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We characterize the equation of state (EoS) of the SUðN > 2Þ Fermi-Hubbard Model (FHM) in a two-
dimensional single-layer square optical lattice. We probe the density and the site occupation probabilities as
functions of interaction strength and temperature for N ¼ 3, 4, and 6. Our measurements are used as a
benchmark for state-of-the-art numerical methods including determinantal quantum Monte Carlo and
numerical linked cluster expansion. By probing the density fluctuations, we compare temperatures
determined in a model-independent way by fitting measurements to numerically calculated EoS results,
making this a particularly interesting new step in the exploration and characterization of the SUðNÞ FHM.
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The interest in the square lattice SU(2) Fermi-Hubbard
Model (FHM) has been historically driven by its suitability
to describing cuprate superconductors, owing to their
layered character and exceptionally simple band structure
near the Fermi surface. For other more complex and
multiorbital materials, however, descriptions with N > 2
spin components have long been used, which, in addition to
being of fundamental interest, provide an elegant approxi-
mation of degenerate orbitals using a higher symmetry
group. Larger N systems, in particular in 2D geometries,
are relevant for describing the physics of transition-metal
oxides [1–3], orbitally selective Mott transitions [4–7],
graphene’s SU(4) spin valley symmetry [8], twisted-bilayer
graphene [9–12], the Kondo effect [13,14], heavy fermion
behavior [15], and achieving robust itinerant ferromagnet-
ism [16,17]. The SUðNÞ FHM is a special case of the
N > 2 models that enjoys a higher symmetry group that
stabilizes quantum fluctuations [18], making it a fertile
ground for theory, and constituting a baseline to more
complex multiorbital models. The determination of the
N > 2 equation of state (EoS) of the SUðNÞ FHM is an
important milestone in the attempt of understanding its
properties. However, the exponential scaling of the Hilbert

space with N and the increased severity of the fermion sign
problem [19] make its numerical simulation more chal-
lenging than the N ¼ 2 case [20–23].
Ultracold atoms in an optical lattice have provided

valuable quantum simulations of the SU(2) FHM [24].
They complement and can sometimes outperform classical
simulations [25,26]. More recently, the SUðN > 2Þ FHM
has been successfully explored with ultracold alkaline-
earthlike atoms such as 173Yb or 87Sr in optical lattices,
which naturally feature a full SUðNÞ symmetry in the
atomic ground state [27–35]. A substantial effort has
been placed in probing the thermodynamics and the short-
range correlations of the model for different spin degen-
eracies and lattice geometries, and experiments have
gone well beyond the regime that can be calculated with
theory [36–42]. However, the SUðNÞ generalization
remains much less explored and understood compared to
the SU(2) case [43]. This is particularly true in two
dimensions, where the thermodynamics of the SU(2)
FHM at intermediate temperatures have been studied
extensively [44–60].
In this Letter, we probe the equation of state of the two-

dimensional SUðNÞ FHM in a square lattice at intermediate
temperatures in both the metallic and the Mott regime and
compare our results with numerical calculations. In par-
ticular, we determine the in-lattice temperature and entropy
by fitting experimental data using numerical methods such
as determinantal quantum Monte Carlo (DQMC) [61,62]
and numerical linked cluster expansion (NLCE) [63,64].
We additionally determine the entropies in the 2D bulk
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before loading and after unloading from the lattice poten-
tial, and separately characterize the system inside the lattice
with a thermometry relying on the fluctuation-dissipation
theorem (FDT) based on the measurement of density
fluctuations, without requiring modeling by theory.
The SUðNÞ FHM Hamiltonian is given by

Ĥ¼−t
X
hi;ji;σ

�
ĉ†iσ ĉjσþH:c:

�
þU

2

X
i;σ≠τ

n̂iσn̂iτ−
X
i;σ

μin̂iσ; ð1Þ

where ĉ†iσ and ĉiσ represent the fermionic creation and
annihilation operators at site iwith spin σ ∈ f1…Ng, n̂iσ ¼
ĉ†iσ ĉiσ is the number operator, hi; ji denotes next-neighbor
lattice sites, t is the hopping amplitude, U is the on-site
interaction strength, and μ denotes the chemical potential,
which absorbs the contribution of the trap confinement in
the local density approximation [65].
In this Letter, we directly probe the local density,

components of the site-occupation distribution, and the
density fluctuations within the detection resolution of a
few lattice sites. By differentiating the density with respect
to the local chemical potential, we evaluate the isothermal
compressibility κ ¼ ∂n=∂μjT. Crucially, we implement a
2D single-layer SUðNÞ ensemble that we probe with
perpendicular absorption imaging with a resolution of a
few lattice sites. This avoids integrating over inhomo-
geneous stacks of 2D systems [66,67] and allows us to
directly access the density profile without complex
reconstruction techniques required in 3D [37] and access
density fluctuations as an additional thermodynamic in situ
observable.
In our experiment, we load a degenerate Fermi gas of

173Yb with tunable N ≤ 6 equally populated components
[see Fig. 1(a)] and an entropy per particle s=kB ≳ 1.0 into
the single, horizontal layer of a vertical lattice. In this layer,
we adiabatically ramp up a 2D square lattice potential with
a wavelength of λ ¼ 759 nm and a spacing of d ¼ λ=2
[see Fig. 1(b)]. By modifying the lattice depth, we can tune
the strength of the interactions. We measure the density
distribution using in situ, saturated absorption imaging with
a spatial resolution of approximately 2 μm ≈ 5d [68].
The measured 2D density nðx; yÞ of an SU(6) ensemble

is shown in Fig. 1(c) for different interaction strengths
and the same initial state preparation in the 2D bulk (the
potential without in-plane lattices). Because of the har-
monic confinement generated by the Gaussian profile of the
lattice beams, the chemical potential varies across the trap,
sampling different regions of the EoS. For increasing
interactions, and in particular when the on-site interaction
is larger than the square lattice bandwidth (U=t≳ 8), we
observe the emergence of plateaus at integer density which
we associate with an incompressible regime, a signature of
a Mott insulating state [78].

As a distinctive probe of number squeezing effects in and
close to the Mott regime [79–81], we determine the
occupation number distribution by measuring the parity-
projected density. After tuning U=t, we freeze the motion
of the atoms by rapidly increasing the lattice depth and
applying a photoassociation beam [36], which converts on-
site pairs into excited-state molecules that are subsequently
lost. The process removes > 99% of the on-site pairs and
≈5% of the remaining atoms [68]. Figure 1(d) shows the
distribution of the singly occupied sites corresponding to
the same states of Fig. 1(c). The increase in depletion in the
center with increasing interaction strength is a consequence
of number squeezing to a high atom pair fraction.
To access different spin degeneracies, we prepare N < 6

ensembles by removing spin components using optical
pumping [68]. In Figs. 2(a)–2(d), we show the EoS as a

Lattice 1 Lattice 2

FIG. 1. Probing the 2D SUðNÞ Fermi-Hubbard model with
ultracold atoms. (a) The 1S0 ground state of 173Yb naturally
features an SU(6) symmetry, which can be freely tuned to N ≤ 6
by preparing a suitable combination of the nuclear spin states
mF ¼ −5=2;−3=2;…;þ5=2 (colored circles and arrows).
(b) Schematic of the experimental setup showing a gas in a
single layer 2D square lattice with harmonic confinement
detected with absorption imaging along gravity. The square
lattice is created by superimposing two orthogonal retro-reflected
in-plane lattices. (c) Spatial distribution of the density nðx; yÞ for
N ¼ 6. Each cloud shown in the horizontal frame has been
prepared with the same initial entropy in the bulk and loaded into
the lattice to a different U=t value. (d) Singly occupied sites after
parity projection. Each horizontal frame corresponds to the same
state shown in the same column of (c). (e) Density profiles for the
data shown in (c) and (d) along the corresponding dashed lines in
the left frames. Each image was produced using the averaging of
eight shots after center of mass alignment [68].
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function of the local chemical potential μ=U for
N ∈ f6; 4; 3g. The chemical potential at a given location
is calculated from the potential of the trap μðx; yÞ ¼
μ0 − 1

2
ðκxx2 þ κyy2Þ. The exact shape of the potential is

determined by fitting the density, where the trap frequen-
cies are left as free parameters. We use a combined fit of the
densities for N ¼ 3, 4, and 6 for each separate U=t, but
verify that separate fits for each N return values compatible
with those of the combined fit. The fit of the EoS is
performed in two dimensions, leaving as free parameters
the temperatures TðU=t; NÞ and the chemical potential
μ0ðU=t; NÞ at the center of the trap. The theoretical density
is convolved with the reconstructed point spread function
(PSF) [68] to take into account the imaging imperfections.
For the EoS of Fig. 2, each spin mixture has been

prepared with the same initial entropy per particle s=kB ¼
1.2ð1Þ in the 2D bulk before ramping up the lattice. We fit
and benchmark NLCE and DQMC [68] which are com-
monly used state-of-the-art methods for finite-temperature
SU(2) Hubbard models in the regime we are considering
but have only recently been extended and applied to the
SUðNÞ experimental regime, which requires calculations
away from nd2 ¼ 1 [23,41]. This is, to our knowledge, the
first application of SUðNÞ NLCE to noninteger filling, and

to the calculation of the occupancy distributions. Moreover,
compared to previous works, the calculation has been
extended to higher orders [68] to ensure a better conver-
gence at low temperatures. For U=t ¼ 7.5ð4Þ and 10.4(6)
we fit both DQMC and NLCE, observing an excellent
agreement between the theory and the experiment when
fitting the temperature and the chemical potential at the
center of the trap to the same data set with different
numerical methods [68]. For U=t ¼ 33ð2Þ, we use NLCE
and a high-temperature series expansion (HTSE-2), observ-
ing also in this case an excellent agreement [68]. For
U=t ¼ 2.3ð1Þ, the temperature lies below the range of
convergence of NLCE and we resort to DQMC alone. In
Figs. 2(a)–2(d), for the cases in which we fit more than one
model, we only plot the NLCE results, because the lines
would overlap.
In addition to the total density, in Figs. 2(a)–2(d) we also

characterize the distribution of on-site occupation numbers
by removing doublons using the pair removal process
described above. Experimental measurements (diamonds)
are compared with the NLCE prediction (lines) based on
the fit of the density, without additional free fit parameters,
and agree well with the experimental data whenever
available. As opposed to the N ¼ 2 case, where only
double occupancies are allowed, higher occupancies occur

FIG. 2. Equation of state for the SUðNÞ Fermi-Hubbard model with N ¼ 6 (blue), N ¼ 4 (purple), and N ¼ 3 (red). (a)–(d) Density
(circles) and singly occupied sites (diamonds) as a function of the chemical potential. Data for N ¼ 4 and N ¼ 6 have been offset by
0.5nd2 and 1.0nd2 along the vertical axis, respectively. Continuous lines associated to the density curves correspond to the fit of the EoS
calculations to the total density as described in the text. The theory used for the fit is DQMC for U=t ¼ 2.3ð1Þ and NLCE for the other
values of U=t. The results from this fit model are also used to calculate the expected pair and single-site distribution measurement. The
chemical potential is defined with respect to the reference half filling [nd2ðμ ¼ 0Þ ¼ N=2]. For eachU=t, we fit the average of 15 frames
with similar atom number after center-of-mass alignment [68]. Error bars are the standard error of the mean (s.e.m.). (e) Temperature
according to the fit of the EoS shown in (a)–(d). (f)–(h) Entropy per particle. Horizontal line: entropy in the 2D bulk before loading into
the lattice; triangles, squares, hexagons: entropy in the lattice according to the fit of the EoS; small circles: entropy in the 2D bulk after
a round-trip experiment. The entropy in the bulk takes into account the effect of the interactions and the 3D anisotropic density of
states [68]. Error bars correspond to the s.e.m. of the fit results.
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for N > 2. Although the numbers of these occupancies are
small for the results considered at the temperatures and
chemical potentials presented here, the photoassociation
technique can be used to probe triple occupancies and their
dynamics [82].
The harmonic confinement of the trap returned by the

density fit can be compared to the confinement obtained
from an independent measurement of the oscillatory
motion of the atoms in the combined dipole potentials [68].
We find a discrepancy between about 13% for U=t ¼
7.5ð4Þ and 40% for U=t ¼ 33ð2Þ, which is not fully
explained by tolerances or the trap loading model. A
possible contribution could be a lack of adiabaticity during
the loading into the lattice [83–85]. However, neither
varying the speed of the lattice ramps up to a factor of
four (up to 1 s length) nor variations of the atom number
lead to significant changes in the fit results. This would
require the nonadiabatic effects to produce minimal
changes in density and parity profiles [68].
In Fig. 2(e) we plot the temperatures obtained by the fits

of the EoS. We observe a smaller temperature for larger N,
a behavior expected due to the Pomeranchuk effect [30,86],
but somewhat weaker than the ideal theoretical predic-
tions [21,86] with the temperatures for N ¼ 4 and 6
differing from each other by up to 20%. We interpret this
as a consequence of the heating not depending on N during
the loading process, resulting in different entropies in
the lattice. This is supported by the results presented in
Figs. 2(f)–2(h). We find that, despite the initial entropy
in the 2D bulk before loading into the lattice being
independent of N, the entropy returned by the fit of the
EoS is larger for larger N, which explains the weakening of
the Pomeranchuk effect. ForU=t ¼ 2.34 entropy results are
not yet converged at those such low temperatures and
therefore are not presented. We also determine the entropy
per particle in the 2D bulk after a round-trip experiment,
which adds an inverted ramp back to the 2D bulk system. In
this case, we obtain entropies comparable to those reported
by the fit in the lattice for N ¼ 3 and N ¼ 4 but smaller for
N ¼ 6, similar to previous observations [37] and poten-
tially indicating nonadiabatic effects in the preparation or
return ramp.
Complementary to the measurement of the EoS, the

new possibility to directly access the density in the 2D
SUðNÞ-system allows us to probe the density fluctuations.
For an integration area of size A ≫ d2, the variance of the
detected atom number is related to the isothermal com-
pressibility κ and the temperature T through the fluctuation-
dissipation theorem [87]:

var

�Z
A
n dA

�
¼ kBTκA ¼ kBTA

∂n
∂μ

����
T
: ð2Þ

By measuring the density fluctuations, we can access the
temperature with spatial resolution, without applying an

EoS model to the dataset [60]. In Fig. 3(a) we show such
density fluctuations mapped to the chemical potential for
different U=t values and N ¼ 6. Similar measurements for
N ¼ 3 and N ¼ 4 are presented in the Supplemental
Material [68]. For strong interactions, we observe a
reduction of the fluctuations in the proximity of nd2 ¼ 1,
where we expect an incompressible Mott-insulating
regime. These measurements determine the temperature
independently of the EoS fits, although the calibration
values for the density and the trap configuration in this
particular case were partially obtained from EoS-fitted
datasets. Notably, the fluctuation amplitude is determined
by area integration as described in Eq. (2), and there-
fore agrees with the thermodynamic fluctuations from
the FDT as opposed to the expected on-site fluctuations
δn̂20 ¼ hn̂2i − hn̂i2 (gray dashed line). This discrepancy
illustrates the role of nonvanishing short-range density
correlations.

FIG. 3. (a) Measured density fluctuations (blue) for N ¼ 6 as a
function of the chemical potential for different interaction
strengths. The data points have been obtained from the variance
of 15 frames [same as Figs. 2(a)–2(d)] computed on spatially
binned probe areas of size ≈5.1 × 5.1d2 (4 × 4 square camera
pixels). The photon shot noise has been subtracted and a PSF
correction has been taken into account [68]. The green line
corresponds to the numerically differentiated compressibility κ
times the temperature TEoS obtained from the EoS fit of the
averaged data, while the black dashed line corresponds to the
theory-derived compressibility times TEoS. The vertical line
indicates μðnd2 ¼ 1Þ. The gray dashed line corresponds to the
on-site density fluctuations δn20 ¼ hn̂2i − hn̂i2 calculated with
NLCE for TEoS. (b) Comparison of the temperatures TFDT (dark
blue diamonds) and TEoS (light blue hexagons). Error bars
are the s.e.m.
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The FDT holds locally for each density. In thermal
equilibrium, the ratio between the fluctuations and the
compressibility is constant. We use the FDT to check this
assumption and extract the temperature of the system. For
this purpose, we determine the isothermal compressibility
κðμÞ directly from the density profile data with three-point
differentiation and fit the temperature TFDT as the propor-
tionality factor between the fluctuations and the compress-
ibility. In Fig. 3(b) we compare TFDT (diamonds) with the
temperature TEoS (hexagons) returned by the fit of the EoS.
We observe a good agreement for all interactions. More-
over, we see that the residuals of the FDT analysis typically
show similar temperatures at the center and at the edge of
the cloud, indicating that there are no strong deviations
from thermal equilibrium [68].
In conclusion, we report the measurement of the equa-

tion of state of the 2D SUðNÞ FHM across the Mott
crossover for temperatures comparable with or below the
hopping energy and we compare the experiment with
state-of-the-art numerical models. Moreover, with direct
access to a single 2D plane system, we can independently
determine temperatures in the experiment with spatial
resolution using density fluctuation analysis, which allows
one to e.g. cross-check thermal equilibrium. This meas-
urement characterizes the EoS also in regimes hard to reach
by current numerical methods. When compared to the
experimental data, we find the theoretical calculations
describe well the properties of the SUðNÞ gas for the
applicable range of temperatures. The temperature mea-
surements also indicate that thermal equilibration is not
inhibited even in the case of deep lattices in a temperature
range where the onset of spin correlations between sites is
expected.
The implementation of the directly accessible 2D

ensemble, together with the accompanying theoretical
description, paves the way toward more direct quantum
simulation of the typically 2D models of interest in
naturally occurring systems with SUðN > 2Þ representa-
tions such as transition metal oxides and orbitally selective
Mott transitions. An intriguing example is the case of
cerium volume collapse, where there is a long-standing
debate whether the single orbital Hubbard model (N ¼ 2)
or the double-orbital Hubbard model (N ¼ 4) [88–91] is
the correct description. While in the condensed matter
examples the SUðNÞ symmetry is typically only approx-
imately realized; cold atom representations provide an
essentially exact realization of SUðNÞ, allowing one to
implement fully SUðNÞ-symmetric and previously purely
theoretical models. It should even be possible to smoothly
connect both regimes in a continuous way by controlled
symmetry breaking using e.g. optical state manipulation or
state-dependent potentials [32,39,92], but more generally
alkaline-earthlike quantum simulations of SUðNÞ FHM can
provide insight into the validity of the SUðNÞ approxima-
tion in more realistic models.
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