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A B S T R A C T   

The synthesis of phenylnaphthalic anhydrides, including substitution patterns typically found in the Haemo-
doraceae and Pontederiacea family of plants, was explored using Suzuki and Ullmann-type aromatic substitutions 
on acenaphthene. Synthetic challenges were surmounted by tactical changes to determine the order of events.   

Phenylnaphthalic anhydrides (phenylbenzo[de]isochromene-1,3- 
diones) are a class of compounds isolated from plants of the Haemo-
doraceae, Musaceae, and recently Pontederiaceae families [1]. In each 
family, the structural features of the members differ, creating an inter-
esting case of positional isomerism (Fig. 1). In Musa, their roles as 
phytoalexins [1a–b] have led to synthetic efforts to prepare these com-
pounds [2]. However, such efforts have yet to be recorded in the Pon-
tederiaceae or Haemodoraceae, even though phenylnaphthalic 
anhydrides and their vinylogous analogs are involved in the defense 
mechanism of these plants [3]. 

Initially, we focused on 3,4-dimethoxy-5-phenyl-1,8-naphthalic an-
hydride (1), a moderate cytotoxic compound from Haemodorum simplex 
[1d]. Its synthesis can provide access to other natural products like 4-hy-
droxy-5-phenyl-1,8-naphthalic anhydride (2a), isolated in minute 
amounts (0.7 mg) from Pontederia crassipes Mart. (water hyacinth) [1h]. 
The latter furnish a suitable model for the study of a recently reported 
transformation between 3,4-dihydroxy-5-phenyl-1,8-naphthalic anhy-
dride and amino acids to generate phenylcarbamoylnaphthoquinones 
under very mild conditions (Scheme 1) [3b]. These latter types of 
compounds, as members of the p-quinone family, incorporate an 
important scaffold in many natural products of biological significance 
with important redox properties [3c]. 

The intriguing mechanistic aspects of such a spontaneous cascade 
and the biological potential of these N-acylating agents drew our 
attention to the possibility of developing a synthesis for compounds 1 
and 2a. Herein, we report its synthesis starting from acenaphthene. 

Our synthetic strategy is depicted in Scheme 2. It consists of a simple 

sequence of aromatic substitutions on the acenaphthene ring, followed 
by the oxidative unveiling of the anhydride moiety. However, the cor-
rect order of events was uncertain from the outset, and the crowded 
nature of the peri-substituted acenaphthene required consideration of 
reactions somewhat tolerant to steric demands. This criterion favored 
Suzuki coupling and copper-mediated (Ullmann-type) aromatic sub-
stitutions as trial reactions. 

Initial efforts to obtain 1 commenced with acenaphthene, which was 
subjected to bromination [NBS, 2 eq] to afford the known 5,6-dibromoa-
cenaphthene (7a) [4] in 20 % yield (Scheme 3). Sequential bromination 
did not improve the yield but identified the second electrophilic sub-
stitution as the cause of the problem. 

Despite the low yield, 5,6-dibromoacenaphthene (7a) could be pu-
rified from the reaction mixture with relative ease and in gram quanti-
ties [4], a fact that encouraged further exploration towards phenyl 
substitution using Suzuki coupling. Unfortunately, treating 7a with 
phenylboronic acid under typical Suzuki conditions [5] invariably 
afforded complex mixtures in which mono-debromination prevailed. 

Thus, a tactical change in which a bromine atom is introduced after 
the arylation step was considered. The reasoning is that the ring to be 
attacked is less aromatic in 5-phenylacenaphthene (6) than in bromoa-
cenaphthene (7). This allows for a more favorable process than the 
analog reaction on bromoacenaphthene (7) to give a product that exerts 
a similar pairwise steric peri-interaction of 5,6-dibromoacenaphthene 
(7a). Quantum chemistry calculations supported this idea (see Fig. 2 
and supplemental info) [6]. 

Accordingly, Suzuki coupling between 5-bromoacenaphthene (7) 
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and phenylboronic acid using PEPPSI-iPr catalysis proceeded smoothly 
to afford 5-phenylacenaphthene (6) in 97 % yield (14 g scale). Treat-
ment of 6 with 1.1 equivalents of N-bromosuccinimide delivered the 
desired 5-bromo-6-phenylacenaphthene (5, 15 g scale) in a gratifying 
80 % yield. At this point, two permutations in the order of events were 
possible. Considerations regarding the potential sensitivity of the an-
hydride group to further transformations encouraged an SNAr- oxidation 
sequence. Thus, the copper-mediated substitution [7] of 5 with sodium 
methoxide in methanol afforded 5-methoxy-6-phenylacenaphthene (5a) 
in 64 % yield after column chromatography. Disappointingly, the 
oxidation of 5a employing Cr (VI) afforded the corresponding anhydride 
in only 43 % yield and only after tedious purification. Reconsidering the 
reaction sequence from 5 led to a modified oxidation-SNAr proposal 

(Scheme 3). In this case, it was evident that the methoxide ion could 
attack the anhydride moiety during the Ullmann-type process. However, 
a mixture of such methoxycarbonyl-naphthoates could, in principle, 
participate in the copper-mediated SNAr substitution with the possibility 
of regenerating the anhydride group and, therefore, converging to a 
single product upon acidic workup. Consequently, the microwave irra-
diation of a mixture of 5-bromo-6-phenylacenaphthene (5) and potas-
sium dichromate in acetic acid furnished 4-bromo-5-phenyl-1,8- 
naphthalic anhydride (4) in 81 % yield and suitable purity for the 
next step without the need for chromatography. Gladly, the copper- 
mediated substitution of 4 with sodium methoxide in methanol went 
smoothly, and the cyan-fluorescent 4-methoxy-5-phenyl-1,8-naphthalic 
anhydride (3) was produced in 74 % yield after acidic workup. The 
bromination of 3 using NBS turned out to be difficult, and only Friedel- 
Crafts type conditions using bromine and Ag2SO4 afforded the desired 3- 
bromo-4-methoxy-5-phenyl-1,8-naphthalic anhydride (2) in 85 % yield. 
The copper-mediated substitution of 2 delivered the target molecule in 
35 % yield along with compound 3, which was recovered in 30 % yield. 
Attempts to optimize this reaction using different ligands or Buchwald- 
type reactions failed. Spectroscopic data of the final molecule (1) agreed 
with previous reports [1d]. 

Interestingly, the treatment of 3 with two equivalents of bromine 
under harsher conditions (sulfuric acid 98 %, 60 ◦C) allowed the 
installation of a second bromine atom in position C-4′ of the lateral 
phenyl ring to produce 3-bromo-5-(4-bromophenyl)-4-methoxy-1,8- 
naphthalic anhydride (3b, 50 % yield). Compound 3b also partici-
pated in a tandem copper-mediated nucleophilic aromatic substitution 
to provide 3,4-dimethoxy-5-(4-methoxyphenyl)-1,8-naphthalic 

Fig. 1. Examples of phenylnaphthalic anhydrides and vinylogous analogs isolated from Musaceae (A), Haemodoraceae (B), and Pontederiaceae (in blue) plants.  

Scheme 1. Reported example for generating a phenyl carbamoyl 
naphthoquinone-type compound from 3,4-dihydroxy-5-phenyl-1,8-naphthalic 
anhydride [3b]. 

Scheme 2. Synthetic strategy to prepare 3,4-dimethoxy-5-phenyl-1,8-naphthalic anhydride (1).  
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anhydride (2b, 38 %). 
With a route to compound 1 established, we attempted to prepare the 

recently reported 4-hydroxy-5-phenyl-1,8-naphthalic anhydride (2a) 
via demethylation of 3. Unfortunately, compound 3 resulted impervious 
to the action of a solution of hydrobromic acid in acetic acid at 130 ◦C or 
boron tribromide (1 M) in dichloromethane at room temperature. At-
tempts to directly substitute the bromine by hydroxyl in anhydride 4 via 
copper or palladium catalysis also failed. Thus, compound 5 was 
considered a precursor. Direct substitution of the bromine in 4 using 
modified Buchwald conditions successful in the synthesis of hydrox-
yphenalenones [8] afforded 1,2-dihydrocyclopenta[cd]fluoranthene 
(5b, 38 % yield) instead of the desired hydroxyphenylacenaphthene 
(Scheme 3). 

The unexpected results forced us to change the nature of the pro-
tecting group to prepare compound 2a. Unfortunately, attempts to 
directly introduce a benzyloxy group in compound 5 via copper catalysis 
also failed. Thus, compound 5a (Scheme 3) was demethylated with BBr3 
and benzylated to afford 5-(benzyloxy)-6-phenylacenaphthene (4a) in 
45 % yield (two steps) and then submitted to standard dichromate 
oxidation to furnish 4-(benzyloxy)-5-phenyl-1,8-naphthalic anhydride 
(3a) in 70 % yield. Gratifyingly, compound 3a engaged in hydro-
genolysis to provide 4-hydroxy-5-phenyl-1,8-naphthalic anhydride (2a) 
in 80 % yield. The spectroscopic characteristics of compound 2a 
matched with the reported natural product [1h]. 

In summary, a synthesis of 3,4-dimethoxy-5-phenyl-1,8-naphthalic 
anhydride (1) and 4-hydroxy-5-phenyl-1,8-naphthalic anhydride (2a) 
was achieved in seven and eight steps respectively (12 % and 10 % 
global yield each) starting from acenaphthene. The viability of phenyl-
naphthalic anhydrides as substrates for copper-mediated (Ullmann- 
type) SNAr reactions was demonstrated. Incidentally, difficulties in 
demethylating methoxynaphthalic anhydrides culminated in a synthesis 
of 1,2-dihydrocyclopenta[cd]fluoranthene and the illustration of the 
suitability of the benzyl protecting group in chromium-mediated ace-
naphthene oxidations. 
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Appendix A. Supplementary data 

Supplementary data (Experimental procedures. Optimized.xyz co-
ordinates for compounds 5, 6, 7 and 7a. Single-point Hartree-Fock 
“steric” NBO calculation for compounds 5 and 7a. 1H and 13C spectra for 
all products) to this article can be found online at https://doi.org/10.10 
16/j.tetlet.2024.154907. 

References 

[1] (a) T. Kamo, N. Hirai, M. Tsuda, D. Fujioka, H. Ohigashi, Changes in the content 
and biosynthesis of phytoalexins in banana fruit, Biosci. Biotech. Bioch. 64 (2000) 
2089–2098; 
(b) K. Jitsaeng, B. Schneider, Metabolic profiling of Musa acuminata challenged by 
Sporobolomyces salmonicolor, Phytochem. Lett. 3 (2010) 84–87; 
(c) A.C. Bazan, J.M. Edwards, Phenalenone pigments of the flowers of Lachnanthes 
tinctoria, Phytochemistry 15 (1976) 1413–1415; 
(d) D.A. Dias, D.J. Goble, C.A. Silva, S. Urban, Phenylphenalenones from the 
Australian plant Haemodorum simplex, J. Nat. Prod. 72 (2009) 1075–1080; 
(e) R.G. Cooke, Phenylnaphthalene pigments of Lachnanthes tinctoria, 
Phytochemistry 9 (1970) 1103–1106; 
(f) J.M. Edwards, U. Weiss, Quinone methides derived from 5-oxa and 5-aza-9- 
phenyl-1-phenalenone in flowers of Lachnanthes tinctoria (Haemodoraceae), 
Tetrahedron Lett. 13 (1972) 1631–1634; 
(g) S. Opitz, D. Hölscher, N.J. Oldham, S. Bartram, B. Schneider, 
Phenylphenalenone-related compounds: chemotaxonomic markers of the 
Haemodoraceae from Xiphidium caeruleum, J. Nat. Prod. 65 (2002) 1122–1130; 
(h) M. Costa, M. Luis, L. de Sousa, A. Tempone, J. Lago, I. Nascimento, 
Phenylnaphthalic anhydrides from water hyacinth (Pontederia crassipes Mart), 
Phytochem. Lett. 46 (2021) 1–5; 
(i) G. Cheng, Y. Liu, J. Gu, S. Qian, H. Yang, Z. Na, X. Luo, Phytochemicals and 
allelopathy of induced water hyacinth against Microcystis aeruginosa, J. Nat. Prod. 84 
(2021) 1772–1779. 

[2] (a) H. Takikawa, M. Yoshida, K. Mori, Synthesis of 2-(4-hydroxyphenyl) 
naphthalene-1,8-dicarboxylic anhydride, a phytoalexin isolated from unripe banana 
(Musa acuminata), Biosci. Biotechnol. Biochem. 63 (1999) 1834–1836; 
(b) L.R. Izquierdo, M. Kenneth, T.A. Grillo, J.G. Luis, A short synthetic route to the 
natural products cis-3-phenyl-acenaphthene-1,2-diol and 4-phenyl-benzo[de] 
isochromene-1,3-dione from acenaphthylene-chromium tricarbonyl, Synthesis 12 
(2005) 1926–1928. 

[3] (a) Y. Chen, C. Paetz, B. Schneider, Precursor-directed biosynthesis of 
phenylbenzoisoquinolindione alkaloids and the discovery of a phenylphenalenone- 

based plant defense mechanism, J. Nat. Prod. 81 (2018) 879–884; 
(b) Y. Chen, C. Paetz, B. Schneider, Organ-specific distribution and non-enzymatic 
conversions indicate a metabolic network of phenylphenalenones in Xiphidium 
caeruleum, Phytochemistry 159 (2019) 30–38; 
(c) A. Ballesteros-Casallas, C. Quiroga, C. Ortiz, D. Benítez, P. Denis, D. Figueroa, 
C. Salas, J. Bertrand, R. Tapia, P. Sánchez, G. Miscione, M. Comini, M. Paulino, 
Mode of action of p-quinone derivatives with trypanocidal activity studied by 
experimental and in silico models, Eur. J. Med. Chem. 246 (2023) 114926. 

[4] T. Li, C. Zhang, Y. Su, M. Niu, C. Gu, M. Song, Crystal structure and optoelectronic 
properties of antiaromatic compound 3,4,9,10-tetrahydrodicyclopenta[cd, lm] 
perylene, Crystallogr. Rep. 62 (2017) 885–888. 

[5] (a) M. Cano, C. Rojas, W. Hidalgo, J. Sáez, J. Gil, B. Schneider, F. Otálvaro, 
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