To the best of our knowledge, the role that shear forces exert on tumor cell dormancy 

has not been documented. Whether DTCs perivascular niches [13] that can create a 

chemo-resistant environment for dormant tumor cells [140] for example originate from 

extravasated cells that went through specific flow profiles during endothelial 

remodeling [141] remains unknown. It would be of great interest to know if tumor cells 

could be localized and discriminated solely based on fluid flow profile. 

Here, we hypothesize that the fluid flow and shear stress can play a role in human cell 

niches likely to harbor non-cycling quiescent cells by altering their cell cycle dynamics, 

migration and morphology. 

In a similar way to the osmotic pressure study, we use the highly proliferative human 

metastatic cell line MDA-MB-231 with FUCCI2 (MDA-FUCCI2) to perform quantitative 

time lapse imaging of the different phases of the cell cycle at a single cell level. 

We investigate the effect of different levels of fluid flow mimicking regions such as the 

sinusoidal capillaries near the bone marrow. To do so, we use a microfluidic device 

and study the time-resolved single cell cycle dynamics, migration, cell and nuclear 

volume/morphology, for several days. The level of fluid control, and the ability to 

capture single cell for 3D time lapse imaging makes the microfluidic a unique platform 

suitable for our experiments. 

5.2 Materials and methods 

5.2.1 Cell culture 

Cell culture was performed exactly as described above in section 3.2.2. 

5.2.2 Cell actin staining 
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Cell actin staining was performed exactly as described above in section 3.2.3 

5.2.3 Fabrication of polydimethylsiloxane (PDMS) microfluidic devices 

The aim of the microfluidic device is to trap and isolate single cells for long time lapse 

imaging (> 3 days) and investigate their behavior under different fluid flow conditions. 

For this we need specific features that consist of traps in microfluidic channels, and 

our microfluidic devices (Figure 5-3) were inspired and adapter from previously 

reported design [142, 143]. 

Wafer master mold fabrication 
A silicon wafer (Siegert wafer, #BW14001) was used to create the master mold of 

30 µm in height via soft photolithography (Figure 5-1A). Briefly, the original empty 

wafer was dehydrated at 200 °C for 30 minutes and then spin-coated with 4 mL SU-8 

photoresist (Microchem, SU8-3025) at 500 RPM for 15 seconds followed by 2600 RPM 

for 30 seconds (Laurell, #WS-650-23). The wafer was then soft-baked and inserted 

into the mask aligner (KLOE, UV-KUB3) along with the film mask (Micro Lithography 

Services) containing our design for ultraviolet (UV) exposure at 35 mW/cm² for 

6 seconds. The wafer was then post-baked and developed (Micro resist technology, 

#mr-Dev 600) to remove the non-cured SU-8. A final hard bake was performed at 

200 °C for 30 minutes and the wafer was silanised to avoid PDMS adhesion. This was 

done by having the wafer overnight inside a 150-mbar desiccator with 50 µL of 

1H,1H,2H,2H-Perfluorodecyltrichlorosilane (abcr, #AB111155). Every wafer contains 

10 designs to create 10 individual chips. The channels inside the microfluidic device 

can be visualized in Figure 5-1B. 

Microfluidic device to trap single cell 
To produce the microfluidic chips, PDMS and curing agent (Dow Corning, Sylgard 184 

Silicone Elastomer Kit) were mixed with a 10:1 ratio (70 g PDMS, 10 g linker). The 

mixture was degassed for 30 minutes in a 150-mbar desiccator and then poured into 

the wafer master. The mixture was degassed once more for 15 minutes in a 150-mbar 

desiccator and cured at 80 °C for 2 h. The 10 designs were cut out from the cured 

PDMS and holes for the inlet and outlet were made with a 1.5 mm biopsy puncher (Kai 

Europe GmbH). A reservoir made from a cut 1000 µL pipette tip was placed above the 

inlet, sealed with liquid PDMS and cured at 80 °C for 30 minutes. The PDMS 

microfluidic devices and the cover slip (24 x 40 mm, Thermo Fischer, #10180035) were 
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then placed in a plasma cleaner (Plasma Cleaner PDC- 002-CE, Harrick Plasma) at 

0.6 mbar for 60 seconds. Following the plasma activation, the PDMS and the cover 

slip were attached manually and kept on a hot plate at 60 °C for 30 minutes to help the 

binding. Before an experiment, the microfluidic device was sterilized under UV 

radiation for one hour. 

 
Figure 5-1 Wafer and microfluidic device fabrication process. 
(A) A silicon wafer was spin-coated with SU-8 at 30 µm thickness, then exposed to 

UV through a mask containing the design of the microfluidic device. After 

development to remove any non-cured SU-8, a wafer master mold was generated. 

Liquid PDMS was then poured into the wafer master mold and baked to create the 

microfluidic device. (B) Overview of one complete microfluidic device.  

 

Complete setup 
A microfluidic device can be seen in Figure 5-3A. It consists of 8 parallels channels 

(colored with red dye) accounting for 60 traps in total. Each trap contains two posts 

that block cells and allow single cells to be captured in the chip (Figure 5-3B).  

Firstly, the microchannels were flushed with a cell culture media solution (200 µL) with 

centrifugation for 10 minutes at 900 RPM. The microfluidic device with its channels 

filled with cell culture media was then placed in a stage top incubator at 37 °C and 5 % 

CO2 (Okolab, UNO-T-H-CO2). We used an aluminum custom-made sample holder to 

make sure no movement will occur during the long time lapse imaging (Figure 5-2B). 

The outlet was then connected with a metal connector to a 1 mL (control and Flow+) or 

2.5 mL (Flow++) syringe (Agilent, #5190-1530 and #5190-1534) mounted on a pump 

(Chemyx, Fusion 200) in withdraw mode (Figure 5-2A). Once everything was 
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connected, the device stayed was kept 30 minutes to reach the targeted temperature 

and concentration of CO2 inside the chamber and inside the microfluidic device. 

 

 
Figure 5-2 Complete setup of the microfluidic device with syringe and pump. 
(A) Top stage incubator mounted on a confocal SP8 microscope containing the 

microfluidic device. The microfluidic device is attached to a syringe mounted on a 

pump in withdraw mode to create the flow. Scale bar is 12 cm. (B) Close-up view of 

the inside of the top stage incubator. The microfluidic device is mounted on a custom-

made holder with four metal clamps to prevent movement during time lapse. The 

outlet of the microfluidic device is attached to the syringe with a metal connector to 

ensure a tight connection and avoid formation of air bubbles. Scale bar is 4 cm. 

Microfluidic device operation 
The complete setup was prepared and checked so that no apparent air bubbles were 

present in any of the channels. Then the process of trapping the cells inside the 

microfluidic device was started. From the master cell suspension at 600 000 cells/mL 

that received the SiR-Actin, another cell suspension was created by dilution to reach 

100 000 cells/mL. The microfluidic device operation is divided in four steps (Figure 

5-3B): 

(i) Insertion. From the cell suspension of MDA-FUCCI2 stained with SiR-Actin, 

50 µL were taken (~ 5000 cells) and inserted into the reservoir. The flow rate 

was set to 20 µL/min for 5 minutes for maximum trapping efficiency. 

(ii) Capture. The streamlines in the microfluidic device will go around and 

between the two posts until a suspended cell occupied the space between 
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the posts. After this point, other cells would only go around the posts and fill 

the next trap. 

(iii) Adhesion. A visual check with the microscope was done to ensure that at 

least 80 % of the traps were filled since this yielded enough single cells per 

experiments. The flow rate of the chosen experimental group was then 

applied (control: 0.02 µL/min, Flow+: 0.1 µL/min and Flow++: 0.2 µL/min, 

please see the section 5.2.10 for more details on the choice of the flow 

conditions). The remaining cells in suspension still in the reservoir from the 

initial insertion were removed by three exchanges of media. Finally, media 

containing SiR-Actin was added until the top of the reservoir and parafilm 

was added to prevent evaporation. The trapped suspended cells 

(mechanically trapped between the two posts) were then incubated 

overnight to allow adhesion. 

(iv) Migration and proliferation. Once the cells adhered, they migrated within the 

trap and proliferated while being imaged during time lapse. 

During the time lapse imaging, two containers filled with Millipore water were inserted 

inside the top stage incubator (Okolab, UNO-T-H-CO2) to have a 100 % humid 

environment along with the 5 % CO2 mixture and the 37 °C temperature, thus 

resembling the main incubator used for regular cell culture and avoiding media 

evaporation. 
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Figure 5-3 Microfluidic approach for high efficiency trapping of single breast 
cancer cells. 
(A) Bright field image of the PDMS microfluidic chip used to trap MDA-FUCCI2 cells. 

It consists of 8 parallels channels (colored with red dye) accounting for 60 traps in 

total. Each trap contains two posts that block cells and allow single cells to be 

captured in the chip. From left to right, scale bars are 20 cm, 1 mm and 200 µm. 

(B) Process of trapping cells inside the chip: (i) cells are inserted from the reservoir 

and flushed inside the chip with a high fluid flow at 20 µL/min (insertion) until (ii) the 

cells are trapped within the two posts (capture). (iii) Once enough cells are occupying 

the traps (>80 %), the flow rate is set at the experimental fluid flow condition (Control, 

Flow+, Flow++) and cells are incubated overnight to allow adhesion. (iv) Cell migration 

and proliferation is monitored over time under the different experimental fluid flow 

conditions. (C) Overlay of phase contrast image of one single trap with fluid 

streamlines and fluid velocity in the three experimental fluid flow conditions, 

corresponding to two levels of sinusoidal fluid flow, Flow+ (0.1 µL/min) and Flow++ 

(0.2 µL/min), and Control (0.02 µL/min). 
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5.2.4 Time lapse experiments protocol 

Every experiment was done in parallel on two independent top stage incubators: (i) in 

an epifluorescence microscope (Zeiss, AxioObserver 7) and (ii) in a confocal 

microscope (Leica, SP8). While both the epifluorescence and confocal microscope 

could provide information about the cell cycle dynamics and migration, only the 

confocal microscope was able to resolve the nuclear and cell volume over time (Figure 

5-4). Coupled with the computational fluid dynamics (CFD) simulation, an accurate 

estimate of the wall shear stress on the cell membrane was computed as described in 

5.2.5. 

 

Figure 5-4 Description of the readouts available from both epifluorescence and 
confocal microscope. 

5.2.5 2D time lapse image acquisition 

The 2D time lapse image acquisition was performed as described in section 3.2.4. 

5.2.6 3D time lapse image acquisition 

The 3D time lapse images were acquired using a Leica SP8 confocal microscope and 

a 63x, 1.2 NA water immersed objective (Leica, #11506356). An automatic water 

immersion micro dispenser (Leica, #15640019) was used along with the objective to 

prevent drying and allow for time lapse imaging for 90 h. For every trap, a 2x2 tile 

image was acquired (with 10 % overlap) and then merged using the LASX (Leica) 

software. Fluorescence channels mVenus, mCherry and SiR-Actin were recorded with 
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1 % laser intensity at 488, 552 and 638 nm laser excitation. Emission was recorded for 

the three channels as follow: (i) mVenus [493-547 nm], (ii) mCherry [588-633 nm] and 

(iii) SiR-Actin [651-707 nm]. Sequential acquisitions were performed to record all 

channels independently, and bright field transmission images were also obtained. 

Voxel sizes were 0.481 µm/pixel for X and Y direction whereas 1 µm/pixel resolution 

was achieved for the Z direction. 

3D time lapse images were acquired with intervals of 2 h for 90 h. 

5.2.7 Single cell tracking and cell cycle dynamics 

The single cell tracking, and quantification of cell cycle dynamics was done as 

previously described in section 4.2.6 using the FUCCItrack software. 

5.2.8 Deep learning 3D multi-channels time lapse segmentation 

For this thesis, 3D time lapse multi-channel images were recorded as follows: mCherry 

(red), mVenus (green) and the SiR-Actin (magenta). Considering the large amount of 

data to be processed for every cell and for every experimental group, a deep learning 

approach was chosen to help automatically segment the respective channel. The 

pipeline is described as follows and uses both MATLAB for the preparation and 

DragonFly software (ORS, V2021.1.0.977) for the actual DL training and testing. 

Deep learning training 
The DL training needs two inputs: (1) the raw images to be processed and (2) the 

expected segmentation for every image (called ground truth). With these two, the 

neural network was trained to the point that it can accurately make predictions on a 

new dataset and perform a semantic segmentation. 

Raw data preparation 

From FUCCItrack, an additional module was created specifically to prepare the 3D 

dataset for segmentation and deep learning training. Using the single cell tracking data, 

each single cell was localized, and the field of view was automatically cropped to 

produce 3D stack time lapse images stored in one big tif file per cell. This step is crucial 

as it allowed us to reduce the size of the dataset enormously by only keeping the 

essential part of the field of view. 

Ground truth (SiR-Actin) 

A total of seven different time lapse cells were used for the training of the SiR-Actin 

channel, meaning that manual segmentation was performed for 1710 slices (Cell 
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#1: 130, Cell #2: 153, Cell #3: 341, Cell #4: 336, Cell #5: 250, Cell #6: 251 and Cell 

#7: 249 slices). For every slice, two labels were created: (i) the SiR-Actin label from 

the cell and (ii) the background. 

Ground truth (FUCCI2) 

Only a total of 4 different time lapse cells were used for the training of the mCherry and 

mVenus channels since it yielded better segmentation results than the SiR-Actin 

channel. It means a total of 434 slices (Cell #1: 77, Cell #2: 93, Cell #2: 129 and 

Cell #3: 135 slices) were manually segmented and used. 

Creation of the training dataset 

To have the best training results, it is often better to avoid unbalanced label counts so 

that the number of pixels in each label is as close as possible to each other. This is a 

way to avoid artifacts in the learning process that would see one label predominantly. 

To achieve this, the 2D slices were cropped down to the minimum region of interest 

(ROI) that contains the ground truth and removing as many pixels corresponding to the 

background as possible. Data augmentation was also used by flipping/rotating and 

scaling the original dataset to create more training images. 

Network architecture and training parameters. 

The U-net neural network was used to perform the 3D time lapse segmentation. The 

dice loss function from the DragonFly software (it calculates the difference between 

the outcome predicted and the ground truth, 0 means bad prediction and 100 % perfect 

prediction) was used. The training was stopped when it reached more than 98 % 

accuracy. Considering the three channels to be processed, there were three 

independent neural networks that were trained during the thesis, one for the SiR-Actin, 

one for mCherry and one for mVenus. 

Deep learning testing 
Once the neural networks were trained with the desired accuracy, new cells (never 

seen by the neural networks) could be prepared like described (in the raw data 

preparation section) and run through the neural network (the testing). The final 

datasets with 3D segmented cells were always checked manually to make sure there 

was no incorrect segmentation, and the overall DL process shortened the processing 

time by several orders of magnitude. Some results of 3D time lapse segmentation can 

be seen in Figure 5-5 with each column corresponding to individual cell time lapse. 
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Figure 5-5 3D time lapse multi-channel segmentation reveals cell and nuclear 
volume of breast cancer cells. 
3D time lapse rendering showing the evolution of the cell volume (magenta, SiR-

actin) along with the nuclear volume (red, yellow and green for the FUCCI2 system)   

in the experimental control group. 

5.2.9 Computational fluid dynamics simulation 

In addition to experimental 3D time lapse imaging, CFD was performed to estimate the 

fluid velocity inside the microfluidic device and to compute the wall shear stress (WSS) 

for each cell and for each timepoint automatically. The CFD simulations were 

performed using OpenFOAM (Open-Source Field Operation and Manipulation) and the 

results visualized with the open-source software ParaView. 

3D Model and assumptions 
In the CFD simulation performed in the thesis, the goal was to solve the Navier-Stokes 

equation that governs fluid dynamics in the microfluidic device. There are several 

hypotheses that were assumed: (i) the fluid is Newtonian and (ii) incompressible. In 

addition, (iii) all variables (pressure and velocity) are independent of time (steady 

state), (iv) there is no leak and (v) there is an equal distribution of the flow between all 

channels of the microfluidic device. Gravitational forces were neglected, and the flow 

was considered laminar (Re << 1). The base 3D model (without cell) corresponds to 

one trap with two posts in the middle since all traps are identical in the microfluidic 
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device. The flow at the inlet was obtained by assuming an equal repartition between 

the different channels of the microfluidic device and by dividing the flow of the syringe 

by eight (number of parallel channels). 

A simulation was performed for each z-stack acquired by confocal microscopy and for 

each timepoint of the assay. The simulations were parametrized and interfaced with 

OpenFOAM automatically using a custom-made script written in Python 3.8.6: 

Automated Simulation On Cluster (ASOC). From the SiR-Actin channels, each cell was 

3D modelled by segmenting the z-stacks and generating the surfaces was done using 

the Amira software (“Generate surface” module) that uses the marching cube 

algorithm [144] to create a mesh from 3D datasets. 

The cell surface was modeled as a rigid surface as first approximation. Since the cell 

shape changes with time, the updated shape at each time point obtained from 

experiments was used to calculate the shear stress on the cell surface. 

Choosing the right mesh 
The models (the trap and the cells inside, Figure 5-6A) were meshed using the cfMesh 

library within OpenFOAM and were of cartesian type. The mesh was mostly composed 

of uniform elements of 4 µm, locally refined to 2 µm around the central posts and to 

1.5 µm around each cell boundary (Figure 5-6B). Since the wall shear stress 

calculation depends on the element size close to the cell, meshing like this was found 

to maintain sufficient accuracy while improving the simulation time by an order of 

magnitude with respect to a 1.5 µm uniform elements everywhere. A no-slip condition 

was imposed on the walls of the trap and on the cell boundary, meaning that the 

velocity at this interface is set to 0. 
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Figure 5-6 CFD simulation on real cell shape reveals wall shear stress 
experienced by metastatic cell. 
(A) View from within the 3D CFD simulation model containing a cell inside a trap with 

the color corresponding to the wall shear stress. (B) Corresponding view of the mesh 

at the surface used for the computation. The mesh is finer around the cell and coarse 

further away to reduce computation time. (C)  Overlay of the wall shear stress with 

the fluid streamlines around the cell. 

5.2.10 Physiologically relevant fluid flow 

To investigate the effects of fluid flow on metastatic breast cancer cells, several 

experimental groups were defined as follows. The control group (flow rate: 

0.02 µL/min) was defined as the minimum value of flow inside the microfluidic device 

that would permit cell proliferation similarly as in the 96 glass well plate experiment 

(section 4.3.2) and avoid cell death by providing a continuous flow of nutrients. In 

addition, two experimental fluid flow conditions were chosen (Flow+: 0.1 µL/min and 

Flow++: 0.2 µL/min) to create a region of fluid velocity that resembles that in sinusoidal 

capillaries in the bone marrow microvasculature [137]. 

5.3 Results 

5.3.1 Fluid flow accelerates cell cycle by decreasing S/G2/M duration 

Under control conditions, all MDA-FUCCI2 cells took 30 hours (median) to run through 

a full cell cycle (Figure 5-7A, D), similarly of the control in Chapter 4 (Figure 4-7B). 
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Interestingly, under higher fluid flow (Flow+) cell cycle dynamics (tG1, tS/G2/M and tCell 

cycle) were not altered and no significant difference could be measured compared to the 

control group (Figure 5-7B, C and D). However, the highest fluid flow (Flow++) triggered 

a response in cell cycle dynamics resulting in a slight significant increase of tG1 (+1.5 h, 

Figure 5-7B) and a more pronounced decrease in tS/G2/M (-2.8 h, Figure 5-7C) leading 

to a significant overall shorter cell cycle (-2 h, Figure 5-7D). 

 

 
Figure 5-7 Increase in fluid flow leads to shorter S/G2/M phase, slightly longer 
G1 phase, and an overall shorter cell cycle. 
(A) Normalized FUCCI2 fluorescence intensity inside of an exemplary segmented 

nucleus (left panel) with corresponding epifluorescence images over time (right 

panel). The line is the average, and the shaded area is the standard deviation. The 

time 0 h for each single cell corresponds to the first frame after division of the parent 

cell. Scale bar is 50 µm. (B) Duration of the G1 phase in the three groups 

(2 biological repeats and N = 52, 44 and 74 cells for the control, Flow+ and Flow++, 

respectively). (C) Duration of the S/G2/M phase for the three experimental groups. 

(D) Duration of the whole cell cycle (time from division to division). 
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5.3.2 Fluid flow increases cell migration in a non-directional manner 

To investigate whether the shortened cell cycle for the highest flow condition correlated 

with an impact of cell mobility, we examined single cell migration using the FUCCI2 

marker. The center of the nucleus of every cell was tracked and their trajectories were 

recorded over time. The Figure 5-8A is a representation of an exemplary trap in phase 

contrast overlaid with cell trajectories coming from different traps and two biological 

repeats for the control and Flow++ groups. The dispersion and the migration of the cells 

within a trap was also represented with a heatmap of cell probability (Figure 5-8B). 

Every time a cell went to a certain position within a trap, the probability of its presence 

increased so that the resulting heatmap displayed the most likely position any cells 

would be found in. In both cases, the highest probability of presence was around the 

two posts. However, the highest flow condition (Flow++) displayed a slightly shifted 

heatmap in the x direction, following the flow direction. 

 

Figure 5-8 Single cell migration under flow: how metastatic cells explore the 
microfluidic device. 
(A) Phase contrast image of an exemplary trap overlaid with cell trajectories coming 

from different traps and biological repeats for the control and Flow++ groups 

(2 biological repeats and N = 86 and 116 cells for the control and Flow++ groups). 

(B) Cell probability heatmap corresponding to the most frequently occupied location 

within the trap for the control and Flow++ groups. Scale bars are 200 µm. 
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In addition, migration related parameters were measured and analyzed for the three 

experimental groups (Figure 5-9). 

The migration speed U (µm/min) was computed as the median of instantaneous 

migration speed of cells throughout their trajectory. The x component of the speed 

vector (Ux) was summed up throughout each cell trajectory to determine if the flow 

direction influenced the cell migration direction. Finally, the distance traveled was 

computed as the total distance a cell traveled over time and the displacement was 

defined as the distance between the beginning and the end of the tracking. 

Like for the cell cycle dynamics, the Flow+ experimental group did not show any 

significant difference with the control for all migration related parameters (Figure 5-9A, 

B, C, D and E). However, in the highest flow condition (Flow++), migration speed 

increased up to 30 % (median) with respect to control (Figure 5-9A) in a non-directed 

fashion (Figure 5-9B), since the sum of Ux did not show any significant difference with 

the control. More specifically, the increase in migration speed was different in the G1 

and the S/G2/M phase with the more significant increase recorded on the S/G2/M 

phase (Figure 5-9E). Interestingly, within each experimental condition, cells moved at 

similar migration speed in both G1 and S/G2/M phase with no significant difference 

(Figure 5-9E, red and green box). In addition, the total distance traveled by cells also 

increased by 24 % (from 347 µm to 432 µm) between the control and the Flow++ group 

respectively (Figure 5-9C). Inversely, the displacement slightly decreased for the 

highest flow condition with respect to the control (Figure 5-9D). Not only did the highest 

flow condition fastened cell cycle dynamics but it also resulted in an acceleration of cell 

migration, irrespective of the flow direction. 



 Single cell under fluid flow in a microfluidic device 

71 
 

 
Figure 5-9 Higher fluid flow increases migration speed of metastatic cell. 
(A) Migration speed magnitude (U, in µm/min) of single cells taken as the median of 

instantaneous cell speeds over their trajectories (2 biological repeats and N = 86, 76 

and 116 cells for the control, Flow+ and Flow++ groups, respectively). (B) Sum of the 

x component of the velocity vectors (Ux, in µm/min) showing no preferred direction 

of movement with or against the flow. (C) Distance traveled (µm) between the 

beginning and the end of cell trajectories. (D) Displacement (µm) measured as the 

distance between the last and first position of cell trajectories (E) Migration speed 

magnitude separated by cell cycle phase (red boxplot for G1 phase and green for 

S/G2/M). 
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5.3.3 Cell main axis does not align with fluid streamlines before division 

We quantified the orientation of the cells in the trap by measuring the angle between 

the cell main axis and the fluid streamlines (obtained with the CFD simulation) right 

before division occurred (Figure 5-10). An angle of 0 ° would represent the cell being 

parallel to the fluid streamlines and 90 ° would indicate the cell being perpendicular to 

the fluid streamlines (Figure 5-10A). Between the control and the Flow++, there was no 

significant difference with respect to orientation before division (Figure 5-10C, boxplot). 

Furthermore, there was no specific relation in the angle between the cell main axis and 

the fluid velocity right before division for the control and Flow++ group (Figure 5-10C, 

colormap). The dispersion of angle covered the smallest (0.1 mm/s) to the highest 

(0.5 mm/s) velocity without any distinctive pattern. 

 

Figure 5-10 Metastatic cell main axis does not have a preferred orientation with 
respect to the fluid streamlines immediately before division. 
(A) Overlay of phase contrast image and FUCCI2 fluorescence channel image 

before division for exemplary cells presenting its main axis parallel (low angle) to the 
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fluid streamlines (top panel) or perpendicular (high angle) to the streamlines (bottom 

panel). Scale bare are 50 µm. (B) Overlay of phase contrast image and simulated 

velocity field around the cell. (C) Angle between cell main axis and fluid streamlines 

(°) for the control and Flow++ groups (2 biological repeats, N = 33 and 44 cells, 

respectively). The markers are colored according to the fluid velocity around the cell. 

5.3.4 Time-resolved volume analysis shows no impact on cell and nuclear 
volume under flow 

We further investigated cell and nuclear volume changes under flow (Flow++) with 3D 

confocal time-lapse imaging. After a mitosis event, daughter cells were tracked and 

segmented to obtain the cell and nuclear volume of every single cell throughout entire 

cell cycle (Figure 5-5). For every time point, the cells were segmented using deep 

learning in three channels: the SiR-Actin (magenta) was used to approximate the cell 

volume and mVenus/mCherry (green, yellow, red) were used to measure the nuclear 

volume as well as the cell cycle phases (Figure 5-11). Because we could isolate single 

cell inside a confined field of view suitable for confocal imaging, tracking single cell 

over a long period of time with 3D confocal microscopy was successful. 

The cell volume roughly doubled linearly from onset of mitosis (t = 0h) to the next cell 

division event, in both the control and Flow++ groups (Figure 5-11B). In absolute value, 

the cell volume started at 3000 µm3 and ended at 6000 µm3 (Figure 5-11D) with a 

similar growth rate in both experimental conditions. More specifically during G1, cell 

volume increased from 3000 µm3 to 4000 µm3, and from 4000 µm3 to 6000 µm3. 

Similarly, nuclear volume roughly doubled for every cell (Figure 5-11C), starting at 

650 µm3 and growing to 1200 µm3 (Figure 5-11E), in both control and Flow++ groups. 

During G1, the volume increased from 650 µm3 to 800 µm3, until reaching 1200 µm3 

before division. 

Overall, the absence of significant differences between the control and Flow++ group, 

despite the impact of flow previously reported (cell cycle dynamics and migration), 

suggested us to look for other parameters such as cell morphology. 
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Figure 5-11 Time-resolved confocal 3D imaging of metastatic cells reveals no 
significant effect of fluid flow on cell and nuclear volume changes over time. 
(A) 3D rendering and maximum projection of one exemplary time lapse showing the 

evolution of the cell volume (magenta, SiR-Actin) with the nuclear volume (red, 

yellow and green for FUCCI2). Scale bar is 50 µm. (B) Time-resolved single cell 

volume during the cell cycle of every cell (normalized to the initial volume) for the 

control and Flow++ groups (two biological repeats and N = 8 and 15 cells). (C) Time-

resolved nuclear volume during the cell cycle for every cell (normalized to the initial 

volume). (D) Cell volume (µm3) over time averaged for all cells and the standard 

deviation. (E) Nuclear volume (µm3) over time averaged for all cells and the standard 

deviation. 



 Single cell under fluid flow in a microfluidic device 

75 
 

5.3.5 Shape analysis of 3D time lapse reveals no significant effects of fluid 
flow on cell elongation 

Surprisingly the volume analysis did not show any significant difference between the 

control and the Flow++. We then further investigated the cell and nuclear morphology 

coming from the same 3D confocal time lapse multi-channel images. Using MATLAB, 

we calculated the Eigenvalues of the voxels representing every segmented cell. We 

then defined the elongation (Eq. 1) as the ratio of the second Eigenvalue with respect 

to the first Eigenvalue (Figure 5-12), with 1 meaning a perfect spherical shape and 0 a 

really elongated cell. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸 =  
𝐸𝐸𝐸𝐸2
𝐸𝐸𝐸𝐸1

        0 < 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸 < 1  

 

Firstly, within each experimental group and for every cell, we noticed a large fluctuation 

of cell elongation over time, as visible in Figure 5-12A, ranging from one to almost 

zeros. This indicated that the cell shape is not a constant variable during the cell cycle, 

regardless of the fluid flow experienced. Despite this variability, when averaging over 

the different cells, cell elongation seemed to follow a descending trend going from 

roughly isotropic at the beginning of the cell cycle (cell elongation ~ 0.6) to anisotropic 

and elongated towards the end (cell elongation reaching ~ 0.1) (Figure 5-12C) for both 

control and Flow++. This trend can also be seen in Figure 5-5 with the actual cell and 

nuclear rendering. It is worth mentioning that the variance of cell elongation with the 

Flow++ group was larger than the control group. 

Moreover, thanks to the FUCCI2 signal, the nuclear elongation could also be measured 

(Figure 5-12B). Within each experimental group, nuclear elongation over time 

displayed a smaller fluctuation than the cell elongation. Similarly, once again the 

nuclear elongation variance was broader in Flow++ than in the control group. Finally, 

the extrema values ranged from 1 to 0.3 for the control to 0.9 to 0.2 for the Flow++ 

group Figure 5-12D. In contrast to the cell elongation, the nuclear elongation followed 

a constant trend, with an average value reaching ~ 0.5. 

(Eq. 1) 
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Figure 5-12 Time-resolved confocal 3D imaging of metastatic cells reveals 
variation of cell and nuclear elongation throughout the cell cycle. 
(A) Time-resolved single cell elongation during the cell cycle of every cell for the 

control and Flow++ groups (two biological repeats and N = 8 and 15 cells). (B) Time-

resolved nuclear elongation during the cell cycle of every cell for the control and 

Flow++ groups. (C) Cell elongation and (D) nuclear elongation over time averaged 

between all cells with the standard deviation. 

 

The FUCCI2 signal provided additional information since we could distinguish the cell 

and nuclear elongation at every phase of the cell cycle (Figure 5-13). For this, we poled 

all data points as a function of the cell cycle phase. It means that every datapoint in 

the boxplot corresponds to one cell for one time point in its respective cell cycle phase 

(G1, S/G2/M). Firstly, we could find similar results as previously, meaning that between 

the G1 and the S/G2/M phase (red vs. green boxplots), the cell elongation significantly 

decreased for both the control (plain lines) and the Flow++ (dashed lines) groups 
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(Figure 5-13A). Between the control and the Flow++, we could not see a significant 

difference with respect to the cell elongation, neither in G1 nor S/G2/M phase. 

Additionally, the nuclear elongation was similar between the control and the Flow++ in 

G1 and did not show significant differences (Figure 5-13B, red boxplots). However, in 

S/G2/M the nuclear elongation strongly decreased for the Flow++ group (Figure 5-13B, 

green boxplots). 

 

 
Figure 5-13 Confocal 3D imaging of metastatic cells reveals no significant 
effect of fluid flow on cell elongation and a decrease in nuclear elongation. 
(A) Cell elongation during the G1 phase (red), S/G2/M phase (green) for the control 

and Flow++ groups (2 biological repeats and N = 24, 66, 97, 177, 121 and 

243 timepoints, respectively). (B) Nuclear elongation during the G1 phase (red), 

S/G2/M phase (green) for the control and Flow++ groups (2 biological repeats and N 

= 24, 62, 97, 177, 121 and 239 timepoints, respectively). 

 

5.3.6 Coupling 3D time lapse and CFD for shear stress analysis 

The wall shear stress was computed using OpenFOAM on a computer cluster and the 

SiR-Actin channel was used to approximate the cell membrane. A simulation was 

performed for each z-stack acquired by confocal microscopy, for each timepoint of the 

cell cycle (Figure 5-14A). The simulations were parametrized and interfaced with 

OpenFOAM automatically using a custom-made script written in Python 3.8.6 (ASOC). 

The cells in the trap were 3D-modelled and meshed like previously described in 

section 5.2.9. The wall shear stress value was obtained by averaging every element of 

the mesh representing the cell (Figure 5-14B). By 3D time lapse confocal imaging and 
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simulations, we could calculate in a more accurate way the mechanical stress that cells 

experience under fluid flow. For this exemplary cell taken from the Flow++ group, the 

wall shear stress experienced was in average 6 ± 4 mPa or 0.06 ± 0.04 dyne/cm² and 

constant throughout the cell cycle. 

 

 
Figure 5-14 Time lapse wall shear stress calculation using CFD and 3D 
confocal imaging. 
(A) Finite element simulation of an exemplary real cell shape (obtained with SiR-

Actin) inside a trap for the Flow++ group (streamlines around the cell indicated in 

blue). (B) Wall shear stress over its surface that one exemplary MDA-FUCCI2 cell 

experienced during its cell cycle. Line is the average over the cell surface, and the 

error bars correspond to the standard deviation. 

5.4 Discussion 

Fluid flow and resulting shear stress is a physiologically important cue that is involved 

in several processes in cancer metastasis [39]. It is known that regions of high shear 
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stress can be detrimental to cancer cells by promoting cell death [145]. Here, our 

findings on 2D single cell analysis identify fluid flow mimicking sinusoid capillaries as 

a biophysical cue that can slightly modulate single cell cycle dynamics by reducing the 

S/G2/M phase duration, hence the overall division time and thus increasing the 

proliferation behavior of metastatic cancer cells. 

3D time lapse single cell analysis showed no significant differences between the 

evolution of the cell and nuclear volume under flow. Moreover, a more elongated 

nuclear shape was observed during S/G2/M phase under Flow++. 

Most methods for cell or nuclear segmentation involve compromise between 

automation and flexibility. It can be done completely with manual labeling [146], with 

customized pipelines involving user-specific parameters [147, 149] or with fully 

automated methods based on deep learning networks containing parameters 

estimated on large training datasets [150, 151]. We propose here an approach based 

on the deep learning network U-net for 3D time lapse cell and nucleus segmentation 

with minimal training datasets. By doing so, we significantly decreased the processing 

time of our large datasets. Still, our method was trained on a specialized dataset, and 

it will be interesting to see how it can generalize to other cell lines for example. A large 

international competition (Data Science Bowl) was held recently to gather dataset of 

varied images of nuclei from many different laboratories and a deep learning method 

outperformed other methods on segmentation tasks [152]. Very recently, a similar 

approach was taken to gather images of cells from many laboratories and create a 

universal deep learning model to perform cell segmentation without requiring 

parameter adjustments, new training data or network retraining [153]. 

Our CFD simulation inside the trap shows that the velocities correspond to what was 

measured in vivo in the bone marrow sinusoidal capillaries [137]. Interestingly, at these 

velocities, we show that the time spent in S/G2/M phase was significantly reduced with 

respect to the control, thus accelerating the overall cell cycle. This is in agreement with 

previous work done in prostate cancer cells that demonstrated an acceleration of 

proliferation under similar range of WSS (0.05 dyne/cm²) [154]. In their work, they 

identified that under flow, the transcriptional coactivator with PDZ-binding motif (TAZ) 

positively influenced cancer cell proliferation, whereas silencing of TAZ under flow 

reduced proliferation with respect to control. Indeed, TAZ can act as a promotor and 

amplify genes that have roles in cell proliferation and other cellular functions [155, 156] 

and its activation under fluid flow could explain the observed acceleration in the cell 
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cycle. Nonetheless, it has been proven that much higher fluid flow and shear stress 

(~ 12 dynes/cm²), which are values found in vivo in intermediate capillaries [137], could 

induce a cell cycle arrest via G2/M in DTCs by increasing the expression of cyclin B1 

and p21, while decreasing the expressions of cyclin A, D1 and E, CDK-1, -2, -4 and -

6, as well as p27, in three bone cancer cell lines and one tongue cancer cell line [157]. 

This result also can be put in perspective with the emergence of quiescent HSC 

preferentially found in small arterioles in the BM [37], regions where shear stress is 

higher than sinusoidal capillaries (>20 dyne/cm²) [137]. Unfortunately, our system in 

its current state does not allow to reach such high shear stress and would require 

design modifications. It is also worth noting that shear stress may not only be the sole 

factor inducing quiescence, as arterioles are also different in structure from sinusoids 

since they are located around sympathetic nerves, smooth muscle cells as well as 

matrix components, and their function is to bring blood from the heart under high 

pressure [37]. While accelerated proliferation under sinusoidal flow was previously 

reported [157], to the best of our knowledge it is the first time that quantification of cell 

cycle phase duration in real time is being reported, thanks to the FUCCI system. 

We hypothesized that a reason for cell cycle dynamics to accelerate could be that the 

fluid streamlines physically supports cells to divide. Indeed, if cells oriented themselves 

perpendicular to the flow, it could bring support for the division hence resulting in faster 

cell cycle dynamics. Our results however do not support this hypothesis since there 

was no significant difference observed between the cell orientation with respect to the 

flow in the control and the Flow++ group right before division. It would nonetheless be 

interesting to quantify the orientation with respect to the flow during the total cell cycle, 

but more work would be required. 

Acting not only as a cell cycle reporter, the FUCCI system can also be used to track 

single cell migration thanks to our FUCCItrack software. We show that irrespective of 

the flow condition, MDA-FUCCI2 generally had similar migration speed in G1 and in 

S/G2/M phase, matching previous work with HeLa FUCCI cells [53]. Moreover, under 

Flow++ the migration speed and distance traveled increased significantly compared to 

control despite not exhibiting any preferred direction with respect to the direction of the 

flow. A previous study, also done in a microfluidic device with MDA-MB-231 breast 

cancer cell, also confirms an increase of migration speed as well as a more migratory 

behavior under flow [158]. More specifically, they identify the transient receptor 

potential melastatin 7 (TRPM7) as being activated by fluid-shear through deformation 
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of the plasma membrane and promoting extracellular calcium influx which in turn 

activate several pathways coordinating cell migration. Indeed, it has been shown that 

biophysical cues such as shear stress can activate mechanosensitive ion channels to 

enable uptake of extracellular Ca2+ into the cell [159]. 

It is still not clear what mechanisms are responsible for our results concerning the cell 

cycle dynamics and migration, but we attempted to understand it from a morphological 

point of view with 3D time lapse imaging. 

Based on those data we could not detect any significant differences in cell volume and 

cell shape changes over time, between Flow++ and the control group. Interestingly, we 

could detect a more elongated nuclear shape during the S/G2/M phase under Flow++. 

Finally, our approach to compute the wall shear stress to potentially gain more insights 

on how cells feel shear stress was novel but could not be sufficiently developed to 

make it usable in this thesis would require further investigations to complete it. 

5.5 Limitations 

The current chapter shows the role of fluid flow mimicking sinusoidal capillaries region 

and its impact on breast cancer cell dormancy in vitro. Thanks to the single cell trap 

from the microfluidic device, we could perform 3D time lapse multi-channel imaging 

and extract critical information about the evolution of cell and nuclear volume, and cell 

and nuclear shape under flow. Because of technical limitations on the system (volume 

of syringe and long time lapse required), we could not go above 0.2 µL/min for the flow 

rate. We saw that from 0.1 µL/min (Flow+) to 0.2 µL/min (Flow++), a clear change of 

behavior occurred within the cell cycle duration and migration, and it would have been 

interesting to go beyond these values to see if the trend further evolved in that direction. 

Furthermore, and similar to Chapter 4, the use of a single cell line is a hard limitation 

and lowers the impact of our message. Due to time constraints, MCF7-FUCCI2 cell 

line could not be included in the study. 

The overall experimental design in this chapter was complex both from the 

experimental point of view, as it required a lot of hardware for long 2D and 3D time-

lapse imaging experiments, as well as from the analysis point of view, with large data 

sets being generated. We used an epifluorescence microscope as well as a confocal 

microscope for up to 4 days of time-lapse. For the confocal microscope, we used a 63x 

water immersion objective with a water dispenser to have constant and continuous 
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water at the interface between the objective and the plate. In addition, we also needed 

the whole wafer and microfluidic preparation hardware. 

It is also worth noting the staggering amount of work to process the resulting 3D time 

lapse multi channels data, even though with FUCCItrack and the deep learning 

approached, we could eventually streamline the process. 
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Chapter 6 Conclusion & future directions 

6.1 Conclusion 

In this thesis, we investigated the role of various biophysical cues in controlling breast 

cancer cell dormancy and reactivation. Specifically, we investigated the effect of 

osmotic pressure and fluid flow on cell and nuclear morphology, migration and cell 

cycle dynamics. To do so, we used microfluidic systems and performed quantitative 

real-time live imaging of single cancer cells genetically modified with the FUCCI2 

system, where the cell cycle G1 phase was visualized with red fluorescence and the 

S/G2/M phase with green fluorescence. 

To perform the quantitative analyses of complex time lapse experiments running for 

up to 4 days, we developed a fully automated software FUCCItrack with a graphical 

user interface written in MATLAB (with additional option for manual corrections) to 

facilitate the analysis of big datasets for the FUCCI or more generally the cell cycle 

reporter community. We believe it will provide a solid ground for researchers wanting 

to use this amazing tool that represents the FUCCI system, thus extending its usage 

to researchers with small or no experience in image processing. We made FUCCItrack 

completely open-source and modular so that anyone can build on this in the future. 

Thanks to FUCCItrack, we showed that under hyperosmotic stress, distinct cell 

subpopulations emerge with impaired nuclear growth, delayed or growth-arrested cell 

cycle and reduced cell migration. This effect is reversible for mild hyperosmotic 

pressure and cells can return to regular cell cycle dynamics, proliferation and migration 

upon release of the osmotic pressure. These findings emphasize the importance of 

considering the local osmotic pressure in the microenvironment potentially harboring 

dormant cells. 

The last part of this thesis focused on the effect of fluid flow and shear stress mimicking 

regions in the sinusoidal capillaries in the bone marrow. We used a microfluidic device 

that we integrated with both 2D epifluorescence and 3D confocal microscopy, within 

an incubator for live cell imaging over 4 days. Single cell data in 2D revealed that under 

higher fluid flow, cell cycle dynamics was shortened, the migratory activity increased 
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significantly, yet the directionality was not influenced by the flow direction. With 3D 

confocal time lapse multi-channel imaging, we showed that at the single cell level, no 

significant difference could be measured in terms of cell or nuclear volume, when 

compared to the control experimental group. In terms of morphology, only the nuclear 

shape showed a more elongated profile under higher fluid flow, whereas the cell 

elongation did not differ significantly between groups. The apparent shortening of the 

cell cycle and increased migratory activity, accompanied with the absence of striking 

differences in cell and nuclear volume/shape discard our initial hypothesis: if fluid flow 

originating from the sinusoidal capillaries alone can provide a sufficient trigger to 

generate a dormant phenotype. Nevertheless, this chapter provides novel insights 

based on 3D time lapse single cell imaging and deep learning image analysis, inviting 

follow up experiments exploring higher fluid flow velocities or other biophysical cues 

such as osmotic pressure or hypoxia. 

As a proof of principle, we developed an automated simulation model to compute the 

velocity of the fluid within the microfluidic chip and the resulting cell wall shear stress 

over time, based on the experimental input from the 3D confocal time lapse images 

under flow. This coupling of experimental time-resolved microscopy 3D data and fluid 

flow simulations corresponds to a new approach in CFD simulation and could provide 

exciting novel insights linking single cell volume, nuclear volume and cell cycle 

dynamics as a function of the fluid flow and shear stress. 

6.2 Future directions 

The first goal in this thesis was to provide an open-source software with a graphical 

user interface to broaden the outreach of the FUCCI system, and in general of live cell 

cycle reporters. With FUCCItrack, we hope that the difficulties associated with large 

datasets such as time lapse imaging and the resulting processing time could be 

reduced. Because we created FUCCItrack to be modular, it is a perfect candidate to 

receive improvement, updates and new modules over the years. Since it is open-

source and available online on a GitHub, this can be done easily by myself, or any 

other researchers. One potential first direction of improvement would be to make 

FUCCItrack usable for people with a single classical live staining. This will make the 

cell cycle dynamics analysis module less relevant, but researchers could still use the 

software and the graphical user interface for migration analysis. 
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As we also mentioned previously, an additional module was created for the preparation 

of the deep learning part currently done in DragonFly. It would be beneficial in the 

future to migrate the deep learning training and testing directly within MATLAB to 

reduce the number of software dependencies.  

Finally, another module could be added to directly link the 3D time lapse imaging 

workflow and surface generation with the scripts developed in python to automatically 

launch the simulation (ASOC). Additionally, ASOC could also be translated into 

MATLAB to reduce once more the number of software dependencies. 

 

The second goal was to use FUCCItrack to discover how metastatic breast cancer 

cells react under osmotic pressure and fluid flow mimicking region of sinusoidal 

capillaries. For the osmotic pressure part, it would be highly beneficial to further 

continue the investigation of single cell behavior of other FUCCI2 cell lines. We indeed 

proved that proliferation was decreased under osmotic stress for MCF7-FUCCI2 cells 

but at a collective level. More in depth single cell analysis of this weaker metastatic 

breast cancer cell line would be beneficial to the understand of the role of osmotic 

stress as a cue in breast metastasis and dormancy. Specifically, if sub populations of 

highly delayed or completely growth arrested emerge under osmotic stress. Going 

further, we also could use the non-malignant cell line such as MCF10A-FUCCI2 that 

we already possess to evaluate the specificity of the osmotic role to cancer cells. 

Moreover, more investigation into the mechanism behind the reversible growth arrest 

we observed is needed. A first interesting result that we could observe was the lack of 

nuclear growth in 2D under osmotic stress for growth arrested MDA-FUCCI2. 

However, with the current microfluidic platform and the 3D time lapse imaging workflow 

that we developed, we could now increase the dimensionality and investigate further 

into how cell and nuclear volume as well as shape are impacted by osmotic stress. 

 

For the fluid flow part, one could hypothesize that we did not reach high enough values 

of shear stress to trigger a dormant phenotype. Unfortunately, with the current design 

we were limited to certain values of shear stress, but it would be possible to adapt the 

design to offer a broader range of fluid flow values and test this hypothesis. It is worth 

noting that already under Flow++ conditions, we sometimes observed cells detachment 

upon division and thus lost the tracking of these cells. If we increase of fluid flow, further 
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work will be needed to potentially coat the glass of the microfluidic device, ensuring a 

tighter adhesion force of the cells with the substrate. 

It will also be beneficial to perform immunofluorescence inside the microfluidic device 

to further understand the acceleration of the cell cycle as well as the increased 

migration behavior. With this, one could also precisely quantify the shape of the cells 

under flow by taking higher resolution images, even if it corresponds to an end point of 

the experiment. A more detailed analysis of for example filopodia number and length 

could thus be performed. 

 

Our third goal was to develop an approach to use a microfluidic device along with 

computational fluid dynamics to study the interaction of breast cancer cells with fluid 

flow. Unfortunately, because of lack of time, the connection between the real 3D cell 

shapes over time and the shear stress in the simulation could not be done 

automatically, even though all the workflow was ready for this. Indeed, we faced severe 

issues of non-convergence during the simulation because of the inherent shape 

irregularities of cells and manual correction on the mesh was necessary to obtain 

convergence. More work would be needed to have a running workflow and provide the 

wall shear stress experienced by the cells. 

 

More generally, the technical and image processing workflow that we developed during 

this thesis could be used to investigate in depth other biophysical cues that are related 

to cancer metastasis and dormancy. For example, hypoxia conditions can be easily 

created thanks to a gas mixer that can be connected to our existing top stage incubator 

or pH can also be controlled with the concentration of CO2 in the air. 

 

We believe that with some optimization, our system can be extended to other 

researchers to tackle many questions about the interplay between biophysical cues 

and breast cancer cell metastasis and dormancy. 
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1. Introduction 
FUCCItrack is a 2D live cell visualization and analysis software. It allows users to 

analyze time lapse imaging data sets using the FUCCI/FUCCI2 systems, or any other 

two-color fluorophores. With the 2D time lapse data, FUCCItrack can perform 

numerous quantifications to study cell proliferation, migration, changes in nuclear and 

cell morphology as well as single cell cycle dynamics analysis. The graphical user 

interface (GUI) makes it easy for non-programming users to segment and track single 

cells in an automatic manner, while containing manual corrections functions to correct 

for errors. 

Designed with the goal to be a multi-purpose platform, FUCCItrack is one software to 

visualize, analyze and create high quality visuals for presentation. It is modular by 

design and different features, or modules could be added to meet user specific needs. 

It is mainly automatic and therefore efficient in segmentation and tracking single cells, 

while being easy to use with an intuitive user interface and extensive documentation. 

FUCCItrack is designed to be open-source and hence has a licensing scheme that 

gives users the most freedom. 

 

2. Starting the program 
Select the FUCCItrack icon from the application menu in MATLAB or launch 

“FUCCItrack.exe” as a standalone software without MATLAB (for Windows users only). 

When FUCCItrack is running, a window like the one shown in Figure 1 appears on the 

screen. This starting page is divided in several major regions: 

1) Module toolbar: provides quick access to some important modules. See 

specific module description.  

2) Tools: allows user to navigate through the timelapse datasets and the single 

cell during segmentation and tracking.  

3) Status & Visualization contains a log window to follow what is happening while 

using the software. It also contains a progress bar and button to create plots 

related to single cell tracking. 
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Figure 1. The FUCCItrack start page with three main regions: 1) the module toolbar, 

2) the “Tools” panel and the 3) “Status & Visualization” panel. 
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3.  Module description – Data loading 
 

 
Figure 2. Data loading module 

 

This is the first module that opens after launching FUCCItrack software. It contains all 

the different buttons and options to load the microscope data with the corresponding 

metadata. Please note that a minimum of two fluorescence channels 

(mCherry/mVenus) and one phase contrast or bright field or cell membrane dye (in our 

case approximated by live F-actin staining) are required for FUCCItrack. 

.czi or .lif 
User is invited to pick one of the two extensions presented corresponding to Zeiss or 

Leica microscope.  

Open file 

After picking the extension, user can press this button and select the location of the 

raw data file on the computer. This raw data can contain one or more fields of view 

(FOV). 

Upon opening the files, metadata is read directly and updated in the software as 

presented below: 

• “Field of view (FOV)”: if the raw data contains several fields of view, it is possible 

to select the one of interest by directly clicking on the name. This is only possible 
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with the “Open file” button since “Open images” can only load one field of view 

at the time. 

• “Channels”: this list contains the name of the channels used during the 

experiment and is updated automatically from the metadata of the raw files or 

the folder structure.  

• “Sample name”: this field lets users choose the sample name corresponding to 

a specific FOV. All exported data and associated files from the software will start 

with the sample name as prefix. The “Update” button allows users to later 

change this sample name and update all files created within the software. 

• “Number of Z slice”: this field is updated from the metadata and indicates the 

number of slices in the z stack. This value should always be 1 since 3D is not 

yet supported in the current version. 

• “Number of time point”: this field enumerates the number of frames 

corresponding to number of time points in the time lapse experiment.  

• “Voxel Size (µm/px)”: this field lists the voxel size in all directions and is updated 

from the metadata of the raw file. If the “Open images” button is selected, the 

user should manually input the voxel size. 

Open images 
This is to be used if the user does not have the raw data in the .czi or .lif format but 

rather a sequence of images corresponding to one field of view only. In this case, the 

images to be loaded should be with the .tif extension and organized in folders as follow:  

• Sample_name/Raw data/mCherry/image_001.tif to image_182.tif 

• Sample_name/Raw data/mVenus//image_001.tif to image_182.tif 

• Sample_name/Raw data/Phase/image_001.tif to image_182.tif 

With Sample_name replaced with the actual sample name, for example “FUCCItest” 

as seen above. Right after clicking on “Open images”, the user will be asked to select 

the folder that should be the one with the folder name corresponding to the sample 

name. The subfolder mCherry, mVenus and Phase have to be called like this. 

If the raw data contains more than one FOV, then 2 options are possible. 

Load FOV 
User can pick the FOV of interest (by clicking on its name from the FOV list) and use 

the “Load FOV” button. The user will be asked to select a folder that will be used to 

store the processed data and results from this FOV (under a newly created folder 
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named after the sample name). The software will then load all the images of this FOV 

inside the software, with no options to change the FOV afterwards.  

Load ALL FOVs 

This is intended for raw files that contains more than one FOV. 

I. Without “Run collective counting”: this will load in batch all the FOVs from the 

raw data and for every FOV it will create a folder with the sample name 

containing three data files: “FUCCItest_tmp_data.mat” (includes all the data 

from the collective and single cell tracking), “FUCCItest_state.mat” (includes the 

state of every button of the software for future reloading of a session) and 

“FUCCItest_im_only.mat” (includes all the images of this FOV).  

II. With “Run collective counting”: when this option is selected, the software will 

load in batch all the FOVs like previously but will also launch the collective 

module to directly obtain cell proliferation behavior. More details on the 

collective module are listed in the next section. 

 

4.  Module description – Collective 

 
Figure 3. Collective module 

 

The collective module allows user to run an automatic algorithm to segment and count 

the number of FUCCI/FUCCI2 cells over time. 
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Counting method 

• “By colors”: this option enables the counting of the cell but with the information 

about which channel they belong. This is intended if user is interested in the 

fraction of mCherry+/mVenus- (G1 phase) and mVenus+ (S/G2/M phase). 

• “Merged”: this option counts the cells independently of their channel of origin 

and gives a total number of cells as a function of time. 

Visualization 
Upon cell counting, one of the outputs is a time lapse video of the cells with their nuclei 

colored. There are 2 options as to what colors can appear on this video. 

• “One color”: user can pick the colors they want the nuclei to be appearing.  

• “FUCCI color”: the colors used will be the original FUCCI/FUCCI2 color, red and 

green.  

Run collective 
After selecting the options for the counting method and the visualization, the user can 

click this button to start the counting process.  

Plot collective 
This button will create a plot with the number of cells as a function of time, as well as 

the fraction of mCherry+/mVenus- and mVenus+ if the counting method “By colors” was 

chosen.  

Saving RGB method 
the software merges the phase and/or cell shape channel with the nuclei segmentation 

results and saves this RGB composite.  

• “3D stack”: the output will be one multi-TIFFs file containing all the time points. 

• “Sequential”: the output will consist in a sequence of tif files corresponding to 

every time point.  

• “Downsizing [0:1]”: It is the ratio of the original size to reduced sized (in pixels). 

The user can pick a value between 0 and 1 and this will be used to downsize 

the original raw data for saving storage purposes.  

Save collective movie 
 this button creates a movie from the raw images, overlaid with the nuclei 

segmentation. The color of the nuclei here is defined by the “Visualization” option.  
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5.  Module description – Single cell module 

 
Figure 4. Single cell module with the “Tools” and “Status & Visualization” panels. 

 
5.1 General components 
This is the module to perform the segmentation and tracking of the single cells. In 

addition to the single cell module, the “Tools” and “Status & Visualization” panels are 

also shown since they are the most useful in this module.  

During the segmentation and tracking, there is always a region of interest (ROI) that is 

defined around the cell of interest. The size of this ROI is defined as follows: cell 

diameter * margin, both being parameters of the software that can be tuned depending 

on preferences. The default values are 30 µm for the diameter and 2 for the margin, 

resulting in a ROI of 60x60 µm, to make sure the ROI captures at least one complete 

cell. 
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Method (if cell shape)  
This button contains three possible options to perform the automatic cell segmentation 

(if a fluorescence dye is present). In all three methods, a local thresholding is 

performed to obtain a binary mask. The methods chosen will yield different threshold 

values for the segmentation.  

• “Narrow”: this is the default method. It uses a ROI narrower than the initial ROI 

(60x60 µm) by 20% (this value can also be tuned by users in the source code) 

to calculate the threshold value. This is specifically useful when several cells 

are present in the ROI, resulting in a wrong threshold for the cell of interest. 

• “Large”: this method uses the whole original ROI (60x60 µm) to compute the 

threshold value for the cell shape. 

• “History”: this option is only available when at least one segmentation was done 

with the cell of interest. Instead of calculating a new threshold value every time 

point, the software will use the previously calculated threshold value to segment 

the cell in new time points. This method gives the best results with live stainings 

that are stable over time and for which a constant threshold value over time is 

enough to segment the cell shape. 

If the user only has phase contrast or bright field, then this field has no impact. Indeed, 

there is no easy way to perform automatic segmentation on bright field of phase 

contrast imaging, so the user should only use the “Manual shape” button to manually 

segment the cell shape. 

Objective 
This field only has an informative value. Since retrieving this specific information from 

the metadata was not possible, the user can specify here the value of objective 

magnification used through this field. 

# initial cells 
The first time the dataset is loaded, it is possible to specify how many cells the user 

wants to select on the first time point. After clicking on the “Seed cells” button, the 

seeding procedure will be repeated in a row for as many cells as selected in the “# 

initial cells” field. It is also always possible to seed cells from a later point by clicking 

the “Seed cells” button in another frame. 

 

 



Appendix A 
 

108 
 

Seed cells 
This button will start the initialization procedure to select the cell of interest by opening 

a new window and a dialog box as shown in Fig. 5. The new window contains side by 

side the images coming from the different channels. First the user must zoom inside 

the field of view to better see the cell of interest (Fig. 5A). When the magnification is 

enough to see only the cell of interest, the user should click “Yes” on the dialog box 

that appeared asking “Done with zooming?” (Fig. 5B). The mouse cursor will change, 

and the user must click directly over the cell of interest. An initialization process will 

then start with this cell to segment the nucleus and cell whenever possible for the 

seeding time point (Fig. 5C). 

 

 
Figure 5. External window for single cell tracking and seeding cell procedure 
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Re ini 
This field stands for “Rerun Initialization” and allows to start again the initialization 

phase with different settings in case the automatic segmentation failed. 

Start and End 
These two fields are used together with the “Run” button to specify for which time points 

the segmentation and tracking should be done. It ranges from 1 to the number of time 

points in the experiment. Next to these two fields are two numbers written in green that 

correspond to the beginning and end of the tracking for the current cell selected.  

Skip cell shape 
This option is only to be used if the segmentation and tracking was already performed 

and stored. It allows user to run again the segmentation of the nucleus, while keeping 

the cell tracking information stored. This can be useful if the automatic nucleus 

segmentation failed for example. 

Skip nucleus 
This option is an analogue to the previous function and let users run again the 

segmentation of the cell shape without modifying the cell nucleus segmentation. 

Divide/Don’t divide/Exclude 
These buttons work together and inform on the status of the current cell (Fig 6). For 

every tracked cell, a status concerning its cell cycle at the end of the tracking should 

be assigned by the user upon clicking on one of the three buttons. By default, all cells 

are considered excluded until a cell performs a division, or don’t divide by the end of 

the experiment. Exclusion criteria are defined by every user but can be (i) absence of 

mCherry or mVenus signal in the nucleus, (ii) cells getting out of the field of view during 

the tracking or (iii) failed division. 
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Figure 6. Divide/Don’t divide/Exclude example. A) User interface for a cell that 

divides and B) for a cell that is excluded.  

 

This buttons only assign cells to a category within the software for the processing 

module. For example, only cells that divide will be used to calculate the duration of cell 

cycle. 

Seed daughter cells 
If the user is interested in tracking the daughter cells of a cell that divided, by pressing 

this button the seeding of the daughter cells will be done automatically with contrast to 

the “Seed cells” button that requires manual input. This button is equivalent to “Seed 

cells”, but does not require any inputs from the user since the last frame of the parent 

cells will be used and considered as the first frame of the two new daughter cells. 

FUCCI tol (%) 
In the ideal case scenario, the segmentation of the nucleus should be the same in 

shape and area for mCherry and mVenus channels. However, often the segmentation 

yields slightly different results for both channels. To address this discrepancy, this 

parameter (FUCCI tol, meaning FUCCI tolerance) is used to decide how much of the 

segmented nucleus in mCherry channel should overlap in the mVenus channel. The 

setting can be defined by the user and is set at 80 % by default. If the tolerance number 

is low, it means that segmentation in mCherry and mVenus could differ a lot, which will 

trigger a safety measure that will ask users to manually specify which one of the two 

channel yields the correct segmentation. 

 

In terms of tracking and segmentation itself, certain options can be selected to assist 

the automatic tracking or let the user manually perform some tasks. These options are 

separated in “Cell shape” and “Nucleus” panel, as shown in Fig 7. 
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Figure 7. “Cell shape” and “Nucleus” panel 

 

5.2 Segmentation & tracking - Cell shape panel 
Please refer to Figure 7A to see where the options are in the GUI. 

Predict position 
After seeding, the program looks in the search window around the previous position 

for nuclei signal via automated adaptative thresholding. It then compares several 

features of the previous nucleus found with the potential candidates. The features used 

are: (i) area, (ii) distance to previous nuclei, (iii) eccentricity, (iv) mean intensity, (v) 

standard deviation intensity and (vi) maximum intensity. The software computes the 

relative difference between the previously correct position and the current candidates 

and looks for the minimum difference in every feature. The cell chosen will be the one 

that has the most features with the minimum relative difference to the previous nuclei. 

If this option is not selected, the tracking starts from the previous position. 

Manual centering 
If this is selected, it forces the user to manually select the center of the nucleus in case 

other automated ways do not manage to localize the cell (due to nucleus signal too 

low, too many neighbor cells). Both the cell and nucleus will have to contain the position 

input by the user. It can be “local”, meaning the search window corresponds to the 

previous position found. But it can also be “global” in case the cell is out of the search 

window. In this case, the user can select the nucleus position from the total raw image. 
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Cell shape 

By default, this option is not selected, and this means that FUCCItrack will not try to 

segment the cell shape. It will create an arbitrary circle around the center of the nucleus 

already previously found automatically or by user input. The circle is just a proxy for 

the cell outreach and its diameter can be modified by the user. If “Cell shape” is 

selected, the segmentation of the cell shape will be performed as shown in Figure 8. 

Clustering separation (only relevant if cell shape is selected) 
This is useful if you have two or k cells that are overlapping or touching. It allows to 

separate the cells using a k-means clustering methods using the pixels from the 

segmentation as input for the clustering. 

Manual shape (only relevant if cell shape is selected): 
If the automated segmentation failed the user can manually draw the cell shape to 

perform the segmentation. This option is particularly necessary for users who whish to 

obtain cell shape based only on phase contrast or bright field since the automatic 

segmentation requires a fluorescence channel to perform well. 

Detect neighbor (cell) (only relevant if cell shape is selected) 
This option is useful if previously segmented cells are nearby the currently tracked cell. 

This option will delete previously segmented cells to avoid duplicate or wrong 

segmentation. 

 
Figure 8. External window with cell shape segmentation 
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5.3 Segmentation & tracking – Nucleus panel 
Please refer to Figure 7B to see where the options are in the GUI. 

Channel 
This option is to choose from which channel (red for mCherry and green for mVenus) 

the segmentation options described below should be applied to. 

Watershed separation 
If two nuclei are touching each other, FUCCItrack will run a watershed algorithm to 

separate them. The software picks the correct nucleus as the one which has its center 

of mass the closest to the cell position defined by the tracking. 

Manual nucleus 
This option allows the user to manually draw the nucleus in case the automatic 

segmentation failed. 

Detect neighbor (nucleus) 
This option works as  “Detect neighbor (cell)”. It will delete any cell nuclei previously 

found nearby the currently tracked cell, thus improving the automatic tracking 

performance. 
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6. Module description – Processing 

 
Figure 9. Processing module overview 

 

The processing module allows user to compute and extract cell cycle phases, 

migration and nucleus/cell shape readouts. Users can go through the tracked cells 

using the “Current cell” in the Tools panel (see Fig. 12 and section 9 for more details). 

It is important to not change the “Current cell” spinner while working on this 
module since all calculations are specific to the current cell. Once all the readouts 

have been extracted for one cell, the users can change the “Current cell” spinner and 

procced with another cell. 

Dividing cells/ Non dividing cells/ Excluded cells 
This drop-down menu only summarizes the different status of cells tracked using the 

single cell module. Also, clicking on a cell number from this dropdown menu will have 

the same effect as using the “Current cell” spinner and will make the cell number 

selected the current cell.  
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Shift times 
This option is used if you want to have the FUCCI/FUCCI2 intensity curves starting at 

0 hour for every cell, even for the daughter cells that appeared during the experiment. 

6.1 Cell cycle analysis 
Both mCherry and mVenus panel have the same structure and are used to detect the 

beginning and end based on a threshold for the intensity defined as 5 % of the 

maximum intensity (this value can be modified by users). 

6.1.1 mVenus panel  

Auto find 
This button will detect the time point when the mVenus curve goes above 5 % of its 

maximum intensity and assign the time stamp in the “Start (h)”. By default, it will take 

the last time point of the tracking as the end for mVenus and assign the time stamp in 

the “End (h)” field. 

Insert 
After using the “Auto find”, this field will stay red until pressed once. While red, it 

indicates that the value has not been saved in the application and users can still modify 

the field for the “Start (h)” and “End (h)” in case the “Auto find” failed. If the “Auto find” 

worked, the user will have to press on the button to save the data inside the application. 

Never enter 
This button can be pressed if cell stayed in G1 for the whole duration of the experiment 

and never had a signal for mVenus. The cell will not be excluded but considered as 

“non dividing cell”. It means that the cell was in the category “G1 incomplete” and never 

started the S/G2/M phase. The field “Start (h)” will be set to the duration of the whole 

experiment and “End (h)” to 0. 

6.1.2 mCherry panel 

Auto find 
This button works similarly as in mVenus with the exception that it detects the end of 

mCherry when the intensity drops below the 5 % threshold value and does not take 

the last time point. If the curve does not go below 5 % before division, the value for the 

end will be defined as the minimum of the mCherry curve, but only in the range after 

the start of mVenus. 
Insert 
This works exactly like previously described and should not be forgotten otherwise the 

value are not saved within FUCCItrack. 
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Never finish 
This button can be pressed if the cell started the S/G2/M phase (by passing the 5 % 

mVenus threshold) but did not divide within the experiment. This category of cells is 

called “G2 incomplete”. 

6.1.3 Exporting the data 

Comment 
Users can write comments on the currently analyzed cell and this will be added to the 

exported file. For example: “Cell escapes field of view” etc...  

Add to output 
When the two “Insert” buttons and additional “Comment” have been added, the user 

can press this button to write the data into the output field that is exported.  

Export cell cycle data 
When the cell cycle analysis has been performed on all the tracked cells, the user can 

press this button to create the output files (one output file in .xlsx format and another 

in .mat format). The data present in this file is: cells and their parent identification 

number, beginning and end time of the mCherry and mVenus phase as well as the 

calculated tG1, tS/G2/M and tCell cycle in hours. It also contains the category of the cell 

(divided, did not divide, excluded) and the comments section that users may enter. 

Plot durations 
When more than one cell is tracked and the cell cycle analysis has been performed for 

all cells, the user can click on this button to create a boxplot with the duration of the 

different cell cycle phases (G1, S/G2/M and total division). The data corresponding to 

this plot can be seen after clicking the “Export cell cycle data” too. 

 

6.2 Migration analysis 
FUCCItrack uses the msdanalyzer package to store the migration related parameters 

such as trajectory, velocity and mean square displacement (MSD).  

Add tracks 
This button will use the tracking information and load this into the msdanalyzer class 

for every cell tracked. It is important to click on this button before any other in the 

“Migration analysis”. It also creates a “.mat” file that contains the class. 

Plot MSD per trajectory 
This button will compute and plot the mean square displacement (MSD) for every cell 

as a function of time. 
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Plot trajectories 
This button will use the position data of every cell tracked and superpose their 

trajectories in a new figure. 

Plot migration speed 
This button will compute and plot the median of instantaneous speed over the trajectory 

of each cell in a boxplot format.  

Save movie with trajectory 
This button will create a movie containing the full trajectory of the cell (Supporting 

Movie 1). 

Export migration data 
This button will plot the other migration related metrics such as total distance, 

displacement and directionality in individual plots and export all of the data into an 

excel file. 

 

6.3 Nucleus/Cell shape 
This last panel can be used to compute and plot the nucleus projected area and the 

cell, if applicable.  

Add area 
This button will compute the nucleus area for every tracked cell and store the data 

inside the application. 

Plot nucleus area 
This button will create a new figure that contains the nuclear area as a function of time 

obtained by the “Add area” button previously. 
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7. Module description – Visualization & Saving 
 

 
Figure 10. Visualization & Saving module 

 

This part of the software (Fig. 10) is intended to be used to create a set of figures or 

movies concerning single cells. 

Save as 
The user is invited to select a location to save the FUCCItrack associated files 

(“tmp_data.mat”, “im_only.mat” and “state.mat”) to recreate the session in the future.  

Open file location 
This button opens the explorer where all the data related to this field of view is stored.  

Save tracking result 
This button takes a screenshot of Fig. 8 for every time point and saves this under the 

current cell specific folder. 

Save centered movie 
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This button saves a movie that has the current cell centered over time during the 

tracking. 

Save FUCCI intensity 
This button will save the plots generated by “Plot FUCCI” in both pixel-based and 

vectorized format. In addition, the original MATLAB figure will be saved which contains 

the data of the intensity. 

Save montage 
This button will save the figure generated by the “Plot montage” button, also in both 

pixel-based and vectorized format. If the figure was already generated previously, then 

it will not recreate it, except if the “Refresh montage” option is selected. 

• “Refresh montage”: this option will recreate the figure with the montage before 

saving it on to the computer. 

All cells 
If this option is selected, the saving of FUCCI intensity or montage will be done on all 

tracked cells instead of only the current cell.  

Remove current cell 
This button allows users to delete the current cell from the application data in case an 

error or a problem was associated with this cell.  

Remove last time 
This button will delete the data associated with the last time point of the currently 

tracked cell. 

  



Appendix A 
 

120 
 

8. Module description – Concatenation 
 

 
Figure 11. Concatenation module 

 

The concatenation module (Fig. 11) is designed for users who have two set of files 

corresponding to the same field of view. The layout is simple and contains two main 

panels: 

Load beg data 
By clicking on this button, the data from the previous experiment will be loaded into the 

application.  

Correlation 
This is the part that links the two datasets. The line “Cell N°1 comes from Cell N°5” 

means that the current cell number 1 open in the current dataset is the same as the 

cell number 5 in the previous dataset. When the user clicks on the texts in this panel, 

the plots for FUCCI intensity, montage and area over time are generated.  
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Save FUCCI intensity 
Like the processing module, this saves the FUCCI intensity with the two datasets 

concatenated.  

Save montage 
This button saves the montage across the two datasets. 

Save area 
This button saves the plot corresponding to the area over time from the two datasets. 

 

9. Panel description – Tools 
 

 
Figure 12. “Tools” and “Status & Visualization” panel 

 

One important panel is the “Tools” panel, which is always present at the bottom of the 

app.  

Show tracking 
This option controls the visibility of the external window (Fig. 8). If the option is selected, 

the external window is visible, and hidden otherwise. Tracking and segmentation 

results process faster if this option is not selected at the cost that the user cannot follow 

in real time the tracking for eventual errors. 

Show cell # 
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Figure 13. Internal visualization panel with all channels overlaid 

 
This option will show or hide the cell number label on the internal “Visualization” panel 

(Fig. 13). 

Show result overlay 
This option will show or hide the result of the segmentation as an overlay on the raw 

and binary masks on the external viewer (Fig. 8, in magenta and red).  

Current time point/total time point (1/182 here) 
This will inform the user of the current time point and the total number of time points 

(here it is the first frame out of 182 time points). 

Frames 
This is a spinner and lets the user navigate through the time lapse by clicking on the 

up and down arrows. The user can also write a value directly on the text field on the 

left side.  

Hours 
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This is a spinner connected to “Frames”. It translates the frame number to the actual 

time of experiment in hours. Users can also navigate through the time lapse by picking 

a specific hour or using the up and down arrows. 

Play button 
It will open the external window and show all time points that have been evaluated for 

the current cell, one by one until the end of the tracking. 
Refresh graph 
This button will open the external window for the current cell at its first time point. It is 

needed to have the external window open before using the “Run” button. The refresh 

graph can be useful if the current external window gets frozen during utilization by just 

recreating it. 

Current cell 
This spinner allows the user to go through the tracked cells and corresponds to the cell 

number or its unique identifier. It always starts at 1. While tracking a particular single 

cell, this spinner should always stay the same and user should not modify this during 

the tracking. 

Center view 
This option centers the internal visualization panel around the currently tracked cell 

instead of using the full field of view. 

Phase 
this option allows user to switch the internal and external viewers between phase and 

cell fluorescence channel if present (see Fig. 14). 
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Figure 14. “Phase” option behavior. On the left panel, the “Phase” option is selected 

so that the phase contrast image is used for visualization. On the right panel, the 

“Phase” option is not selected, and the SiR-Actin channel is then visible.  

 

10. Panel description - Status & Visualization 
 
 

Figure 15. Status & Visualization panel 

 

This panel contains a log field which is continuously updated (Fig. 15) . Every entry is 

recorded with its timestamp in the format “hh:mm:ss” to keep track of what has been 

done with FUCCItrack. There is also a progress bar (white at 0% and green when 

running) below the log field. Other fields related to status are: 

Ready (or Busy) 
This label field is an indicator that FUCCItrack is currently running operations in the 

background. When “Busy” is displayed in red, the user should wait and not click any 

button or perform operations. 

“Cell children indicator” or “I am not a baby cell” or “Cell 1 is my parent”:  
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This label field change its text depending on the current cell selected. The label field 

will be updated upon tracking and gives user the information about the lineage of the 

current cell in the context of the single cell tracking. 

• “Cell children indicator”: this is the default text when no single cell tracking data 

exists.  

• “I am not a baby cell”: this will be displayed if the current cell was added by the 

“Seeding cells” button, with no information about its parent cell. 

• “Cell XX is my parent”: this will be displayed (with the actual number XX 

depending on the experiment and current cells) when the current cell was added 

by the “Seed daughter cells” button, since the origin of the cell can be traced 

back to its parent. 

The “Status & Visualization” panel also contains button and options to create two 

important plots: the FUCCI intensity and the montage of nucleus over time (Fig. 16). 

 
Figure 16. FUCCI intensity curves and corresponding nucleus montage. 

 

Plot FUCCI 
This button will create a new graph with the FUCCI intensity curves of the current cell 

(Fig. 16A). Two related options can be used before clicking on this button: 

• “[0:100]”: this defines the limits of the x axis (in hours) for visualization the 

FUCCI intensity curves. It is recommended to use this option if you want to 

compare FUCCI intensity curves belonging to different cells. If unselected, 

FUCCItrack will automatically determine the limit in hours corresponding to the 

current cell. The upper boundary can be modified by the user if necessary. 
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• “With area”: when this option is selected, the FUCCI intensity plot will contain a 

second y axis on the right depicting the projected area of the current nucleus 

over time.  

• “Latex”: this option allows users to have latex style writing for all visualization 

plots. If not selected, the default font will be arial.  

Plot montage 

This button will create the figure corresponding of the concatenation of the nuclei of a 

cell over time (Fig. 16B). If the option “With contour” is not selected, then only the 

mCherry and mVenus channel will be visible. But if “With contour” is selected, the cell 

shape channel will also be present in the montage.  

STOP 
This button enables users to stop several functions of FUCCItrack while running. For 

example, if the tracking is started for 20 time points but it fails at an earlier time point, 

then user can press “STOP” and apply corrections.  

 

11. Saving FUCCItrack associated data and state 
FUCCItrack works with sessions that allows users to work on it, save it for later and 

reopen the application exactly where they left.  

 
Fig 17. The File menu 

 

New Session 
This will reset the application to when the user opens it. Do not forget to use the “Save” 

button before clicking on this since all the data will be lost otherwise. 

Load 
The users will be invited to open the “tmp_data.mat” file of a previous session to load 

everything back to its saved state. 

Save 
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This button will save the 3 associated MATLAB files (“tmp_data.mat”, “im_only.mat” 

and “state.mat”), the files contain the necessary information for reloading the 

application as well as all the raw, tracking and segmentation data. 

Save as ... 
This button allows users to move all the MATLAB associated files to another location 

if needed.  

Exit 
This button terminates the software and closes it. 
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Appendix B 

 

 
Appendix B. ImmunoFinder – a software to quantify immunofluorescence data. 
(A) Graphical user interface developed to work with immunofluorescence images 

along with FUCCI2. (B) External figure showing the nuclei segmentation with 

mVenus and mCherry as well as the counting of p21+ cells. 
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