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Abstract
In this work we revisit the fundamental Single-Source Shortest Paths (SSSP) problem with possibly
negative edge weights. A recent breakthrough result by Bernstein, Nanongkai and Wulff-Nilsen
established a near-linear O(m log8(n) log(W ))-time algorithm for negative-weight SSSP, where W is
an upper bound on the magnitude of the smallest negative-weight edge. In this work we improve the
running time to O(m log2(n) log(nW ) log logn), which is an improvement by nearly six log-factors.
Some of these log-factors are easy to shave (e.g. replacing the priority queue used in Dijkstra’s
algorithm), while others are significantly more involved (e.g. to find negative cycles we design an
algorithm reminiscent of noisy binary search and analyze it with drift analysis).

As side results, we obtain an algorithm to compute the minimum cycle mean in the same running
time as well as a new construction for computing Low-Diameter Decompositions in directed graphs.
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1 Introduction

For centuries, the quest to compute shortest paths has captivated the minds of mathematicians
and computer scientists alike. In this work, we revisit the Single-Source Shortest Paths
(SSSP) problem with possibly negative edge weights: Given a directed weighted graph G and
a designated source vertex s, compute the distances from s to all other vertices in G. This
is possibly the most fundamental weighted graph problem with wide-ranging applications
in computer science, including routing, data networks, artificial intelligence, planning, and
operations research.

While it is well known for almost 60 years that SSSP with nonnegative edge weights can
be solved in near-linear time by Dijkstra’s algorithm [23, 62, 29], the case with negative
weights has a more intriguing history: The Bellman-Ford algorithm was developed in
the 50’s [54, 26, 9, 46] and runs in time O(mn), and this time bound remained the state
of the art for a long time. Starting in the 80’s, the scaling technique was developed and
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lead to time O(m
√
n logW ) [32, 33, 34]; here and throughout, W is the magnitude of the

smallest negative edge weight in the graph.1 Other papers focused on specialized graph
classes, leading e.g. to near-linear time algorithms for planar directed graphs [43, 38, 24, 37],
and improved algorithms for dense graphs with small weights [53].

An alternative approach is to model SSSP as a minimum-cost flow problem.2 In the
last decade, a combination of convex optimization techniques and dynamic algorithms have
resulted in a series of advancements in minimum-cost flow computations [21, 7, 59, 58]
and thus also for negative-weight SSSP, with running times Õ(m10/7) [21], Õ(m4/3) [7]
and Õ(m+ n3/2) [59]. This line of research recently culminated in an almost-linear m1+o(1)-
time algorithm by Chen, Kyng, Liu, Peng, Probst Gutenberg and Sachdeva [17].

Finally, at the same time as the breakthrough in computing minimum-cost flows, Bernstein,
Nanongkai and Wulff-Nilsen [11] found an astonishing near-linear O(m log8(n) log(W ))-time
algorithm for negative-weight SSSP. We will refer to their algorithm as the BNW algorithm.
The BNW algorithm is combinatorial and arguably simple, and thus a satisfying answer to
the coarse-grained complexity of the negative-weight SSSP problem. However, the story does
not end here. In this work, we press further and investigate the following question which was
left open by Bernstein et al. [11]:

Can we further improve the number of log-factors
in the running time of negative-weight SSSP?

For comparison, the nonnegative-weights SSSP problem underwent a long series of lower-
order improvements in the last century [23, 29, 30, 31, 56, 51, 52, 60, 61, 44, 2, 20, 57],
including improvements by log-factors or even just loglog-factors.3 In the same spirit, we
initiate the fine-grained study of lower-order factors for negative-weight shortest paths.

1.1 Our Results
In our main result we make significant progress on our driving question, and improve the
BNW algorithm by nearly six log-factors:

I Theorem 1 (Negative-Weight SSSP). There is a Las Vegas algorithm which, given a
directed graph G and a source node s, either computes a shortest path tree from s or finds a
negative cycle in G, running in time O((m+n log logn) log2 n log(nW )) with high probability
(and in expectation).

We obtain this result by optimizing the BNW algorithm, pushing it to its limits. Aaron
Bernstein remarked in a presentation of their result that “something like log5 is inherent to
[their] current framework”.4 It is thus surprising that we obtain such a dramatic improvement
to nearly three log-factors within the same broader framework. Despite this speed-up, our

1 Strictly speaking, W ≥ 0 is the smallest number such that all edge weights satisfy w(e) ≥ −W . By
slight abuse of notation we typically write O(logW ) to express O(max{ 1, logW }).

2 To model SSSP as a minimum-cost flow problem, interpret each edge e with weight w(e) as an edge
with infinite capacity and cost w(e). Moreover, add an artificial sink vertex t to the graph, and add
unit-capacity cost-0 edges from all vertices v to t. Then any minimum-cost flow routing n units from s
to t corresponds exactly to a shortest path tree in the original graph (assuming that it does not contain
a negative-weight cycle).

3 In these papers, the Dijkstra running time O(m + n logn) was improved to the current state of the
art O(m+ n log log min{n,C}) [57], where C is the largest weight in the graph.

4 https://youtu.be/Bpw3yqWT_d0?t=3721

https://youtu.be/Bpw3yqWT_d0?t=3721
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algorithm is still modular and simple in its core. In Section 1.2 we discuss the technical
similarities and differences between our algorithm and the BNW algorithm in detail.

Recall that computing shortest paths is only reasonable in graphs without negative cycles
(as otherwise two nodes are possibly connected by a path of arbitrarily small negative weight).
In light of this, we solve the negative-weight SSSP problem in its strongest possible form
in Theorem 1: The algorithm either returns a shortest path tree, or returns a negative
cycle as a certificate that no shortest path tree exists. In fact, the subproblem of detecting
negative cycles has received considerable attention on its own in the literature (see e.g. the
survey [19]).

In the presence of negative cycles, a natural alternative to finding one such cycle is to
compute all distances in the graph anyway (where some of the distances are −∞ or∞). This
task can be solved in the same running time:

I Theorem 2 (Negative-Weight Single-Source Distances). There is a Las Vegas algorithm,
which, given a directed graph G and a source s ∈ V (G), computes the distances from s to
all other vertices in the graph (these distances are possibly −∞ or ∞), running in time
O((m+ n log logn) log2 n log(nW )) with high probability (and in expectation).

Owing to the countless practical applications of shortest paths problems, it is an
important question to ask whether there is a negative-weights shortest paths algorithm
that has a competitive implementation. The typical practical implementation in competitive
programming uses optimized variants of Bellman-Ford’s algorithm, such as the “Shortest
Path Faster Algorithm” [46, 22] (see also [18] for an experimental evaluation of other more
sophisticated variants of Bellman-Ford). However, it is easy to find instances for which
these algorithms require time Ω(mn). It would be exciting if, after decades of competitive
programming, there finally was an efficient implementation to deal with these instances.
With its nine log-factors, the BNW algorithm does not qualify as a practical candidate. We
believe that our work paves the way for a comparably fast implementation.

In addition to our main result, we make progress on two closely related problems:
Computing the minimum cycle mean, and low-diameter decompositions in directed graphs.
We describe these results in the following sections.

1.1.1 Minimum Cycle Mean
In a directed weighted graph, the mean of a cycle C is defined as the ratio w̄(C) = w(C)/|C|
where w(C) is the total weight of C. The Minimum Cycle Mean problem is to compute, in
a given directed weighted graph, the minimum mean across all cycles, minC w̄(C). This is
a central problem in the context of network flows [1], with applications to verification and
reactive systems analysis [15].

There is a large body of literature on computing the Minimum Cycle Mean. In 1987,
Karp [36] established an O(mn)-time algorithm, which is the fastest strongly polynomial
time algorithm to this date. In terms of weakly polynomial algorithms, Lawler observed that
the problem is equivalent to detecting negative cycles, up to a factor O(log(nW )) [40, 39].
Indeed, note that one direction is trivial: The graph has a negative cycle if and only if
the minimum cycle mean is negative. For the other direction, he provided a reduction to
detecting negative cycles on O(log(nW )) graphs with modified rational edge weights. Thus,
following Lawler’s observation, any negative-weight SSSP algorithm can be turned into a
Minimum Cycle Mean algorithm in a black-box way with running time overhead O(log(nW )).

There are also results specific to Minimum Cycle Mean computations: Orlin and
Ahuja [47] designed an algorithm in time O(m

√
n log(nW )) (improving over the baseline
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O(m
√
n log2(nW )) which follows from the SSSP algorithms by [32, 33, 34]). For the special

case of dense graphs with 0-1-weights, an O(n2)-time algorithm is known [14]. Finally, in
terms of approximation algorithms it is known how to compute a (1 + ε)-approximation in
time Õ(nω log(W )/ε) [15].

As for negative-weight SSSP, all these algorithms are dominated by the recent BNW
algorithm: By Lawler’s observation, their algorithm computes the minimum cycle mean in
time O(m log8(n) log2(nW )). In fact, it is implicit in their work that the running time can
be reduced to O(m log8(n) log(nW )). Our contribution is again that we reduce the number
of log-factors from nine to nearly three:

I Theorem 3 (Minimum Cycle Mean). There is a Las Vegas algorithm, which given a directed
graph G finds a cycle C with minimum mean weight w̄(C) = minC′ w̄(C ′), running in
time O((m+ n log logn) log2 n log(nW )) with high probability (and in expectation).

1.1.2 Directed Low-Diameter Decompositions
A crucial ingredient to the BNW algorithm is a Low-Diameter Decomposition (LDD) in
directed graphs. Our SSSP algorithm differs in that regard from the BNW algorithm, and
does not explicitly use LDDs. Nevertheless, as a side result of this work we improve the best
known LDD in directed graphs.

LDDs have been first studied by Awerbuch almost 40 years ago [3] and have ever since
found several applications, mostly for undirected graphs and mostly in distributed, parallel
and dynamic settings [5, 6, 4, 42, 8, 12, 45, 48, 27, 16, 10, 28, 11]. The precise definitions
in these works mostly differ, but the common idea is to select a small subset of edges S
such that after removing all edges in S from the graph, the remaining graph has (strongly)
connected components with bounded diameter.

For directed graphs, we distinguish two types of LDDs: Weak LDDs ensure that for every
strongly connected component C in the graph G \ S, the diameter of C in the original graph
is bounded. A strong LDD exhibits the stronger property that the diameter of C in the
graph G \ S is bounded.

I Definition 4 (Directed Low-Diameter Decomposition). A weak Low-Diameter Decomposition
with overhead ρ is a Las Vegas algorithm that, given a directed graph G with nonnegative
edge weights w and a parameter D > 0, computes an edge set S ⊆ E(G) with the following
properties:

Sparse Hitting: For any edge e ∈ E, P(e ∈ S) ≤ O(w(e)
D · ρ+ 1

poly(n) ).
Weak Diameter: Every SCC C in G \ S has weak diameter at most D
(that is, for any two vertices u, v ∈ C, we have distG(u, v) ≤ D).

We say that the Low-Diameter Decomposition is strong if it additionally satisfies the following
stronger property:

Strong Diameter: Every SCC C in G \ S has diameter at most D
(that is, for any two vertices u, v ∈ C, we have distG\S(u, v) ≤ D).

For directed graphs, the state-of-the-art weak LDD was developed by Bernstein, Nanongkai
and Wulff-Nilsen [11] as a tool for their shortest paths algorithm. Their result is a weak
LDD with polylogarithmic overhead O(log2 n) running in near-linear time O(m log2 n +
n log2 n log logn). In terms of strong LDDs, no comparable result is known. While it is not
hard to adapt their algorithm to compute a strong LDD, this augmentation suffers from a
slower running time Ω(nm). Our contribution is designing the first strong LDD computable
in near-linear time, with only slightly worse overhead O(log3 n):
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I Theorem 5 (Strong Low-Diameter Decomposition). There is a strong Low-Diameter
Decomposition with overhead O(log3 n), computable in time O((m+ n log logn) log2 n) with
high probability (and in expectation).

1.2 Technical Overview
Our algorithm is inspired by BNW algorithm and follows its general framework, but differs
in many aspects. In this section we give a detailed comparison.

1.2.1 The Framework
The presentation of our algorithm is modular: We will first focus on the SSSP problem on a
restricted class of graphs (to which we will simply refer as restricted graphs, see the next
Definition 6). In the second step we demonstrate how to obtain our results for SSSP on
general graphs, for finding negative cycles, and for computing the minimum cycle mean by
reducing to the restricted problem in a black-box manner.

I Definition 6 (Restricted Graphs). An edge-weighted directed graph G = (V,E,w) with a
designated source vertex s ∈ V is restricted if it satisfies:

The edge weights are integral and at least −1.
The minimum cycle mean is at least 1.
The source s is connected to every other vertex by an edge of weight 0.

In particular, note that restricted graphs do not contain negative cycles, and therefore
it is always possible to compute a shortest path tree. The Restricted SSSP problem is to
compute a shortest path tree in a given restricted graph G. We write TRSSSP(m,n) for the
optimal running time of a Restricted SSSP algorithm with error probability 1

2 , say.

1.2.2 Improvement 1: Faster Restricted SSSP via Better
Decompositions

Bernstein et al. [11] proved that TRSSSP(m,n) = O(m log5 n). Our first contribution is
that we shave nearly three log-factors and improve this bound to TRSSSP(m,n) = O((m+
n log logn) log2 n) (see Theorem 18).

At a high level, the idea of the BNW algorithm is to decompose the graph by finding a
subset of edges S suitable for the following two subtasks: (1) We can recursively compute
shortest paths in the graph G \ S obtained by removing the edges in S, and thereby make
enough progress to incur in total only a small polylogarithmic overhead in the running time.
And (2), given the outcome of the recursive call, we can efficiently “add back” the edges
from S to obtain a correct shortest path tree for G. For the latter task, the crucial property
is that S intersects every shortest path in G at most O(logn) times (in expectation), as then
a simple generalization of Dijkstra’s and Bellman-Ford’s algorithm can adjust the shortest
path tree in near-linear time (see Lemma 25).

For our result, we keep the implementation of step (2) mostly intact, except that we use a
faster implementation of Dijkstra’s algorithm due to Thorup [57] (see Lemma 25). The most
significant difference takes place in step (1), where we change how the algorithm selects S.
Specifically, Bernstein et al. used a directed Low-Diameter Decomposition to implement the
decomposition. We are following the same thought, but derive a more efficient and direct
decomposition scheme. To this end, we define the following key parameter:
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I Definition 7. Let G be a restricted graph with designated source s. We define κ(G) as
the maximum number of negative edges (that is, edges of weight exactly −1) in any simple
path P which starts at s and has nonpositive weight w(P ) ≤ 0.

Our new decomposition can be stated as follows.

I Lemma 8 (Decomposition). Let G be a restricted graph with source vertex s ∈ V (G) and
κ ≥ κ(G). There is a randomized algorithm Decompose(G, κ) running in expected time
O((m+ n log logn) logn) that computes an edge set S ⊆ E(G) such that:

1. Progress: With high probability, for any strongly connected component C in G \ S, we
have (i) |C| ≤ 3

4 |V (G)| or (ii) κ(G[C ∪ { s }]) ≤ κ
2 .

2. Sparse Hitting: For any shortest s-v-path P in G, we have E(|P ∩ S|) ≤ O(logn).

The sparse hitting property is exactly what we need for (2). With the progress
condition, we ensure that |V (G)| · κ(G) reduces by a constant factor when recurring on
the strongly connected components of G \ S. The recursion tree therefore reaches depth at
most O(log(n · κ(G))) = O(logn). In summary, with this new idea we can compute shortest
paths in restricted graphs in time O((m+ n log logn) log2 n).

1.2.3 Improvement 2: Faster Scaling
It remains to lift our Restricted SSSP algorithm to the general SSSP problem at the expense
of at most one more log-factor log(nW ). In comparison, the BNW algorithm spends four
log-factors O(log3 n logW ) here. As a warm-up, we assume that the given graph is promised
not to contain a negative cycle.

Warm-Up: From Restricted Graphs to Graphs without Negative Cycles This task is a
prime example amenable to the scaling technique from the 80’s [32, 33, 34]: By rounding
the weights in the given graph G from w(e) to d 3w(e)

W+1 e + 1 we ensure that (i) all weights
are at least −1 and (ii) the minimum cycle mean is at least 1, and thus we turn G into
a restricted graph H (see Lemma 30). We compute the shortest paths in H and use the
computed distances (by means of a potential function) to augment the weights in the original
graph G. If G has smallest weight −W , in this way we can obtain an equivalent graph G′
with smallest weight − 3

4W , where equivalence is defined as follows:

I Definition 9 (Equivalent Graphs). We say that two graphs G,G′ over the same set of
vertices and edges are equivalent if (1) any shortest path in G is also a shortest path in G′
and vice versa, and (2) for any cycle C, wG(C) = wG′(C).

Hence, by (1) we continue to compute shortest paths in G′. At first glance it seems
that repeating this scaling step incurs only a factor logW to the running time, but for
subtle reasons the overhead is actually log(nW ). Another issue is that the Restricted SSSP
algorithm errs with constant probability. The easy fix loses another logn factor due to
boosting (this is how Bernstein et al. obtain their algorithm SPMonteCarlo, see [11,
Theorem 7.1]). Fortunately, we can “merge” the scaling and boosting steps to reduce the
overhead to log(nW ) in total, see Theorem 29.

From Restricted Graphs to Arbitrary Graphs What if G contains a negative cycle? In this
case, our goal is to find and return one such negative cycle. Besides the obvious advantage
that it makes the output more informative, this also allows us to strengthen the algorithm
from Monte Carlo to Las Vegas, since both a shortest path tree and a negative cycle serve as
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certificates that can be efficiently tested. Using the scaling technique as before, we can easily
detect whether a given graph contains a negative cycle in time O(TRSSSP(m,n) · log(nW ))
(even with high probability, see Corollary 34), but we cannot find such a cycle.

We give an efficient reduction from finding negative cycles to Restricted SSSP with
overhead O(log(nW )). This reduction is the technically most involved part of our paper. In
the following paragraphs we attempt to give a glimpse into the main ideas.

A Noisy-Binary-Search-Style Problem For the rest of this overview, we phrase our core
challenge as abstract as possible, and omit further context. We will use the following notation:
given a directed graph G and an integer M , we write G+M to denote the graph obtained by
adding M to every edge weight of G. Consider the following task:

I Definition 10 (Threshold). Given a weighted graph G, compute the smallest integer M∗ ≥ 0
such that the graph G+M∗ , which is obtained from G by adding M∗ to all edge weights, does
not contain a negative cycle.

Our goal is to solve the Threshold problem in time O(TRSSSP(m,n) log(nW )) (from this
it follows that we can find negative cycles in the same time, see Lemma 36). As a tool, we
are allowed to use the following lemma as a black-box (which can be proven similarly to the
warm-up case):

I Lemma 11 (Informal Lemma 40). There is an O(TRSSSP(m,n))-time algorithm that, given
a graph G with minimum weight −W , either returns an equivalent graph G′ with minimum
weight − 3

4W , or returns NegativeCycle. If G does not contain a negative cycle, then the
algorithm returns NegativeCycle with error probability at most 0.01.

Morally, Lemma 11 provides a test whether a given graph G contains a negative cycle. A
natural idea is therefore to find M∗ by binary search, using Lemma 11 as the tester. However,
note that this tester is one-sided: If G contains a negative cycle, then the tester is not obliged
to detect one. Fortunately, we can turn the tester into a win-win algorithm to compute M∗.

We first describe our Threshold algorithm in an idealized setting where we assume that
the tester from Lemma 11 has error probability 0. We let d = 1

5W , and run the tester on the
graph G+d. There are two cases:

The tester returns NegativeCycle: In the idealized setting we can assume that G+d

indeed contains a negative cycle. We therefore compute the threshold of G+d recursively,
and return that value plus d. Note that the minimum weight of G+d is at least −W +d =
− 4

5W .
The tester returns an equivalent graph G′: In this case, we recursively compute and return
the threshold value of (G′)−d. Note that the graphs G and (G′)−d share the same threshold
value, as by Definition 9 we have w(G′)−d(C) = wG′(C)− d = wG+d(C)− d = wG(C) for
any cycle C. Moreover, since G+d has smallest weight − 4

5W , the equivalent graph G′ has
smallest weight at least − 3

4 ·
4
5W = − 3

5W by Lemma 11. Therefore, (G′)−d has smallest
weight at least − 3

5W − d = − 4
5W .

In both cases, we recursively compute the threshold of a graph with smallest weight at
least − 4

5W . Therefore, the recursion reaches depth O(logW ) until we have reduced the
graph to constant minimum weight and the problem becomes easy.

The above algorithm works in the idealized setting, but what about the unidealized
setting, where the tester can err with constant probability? We could of course first boost
the tester to succeed with high probability. In combination with the above algorithm, this
would solve the Threshold problem in time O(TRSSSP(m,n) log(nW ) logn).
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However, the true complexity of this task lies in avoiding the naive boosting. By precisely
understanding the unidealized setting with constant error probability, we improve the running
time for Threshold to O(TRSSSP(m,n) log(nW )). To this end, it seems that one could apply
the technique of noisy binary search (see e.g. [49, 25, 50]). Unfortunately, the known results
do not seem applicable to our situation, as Lemma 11 only provides a one-sided tester. Our
solution to this final challenge is an innovative combination of the algorithm sketched above
with ideas from noisy binary search. The analysis makes use of drift analysis (see e.g. [41]),
which involves defining a suitable drift function (a quantity which in expectation decreases by
a constant factor in each step and is zero if and only if we found the optimal value M∗) and
an application of a drift theorem (see Theorem 44) to prove that the drift function rapidly
approaches zero.

1.3 Summary of Log Shaves
Finally, to ease the comparison with the BNW algorithm, we compactly list where exactly
we shave the nearly six log-factors. We start with the improvements in the Restricted SSSP
algorithm:

We use Thorup’s priority queue [57] to speed up Dijkstra’s algorithm, see Lemma 25.
This reduces the cost of one log-factor to a loglog-factor.
The Sparse Hitting property of our decomposition scheme (Lemma 8) incurs only an
O(logn) overhead in comparison to the O(log2 n) overhead due to the Low-Diameter
Decomposition in the BNW algorithm.
The Progress property of our decomposition scheme (Lemma 8) ensures that the recursion
depth of our Restricted SSSP algorithm is just O(logn). The analogous recursion depth
in the BNW algorithm is O(log2 n) (depth logn for reducing the number of nodes n times
depth logn for reducing maxv ηG(v)).

Next, we summarize the log-factors shaved in the scaling step:
The BNW algorithm amplifies the success probability of the Restricted SSSP algorithm
by repeating it O(logn) times. We combine the boosting with the scaling steps which
saves this log-factor.
We improve the overall reduction from finding a negative cycle to Restricted SSSP. In
particular, we give an implementation of Threshold which is faster by two log-factors
(see Lemmas 36 and 42). This is where we use an involved analysis via a drift function.

1.4 Open Problems
Our work leaves open several interesting questions. Can our algorithm for negative-weight
Single-Source Shortest Paths be improved further? Specifically:
1. Can the number of logn factors be improved further?

In our algorithm, we suffer three log-factors because of (i) the scaling technique (log(nW ))
to reduce to restricted graphs, and on restricted graphs (ii) the inherent logn overhead of
the graph decomposition and (iii) the recursion depth logn to progressively reduce κ(G),
all of which seem unavoidable. We therefore believe that it is hard to improve upon our
algorithm without substantially changing the framework.

2. Can the loss due to the scaling technique be reduced from log(nW ) to logW?
The classical scaling technique, as a reduction to graphs with weights at least −1, requires
only logW iterations [34]. But in our setting, due to the stronger conditions for restricted
graphs (and due to the boosting), we need log(nW ) iterations. Can we do better?
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3. Can the logW factor be removed from the running time altogether?
That is, is there a strongly polynomial algorithm in near-linear time? In terms of non-
scaling algorithms, the Bellman-Ford algorithm remains state of the art with running
time O(nm). This question has been asked repeatedly and appears to be very hard.

4. Can the algorithm be derandomized?
The fastest deterministic algorithm for negative-weight SSSP remains the O(m

√
n log(W ))

algorithm by [32, 33, 34] and it is open to find a near-linear-time algorithm.

1.5 Outline
This paper is structured as follows. In Section 2 we give some formal preliminaries. In
Section 3 we present our algorithm for negative-weight SSSP in restricted graphs. In Section 4
we extend the algorithm from the previous section to work on general graphs without negative
cycles. In Section 5 we remove this assumption and strengthen the algorithm to find negative
cycles without worsening the running time. In Section 6 we give our result for computing the
minimum cycle mean. Finally, in Section 7 we give our improved results for Low-Diameter
Decompositions in directed graphs.

2 Preliminaries

We write [n] = { 1, . . . , n } and Õ(T ) = T · (log T )O(1). An event occurs with high probability
if it occurs with probability 1−1/nc for an arbitrarily large constant c (here, n is the number
of vertices in the input graph). Unless further specified, our algorithms are Monte Carlo
algorithms that succeed with high probability.

Directed Graphs Throughout we consider directed edge-weighted graphs G = (V,E,w).
Here V = V (G) is the set of vertices and E = E(G) ⊆ V (G)2 is the set of edges. All
edge weights are integers, denoted by w(e) = w(u, v) for e = (u, v) ∈ E(G). We typically
set n = |V (G)| and m = |E(G)|. We write G[C] to denote the induced subgraph with vertices
C ⊆ V (G) and write G \ S to denote the graph G after deleting all edges in S ⊆ E. We
write deg(v) for the (out-)degree of v, that is, the number of edges starting from v.

A strongly connected component (SCC) is a maximal set of vertices C ⊆ V (G) in which all
pairs are reachable from each other. It is known that every directed graph can be decomposed
into a collection of SCCs, and the graph obtained by compressing the SCCs into single nodes
is acyclic. It is also known that the SCCs can be computed in linear time:

I Lemma 12 (Strongly Connected Components, [55]). In any directed graph G, the strongly
connected components can be identified in time O(n+m).

For a set of edges S (such as a path or a cycle), we write w(S) =
∑
e∈S w(e). A

negative cycle is a cycle C with w(C) < 0. For vertices u, v, we write distG(u, v) for the
length of the shortest u-v-path. If there is a negative-weight cycle in some u-v-path, we set
distG(u, v) = −∞, and if there is no path from u to v we set distG(u, v) =∞.

I Definition 13 (Balls). For a vertex v, and a nonnegative integer r, we denote the out-
ball centered at v with radius r by Bout

G (v, r) = {u ∈ V (G) : distG(v, u) ≤ r }. Similarly, we
denote the in-ball centered at v with radius r by Bin

G (v, r) = {u ∈ V (G) : distG(u, v) ≤ r }.
Further, we write ∂Bout

G (v, r) = { (u,w) ∈ E : u ∈ Bout(v, r) ∧w /∈ Bout(v, r) } to denote the
boundary edges of an out-ball, and ∂Bin

G (v, r) = { (u,w) ∈ E : u /∈ Bin(v, r)∧w ∈ Bin(v, r) }
for an in-ball.
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In all these notations, we occasionally drop the subscript G if it is clear from context.

The Single-Source Shortest Paths (SSSP) problem is to compute the distances distG(s, v)
for a designated source vertex s ∈ V (G) to all other vertices v ∈ V (G). When G does not
contain negative cycles, this is equivalent to compute a shortest path tree from s (that is, a
tree in which every s-to-v path is a shortest path in G). For graphs with nonnegative edge
weights, Dijkstra’s classical algorithm solves the SSSP problem in near-linear time. We use
the following result by Thorup, which replaces the logn overhead by log logn (in the RAM
model, see the paragraph on the machine model below).

I Lemma 14 (Dijkstra’s Algorithm, [23, 57]). In any directed graph G with nonnegative edge
weights, the SSSP problem can be solved in time O(m+ n log logn).

I Lemma 15 (Bellman-Ford’s Algorithm, [54, 26, 9, 46]). In any directed graph G, the SSSP
problem can be solved in time O(mn).

Potentials Let G be a directed graph. We refer to functions φ : V (G) → Z as potential
functions. We write Gφ for the graph obtained from G by changing the edge weights
to wφ(u, v) = w(u, v) + φ(u)− φ(v).

I Definition 9 (Equivalent Graphs). We say that two graphs G,G′ over the same set of
vertices and edges are equivalent if (1) any shortest path in G is also a shortest path in G′
and vice versa, and (2) for any cycle C, wG(C) = wG′(C).

I Lemma 16 (Johnson’s Trick, [35]). Let G be a directed graph, and let φ be an arbitrary
potential function. Then wφ(P ) = w(P )+φ(u)−φ(v) for any u-v-path P , and wφ(C) = w(C)
for any cycle C. It follows that G and Gφ are equivalent.

I Lemma 17 ([35]). Let G be a directed graph without negative cycles and let s ∈ V

be a source vertex that can reach every other node. Then, for the potential φ defined as
φ(v) = distG(s, v), it holds that wφ(e) ≥ 0 for all edges e ∈ E.

Machine Model We work in the standard word RAM model with word size Θ(logn+logM),
where n is the number of vertices and M is an upper bound on the largest edge weight in
absolute value. That is, we assume that we can store vertex identifiers and edge weights in a
single machine word, and perform basic operations in unit time.

3 SSSP on Restricted Graphs

In this section we give an efficient algorithm for SSSP on restricted graphs (recall Definition 6).
Specifically, we prove the following theorem:

I Theorem 18 (Restricted SSSP). In a restricted graph G with source vertex s ∈ V (G), we
can compute a shortest path tree from s in time O((m + n log logn) log2 n) with constant
error probability 1

2 . (If the algorithm does not succeed, it returns Fail.)

We develop this algorithm in two steps: First, we prove our decomposition scheme for
restricted graphs (Section 3.1) and then we use the decomposition scheme to build an SSSP
algorithm for restricted graphs (Section 3.2).



K. Bringmann, A. Cassis, N. Fischer 11

Algorithm 1 The graph decomposition. This algorithm Decompose(G, κ) computes a subset of
edges S ⊆ E(G) satisfying the properties in Lemma 8.

1 procedure Decompose(G, κ)
2 Let Lin ⊆ V (G) be the vertices labeled as in-light by Lemma 19 on G
3 Let Lout ⊆ V (G) be the vertices labeled as out-light by Lemma 19 on Grev
4 S ← ∅
5 while there is v ∈ V (G) ∩ Lout do
6 Sample r ∼ Geom(20 logn/κ)
7 S ← S ∪ ∂Bout

G≥0
(v, r)

8 G← G \Bout
G≥0

(v, r)

9 while there is v ∈ V (G) ∩ Lin do
10 Sample r ∼ Geom(20 logn/κ)
11 S ← S ∪ ∂Bin

G≥0
(v, r)

12 G← G \Bin
G≥0

(v, r)
13 return S

3.1 Decomposition for Restricted Graphs
In this section, we prove the decomposition lemma:

I Lemma 8 (Decomposition). Let G be a restricted graph with source vertex s ∈ V (G) and
κ ≥ κ(G). There is a randomized algorithm Decompose(G, κ) running in expected time
O((m+ n log logn) logn) that computes an edge set S ⊆ E(G) such that:

1. Progress: With high probability, for any strongly connected component C in G \ S, we
have (i) |C| ≤ 3

4 |V (G)| or (ii) κ(G[C ∪ { s }]) ≤ κ
2 .

2. Sparse Hitting: For any shortest s-v-path P in G, we have E(|P ∩ S|) ≤ O(logn).

For the proof, we introduce some notation. LetG≥0 denote the graph obtained by replacing
negative edge weights by 0 in the graph G. A vertex v is out-heavy if |Bout

G≥0
(v, κ4 )| > n

2 and
out-light if |Bout

G≥0
(v, κ4 )| ≤ 3n

4 . Note that there can be vertices which are both out-heavy and
out-light. We similarly define in-light and in-heavy vertices with “Bin

G≥0
” in place of “Bout

G≥0
”.

I Lemma 19 (Heavy-Light Classification). There is an algorithm which, given a directed
graph G, labels every vertex correctly as either in-light or in-heavy (vertices which are
both in-light and in-heavy may receive either label). The algorithm runs in time O((m +
n log logn) logn) and succeeds with high probability.

Note that by applying this lemma to the graph Grev obtained by flipping the edge
orientations, we can similarly classify vertices into out-light and out-heavy. We omit the
proof for now as it follows easily from Lemma 52 which we state and prove in Section 7.

We are ready to state the decomposition algorithm: First, label each vertex as out-light or
out-heavy and as in-light or in-heavy using the previous lemma. Then, as long as G contains
a vertex v which is labeled out-light or in-light (say it is out-light), we will carve out a ball
around v. To this end, we sample a radius r from the geometric distribution Geom(20 logn/κ),
we cut the edges ∂Bout

G≥0
(v, r) (that is, the set of edges leaving Bout

G≥0
(v, r)) and we remove all

vertices in Bout
G≥0

(v, r) from the graph. We summarize the procedure in Algorithm 1. In what
follows, we prove correctness of this algorithm.

I Lemma 20 (Sparse Hitting of Algorithm 1). Let P be a shortest s-v-path in G and let S be
the output of Decompose(G, κ). Then E(|P ∩ S|) ≤ O(logn).
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Proof. Focus on any edge e = (x, y) ∈ E(G). We analyze the probability that e ∈ S. We
first analyze the probability of e being included into S in Line 7 (and the same analysis
applies to the case where the edge is included in Line 11). Focus on any iteration of the loop
in Line 5 for some out-light vertex v. There are three options:

x, y 6∈ Bout
G≥0

(v, r): The edge e is not touched in this iteration. It might or might not be
included in later iterations.
x ∈ Bout

G≥0
(v, r) and y 6∈ Bout

G≥0
(v, r): The edge e is contained in ∂Bout

G≥0
(v, r) and thus

definitely included into S.
y ∈ Bout

G≥0
(v, r): The edge e is definitely not included into S. Indeed, e 6∈ ∂Bout

G≥0
(v, r), so

we do not include e into S in this iteration. Moreover, as we remove y from G after this
iteration, we will never consider the edge e again.

Recall that the radius r is sampled from the geometric distribution Geom(p) for p :=
20 logn/κ. Therefore, we have that

P(e ∈ S) ≤ max
v∈V

P
r∼Geom(p)

(y 6∈ Bout
G≥0

(v, r) | x ∈ Bout
G≥0

(v, r))

= max
v∈V

P
r∼Geom(p)

(r < distG≥0(v, y) | r ≥ distG≥0(v, x))

≤ max
v∈V

P
r∼Geom(p)

(r < distG≥0(v, x) + wG≥0(e) | r ≥ distG≥0(v, x))

By the memoryless property of geometric distributions, we may replace r by the (nonnegative)
random variable r′ := r − distG≥0(v, x):

= max
v∈V

P
r′∼Geom(p)

(r′ < wG≥0(e))

= P
r′∼Geom(p)

(r′ < wG≥0(e))

≤ p · wG≥0(e).

The last inequality follows since we can interpret r′ ∼ Geom(p) as the number of coin tosses
until we obtain heads, where each toss is independent and lands heads with probability p.
Thus, by a union bound, P(r′ < wG≥0(e)) is upper bounded by the probability that at least
one of wG≥0(e) coin tosses lands heads.

Now consider a shortest s-v-path P in G. Recall that wG(P ) ≤ 0, since G is a restricted
graph. Hence, P contains at most κ(G) ≤ κ edges with negative weight (i.e., with weight
exactly −1). It follows that wG≥0(P ) ≤ κ and thus finally:

E(|P ∩ S|) =
∑
e∈P

P(e ∈ S) =
∑
e∈P

p · wG≥0(e) ≤ p · wG≥0(P ) ≤ pκ = O(logn). J

In what follows, we will need the following lemma.

I Lemma 21. Let G be a directed graph. Then minC w̄(C) = minZ w̄(Z) where C ranges
over all cycles and Z ranges over all closed walks in G.

Proof. Write c = minC w̄(C) and z = minZ w̄(Z). It suffices to prove that c ≤ z. Take the
closed walk Z witnessing z with the minimum number of edges. If Z is a cycle, then we
clearly have c ≤ z. Otherwise, Z must revisit at least one vertex and can therefore be split
into two closed walks Z1, Z2. By the minimality of Z we have w̄(Z1), w̄(Z2) > z. But note
that

z · |Z| = w(Z) = w(Z1) + w(Z2) > z · |Z1|+ z · |Z2| = z · |Z|,

a contradiction. J



K. Bringmann, A. Cassis, N. Fischer 13

I Lemma 22 (Progress of Algorithm 1). Let S be the output of Decompose(G, κ). Then,
with high probability, any strongly connected component C in G\S satisfies (i) |C| ≤ 3

4 |V (G)|
or (ii) κ(G[C]) ≤ κ

2 .

Proof. Throughout, condition on the event that the heavy-light classification was successful
(which happens with high probability). Observe that whenever we carve out a ball Bout

G≥0
(v, r)

and include its outgoing edges ∂Bout
G≥0

(v, r) into S, then any two vertices x ∈ Bout
G≥0

(v, r) and
y 6∈ Bout

G≥0
(v, r) cannot be part of the same strongly connected component in G \ S (as there

is no path from x to y). The same argument applies to Bin
G≥0

(v, r).
Therefore, there are only two types of strongly connected components: (i) Those contained

in Bout
G≥0

(v, r) or Bin
G≥0

(v, r), and (ii) those in the remaining graph after it no longer contains
light vertices. We argue that each component of type (i) satisfies that |C| ≤ 3

4 |V (G)| (with
high probability) and that each component of type (ii) satisfies κ(G[C]) ≤ κ

2 .
In case (i) we have |C| ≤ |Bout

G≥0
(v, r)|. Since v is out-light, it follows that |C| ≤ 3

4 |V (G)|
whenever r ≤ κ

4 . This event happens with high probability as:

P
r∼Geom(20 logn/κ)

(
r >

κ

4

)
≤
(

1− 20 logn
κ

)κ
4

≤ exp(−5 logn) ≤ n−5.

The number of iterations is bounded by n, thus by a union bound we never have r > κ
4 with

probability at least 1− n−4. A similar argument applies if we carve Bin
G≥0

(v, r) when v is
in-light.

Next, focus on case (ii). Let C be a strongly connected component in the remaining
graph G after carving out all balls centered at light vertices. Suppose that κ(G[C]) > κ

2 .
We will construct a closed walk Z in G with mean weight w̄(Z) < 1, contradicting the
assumption that G is restricted by Lemma 21. Let P be the s-v-path in G[C ∪ { s }]
of nonpositive weight witnessing the largest number of negative edges (i.e., the path
that witnesses κ(G[C ∪ { s }])), and let u be the first vertex (after s) on that path P .
Let P1 be the u-v-path obtained by removing the s-u-edge from P . Since the s-u-edge has
weight 0, we have that w(P1) ≤ 0 and that P1 contains more than κ

2 negative-weight edges.
Since u, v are both out-heavy and in-heavy vertices in the original graph G, we have that
|Bout
G≥0

(v, κ4 )|, |Bin
G≥0

(u, κ4 )| > n
2 . It follows that these two balls must intersect and that there

exists a v-u-path P2 of length w(P2) ≤ κ
4 + κ

4 = κ
2 . Combining P1 and P2, we obtain a closed

walk Z with total weight w(Z) ≤ κ
2 containing more than κ

2 (negative-weight) edges. It
follows that w̄(Z) < 1 yielding the claimed contradiction. J

Proof of Lemma 8. The correctness is immediate by the previous lemmas: Lemma 22 proves
the progress property, and Lemma 20 the sparse hitting property. Next, we analyze the
running time. Computing the heavy-light classification takes time O((m+ n log logn) logn)
due to Lemma 19. Sampling each radius r from the geometric distribution Geom(20 logn/κ)
runs in expected constant time in the word RAM with word size Ω(logn) [13], so the
overhead for sampling the radii is O(n) in expectation. To compute the balls we use
Dijkstra’s algorithm. Using Thorup’s priority queue [57], each vertex explored in Dijkstra’s
takes time O(log logn) and each edge time O(1). Since every vertex contained in some ball
is removed from subsequent iterations, a vertex participates in at most one ball. Note that
a naive implementation of this would reinitialize the priority queue and distance array at
each iteration of the while-loop. To avoid this, we initialize the priority queue and array of
distances once, before the execution of the while-loops. Then, at the end of an iteration of
the while-loop we reinitialize them in time proportional to the removed vertices and edges



14 Negative-Weight Single-Source Shortest Paths in Near-Linear Time: Now Faster!

(this is the same approach as in the BNW algorithm [11]). Thus, the overall time to compute
all the balls is indeed O(m+ n log logn). J

3.2 Proof of Theorem 18
With the graph decomposition in hand, we can present our full algorithm for Restricted
SSSP. The overall structure closely follows the BNW algorithm (see [11, Algorithm 1]).

We start with the following crucial definition.

I Definition 23. Let G be a directed graph with a designated source vertex s. For any vertex
v ∈ V (G), we denote by ηG(v) the smallest number of negative-weight edges in any shortest
s-v-path.

The next proposition captures the relationship between the parameters κ(G) and ηG(·)
when G is restricted (see Definitions 7 and 23).

I Proposition 24. Let G be a restricted graph with source vertex s. Then, for every vertex
v ∈ V it holds that ηG(v) ≤ κ(G).

Proof. Fix a vertex v. Let P be a shortest s-v path witnessing ηG(v) (see Definition 23).
Since G is restricted, it does not contain negative cycles and thus P is a simple path.
Furthermore, since there is an edge from s to v of weight 0, it follows that wG(P ) ≤ 0. Recall
that κ(G) is the maximum number of negative edges in any simple path which starts at s
and has nonpositive weight (see Definition 7). Therefore, it follows that ηG(v) ≤ κ(G). J

Next, we use two lemmas from [11]:

I Lemma 25 (Dijkstra with Negative Weights, similar to [11, Lemma 3.3]). Let G be a directed
graph with source vertex s ∈ V (G) that does not contain a negative cycle. There is an
algorithm that computes a shortest path tree from s in time O(

∑
v(deg(v) + log logn) · ηG(v)).

(If G contains a negative cycle, the algorithm does not terminate.)

The main differences to [11, Lemma 3.3] are that we use a faster priority queue for
Dijkstra and that [11, Lemma 3.3] is restricted to graphs of constant maximum degree.
Therefore, we devote Appendix A to a self-contained proof of Lemma 25.

I Lemma 26 (DAG Edges, [11, Lemma 3.2]). Let G be a directed graph with nonnegative
edge weights inside its SCCs. Then we can compute a potential function φ such that Gφ has
nonnegative edge weights (everywhere) in time O(n+m).

Proof Sketch. For the complete proof, see [11, Lemma 3.2]. The idea is to treat the graph
as a DAG of SCCs, and to assign a potential function φ to every SCC such that the DAG
edges become nonnegative. One way to achieve this is by computing a topological ordering,
and by assigning φ(v) to be W times the rank of v’s SCC in that ordering (here, −W is the
smallest weight in G). Then Gφ satisfies the claim. J

The Algorithm We are ready to state the algorithm; see Algorithm 2 for the pseudocode.
Recall that κ(G) is the maximum number of negative edges in any path P starting at s
with w(P ) ≤ 0 (Definition 7). If κ(G) ≤ 2, we run Lemma 25 to compute the distances
from s. Otherwise, we start with applying our graph decomposition. That is, we compute a
set of edges S, such that any strongly connected component C in the graph G \ S is either
small or has an improved κ-value. This constitutes enough progress to solve the induced
graphs G[C ∪ { s }] recursively. The recursive calls produce shortest path trees and thereby a
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Algorithm 2 Solves the negative-weight SSSP problem on restricted graphs. The procedure
RestrictedSSSP(G, κ) takes a restricted graph G and an upper bound κ ≥ κ(G), and computes a
shortest path tree from the designated source vertex s.

1 procedure RestrictedSSSP(G, κ)
2 if κ ≤ 2 then
3 Run Lemma 25 on G from s and return the computed shortest path tree
4 Compute S ← Decompose(G, κ) (see Lemma 8)
5 Compute the strongly connected components C1, . . . , C` of G \ S (see Lemma 12)
6 for i← 1, . . . , ` do
7 if |Ci| ≤ 3n

4 then κi ← κ else κi ← κ
2

8 Recursively call RestrictedSSSP(G[Ci ∪ { s }], κi)
9 Let φ1(v) = distG[Ci∪{ s }](s, v) for all v ∈ Ci
10 Run Lemma 26 on (G \ S)φ1 to obtain a potential φ2
11 Run Lemma 25 on Gφ2 and return the computed shortest path tree

potential function φ1 such that Gφ1 has nonnegative edge weights inside each SCC. We then
add back the missing edges by first calling Lemma 26 (to fix the edges e 6∈ S between strongly
connected components) and then Lemma 25 (to fix the edges e ∈ S). The correctness proof
is easy:

I Lemma 27 (Correctness of Algorithm 2). Let G be an arbitrary directed graph (not necessarily
restricted), and let κ be arbitrary. Then, if RestrictedSSSP(G, κ) terminates, it correctly
computes a shortest path tree from the designated source vertex s.

Proof. If κ ≤ 2 and the call in Line 3 terminates, then it correctly computes a shortest path
tree due to Lemma 25. If κ > 2, then in Line 10 we compute a potential function φ2 and in
Line 11 we run Lemma 25 to compute a shortest path tree in the graph Gφ2 . Assuming that
Lemma 25 terminates, this computation is correct since Gφ2 is equivalent to G. J

I Lemma 28 (Running Time of Algorithm 2). Let G be a restricted graph with κ(G) ≤ κ.
Then RestrictedSSSP(G, κ) runs in expected time O((m+ n log logn) log2 n).

Proof. We first analyze the running time of a single call to Algorithm 2, ignoring the
time spent in recursive calls. For the base case, when κ(G) ≤ 2, the running time of
Line 3 is O(m + n log logn) by Lemma 25 and Proposition 24. Otherwise, the call to
Decompose(G, κ) in Line 4 runs in time O((m+n log logn) logn) by Lemma 8. Computing
the strongly connected components in G \ S is in linear time O(m+ n), and so is the call to
Lemma 26 in Line 10.

Analyzing the running time of Line 11 takes some more effort. Recall that ηGφ2
(v) is

the minimum number of negative edges in any s-v path in Gφ2 (see Definition 23). Our
intermediate goal is to bound E(ηGφ2

(v)) = O(logn) for all vertices v. Let S be the set of
edges computed by the decomposition, as in the algorithm. We proceed in three steps:

Claim 1: Gφ1 \ S has nonnegative edges inside its SCCs. The recursive calls in Line 8
correctly compute the distances by Lemma 27. Hence, for any two nodes u, v ∈ Ci,
we have that wφ1(u, v) = w(u, v) + distG[Ci∪{ s }](s, u) − distG[Ci∪{ s }](s, v) ≥ 0, by the
triangle inequality.
Claim 2: Gφ2 \ S has only nonnegative edges. This is immediate by Lemma 26.
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Claim 3: For every node v we have E(ηGφ2
(v)) ≤ O(logn). Let P be a shortest s-v-path

in G. Since G and Gφ2 are equivalent, P is also a shortest path in Gφ2 . By the previous
claim, the only candidate negative edges in P are the edges in S. Therefore, we have that
E(ηGφ2

(v)) ≤ E(|P ∩ S|) = O(logn), by Lemma 8.
The expected running time of Line 11 is thus bounded by

O

 ∑
v∈V (G)

(deg(v) + log logn) ·E(ηGφ2
(v))


= O

 ∑
v∈V (G)

(deg(v) + log logn) · logn


= O((m+ n log logn) logn).

Therefore, a single execution of Algorithm 2 runs in time O((m + n log logn) logn); let c
denote the hidden constant in the O-notation.

We finally analyze the total running time, taking into account the recursive calls. We
inductively prove that the running time is bounded by c(m+ n log logn) logn · log4/3(nκ).

We claim that for each recursive call on a subgraph G[Ci ∪ { s }], where Ci is a strongly
connected component in G \ S, it holds that (i) G[Ci ∪ { s }] is a restricted graph and that
(ii) κ(G[Ci ∪ { s }]) ≤ κi. To see (i), observe that any subgraph of G containing s is also
restricted. To show (ii), we distinguish two cases: Either |Ci| ≤ 3n

4 , in which case we trivially
have κ(G[Ci ∪ { s }]) ≤ κ(G) ≤ κ = κi. Or |Ci| > 3n

4 , and in this case Lemma 8 guarantees
that κ(G[Ci ∪ { s }]) ≤ κ

2 = κi. It follows by induction that each recursive call runs in
time c · (|E(G[Ci ∪ { s }])| + |Ci| log logn) logn · log4/3(|Ci|κi). Moreover, observe that in
either case we have |Ci|κi ≤ 3

4nκ. Therefore the total time can be bounded by

c(m+ n log logn) logn+
∑̀
i=1

c · (|E(G[Ci ∪ { s }])|+ |Ci| log logn) logn · log4/3(|Ci|κi)

≤ c(m+ n log logn) logn

+
∑̀
i=1

c · (|E(G[Ci ∪ { s }])|+ |Ci| log logn) logn · (log4/3(nκ)− 1)

≤ c(m+ n log logn) logn+ c(m+ n log logn) logn · (log4/3(nκ)− 1)

= cm logn log logn · log4/3(nκ),

where in the third step we used that
∑
i |E(G[Ci ∪ { s }])| ≤ m and that

∑
i |Ci| ≤ n. This

completes the running time analysis. J

Proof of Theorem 18. This proof is almost immediate from the previous two Lemmas 27
and 28. In combination, these lemmas prove that Algorithm 2 is a Las Vegas algorithm
for the Restricted SSSP problem which runs in expected time O((m + n log logn) log2 n).
By interrupting the algorithm after twice its expected running time (and returning Fail
in that case), we obtain a Monte Carlo algorithm with worst-case running time O((m +
n log logn) log2 n) and error probability 1

2 as claimed. J

We remark that Algorithm 2 is correct even if the input graph G is not restricted—
therefore, whenever G contains a negative cycle, the algorithm cannot terminate.
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Algorithm 3 One step of the scaling algorithm. Given a graph G with minimum weight greater
than −3W , Scale(G) computes a potential φ such that Gφ has minimum weight greater than −2W .
See Lemma 30.

1 procedure Scale(G)
2 Let W be such that all weights in G are greater than −3W
3 Let H be a copy of G with edge weights wH(e) = dwG(e)/W e+ 1, and add

an artificial source vertex s to H with weight-0 edges to all other vertices
4 Compute a shortest path tree from s in the restricted graph H using Theorem 18
5 Let φ be the potential defined by φ(v) = W · distH(s, v)
6 return φ

4 SSSP on Graphs without Negative Cycles

In this section we present the O((m+ n log logn) log2(n) log(nW ))-time algorithm for SSSP
on graphs G without negative cycles. Later in Section 5, we will remove the assumption
that G does not contain negative cycles, and strengthen the algorithm to find a negative
cycle if it exists.

The main idea is to use scaling and some tricks for probability amplification in order
to extend our algorithm for restricted graphs developed in Section 3. More precisely, we
use the standard scaling technique [32, 33, 34, 11] to reduce the computation of SSSP in
an arbitrary graph (without negative cycles) to the case of restricted graphs. Formally, we
prove the following theorem:

I Theorem 29 (Scaling Algorithm for SSSP). There is a Las Vegas algorithm which, given
a directed graph G without negative cycles and with a source vertex s ∈ V (G), computes a
shortest path tree from s, running in time O(TRSSSP(m,n) · log(nW )) with high probability
(and in expectation).

One-Step Scaling The idea of the scaling algorithm is to increase the smallest weight in G
step-by-step, while maintaining an equivalent graph. The following Lemma 30 gives the
implementation of one such scaling step as a direct reduction to Restricted SSSP.

I Lemma 30 (One-Step Scaling). Let G be a directed graph that does not contain a negative
cycle and with minimum weight greater than −3W (for some integer W ≥ 1). There is an
algorithm Scale(G) computing φ such that Gφ has minimum weight greater than −2W ,
which succeeds with constant probability (if the algorithm does not suceed, it returns Fail)
and runs in time O(TRSSSP(m,n)).

Proof. We construct a restricted graph H as a copy of G with modified edge weights
wH(e) = dwG(e)/W e+ 1. We also add a source vertex s to H, and put edges of weight 0
from s to all other vertices. We compute a shortest path tree from s in H using Theorem 18,
and return the potential φ defined by φ(v) = W · distH(s, v). For the pseudocode, see
Algorithm 3. Note that the running time is dominated by computing shortest paths in a
restricted graph.

To prove that the algorithm is correct, we first check that H is indeed restricted (see
Definition 6):

Each edge weight satisfies wH(e) = dwG(e)/W e+ 1 ≥ d(−3W + 1)/W e+ 1 = −1.
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Algorithm 4 The fast SSSP algorithm. In a given graph G without negative cycles, it computes
a shortest path tree in G from the given source vertex s.

1 procedure SSSP(G, s)
2 Let −W be the smallest edge weight in G
3 Let G0 be a copy of G with edge weights wG0(e) = 4n · wG(e)
4 for i← 0, . . . , L− 1 where L = Θ(log(nW )) do
5 φi ← Scale(Gi) (rerun the algorithm until it succeeds)
6 Gi+1 ← (Gi)φi
7 Let G∗ be a copy of GL with negative weights replaced by 0
8 return a shortest path tree in G∗ from s, computed by Dijkstra’s algorithm

Consider any cycle C in H. Recall that wG(C) ≥ 0 (as G does not contain negative
cycles), and thus

w̄H(C) = wH(C)
|C|

= 1
|C|

∑
e∈C

wH(e) = 1 + 1
|C|

∑
e∈C

⌈
wG(e) · 1

W

⌉
≥ 1 + wG(C)

W |C|
≥ 1.

In particular, the minimum cycle mean in H is at least 1.
Finally, we have artificially added a source vertex s to H with weight-0 edges to all other
vertices.

It remains to prove that the potential φ defined by φ(v) = W · distH(s, v) satisfies
that Gφ has minimum edge weight more than −2W . Consider any edge e = (u, v). Since by
definition wH(e) < wG(e) · 1

W + 2, we have that wG(e) > W · (wH(e)− 2). It follows that

wGφ(e) = wG(e) + φ(u)− φ(v)
= wG(e) +W · distH(s, u)−W · distH(s, v)
> −2W +W · wH(e) +W · distH(s, u)−W · distH(s, v)
≥ −2W.

In the last step we have used the triangle inequality distH(s, v) ≤ distH(s, u) + wH(u, v).
Finally, we argue that the algorithm succeeds with constant probability. Observe that

the algorithm succeeds if the computation of the shortest path tree from s succeeds in Line 4
(indeed, all other steps are deterministic). Since H is restricted, Theorem 18 guarantees that
this holds with constant probability, and if it does not suceed it returns Fail, completing
the proof. J

The Complete Scaling Algorithm We are ready to state the algorithm SSSP(G, s) which
implements Theorem 29. We construct a graph G0 by multiplying every edge weight of G
by 4n. Then, for i = 0, . . . , L− 1 where L = Θ(log(nW )), we call Scale(Gi) (we repeat the
call until it succeeds) to obtain a potential φi and set Gi+1 := (Gi)φi . Next, we construct
a graph G∗ as a copy of GL, with every negative edge weight replaced by 0. Finally, we
compute a shortest path tree in G∗ using Dijkstra’s algorithm. For the details, see the
pseudocode in Algorithm 4.

I Lemma 31 (Running Time of Algorithm 4). If G does not contain a negative cycle, then
SSSP(G, s) runs in time O(TRSSSP(m,n)·log(nW )) with high probability (and in expectation).

Proof. We analyze the running time of the for-loop, which runs for L = O(log(nW )) iterations.
Each iteration repeatedly calls Scale(Gi) until one such call succeeds. By Lemma 30, a
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single call succeeds with constant probability (say, 1
2 ) and runs in time O(TRSSSP(m,n)). We

can therefore model the running time of the i-th iteration by O(Xi ·TRSSSP(m,n)) where Xi ∼
Geom( 1

2 ) is a geometric random variable. Therefore, by Chernoff’s bound, the time of the
for-loop is bounded by O(

∑L−1
i=0 Xi · TRSSSP(m,n)) = O(TRSSSP(m,n) · L) with probability

at least 1− exp(−Ω(L)) ≥ 1− n−Ω(1). Finally, observe that TRSSSP(m,n) = Ω(m+ n), and
therefore the call to Dijkstra’s algorithm in Line 8 is dominated by the time spent in the
for-loop. J

I Lemma 32 (Correctness of Algorithm 4). If G does not contain a negative cycle, then
Algorithm 4 correctly computes a shortest path tree from s.

Proof. Consider an execution of Algorithm 4. We prove that any shortest path in G∗ is a
shortest path in G, and hence the shortest path tree from s computed in G∗ is also a shortest
path tree from s in G, implying correctness. We proceed in three steps:

As G0 is a copy of G with scaled edge weights wG0(e) = 4n · wG(e), any path P also has
scaled weight wG0(P ) = 4n · wG(P ) and therefore G and G0 are equivalent.
Since the graphs G0, . . . , GL are obtained from each other by adding potential functions,
they are equivalent (see Lemma 16). Moreover, by the properties of Lemma 30, the
smallest weight −W increases by a factor 2

3 in every step until GL has smallest weight at
least −3. Here we use that L = Ω(log(nW )) for sufficiently large hidden constant.
G∗ is the graph obtained from GL by replacing negative-weight edges by 0-weight edges.
Consider any non-shortest u-v-path P ′ in GL. We will show that P ′ is also not a shortest
u-v path in G∗, which completes the argument. Towards that end, let P be any shortest
u-v-path. Recall that GL equals (G0)φ for some potential function φ. Therefore:

wGL(P ′)− wGL(P )
= wG0(P ′) + φ(u)− φ(v)− wG0(P )− φ(u) + φ(v)
= wG0(P ′)− wG0(P )
≥ 4n,

where the last inequality uses that the weights of P and P ′ in G0 differ by at least 4n
(this is why we scaled the edge weights by 4n in G0). Finally, recall that by transitioning
to G∗ we can increase the weight of any path by at most 3 · (n− 1). It follows that

wG∗(P ′)− wG∗(P ) ≥ wGL(P ′)− wGL(P )− 3 · (n− 1) ≥ 4n− 3 · (n− 1) > 0,

and therefore, P ′ is not a shortest u-v-path in G∗. Hence, a shortest path in G∗ is also a
shortest path in GL, and since GL is equivalent to G, it is also a shortest path in G. J

The proof of Theorem 29 is immediate by combining Lemmas 31 and 32.
We end this section with the following lemma, which will be useful in the next section.

I Lemma 33. Let G be a directed weighted graph and s ∈ V (G). If SSSP(G, s) terminates,
then G does not contain negative cycles.

Proof. Assume for the sake of contradiction that G has a negative cycle C and that
SSSP(G, s) terminates. Consider the graph GL which is constructed in the last iteration of
the for-loop in Line 4. Note that GL is equivalent to G0, since it was obtained by adding
potential functions. Observe that the weight of C in G0 and GL is at most −4n, since it
was negative in G and we scaled by a factor 4n (see Lemma 16). Recall that we chose
L = Θ(log(nW )) with large enough hidden constant so that the smallest weight in GL is
at least −3. This implies that the weight of the minimum cycle in GL is at least −3n, a
contradiction. J
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5 Finding Negative Cycles

In Section 4 we developed an algorithm to compute a shortest path tree with high probability
in a graph without negative cycles. In this section, we extend that result to find a negative
cycle if it exists. As a warm-up, we observe that the SSSP algorithm developed in Theorem 29
can be used to detect the presence of a negative cycle with high probability:

I Corollary 34. Let G be a directed graph. Then, there is an algorithm DetectNegCycle(G)
with the following properties:

If G has a negative cycle, then the algorithm reports NegCycle.
If G does not have a negative cycle, then with high probability it returns NoNegCycle
It runs in time O(TRSSSP(m,n) log(nW )).

Proof. The algorithm adds a dummy source s connected with 0-weight edges to all vertices
in G and runs SSSP(G, s). If it finishes within its time budget, we return NoNegCycle,
otherwise we interrupt the computation and return NegCycle. The running time follows
immediately by the guarantee of Theorem 29.

Now we argue about correctness. If G contains no negative cycles, then the algorithm
returns NoNegCycle with high probability due to Theorem 29. If G contains a negative
cycle, then Lemma 33 implies that SSSP(G, s) does not terminate, so in this case we always
report NegCycle. J

Finding the negative cycle though, requires some more work. Towards this end, we follow
the ideas of [11]. They reduced the problem of finding a negative cycle to a problem called
Threshold, which we define next. We will use the following notation: given a directed
graph G and an integer M , we write G+M to denote the graph obtained by adding M to
every edge weight of G.

I Definition 35 (Threshold). Given a directed graph G, Threshold(G) is the smallest
integer M∗ ≥ 0 such that G+M∗ contains no negative cycle.

For a graph G, we write TThreshold(m,n) for the optimal running time of an algorithm
computing Threshold(G) with high probability.

The remainder of the section is organized as follows: in Section 5.1 we give the reduction
from finding negative cycles to Threshold. In Section 5.2 we give an implementation of
Threshold which has an extra log-factor compared to the promised Theorem 1, but it
has the benefit of being simple. Finally, in Section 5.3 we give a faster (but more involved)
implementation of Threshold which yields Theorem 1.

5.1 Reduction to Threshold
In this section we restate the reduction given by Bernstein et al. in [11, Section 7.1] from
finding a negative cycle if it exists, to Threshold and RestrictedSSSP (see their algorithm
SPLasVegas).

I Lemma 36 (Finding Negative Cycles). Let G be a directed graph with a negative cycle.
There is a Las Vegas algorithm FindNegCycle(G) which finds a negative cycle in G, and
runs in time O(TRSSSP(m,n) log(nW ) + TThreshold(m,n)) with high probability.
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Algorithm 5 The procedure to find a negative cycle. Given a graph G containing a negative
cycle, it finds one such negative cycle C. See Lemma 36.

1 procedure FindNegCycle(G)
2 Let G0 be a copy of G with wG0(e) = (n3 + 1) · wG(e)
3 Let M∗ ← Threshold(G0)
4 Let G1 be a copy of G+M∗

0 where we add an artificial source
vertex s to G1 with weight-0 edges to all other vertices

5 Run SSSP(G1, s) (see Algorithm 4) and set φ(v) = distG1(s, v)
6 Let G2 be the graph (G1)φ where we remove all edges with weight greater than n
7 if there is a cycle C in G2 then
8 if C is negative in G then return C
9 return FindNegCycle(G) (i.e., restart)

Proof. See the pseudocode in Algorithm 5 for a concise description. We start by defining
a graph G0 which is a copy of G but with edge weights multiplied by n3 + 1. Then we
compute M∗ using Threshold(G0), and let G1 be G+M∗

0 . Next, we add a dummy source s
to G1 connected with 0-weight edges to all other vertices, and run SSSP on the resulting
graph from s. We then use the distances computed to construct a potential φ, and construct
a graph G2 by applying the potential φ to G1 and subsequently removing all the edges with
weight larger than n. Finally, we check if G2 contains any cycle (of any weight) and if so,
check it has negative weight in the original graph G and return it. Otherwise, we restart the
algorithm from the beginning.

The correctness is obvious: When the algorithm terminates, it clearly returns a negative
cycle. The interesting part is to show that with high probability the algorithm finds a
negative cycle C without restarting. The call to Threshold(G0) in Line 3 returns the
smallest M∗ ≥ 0 such that G0 contains no negative cycle, with high probability. In this case,
by definition, G1 does not contain a negative cycle, and therefore by Theorem 29 the call to
SSSP(G1, s) correctly computes a shortest path tree from s. From now on, we condition on
these two events.

B Claim 37. It holds that M∗ > n2.

Proof. Let C be a simple cycle in G with minimum (negative) weight. Since G1 = G+M∗
0

contains no negative cycles, the weight of C in G1 is 0 ≤ w1(C) = w0(C) + M∗|C|. The
claim follows by noting that w0(C) < −n3 due to the scaling in Line 2, and that |C| ≤ n

because C is simple. C

Next, we argue that a cycle of minimum weight in G remains a cycle in G2, and conversely
that any simple cycle in G2 corresponds to a negative weight cycle in G. Note that this is
enough to prove that the algorithm terminates with high probability without a restart.

B Claim 38. Let C be a simple cycle in G of minimum weight. Then, C is a cycle in G2.

Proof. First note that the weight of C in G+M∗
0 (and thus also in G1) is at most n. This

holds since M∗ is the smallest integer such that G+M∗
0 contains no negative cycles, which

means that w0(C)− |C| < 0. Second, note that since Line 5 correctly computes a shortest
path tree in G1, it holds that the edge weights in (G1)φ are all non-negative (by Lemma 17).
Moreover, the weight of C in (G1)φ is the same as in G1 (by Lemma 16). Thus, we conclude
that the removal of the edges of weight greater than n in (G1)φ to obtain G2 leaves C
untouched. C
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B Claim 39. Any cycle C ′ in G2 has negative weight in G.

Proof. Note that w2(C ′) ≤ n2 since every edge inG2 has weight at most n. Moreover, sinceG2
is obtained from G1 by adding a potential, it holds that w2(C ′) = w1(C ′) (by Lemma 16).
Therefore, w0(C ′) = w1(C ′)−M∗|C ′| ≤ n2 −M∗ < 0 where the last inequality holds since
M∗ > n2 by Claim 37. C

Finally, we analyze the running time. The call to Threshold(G0) succeeds with high
probability (see Definition 35). Conditioned on this, G1 contains no negative cycles. Thus
by Theorem 29, the call to SSSP(G, s) runs in time O(TRSSSP(m,n) log(nW )) with high
probability. Note that the remaining steps of the algorithm take time O(m). Therefore, we
conclude that the overall running time is O(TRSSSP(m,n) log(nW ) + TThreshold(m,n)) with
high probability. J

5.2 Simple Implementation of Threshold
In this section we give a simple implementation of Threshold which combined with Lemma 36
yields an algorithm to find negative cycles in time O(TRSSSP(m,n) logn log(nW )). This
procedure shaves one log-factor compared to [11] (see their algorithm FindThresh in
Lemma 7.2). Later, in Section 5.3, we give an improved but more intricate algorithm.

As a building block, we will use the routine Scale from Lemma 30. The following lemma
boosts the probability of success of Scale and uses a different parameterization of the
minimum weight in the input graph, which will streamline our presentation.

I Lemma 40 (Test Scale). Let G be a directed graph with minimum weight at least −W
where W ≥ 24, and let 0 < δ < 1 be a parameter. There is an algorithm TestScale(G, δ)
with the following properties:

If G does not contain a negative cycle, then with probability at least 1− δ it succeeds and
returns a potential φ such that Gφ has minimum weight at least − 3

4W . If it does not
suceed, it returns Fail.
It runs in time O(TRSSSP(m,n) · log(1/δ)).

Proof. We run Scale(G) (see Lemma 30) for O(log(1/δ)) repetitions. Each execution either
returns a potential φ, or it fails. We return Fail if and only if all these repetitions fail. The
running time analysis is immediate by Lemma 30.

Now we analyze correctness. First we look at the success probability. Lemma 30 guarantees
that if G does not contain a negative cycle, then each invocation to Scale(G) returns a
potential φ with constant probability. Thus, in this case, the probability that all O(log(1/δ))
repetitions fail and we return Fail is at most δ, as stated. Next, we analyze the increase in
the minimum weight of Gφ. Recall that the minimum weight in G is at least −W . Let k be
the largest integer such that W ≥ 3k, and let −W ′ denote the minimum weight of Gφ. In
particular, the minimum weight in G is greater than −3(k+ 1), so Lemma 30 guarantees that

−W ′ > −2(k + 1) ≥ − 2
3W − 2 ≥ − 2

3W −
1
12W = − 3

4W,

where the last inequality uses the assumption that W ≥ 24. J

I Lemma 41 (Slow Threshold). Let G be a directed graph. There is an algorithm computing
Threshold(G) (Definition 35) which succeeds with high probability and runs in worst-case
time O(TRSSSP(m,n) logn log(nW )).
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Algorithm 6 The slow implementation of Threshold. Given a graph G, it computes the smallest
integer M∗ ≥ 0 such that G+M∗ contains no negative cycle. See Lemma 41.

1 procedure SlowThreshold(G)
2 Let −W be the smallest weight in G
3 if W ≤ 48 then
4 for t← 47, . . . , 1, 0 do
5 if DetectNegCycle(G+t) = NegCycle then return t+ 1
6 return 0
7 else
8 Let M ← dW2 e
9 if TestScale(G+M , n−10) = φ then return SlowThreshold(Gφ)
10 else return M + SlowThreshold(G+M )

Proof. We summarize the pseudocode in Algorithm 6. Let −W be the smallest weight in G.
If W ≤ 48 (i.e., all weights are at least −48) we clearly have that the correct answer lies in
the range 0 ≤M∗ ≤ 48. We brute-force the answer by exhaustively checking which graph
G+47, . . . , G+0 is the first one containing a negative cycle. For this test we use the algorithm
DetectNegCycle(G). Corollary 34 guarantees that it reports correct answers with high
probability.

If W > 48, we make progress by reducing the problem to another instance with larger
minimum weight. Let M = dW2 e, and run TestScale(G+M , δ) for δ := 1/n10. We
distinguish two cases based on the outcome of TestScale:

Case 1: TestScale(G+M , δ) = φ for a potential function φ. Then recursively compute
and return SlowThreshold(Gφ). First note that this is correct, i.e., that the answer
is unchanged by recursing on Gφ, since the potential does not change the weight of any
cycle (see Lemma 16). Second, note that we make progress by increasing the smallest
weight in Gφ to least − 11

12W : To see this, note that the minimum weight of G+M is at
least − 1

2W , and thus, Lemma 40 guarantees that the smallest weight in G+M
φ is at least

− 3
8W . Therefore, it follows that the smallest weight in Gφ is at least

− 3
8W −M = 3

8W − d
1
2W e ≥ −

7
8W − 1 > − 7

8W −
1
24W = − 11

12W,

where the second inequality uses the assumption that W > 24.
Case 2: TestScale(G+M , δ) = Fail. By Lemma 40, if G+M does not contain a negative
cycle then with high probability the output is not Fail. Conditioned on this event, we
conclude that G+M contains a negative cycle. Thus, we know that the optimal answer
M∗ satisfies M∗ ≥M , and therefore we return M + SlowThreshold(G+M ). Note that
this also improves the most negative edge weight to −W +M ≥ − 11

12W .

We claim that the running time is bounded by O(TRSSSP(m,n) logn log(nW )). To see
this, note that in the base case, when W ≤ 48, the algorithm calls DetectNegCycle(G)
and therefore takes time O(TRSSSP(m,n) · log(nW )) (see Corollary 34). We claim that the
higher levels of the recursion take time O(TRSSSP(m,n) logn logW ) in total. Note that each
such level takes time O(TRSSSP(m,n) · logn) due to the call to TestScale (Lemma 40) and
thus, it suffices to bound the recursion depth by O(logW ). To this end, observe that we
always recur on graphs for which W has decreased by a constant factor.

Finally note that each call to TestScale succeeds with high probability, and we make one
call for each of the O(logW ) recursive calls. Thus, by a union bound the algorithm succeeds
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with high probability. (Strictly speaking, for this union bound we assume that logW ≤ n; if
instead logW > n, we can simply use Bellman-Ford’s algorithm.) J

5.3 Fast Implementation of Threshold
In this section we give the fast implementation of Threshold.

I Lemma 42 (Fast Threshold). Let G be a directed graph. There is an algorithm computing
Threshold(G) (see Definition 35) which suceeds with high probability, and runs in worst-case
time O(TRSSSP(m,n) log(nW )).

The algorithm is intricate, so we start with a high level description to convey some
intuition.

High-Level Idea Let ∆ be a parameter and let M∗ ≥ 0 be the right threshold. Let us look
at what happens if we make a call to TestScale(G+W−∆, δ), where 1 − δ is the success
probability and −W is the minimum edge weight in G. If G+W−∆ does not have negative
cycles, then Lemma 40 guarantees that with probability at least 1− δ we obtain a potential φ.
On the other hand, if G+W−∆ contains a negative cycle, then we have no guarantee from
Lemma 40. That is, the algorithm might return a potential, or it might return Fail. The
upside is that as long as we obtain a potential, regardless whether there is a negative cycle
or not, we can make progress by (additively) increasing the minimum edge weight by ≈ ∆.
Moreover, if we obtain Fail, then we conclude that with probability at least 1 − δ the
graph G+W−∆ contains a negative cycle. This suggests the following idea. We make a call
to TestScale(G+W−∆, δ), and consider the two outcomes:

1. TestScale(G+W−∆, δ) = φ. Then, we set G := Gφ and increase ∆ := 2∆.
2. TestScale(G+W−∆, δ) = Fail. Then, we decrease ∆ := ∆/2.

If we are in Case 1, then the minimum edge weight −W ′ of Gφ is increased by ∆. This
in turn, decreases the gap W ′ −M∗ (note that at all times M∗ ≤ W ′). Thus, larger ∆
implies larger progress in decreasing W ′−M∗. This is why in this case we double ∆. On the
other hand, if we are in Case 2 then by the guarantee of Lemma 40, we conclude that with
probability at least 1− δ the graph G+W−∆ contains a negative cycle. Intuitively, this means
that ∆ is too large. Therefore, we halve ∆ to eventually make progress in Case 1 again.

In short, we know that when G+W−∆ does not have negative cycles, or equivalently
W −M∗ ≥ ∆, then with probability at least 1 − δ we will make progress in Case 1 by
decreasing the gap W −M∗. On the other hand, if we are in Case 2 and G+W−∆ has a
negative cycle, or equivalently W −M∗ < ∆, then we will make progress by decreasing ∆.

Perhaps surprisingly, we will show that this idea can be implemented by choosing δ = 0.01,
and not 1/ poly(n) as in the implementation of Lemma 41 (which was the reason for getting
an extra O(logn)-factor there). For this, we will formalize the progress as some drift
function that decreases in expectation in each iteration, and then apply a drift theorem
(see Theorem 44).

The Algorithm Now we formalize this approach. We proceed in an iterative way. At
iteration t, we have a graph Gt with minimum weight −Wt, and we maintain a parameter ∆t.
We make a call to Scale(G+Wt−∆t , δ) with δ := 0.01. If we obtain a potential φ as answer,
we set Gt+1 := (Gt)φ and ∆t+1 := 2∆. Otherwise, we set Gt+1 := Gt and ∆t+1 := 1

2∆t.
After T = Θ(log(nW )) iterations, we stop and return WT as the answer. The complete
pseudocode (which additionally handles some corner cases) is in Algorithm 7.
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Algorithm 7 The fast implementation of Threshold. Given a graph G, it computes the smallest
integer M∗ ≥ 0 such that G+M∗ contains no negative cycle. See Lemma 42.

1 procedure FastThreshold(G)
2 Let G0 ← G and ∆0 ← 2
3 T ← Θ(log(nW )) with sufficiently large hidden constant
4 for t← 0, . . . , T − 1 do
5 Let −Wt be the smallest edge weight in Gt
6 if Wt ≤ 24 then
7 for j ← 23, . . . , 1, 0 do
8 if FindNegCycle(G+j

t ) = NegCycle then return j + 1
9 if TestScale(G+Wt−∆t

t , 0.01) = φ then
10 Gt+1 ← (Gt)φ, ∆t+1 ← 2 ·∆t

11 else
12 Gt+1 ← Gt, ∆t+1 ← max{1, ∆t

2 }
13 return WT

To quantify the progress made by the algorithm, we define the following drift function at
iteration t:

Dt := (Wt −M∗)20 ·max
{

2∆t

Wt −M∗
,
Wt −M∗

2∆t

}
, (1)

Observe that we always have ∆t ≥ 1 and Wt ≥M∗ throughout the algorithm. To cover the
case Wt = M∗ (where the above expression leads to a division by 0), formally we actually
define the drift function by

Dt := max
{

(Wt −M∗)19 · 2∆t,
(Wt −M∗)21

2∆t

}
. (2)

For the sake of readability, in the following we work with (1), with the understanding that
formally we mean (2).

We will show that Dt decreases by a constant factor (in expectation) in each iteration of
the for-loop in Line 4. Note that when Dt reaches 0, then we have that Wt = M∗, so we are
done.

I Lemma 43 (Negative Drift). For any d > 0 and t ≥ 0 it holds that

E(Dt+1 | Dt = d) ≤ 0.7 · d.

Before proving Lemma 43, let us see how to obtain Lemma 42 from it. For this, we will
use the following tool:

I Theorem 44 (Multiplicative Drift, see e.g. [41, Theorem 18]). Let (Xt)t≥0 be a sequence of
non-negative random variables with a finite state space S of non-negative integers. Suppose
that X0 = s0, and there exists δ > 0 such that for all s ∈ S \ {0} and all t ≥ 0, E(Xt+1 |
Xt = s) ≤ (1− δ)s. Then, for all r ≥ 0,

P(Xr > 0) ≤ e−δ·r · s0.

Proof. By Markov’s inequality, P(Xr > 0) = P(Xr ≥ 1) ≤ E(Xr). By applying the bound
E(Xt+1 | Xt = d) ≤ (1− δ)d for r times, we obtain that

P(Xr > 0) ≤ (1− δ)r · s0 ≤ exp(−δr) · s0. J
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Proof of Lemma 42. See Algorithm 7 for the pseudocode. First we analyze the running time.
During each iteration of the for-loop, it either holds that Wt ≤ 24 and we solve the problem
directly using at most 24 calls to DetectNegCycle, or we make a call to TestScale. Each
call to TestScale takes time O(TRSSSP(m,n)) by Lemma 40, and we only make the calls
to DetectNegCycle once which take total time O(TRSSSP(m,n) logn) by Corollary 34.
Since T = Θ(log(nW )), the overall running time is bounded by O(TRSSSP(m,n) logn +
TRSSSP(m,n) log(nW )), as claimed.

Now we analyze correctness. Note that at every iteration, Gt is equivalent to G since
the only way we modify the graph is by adding potentials (see Lemma 16). Thus, if at
some point we have that Wt ≤ 24 then the correct answer lies in the range 0 ≤ M∗ ≤ 24.
The for-loop in Line 7 exhaustively checks which is the correct value by making calls to
DetectNegCycle. By Corollary 34, this is correct with high probability.

Now suppose the algorithm does not terminate in Line 8. We claim that the final drift
DT is zero with high probability. Note that this implies correctness, since DT = 0 if and
only if WT = M∗ (to see this, observe that ∆T ≥ 1 due to Line 12). To prove the claim, we
will use Theorem 44. Note that Lemma 43 gives us that E(Dt+1 | Dt = d) ≤ 0.7d. Moreover,
we can bound the initial drift D0 as

D0 = (W −M∗)20 ·max
{

2∆0

W −M∗
,
W −M∗

2∆0

}
≤ (W −M∗)21 · 2∆0 ≤ 4W 21.

Hence, Theorem 44 yields that P(DT > 0) ≤ exp(−0.7T ) · 4W 21. Since T = Θ(log(nW )),
we conclude that P(DT > 0) ≤ n−Ω(1), which finishes the proof. J

Proof of Lemma 43. Focus on iteration t of the for-loop in Line 4. Let E1 be the event that
we obtain a potential φ (i.e. that the if-statement in Line 9 succeeds) and let E2 := ¬E1
be the complement. We start by observing how the parameters Wt+1 and ∆t+1 change
depending on whether E1 or E2 occur.

B Claim 45. If E1 occurs, then Wt+1 ≤Wt − ∆t

4 , and ∆t+1 = 2∆t.

Proof. If the call to TestScale in Line 9 returns a potential φ, then we set Gt+1 = (Gt)φ
and ∆t+1 = 2∆t. Observe that the minimum weight of G+Wt−∆t

t is ∆t. Hence, Lemma 40
guarantees that the minimum weight of (Gt)+Wt−∆t

φ is at least − 3
4∆t. Since Gt+1 = (Gt)φ

is defined by substracting Wt −∆t from every edge weight in (Gt)+Wt−∆t

φ , we obtain that
−Wt+1 ≥ −Wt + 1

4∆t. C

B Claim 46. If E2 occurs, then Wt+1 = Wt and ∆t+1 = max{1,∆t/2} and Dt+1 ≤ 2Dt.

Proof. The first two statements are immediate by Line 12. Towards the third statement, for
the function f(x) := max{x, 1/x} we observe that if x, y > 0 differ by at most a factor 2
then also f(x), f(y) differ by at most a factor 2. Now we use that Dt = (Wt −M∗)20 ·
f(2∆t/(Wt −M∗)). Since ∆t ≥ 1, it holds that ∆t,∆t+1 differ by at most a factor 2, and
thus Dt, Dt+1 differ by at most a factor 2. C

With these claims, we proceed to bound the drift Dt+1 when Dt > 0. Recall that we
defined

Dt = (Wt −M∗)20 ·max
{

2∆t

Wt −M∗
,
Wt −M∗

2∆t

}
. (1)

Note that it always holds that Wt ≥M∗ and Wt+1 ≥M∗. Moreover, since Dt > 0, we can
assume that Wt −M∗ > 0, since otherwise Wt −M∗ = 0 and hence Dt = 0. We proceed
making a case distinction based on the term that achieves the maximum in (1).
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Case 1 ∆t ≥ 1
2 (Wt −M∗): Then, we have that Dt = (Wt −M∗)19 · 2∆t. If E1 occurs,

then by Claim 45 it holds that ∆t+1 ≥ ∆t ≥ 1
2 (Wt −M∗) ≥ 1

2 (Wt+1 −M∗). Therefore,
using (1) we can bound the drift Dt+1 by

Dt+1 = (Wt+1 −M∗)19 · 2∆t+1

≤ (Wt −M∗ − ∆t

4 )19 · 4∆t

≤ (Wt −M∗ − 1
8 (Wt −M∗))19 · 4∆t

≤ ( 7
8 )19 · 2Dt ≤ 0.16Dt,

where we used Claim 45 in the first inequality, and the second inequality follows since by
the assumption of Case 1 we have that ∆t

4 ≥
1
8 (Wt −M∗).

If E2 occurs instead, we make a further case distinction:
Case 1.1 ∆t > Wt −M∗: Note that if ∆t = 1, then since Wt and M∗ are integers it

follows that Wt = M∗, and consequently Dt = 0, which contradicts the assumption
that Dt > 0. Therefore, we can assume that ∆t ≥ 2. In particular, by Claim 46 we
have ∆t+1 = 1

2∆t >
1
2 (Wt −M∗) = 1

2 (Wt+1 −M∗). Thus, by (1) we can express the
drift Dt+1 as

Dt+1 = (Wt+1 −M∗)19 · 2∆t+1 = (Wt −M∗)19 ·∆t = Dt

2 .

Case 1.2 ∆t ≤ Wt − M∗: Observe that in this case G+Wt−∆t contains no negative
cycle. Moreover, we can assume that Wt > 24 since otherwise the problem is solved
directly in Line 7. Therefore, by Lemma 40 we have that P(E2) ≤ 0.01. Moreover, by
by Claim 46 we have Dt+1 ≤ 2Dt.

Combining the above, we conclude that for Case 1 it holds that

E(Dt+1 | Dt) ≤ P(E1) E(Dt+1 | Dt, E1) + P(E2) E(Dt+1 | Dt, E2)
≤ 1 · 0.16Dt + max

{
1 · 1

2Dt, 0.01 · 2Dt

}
≤ 0.66Dt.

Case 2 ∆t <
1
2 (Wt−M∗): Then, it holds that Dt = (Wt−M∗)21/(2∆t). If E2 occurs, then

by the same argument as in Case 1.2 we have that Dt+1 ≤ 2Dt and P(E2) ≤ 0.01.
If E1 occurs instead, then we make a further case distinction:
Case 2.1 ∆t+1 <

1
2 (Wt+1 −M∗): Then using (1), it holds that

Dt+1 = (Wt+1 −M∗)21

2∆t+1
≤ (Wt −M∗)21

4∆t
= Dt

2 ,

where the inequality holds due to Claim 45.
Case 2.2 ∆t+1 ≥ 1

2 (Wt+1 −M∗): Then it holds that Dt+1 = (Wt+1 −M∗)19 · 2∆t+1.
Since by the assumption of Case 2 we have (Wt −M∗)/(2∆t) ≥ 1 and by Claim 45 we
have ∆t+1 = 2∆t, we can bound Dt+1 as

Dt+1 = (Wt+1 −M∗)19 · 2∆t+1

≤ (Wt+1 −M∗)19 · 4∆t ·
(
Wt −M∗

2∆t

)2

= (Wt+1 −M∗)19 · (Wt −M∗)2 · 1
∆t
. (3)
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By Claim 45, we have that Wt+1 ≤Wt − ∆t

4 . Hence, can bound Wt+1 −M∗ as

Wt+1 −M∗ = 16
17 (Wt+1 −M∗) + 1

17 (Wt+1 −M∗)
≤ 16

17 (Wt −M∗ − ∆t

4 ) + 1
17 (Wt+1 −M∗)

= 16
17 (Wt −M∗)− 16

17 ·
∆t

4 + 1
17 (Wt+1 −M∗). (4)

By Claim 45 and the assumption of Case 2.2, we have that 2∆t = ∆t+1 ≥ 1
2 (Wt+1−M∗).

This implies that ∆t

4 ≥
1
16 (Wt+1 −M∗). Plugging this into (4), we obtain that

Wt+1 −M∗ ≤ 16
17 (Wt −M∗)− 1

17 (Wt+1 −M∗) + 1
17 (Wt+1 −M∗)

= 16
17 (Wt −M∗). (5)

Finally, we combine (3) and (5) to obtain that

Dt+1 ≤ (Wt+1 −M∗)19(Wt −M∗)2 · 1
∆t

≤ ( 16
17 )19(Wt −M∗)21 · 1

∆t

= ( 16
17 )19 · 2 ·Dt

≤ 0.65Dt

Combining the subcases considered, we conclude that for Case 2 it holds that

E(Dt+1 | Dt) ≤ P(E1) E(Dt+1 | Dt, E1) + P(E2) E(Dt+1 | Dt, E2)
≤ 1 ·max

{ 1
2Dt, 0.65Dt

}
+ 0.01 · 2Dt ≤ 0.67 ·Dt.

Since cases 1 and 2 are exhaustive, the proof is concluded. J

5.4 Putting Everything Together
Now we put the pieces together to prove our main theorem.

I Theorem 1 (Negative-Weight SSSP). There is a Las Vegas algorithm which, given a
directed graph G and a source node s, either computes a shortest path tree from s or finds a
negative cycle in G, running in time O((m+n log logn) log2 n log(nW )) with high probability
(and in expectation).

Proof. The algorithm alternatingly runs the following two steps, and interupts each step
after it exceeds a time budget of O((m+ n log logn) log2 n log(nW )):

1. Run SSSP(G, s). If this algorithm finishes in time and returns a shortest path tree, we
check that the shortest path tree is correct (by relaxing all edges and testing whether
any distance in the tree changes) and return this shortest path tree in the positive case.
Otherwise, we continue with step 2.

2. Run FindNegCycle(G) (using Lemma 42 to implement Threshold). If this algorithm
finishes in time and returns a negative cycle, we verify that the output is indeed a negative
cycle and return this negative cycle in the positive case. Otherwise, we continue with
step 1.

The algorithm is clearly correct: Whenever it terminates, it reports a correct solution. Let
us focus on the running time. We distinguish two cases: First, assume that G does not contain
a negative cycle. By Theorem 29 step 1 runs in time O((m+n log logn) log2 n log(nW )) with
high probability and is not interrupted in this case. Moreover, the SSSP algorithm returns a
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correct shortest path tree with high probability, and thereby terminates the algorithm after
just one iteration of step 1.

On the other hand, suppose that G contains a negative cycle. The algorithm runs step 1
which is wasted effort in this case, but costs only time O((m+ n log logn) log2 n log(nW )).
Afterwards, by Lemmas 36 and 42, a single execution of step 2 runs within the time budget
with high probability. Moreover, since Lemma 36 is a Las Vegas algorithm, it returns a true
negative cycle and the algorithm terminates.

The previous two paragraphs prove that the algorithm terminates after successively
running step 1 and step 2 in time O((m+ n log logn) log2 n log(nW )) with high probability.
Since we independently repeat these steps until the algorithm terminates, the same bound
applies to the expected running time. J

Next, we prove Theorem 2 using the previous Theorem 1 as a black-box.

I Theorem 2 (Negative-Weight Single-Source Distances). There is a Las Vegas algorithm,
which, given a directed graph G and a source s ∈ V (G), computes the distances from s to
all other vertices in the graph (these distances are possibly −∞ or ∞), running in time
O((m+ n log logn) log2 n log(nW )) with high probability (and in expectation).

Proof. First, remove all vertices from the graph not reachable from s and return distance ∞
for each such vertex. Then compute the set of strongly connected components C1, . . . , C`
in G in time O(m+n). For every SCC Ci, run our SSSP algorithm from Theorem 1 on G[Ci]
to detect whether it contains a negative cycle. For every vertex contained in a SCC with
a negative cycle, we return distance −∞ (as this SCC is reachable from s and contains a
negative cycle, we can loop indefinitely). Similarly, report −∞ for all vertices reachable from
one of the −∞-distance vertices. After removing all vertices at distance −∞, the remaining
graph does no longer contain a negative cycle. We may therefore run the SSSP algorithm on
the remaining graph to compute the missing distances.

Let ni and mi denote the number of vertices and edges in the subgraph G[Ci]. Then the
total running time is

O

(
TSSSP(m,n,W ) +

∑
i

TSSSP(mi, ni,W )
)

= O

((
m+ n log logn+

∑
i

mi +
∑
i

ni log logn
)

logn2 log(nW )
)

= O((m+ n log logn) log2 n log(nW )),

using that
∑
imi ≤ m and that

∑
i ni ≤ n. J

6 Minimum Cycle Mean

In this section we prove Theorem 3, i.e., we present the O((m+n log logn) log2(n) log(nW ))-
time algorithm to compute the minimum cycle mean of a graph G.

Given a directed graph G, we denote by µ∗(G) the value of the minimum cycle mean,
i.e., µ∗(G) := minC w̄(C). To develop our algorithm, the following characterization of the
minimum cycle mean will be useful:

I Lemma 47. Let G be a directed graph. Then,

µ∗(G) = −min{Q ∈ Q | G+Q contains no negative cycle}.
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Proof. By definition, we have that µ∗(G) = minC w̄(C). Equivalently, µ∗(G) is the largest
rational number µ such that µ ≤ w(C)/|C| holds for all cycles C in G. In particular,
w(C) − µ · |C| ≥ 0 holds for all cycles C, which is equivalent to G−µ not having negative
cycles. J

Recall that Threshold(G), computes the minimum integer M∗ ≥ 0 such that G+M∗

contains no negative cycle (Definition 35). This is very similar to the characterization of the
minimum cycle mean given by Lemma 47, except that the latter minimizes over rational
numbers that are not necessarily non-negative. To overcome this, we will use the following
simple propositions:

I Proposition 48. Let G be a directed graph and let a ≥ 1, b ≥ 0 be integers. Let H be a
copy of G where each edge has weight wH(e) := a ·wG(e) + b. Let C be any cycle in G. Then,
w̄H(C) = a · w̄G(G) + b.

Proof. Note that the weight of C in H is exactly wH(C) = a · wG(C) + b · |C|. Therefore,
the cycle mean of C in H equals w̄H(C) = a · wG(C)/|C|+ b = a · w̄G(C) + b. J

I Proposition 49. Let C and C ′ be two cycles in a directed graph G with distinct means,
i.e. w̄(C) 6= w̄(C ′). Then, |w̄(C)− w̄(C ′)| ≥ 1/n2.

Proof. By definition, we can express |w̄(C)− w̄(C ′)| as∣∣∣∣w(C)
|C|

− w(C ′)
|C ′|

∣∣∣∣ =
∣∣∣∣w(C)|C ′| − w(C ′)|C|

|C| · |C ′|

∣∣∣∣ ≥ 1
|C||C ′|

,

where we used that w̄(C) 6= w̄(C ′). Since |C|, |C ′| ≤ n, we have that this is at least 1/n2. J

We will use the following lemma, which is a Las Vegas implementation of Lemma 42.

I Lemma 50. Let G be a directed graph. There is a Las Vegas algorithm which computes
Threshold(G) (see Definition 35) and runs in time O((m + n log logn) log2 n log(nW ))
with high probability (and in expectation).

Proof. The algorithm computes M∗ = Threshold(G) using Lemma 42. By definition,
this returns the smallest integer M∗ such that G+M∗ contains no negative cycles with high
probability (recall Definition 35). To turn it into a Las Vegas algorithm, we need to verify
that the output is correct. For this, we add a source vertex s connected with 0-weight edges
to all other vertices and use Theorem 1 to test if G+M∗ contains no negative cycles and
that G+M∗−1 contains negative cycles. If either test fails, the algorithm restarts.

The correctness of this procedure follows since Theorem 1 is a Las Vegas algorithm.
For the running time, observe that call to Lemma 42 (using the bound on TRSSSP(m,n)
of Theorem 18) and the calls to Theorem 1 run in time O((m+ n log logn) log2 n log(nW )).
Moreover, Lemma 42 guarantees that the valueM∗ is correct with high probability. Thus, the
algorithm terminates in O((m+ n log logn) log2 n log(nW ))-time with high probability. J

I Theorem 3 (Minimum Cycle Mean). There is a Las Vegas algorithm, which given a directed
graph G finds a cycle C with minimum mean weight w̄(C) = minC′ w̄(C ′), running in
time O((m+ n log logn) log2 n log(nW )) with high probability (and in expectation).
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Algorithm 8 Given a graph G the procedure returns cycle C of minimum mean weight with high
probability. See Theorem 3.

1 procedure MinCycleMean(G)
2 Let L be the largest weight in G
3 Let H be a copy of G with edge weights wH(e)← n2 · wG(e)− n3L.
4 Compute M∗ ← Threshold(H) using Lemma 50
5 C ← FindNegCycle(H+M∗−1)
6 return C

Proof. We construct a graph H by modifying each edge weight of G to n2w(e)−n3L, where L
is the largest edge-weight in G. Then, we compute M∗ := Threshold(H) using Lemma 50.
Finally, we find a negative cycle in H+M∗−1 using Lemma 36. See Algorithm 8 for the
pseudocode.

The running time is dominated by the calls to Threshold and FindNegCycle.
Using Lemma 50 the call to Threshold takes time O((m + n log logn) log2 n log(nW ))
with high probability. By Lemma 36 the call to FindNegCycle, (using Lemma 42
to implement Threshold and Theorem 18 to bound TRSSSP(m,n)) takes time O((m +
n log logn) log2 n log(nW )) with high probability as well. Thus, the algorithm runs in the
claimed running time.

To analyze the correctness, note that Proposition 48 implies that a cycle C is the minimizer
of w̄G(C) if and only if it is the minimizer of w̄H(C). Thus, it suffices to find a cycle of
minimum mean in H. We will argue that the cycle found by the algorithm is the minimizer.

B Claim 51. The value M∗ computed in Line 4 satisfies M∗ = d−µ∗(H)e.

Proof. We observe that the minimum cycle mean in H is non-positive, i.e., µ∗(H) ≤ 0. To see
this, note that any cycle C in G has weight at most wG(C) ≤ nL. Thus, by the way we set
the weights in H, any cycle in H has weight wH(C) = n2wG(C)− n3L|C| ≤ n3L− n3L = 0.
This means that in Lemma 47 we can minimize over Q ≥ 0, i.e. that

µ∗(H) = −min{0 ≤ Q ∈ Q | H+Q contains no negative cycle}. (6)

Recall that by definition of Threshold(H), M∗ is the smallest non-negative integer
such that H+M∗ has no negative cycles, i.e.

M∗ = min{0 ≤M ∈ Z | H+M contains no negative cycle}. (7)

Combining (6) and (7), we conclude that M∗ = d−µ∗(H)e, as claimed. C

It follows that H+M∗−1 indeed contains a negative cycle. By Lemma 50, the call
to Threshold is correct. Hence, H+M∗−1 contains a negative cycle and the call to
FindNegCycle is correct by Lemma 36. Let C be the cycle obtained in Line 5. Since it
has negative weight in H+M∗−1, its weight in H is less than −|C|(M∗ − 1). Hence, it holds
that w̄H(C) < −M∗ + 1. Moreover, since H+M∗ contains no negative cycle, every cycle C ′
has mean weight w̄H(C ′) ≥ −M∗.

Now consider a minimum mean cycle C ′. As we have seen, we have

−M∗ ≤ w̄H(C ′) ≤ w̄H(C) < −M∗ + 1. (8)

Assume for the sake of contradiction that w̄H(C) 6= w̄H(C ′). Then by Proposition 49 we have
that |w̄G(C)−w̄G(C ′)| ≥ 1/n2, and by Proposition 48 it holds that w̄H(C) = n2 ·wG(C)−n3L
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and w̄H(C ′) = n2·wG(C ′)−n3L. Combining these facts, we obtain that |w̄H(C)−w̄H(C ′)| ≥ 1.
This contradicts Equation (8). Hence, we obtain w̄H(C) = w̄H(C ′), so the computed cycle C
is a minimizer of w̄H(C) and thus also of w̄G(C). J

7 Low-Diameter Decompositions

In this section we establish our strong Low-Diameter Decomposition (LDD). Recall that in a
strong LDD (as defined in Definition 4), the goal is to select a small set of edges S such that
after removing the edges in S, each strongly connected component in the remaining graph
has bounded diameter. Our result is the following theorem, which proves that strong LDDs
exist (which was known by [11]) and can be efficiently computed (which was open):

I Theorem 5 (Strong Low-Diameter Decomposition). There is a strong Low-Diameter
Decomposition with overhead O(log3 n), computable in time O((m+ n log logn) log2 n) with
high probability (and in expectation).

7.1 Heavy and Light Vertices
In the algorithm we will distinguish between heavy and light vertices, depending on how
large the out- and in-balls of these vertices are. To classify vertices as heavy or light, we rely
on the following simple lemmas:

I Lemma 52 (Estimate Ball Sizes). Let ε > 0. Given a directed graph G with nonnegative edge
weights and r > 0, we can approximate |Bout(v, r)| with additive error εn for each vertex v.
With high probability, the algorithm succeeds and runs in time O(ε−2 logn · (m+ n log logn)).

Proof. Sample random vertices v1, . . . , vk ∈ V (G) (with repetition) for k := 5ε−2 logn.
Compute Bin(vi, r) for all i ∈ [k]. Using Dijkstra’s algorithm with Thorup’s priority
queue [23, 57], this step runs in time O(k · (m+n log logn)) = O(ε−2 logn · (m+n log logn)).
Now return for each vertex v, the estimate

b(v) := n

k
· |{ i ∈ [k] : v ∈ Bin(vi, r) }|.

We claim that this estimate is accurate. Let Ii denote the indicator variable whether
vi ∈ Bout(v, r), and let I :=

∑k
i=1 Ii. Then the random variable b(v) is exactly

b(v) = n

k
· I.

Note that P(Ii = 1) = |Bout(v, r)|/n. In expectation we therefore have

E(b(v)) = n

k
·
k∑
i=1

P(Ii = 1) = n

k
· k
n
· |Bout(v, r)| = |Bout(v, r)|.

Using Chernoff’s bound we have P(|I −E(I)| > a) < 2 exp(−2a2/k). For a := εk we obtain

P(|b(v)−E(b(v))| > εn) = P(|I −E(I)| > εk) < 2 exp(−2ε2k) ≤ 2n−10.

Hence, with high probability the computed estimates are accurate. J

I Lemma 53 (Heavy/Light Classification). There is an algorithm Light(G, r) that, given a
directed graph G and a radius r, returns a set L ⊆ V (G) with the following properties:

For all v ∈ L, it holds that |Bout(v, r)| ≤ 7
8n.
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For all v ∈ V (G) \ L, it holds that |Bout(v, r)| ≥ 3
4n.

Light(G, r) runs in time O((m+ n log logn) logn).

Proof. We run the previous Lemma 52 with parameter ε := 1
16 , and let L be the subset

of vertices with estimated ball sizes at most 13
16n. With high probability, the estimates

have additive error at most εn = 1
16n. Therefore any vertex v ∈ L satisfies |Bout(v, r)| ≤

13
16n+ 1

16n = 7
8n and any vertex v ∈ V (G) \ L satisfies |Bout(v, r)| ≥ 13

16n−
1
16n = 3

4n. The
running time is dominated by Lemma 52 which runs in time O((m + n log logn) logn) as
claimed. J

7.2 The Strong Low-Diameter Decomposition
The strong LDD works as follows: Let R = D

10 logn . First, we run Lemma 53 on G with
radius R to compute a set Lout and we run Lemma 53 on the reversed graph with radius R
to compute a set Lin. We refer to the vertices in Lout as out-light, to the vertices in Lin as
in-light, and to the vertices in V (G) \ (Lout ∪ Lin) as heavy. Then we distinguish two cases:

The heavy case: If there is a heavy vertex v ∈ V (G) \ (Lout ∪ Lin), we compute the
set of vertices W that both reach v and are reachable from v within distance R, i.e.,
W = Bout(v,R) ∩Bin(v,R). Let T out , T in denote the shortest path trees from v to W
and from W to v, respectively. Let C be the union of vertices in T out and T in. We
collapse C (that is, we replace all vertices in C by a single super-vertex) and consider the
remaining (multi-)graph G/C. We recursively compute the strong LDD in G/C, resulting
in a set of edges S. In S we uncollapse all edges involving the super-vertex (i.e., for any
edge (v, u) ∈ E(G) which became an edge (C, u) in the collapsed graph, we revert (C, u)
back to (v, u)) and return S.

The light case: If there is no heavy vertex, then each vertex is out-light or in-light. For
each vertex v (which is out-light, say) we can therefore proceed in the standard way:
Sample a radius r from a geometric distribution with parameter O(logn/D), cut the edges
leaving Bout(v, r) and recur on both the inside and the outside of the ball Bout(v, r).

We summarize the pseudocode with the precise parameters in Algorithm 9. Throughout
this section, we denote by n0 the size of the original graph and by n the size of the current
graph G (in the current recursive call of the algorithm).

I Lemma 54 (Strong Diameter of Algorithm 9). With high probability, StrongLDD(G,D)
either returns Fail or a set of edges S ⊆ E(G) such that every strongly connected component C
of G \ S has diameter at most D, i.e., maxu,v∈C distG[C](u, v) ≤ D.

Proof. With high probability, the heavy-light classification works correctly in the execution
of StrongLDD(G,D) (and all recursive calls). We condition on this event and treat the
classification as perfect.

As before, we have to distinguish the heavy and the light case. In the heavy case, let v be
the heavy vertex and let W,T out , T in, C be as in the algorithm. We claim that the induced
subgraph G[C] has diameter at most 4R. Take any vertex x ∈ C; it suffices to prove that
both distG[C](v, x) ≤ 2R and distG[C](x, v) ≤ 2R. We show the former claim and omit the
latter. There are two easy cases: Either we have x ∈ T out in which case we immediately have
that distG[C](v, x) ≤ R (as any path in T out has length at most R). Or we have x ∈ T in, in
which case there exists some intermediate vertex y ∈W with distG[C](y, x) ≤ R. But then
also distG[C](v, y) ≤ R and in combination we obtain distG[C](v, x) ≤ 2R as claimed.
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Algorithm 9 The implementation of the strong Low-Diameter Decomposition (see Theorem 5)
that either returns a set of edges S ⊆ E(G) or Fail.

1 procedure StrongLDD(G,D)
2 if n ≤ 100 then return E(G)
3 Let R := D

10 logn
4 Compute Lout ← Light(G,R)
5 Compute Lin ← Light(Grev, R) (here, Grev is the graph G with reversed edges)

(The heavy case)
6 if there is a heavy vertex v ∈ V (G) \ (Lout ∪ Lin) then
7 Let W ← Bout(v,R) ∩Bin(v,R)
8 Compute shortest path trees T out from v to W , and T in from W to v
9 Let C be the union of vertices in T out , T in

10 S ← StrongLDD(G/C,D − 4R)
11 return S after uncollapsing all edges

(The light case)
12 S ← ∅
13 while there is v ∈ V (G) ∩ Lout do
14 r ∼ Geom(R−1 · 10 logn0)
15 if r > R then return Fail
16 S ← S ∪ ∂Bout(v, r) ∪ StrongLDD(G[Bout(v, r)], D)
17 G← G \Bout(v, r)
18 while there is v ∈ V (G) ∩ Lin do
19 r ∼ Geom(R−1 · 10 logn0)
20 if r > R then return Fail
21 S ← S ∪ ∂Bin(v, r) ∪ StrongLDD(G[Bin(v, r)], D)
22 G← G \Bin(v, r)
23 return S

Recall that the algorithm collapses the vertices in C, and computes a strong LDD S on
the remaining multigraph with parameter D−4R. We assume by induction that the recursive
call computes a correct strong decomposition (for G/C). To see that the decomposition
is also correct for G, take any two vertices u, v in the same strongly connected component
in G \ S. We have that dist(G/C)\S(u, v) ≤ D − 4R. If the shortest u-v-path in G/C does
not touch the supervertex, then we immediately have distG\S(u, v) ≤ D − 4R ≤ D. If the
shortest path touches the supervertex, then we can replace the path through C by a path of
length diam(G[C]) ≤ 4R. It follows that distG\S(u, v) ≤ D − 4R+ 4R ≤ D.

The correctness of the light case is exactly as in the known LDD by [11], and similar to
Lemma 8: For every ball Bout(v, r) (or Bin(v, r)) that the algorithm carves out, we remove
all outgoing edges ∂Bout(v, r) (or all incoming edges ∂Bin(v, r), respectively). Thus, two
vertices x, y in the remaining graph are part of the same strongly connected component only
if both x, y ∈ Bout(v, r) or both x, y 6∈ Bout(v, r). The algorithm continues the loop on all
vertices outside Bout(v, r) and recurs inside Bout(v, r). By induction, both calls succeed and
reduce the diameter to at most D.

Eventually the algorithm reaches a base case where G contains only a constant number
of nodes and edges—in this case, we can select S to be the whole set of edges. J

I Lemma 55 (Sparse Hitting of Algorithm 9). For any edge e ∈ E(G), the probability that e
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is contained in the output of StrongLDD(G,D) is at most O(w(e)
D · log3(n0) + 1

poly(n) ).

Proof. In this proof we condition on the event that the initially computed heavy/light
classification is correct. Since this event happens with high probability, we only increase the
hitting probabilities by 1

poly(n) for all edges.
Let p(n,w,D) be an upper bound on the probability that an edge of weight w is contained

in the output of StrongLDD(G,D), where G is an n-vertex graph. We inductively prove
that p(n,w,D) ≤ w

D · 1000 log(n0) log2(n) which is as claimed. We distinguish the heavy and
light case in Algorithm 9.

The Light Case. Suppose that the algorithm enters the light case (that is, there is no vertex
classified as heavy). Focus on some edge e = (x, y) of weight w = w(e). We distinguish three
cases for each iteration. Suppose that the current iteration selects an out-light vertex v.

x, y 6∈ Bout(v, r): The edge e is not touched in this iteration and remains a part of the
graph G. It may or may not be included in the output, depending on the future iterations.
x ∈ Bout(v, r) and y 6∈ Bout(v, r): In this case e ∈ ∂Bout(v, r) and thus the edge is
included into S.
y ∈ Bout(v, r): The edge is not included in ∂Bout(v, r). It may however be included
in the recursive call on Bout(v, r). In the recursive call we have that |Bout(v, r)| ≤
|Bout(v,R)| ≤ 7n

8 , as r ≤ R (in the opposite case the algorithm fails and no edge is
returned) and by Lemma 53 as v is out-light.

Combining these cases, we obtain the following recursion for p(n,w,D). In the calculation
we abbreviate q := R−1 · 10 log(n0):

p(n,w,D) ≤ max
v∈V (G)

P
r∼Geom(q)

(y 6∈ Bout(v, r) | x ∈ Bout(v, r)) + p( 7n
8 , w,D)

≤ max
v∈V (G)

P
r∼Geom(q)

(r < dist(v, y) | r ≥ dist(v, x)) + p( 7n
8 , w,D)

≤ max
v∈V (G)

P
r∼Geom(q)

(r < dist(v, x) + w | r ≥ dist(v, x)) + p( 7n
8 , w,D)

Let r′ := r − dist(v, x). Conditioned on the event r ≥ dist(v, x), r′ is a nonnegative random
random variable and by the memoryless property of geometric distributions, r′ is sampled
from Geom(q), too:

≤ max
v∈V (G)

P
r′∼Geom(q)

(r < w) + p( 7n
8 , w,D)

≤ wq + p( 7n
8 , w,D)

≤ w

D
· 100 log(n0) log(n) + p( 7n

8 , w,D).

In the last step, we have plugged in q = R−1 · 10 log(n0) = 1
D · 100 log(n0) log(n). It follows

by induction that p(n,w,D) ≤ w
D · 100 log(n0) log(n) log8/7(n) ≤ w

D · 1000 log(n0) log2(n).
The same analysis applies also to the in-balls with “Bin” in place of “Bout”.

The Heavy Case. In the heavy case, the algorithm selects a heavy vertex v, computes
the sets W = Bout(v,R) ∩ Bin(v,R) and C ⊇ W and recurs on the graph G/C in which
we contract the vertex set C to a single vertex. We have |Bout(v,R)|, |Bin(v,R)| > 3n

4 by
Lemma 53 since v is heavy. It follows that |C| ≥ |W | > n

2 and therefore the contracted
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graph has size |V (G/C)| ≤ n
2 . As we call the algorithm recursively with parameter D − 4R

where R = D
10 logn , we obtain the following recurrence:

p(n,w,D) ≤ p(n2 , w,D − 4R).

Using the induction hypothesis, we obtain:

p(n,w,D)

≤ w

D − 4R · 1000 log2(n0) log(n2 )

≤ w

D
· 1

1− 4
10 logn

· 1000 log2(n0) log(n2 )

= w

D
· log(n)

log(n)− 4
10
· 1000 log2(n0) · (log(n)− 1)

≤ w

D
· 1000 log2(n0) · log(n). J

I Lemma 56 (Running Time of Algorithm 9). The algorithm StrongLDD(G,D) runs in
time O((m+ n0 log logn0) log2(n0)).

Proof. First focus on a single call of the algorithm and ignore the cost of recursive calls. It
takes time O((m+ n0 log logn0) log(n0)) to compute the heavy-light classification. In the
heavy case, we can computeW,T out , T in, C in Dijkstra-time O(m+n0 log logn0). In the light
case, we can also carve out all balls Bout(v, r) and Bin(v, r) in total time O(m+n0 log log(n0)),
although the formal analysis is more involved: Observe that we explore each vertex at most
once spending time O(log logn0), and that we explore each edge at most once spending
time O(1). Since the analysis is similar to Lemma 8, we omit further details.

As the algorithm recurs on disjoint subgraphs of G, where the number of nodes in each
subgraph is a constant factor smaller than the original number of nodes or less, the running
time becomes O((m+ n0 log logn0) log(n0)2). J

I Lemma 57 (Failure Probability of Algorithm 9). StrongLDD(G,D) returns Fail with
probability at most O(n−8

0 ).

Proof. As shown in detail in the previous lemmas, with every recursive call the number of
vertices reduces by a constant factor and thus the recursion reaches depth at most O(logn0).
In each recursive call, the loops in Lines 13 and 18 run at most n0 times. For each execution,
the error event is that r > R, where r ∼ Geom(R−1 · 10 log(n0)). This event happens with
probability at most exp(−10 log(n0)) ≤ n−10

0 , and therefore the algorithm returns Fail with
probability at most O(n0 logn0) · n−10

0 ≤ O(n−8
0 ). J

Proof of Theorem 5. To compute the claimed strong LDD we call StrongLDD(G, 1
2D)

with the following two modifications:
First, whenever some recursive call returns Fail, we simply restart the whole algorithm.
Second, we test whether the returned set of edges S ⊆ E(G) satisfies the Strong Diameter

property. To this end, we compute the strongly connected components in G \ S and
compute, for any such component C, a 2-approximation of its diameter. By a standard
argument, such a 2-approximation can be obtained in Dijkstra-time by (1) selecting an
arbitrary node v, (2) computing dout := maxu∈V (G) dG(v, u) by solving SSSP on G, (3)
computing din := maxu∈V (G) dG(u, v) by solving SSSP on the reversed graph of G, and
returning max{din, dout}. If the diameter approximations are at most D

2 in all components,
we return S. Otherwise, we restart the whole algorithm.
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This algorithm indeed never fails to satisfy the Strong Diameter property: Since the
diameter approximations have approximation factor at most 2, we have certified that the
diameter of any strongly connected component is at most D in the graph G \ S. Moreover,
with high probability the execution of Algorithm 9 passes both tests with high probability
(by Lemmas 54 and 57), and therefore we expect to repeat the algorithm O(1) times. Since
the repetitions are independent of each other, the edge hitting probability increases only by
a constant factor and remains O(w(e)

D · log3(n0)) by Lemma 55.
Finally, consider the running time. As argued before, with high probability we avoid

restarting Algorithm 9 altogether. Thus, with high probability the algorithm runs in total
time is O((m+n0 log logn0) log2(n0)) by Lemma 56. Since we expect to repeat the algorithm
at most O(1) times, the same bound applies to the expected running time. J

A Lazy Dijkstra

This section is devoted to a proof of the following lemma, stating that Dijkstra’s algorithm
can be adapted to work with negative edges in time depending on the ηG(v) values. Recall
that ηG(v) denotes the minimum number of negative-weight edges in a shortest s-v path
in G.

I Lemma 25 (Dijkstra with Negative Weights, similar to [11, Lemma 3.3]). Let G be a directed
graph with source vertex s ∈ V (G) that does not contain a negative cycle. There is an
algorithm that computes a shortest path tree from s in time O(

∑
v(deg(v) + log logn) · ηG(v)).

(If G contains a negative cycle, the algorithm does not terminate.)

This lemma is basically [11, Lemma 3.3], but the statement differs slightly. We provide a
self-contained proof that morally follows the one in [11, Appendix A].

We give the pseudocode for Lemma 25 in Algorithm 10. Throughout, let G = (V,E,w)
be the given directed weighted graph with possibly negative edge weights. We write E≥0 for
the subset of edges with nonnegative weight, and E<0 for the subset of edges with negative
weight. In the pseudocode, we rely on Thorup’s priority queue:

I Lemma 58 (Thorup’s Priority Queue [57]). There is a priority queue implementation for
storing n integer keys that supports the operations FindMin, Insert and DecreaseKey
in constant time, and Delete in time O(log logn).

For the analysis of the algorithm, we define two central quantities. Let v be a vertex,
then we define

disti(v) = min{w(P ) : P is an s-v-path containing less than i negative edges },

dist′i(v) = min

disti(v), min
u∈V

w(u,v)<0

disti(u) + w(u, v)

 .

Note that dist0(v) = dist′0(v) = ∞. We start with some observations involving these
quantities disti and dist′i:

I Observation 59. For all i, disti(v) ≥ dist′i(v) ≥ disti+1(v).

I Observation 60. For all v,

disti+1(v) = min

disti(v), min
u∈V

disti(u)>dist′i(u)

dist′i(u) + distG≥0(u, v)

 .
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Algorithm 10 The version of Dijkstra’s algorithm implementing Lemma 25.

1 Initialize d[s]← 0 and d[v]←∞ for all vertices v 6= s

2 Initialize a Thorup priority queue Q with keys d[·] and add s to Q
3 repeat

(The Dijkstra phase)
4 A← ∅
5 while Q is nonempty do
6 Remove the vertex v from Q with minimum d[v]
7 Add v to A
8 for each edge (v, x) ∈ E≥0 do
9 if d[v] + w(v, w) < d[x] then
10 Add x to Q
11 d[x]← d[v] + w(v, x)

(The Bellman-Ford phase)
12 for each v ∈ A do
13 for each edge (v, x) ∈ E<0 do
14 if d[v] + w(v, x) < d[x] then
15 Add x to Q
16 d[x]← d[v] + w(v, x)

17 until Q is empty
18 return d[v] for all vertices v

Proof. The statement is clear if disti(v) = disti+1(v), so assume that disti+1(v) < disti(v).
Let P be the path witnessing disti+1(v), i.e., a shortest s-v-path containing less than i+ 1
negative edges. Let (x, u) denote the last negative-weight edge in P , and partition the
path P into subpaths P1 xuP2. Then the first segment P1 x is a path containing less than i
negative-weight edges and the segment uP2 does not contain any negative-weight edges.
Therefore,

disti+1(v) = disti(x) + w(x, u) + distG≥0(u, v) ≥ dist′i(u) + distG≥0(u, v).

Suppose, for the sake of contradiction, that disti(u) = dist′i(u). Then

disti+1(v) ≥ disti(u) + distG≥0(u, v) ≥ disti(v),

which contradicts our initial assumption. J

I Observation 61. For all v,

dist′i(v) = min

disti(v), min
u∈V

disti−1(u)>disti(u)
w(u,v)<0

disti(u) + w(u, v)


Proof. The statement is clear if disti(v) = dist′i(v), so suppose that dist′i(v) < disti(v).
Then there is some vertex u ∈ V with w(u, v) < 0 such that dist′i(v) = disti(u) + w(u, v).
It suffices to prove that disti−1(u) > disti(u). Suppose for the sake of contradiction that
disti−1(u) = disti(u). Then dist′i(v) = disti−1(u) + w(u, v) ≥ dist′i−1(v), which contradicts
our initial assumption (by Observation 59). J
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I Lemma 62 (Invariants of Algorithm 10). Consider the i-th iteration of the loop in Algorithm 10
(starting at 1). Then the following invariants hold:
1. After the Dijkstra phase (after Line 11):

a. d[v] = disti(v) for all vertices v, and
b. A = { v : disti−1(v) > disti(v) }.

2. After the Bellman-Ford phase (after Line 16):
a. d[v] = dist′i(v) for all vertices v, and
b. Q = { v : disti(v) > dist′i(v) }.

Proof. We prove the invariants by induction on i.

First Dijkstra Phase We start with the analysis of the first iteration, i = 1. The execution
of the Dijkstra phase behaves exactly like the regular Dijkstra algorithm. It follows that
d[v] = distG≥0(s, v) = dist1(v), as claimed in Invariant 1a. Moreover, we include in A exactly
all vertices which were reachable from s in G≥0. Indeed, for these vertices v we have that
dist1(v) = distG≥0(s, v) < ∞ and dist0(v) = ∞, and thus A = { v : dist0(v) > dist1(v) },
which proves Invariant 1b.

Later Dijkstra Phase Next, we analyze the Dijkstra phase for a later iteration, i > 1.
Letting d′ denote the state of the array d after the Dijkstra phase, our goal is to prove that
d′[v] = disti(v) for all vertices v. So fix any vertex v; we may assume that disti+1(v) < disti(v),
as otherwise the statement is easy using that the algorithm never increases d[·]. A standard
analysis of Dijkstra’s algorithm reveals that

d′[v] = min
u∈Q

(d[u] + distG≥0(u, v)),

where Q is the queue before the execution of Dijkstra. By plugging in the induction hypothesis
and Observation 60, we obtain that indeed

d′[v] = min
u∈V

disti−1(v)>dist′i−1(v)

d[u] + distG≥0(u, v) = disti(v),

which proves Invariant 1a.
To analyze Invariant 1b and the set A, first recall that we reset A to an empty set before

executing the Dijkstra phase. Afterwards, we add to A exactly those vertices that are either
(i) contained in the queue Q initially or (ii) for which d′[v] < d[v]. Note that these sets
are exactly (i) { v : disti(v) > dist′i(v) } and (ii) { v : dist′i−1(v) > disti(v) } whose union is
exactly { v : disti−1(v) > disti(v) } by Observation 59.

Bellman-Ford Phase The analysis of the Bellman-Ford phase is simpler. Writing again d′
for the state of the array d after the execution of the Bellman-Ford phase, by Observation 61
we have that

d′[v] = min
u∈A

w(u,v)<0

d[u] + w(u, v) = min
u∈V

dist′i−1(u)>disti(u)
w(u,v)<0

disti(u) + w(u, v) = dist′i(v),

which proves Invariant 2a. Here again we have assumed that dist′i(v) < disti(v), as otherwise
the statement is trivial since the algorithm never increases d[·].
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Moreover, after the Dijkstra phase has terminated, the queue Q was empty. Afterwards,
in the current Bellman-Ford phase, we have inserted exactly those vertices v into the
queue for which disti(v) > dist′i(v) and thus Q = { v : disti(v) > dist′i(v) }, which proves
Invariant 2b. J

From these invariants (and the preceding observations), we can easily conclude the
correctness of Algorithm 10:

I Lemma 63 (Correctness of Algorithm 10). If the given graph G contains a negative cycle,
then Algorithm 10 does not terminate. Moreover, if Algorithm 10 terminates, then it has
correctly computed d[v] = distG(s, v).

Proof. We show that after the algorithm has terminated, all edges (u, v) are relaxed, meaning
that d[v] ≤ d[u] + w(u, v). Indeed, suppose there is an edge (u, v) which is not relaxed, i.e.,
d[v] > d[u] + w(u, v). Let i denote the final iteration of the algorithm. By Invariant 2a we
have that d[x] = dist′i(x) and by Invariant 2b we have that dist′i(x) = disti(x) (assuming
that Q = ∅), for all vertices x. We distinguish two cases: If w(u, v) ≥ 0, then we have
that disti(v) > disti(u) + w(u, v)—a contradiction. And if w(u, v) < 0, then we have that
dist′i(v) = disti(u) + w(u, v)—also a contradiction.

So far we have proved that if the algorithm terminates, all edges are relaxed. It is easy
to check that if G contains a negative cycle, then at least one edge in that cycle cannot be
relaxed. It follows that the algorithm does not terminate whenever G contains a negative
cycle.

Instead, assume that G does not contain a negative cycle. We claim that the algorithm
has correctly computed all distances. First, recall that throughout we have d[v] ≥ distG(s, v).
Consider any shortest s-v-path P ; we prove that d[v] = w(P ) by induction on the length
of P . For |P | = 0, we have correctly set d[s] = 0 initially. (Note that distG(s, s) cannot be
negative as otherwise G would contain a negative cycle.) So assume that P is nonempty and
that P can be written as P1 u v. Then by induction d[u] = distG(P1 u). Since the edge (u, v)
is relaxed, we have that d[v] ≤ d[u] +w(u, v) = w(P ) = distG(s, v). Recall that we also have
d[v] ≥ distG(s, v) and therefore d[v] = distG(s, v). J

For us, the most relevant change in the proof is the running time analysis. Recall
that ηG(v) denotes the minimum number of negative edges in a shortest s-v-path, and that
deg(v) denotes the out-degree of a vertex v.

I Lemma 64 (Running Time of Algorithm 10). Assume that G does not contain a negative
cycle. Then Algorithm 10 runs in time O(

∑
v(deg(v) + log logn)ηG(v)).

Proof. Consider a single iteration of the algorithm. Letting A denote the state of the set A
at the end of (Dijkstra’s phase of) the iteration, the running time of the whole iteration can
be bounded by:

O

(∑
v∈A

(deg(v) + log logn)
)
.

Indeed, in the Dijkstra phase, in each iteration we spend time O(log logn) for deleting an
element from the queue (Lemma 58), but for each such deletion in Q we add a new element
to A. Moreover, both in the Dijkstra phase and the Bellman-Ford phase we only enumerate
edges starting from a vertex in A, amounting for a total number of O(

∑
v∈A deg(v)) edges.

The inner steps of the loops (in Lines 9 to 11 and Lines 14 to 16) run in constant time each
(Lemma 58).
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Let us write Ai for the state of i in the i-th iteration. Then the total running time is

O

( ∞∑
i=1

∑
v∈Ai

(deg(v) + log logn)
)

= O

(∑
v∈V
|{ i : v ∈ Ai }| · (deg(v) + log logn)

)
.

To complete the proof, it suffices to show that |{ i : v ∈ Ai }| ≤ ηG(v). To see this, we first
observe that distηG(v)+1(v) = distηG(v)+2 = · · · = distG(s, v). Since, by the invariants above
we know that Ai = { v : disti−1(v) > disti(v) }, it follows that v can only be contained in the
sets A1, . . . , AηG(v). J

In combination, Lemmas 63 and 64 complete the proof of Lemma 25.
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Klein, editor, 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017),
pages 752–771. SIAM, 2017. doi:10.1137/1.9781611974782.48. 1

22 Wikipedia Contributors. Shortest path faster algorithm, 2023. URL: https://en.wikipedia.
org/wiki/Shortest_path_faster_algorithm. 1.1

23 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959. doi:10.1007/BF01386390. 1, 14, 7.1

24 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
near linear time. In 42nd Annual Symposium on Foundations of Computer Science (FOCS
2001), pages 232–241. IEEE Computer Society, 2001. doi:10.1109/SFCS.2001.959897. 1

25 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy
information. SIAM J. Comput., 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.
1.2.3

26 Lester Ford. Network flow theory. Paper P-923, California, RAND Corporation, 1956. URL:
https://www.rand.org/pubs/papers/P923.html. 1, 15

27 Sebastian Forster and Gramoz Goranci. Dynamic low-stretch trees via dynamic low-diameter
decompositions. In Moses Charikar and Edith Cohen, editors, 51st Annual ACM Symposium
on Theory of Computing (STOC 2019), pages 377–388. ACM, 2019. doi:10.1145/3313276.
3316381. 1.1.2

28 Sebastian Forster, Martin Grösbacher, and Tijn de Vos. An improved random shift algorithm
for spanners and low diameter decompositions. In Quentin Bramas, Vincent Gramoli, and
Alessia Milani, editors, 25th International Conference on Principles of Distributed Systems

https://doi.org/10.1007/978-3-642-39206-1_23
https://doi.org/10.1016/0166-218X(92)90039-D
https://doi.org/10.1016/0166-218X(92)90039-D
https://doi.org/10.1016/j.tcs.2014.06.031
https://doi.org/10.1137/1.9781611975994.28
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1137/1.9781611972887.12
https://doi.org/10.1137/1.9781611972887.12
https://doi.org/10.1007/s101070050058
https://doi.org/10.1137/S0097539796313490
https://doi.org/10.1137/S0097539796313490
https://doi.org/10.1137/1.9781611974782.48
https://en.wikipedia.org/wiki/Shortest_path_faster_algorithm
https://en.wikipedia.org/wiki/Shortest_path_faster_algorithm
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/SFCS.2001.959897
https://doi.org/10.1137/S0097539791195877
https://www.rand.org/pubs/papers/P923.html
https://doi.org/10.1145/3313276.3316381
https://doi.org/10.1145/3313276.3316381


K. Bringmann, A. Cassis, N. Fischer 43

(OPODIS 2021), volume 217 of LIPIcs, pages 16:1–16:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.OPODIS.2021.16. 1.1.2

29 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. In 25th Annual Symposium on Foundations of Computer
Science (FOCS 1984), pages 338–346. IEEE Computer Society, 1984. doi:10.1109/SFCS.
1984.715934. 1

30 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)90040-4.
1

31 Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994. doi:10.1016/
S0022-0000(05)80064-9. 1

32 Harold N. Gabow. Scaling algorithms for network problems. In 24th Annual Symposium on
Foundations of Computer Science (FOCS 1983), pages 248–257. IEEE Computer Society, 1983.
doi:10.1109/SFCS.1983.68. 1, 1.1.1, 1.2.3, 4, 4

33 Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for network problems.
SIAM J. Comput., 18(5):1013–1036, 1989. doi:10.1137/0218069. 1, 1.1.1, 1.2.3, 4, 4

34 Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J. Comput.,
24(3):494–504, 1995. doi:10.1137/S0097539792231179. 1, 1.1.1, 1.2.3, 2, 4, 4

35 Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM,
24(1):1–13, 1977. doi:10.1145/321992.321993. 16, 17

36 Richard M. Karp. A characterization of the minimum cycle mean in a digraph. Discret. Math.,
23(3):309–311, 1978. doi:10.1016/0012-365X(78)90011-0. 1.1.1

37 Philip N. Klein, Shay Mozes, and Oren Weimann. Shortest paths in directed planar graphs
with negative lengths: a linear-space O(n log2 n)-time algorithm. In Claire Mathieu, editor,
20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pages 236–245.
SIAM, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496797. 1

38 Philip N. Klein, Satish Rao, Monika Rauch Henzinger, and Sairam Subramanian. Faster
shortest-path algorithms for planar graphs. In Frank Thomson Leighton and Michael T.
Goodrich, editors, 26th Annual ACM Symposium on Theory of Computing (STOC 1994),
pages 27–37. ACM, 1994. doi:10.1145/195058.195092. 1

39 E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and
Winston, 1976. 1.1.1

40 Eugene L Lawler. Optimal cycles in doubly weighted directed linear graphs. In Proc. Int’l
Symp. Theory of Graphs, pages 209–232, 1966. 1.1.1

41 Johannes Lengler. Drift analysis. CoRR, abs/1712.00964, 2017. URL: http://arxiv.org/
abs/1712.00964, arXiv:1712.00964. 1.2.3, 44

42 Nathan Linial and Michael E. Saks. Low diameter graph decompositions. Comb., 13(4):441–454,
1993. doi:10.1007/BF01303516. 1.1.2

43 Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized nested dissection.
SIAM Journal on Numerical Analysis, 16(2):346–358, 1979. doi:10.1137/0716027. 1

44 Kurt Mehlhorn and Stefan Näher. Bounded ordered dictionaries in O(log logN) time and
O(n) space. Inf. Process. Lett., 35(4):183–189, 1990. doi:10.1016/0020-0190(90)90022-P. 1

45 Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In Guy E. Blelloch and Berthold Vöcking, editors, 25th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA 2013), pages 196–203. ACM, 2013.
doi:10.1145/2486159.2486180. 1.1.2

46 Edward F. Moore. The shortest path through a maze. In Proceedings of the International
Symposium on the Theory of Switching, pages 285–292. Cambridge, Harvard University Press,
1959. 1, 1.1, 15

https://doi.org/10.4230/LIPIcs.OPODIS.2021.16
https://doi.org/10.1109/SFCS.1984.715934
https://doi.org/10.1109/SFCS.1984.715934
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1016/S0022-0000(05)80064-9
https://doi.org/10.1016/S0022-0000(05)80064-9
https://doi.org/10.1109/SFCS.1983.68
https://doi.org/10.1137/0218069
https://doi.org/10.1137/S0097539792231179
https://doi.org/10.1145/321992.321993
https://doi.org/10.1016/0012-365X(78)90011-0
http://dl.acm.org/citation.cfm?id=1496770.1496797
https://doi.org/10.1145/195058.195092
http://arxiv.org/abs/1712.00964
http://arxiv.org/abs/1712.00964
http://arxiv.org/abs/1712.00964
https://doi.org/10.1007/BF01303516
https://doi.org/10.1137/0716027
https://doi.org/10.1016/0020-0190(90)90022-P
https://doi.org/10.1145/2486159.2486180


44 Negative-Weight Single-Source Shortest Paths in Near-Linear Time: Now Faster!

47 James B. Orlin and Ravindra K. Ahuja. New scaling algorithms for the assignment and
minimum mean cycle problems. Math. Program., 54:41–56, 1992. doi:10.1007/BF01586040.
1.1.1

48 Jakub Pachocki, Liam Roditty, Aaron Sidford, Roei Tov, and Virginia Vassilevska Williams.
Approximating cycles in directed graphs: Fast algorithms for girth and roundtrip spanners. In
Artur Czumaj, editor, 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2018), pages 1374–1392. SIAM, 2018. doi:10.1137/1.9781611975031.91. 1.1.2

49 Andrzej Pelc. Searching with known error probability. Theor. Comput. Sci., 63(2):185–202,
1989. doi:10.1016/0304-3975(89)90077-7. 1.2.3

50 Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theor. Comput.
Sci., 270(1-2):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6. 1.2.3

51 Rajeev Raman. Priority queues: Small, monotone and trans-dichotomous. In Josep Díaz
and Maria J. Serna, editors, 4th Annual European Symposium on Algorithms (ESA 1996),
volume 1136 of Lecture Notes in Computer Science, pages 121–137. Springer, 1996. doi:
10.1007/3-540-61680-2\_51. 1

52 Rajeev Raman. Recent results on the single-source shortest paths problem. SIGACT News,
28(2):81–87, 1997. doi:10.1145/261342.261352. 1

53 Piotr Sankowski. Shortest paths in matrix multiplication time. In Gerth Stølting Brodal
and Stefano Leonardi, editors, 13th Annual European Symposium on Algorithms (ESA 2005),
volume 3669 of Lecture Notes in Computer Science, pages 770–778. Springer, 2005. doi:
10.1007/11561071\_68. 1

54 Alfonso Shimbel. Structure in communication nets. In Symposium on Information Networks,
pages 199–203. Polytechnic Press of the Polytechnic Institute of Brooklyn, 1955. 1, 15

55 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010. 12

56 Mikkel Thorup. On RAM priority queues. SIAM J. Comput., 30(1):86–109, 2000. doi:
10.1137/S0097539795288246. 1

57 Mikkel Thorup. Integer priority queues with decrease key in constant time and the single
source shortest paths problem. In Lawrence L. Larmore and Michel X. Goemans, editors, 35th
Annual ACM Symposium on Theory of Computing (STOC 2003), pages 149–158. ACM, 2003.
doi:10.1145/780542.780566. 1, 3, 1.2.2, 1.3, 14, 3.1, 7.1, 58

58 Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and `1-regression in nearly linear
time for dense instances. In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd
Annual ACM Symposium on Theory of Computing (STOC 2021), pages 859–869. ACM, 2021.
doi:10.1145/3406325.3451108. 1

59 Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. In Sandy Irani, editor, 61st Annual Symposium on Foundations of Computer
Science (FOCS 2020), pages 919–930. IEEE, 2020. doi:10.1109/FOCS46700.2020.00090. 1

60 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inf. Process. Lett., 6(3):80–82, 1977. doi:10.1016/0020-0190(77)90031-X. 1

61 Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Math. Syst. Theory, 10:99–127, 1977. doi:10.1007/BF01683268. 1

62 John W. J. Williams. Algorithm 232 – Heapsort. Communications of the ACM, 7(6):347–349,
1964. doi:10.1145/512274.512284. 1

https://doi.org/10.1007/BF01586040
https://doi.org/10.1137/1.9781611975031.91
https://doi.org/10.1016/0304-3975(89)90077-7
https://doi.org/10.1016/S0304-3975(01)00303-6
https://doi.org/10.1007/3-540-61680-2_51
https://doi.org/10.1007/3-540-61680-2_51
https://doi.org/10.1145/261342.261352
https://doi.org/10.1007/11561071_68
https://doi.org/10.1007/11561071_68
https://doi.org/10.1137/0201010
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.1145/780542.780566
https://doi.org/10.1145/3406325.3451108
https://doi.org/10.1109/FOCS46700.2020.00090
https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/10.1007/BF01683268
https://doi.org/10.1145/512274.512284

	1 Introduction
	1.1 Our Results
	1.1.1 Minimum Cycle Mean
	1.1.2 Directed Low-Diameter Decompositions

	1.2 Technical Overview
	1.2.1 The Framework
	1.2.2 Improvement 1: Faster Restricted SSSP via Better Decompositions
	1.2.3 Improvement 2: Faster Scaling

	1.3 Summary of Log Shaves
	1.4 Open Problems
	1.5 Outline

	2 Preliminaries
	3 SSSP on Restricted Graphs
	3.1 Decomposition for Restricted Graphs
	3.2 Proof of Theorem 18

	4 SSSP on Graphs without Negative Cycles
	5 Finding Negative Cycles
	5.1 Reduction to Threshold
	5.2 Simple Implementation of Threshold
	5.3 Fast Implementation of Threshold
	5.4 Putting Everything Together

	6 Minimum Cycle Mean
	7 Low-Diameter Decompositions
	7.1 Heavy and Light Vertices
	7.2 The Strong Low-Diameter Decomposition

	A Lazy Dijkstra

