Table of contents

Amino acid sequence and highly conserved motifs of RIMTPSL4	
GC/MS analysis of the products of RIMTPSL4	3
Structure elucidation and NMR data of 1	5
NMR spectra of 1	6
Summary of isotopic labeling experiments	13
References	14

RIMTPSL4:

MPTTDFRRRERKFVQMGTEVDRPAPVLDHSHDSIANLKPFDRQQELRMYKPPPFIPPYPVKQNPNYSK GRYSNWARKWLLNLKVDEIFSTKMFEMLNRMDIPYFANVLQPLCDEWGLQWSCKVYFMLWIT**DDLVD**S TKIGKSASDVLSLFLDYHLVMMWTFPDDPVLHRELPNFLSVLASQTEREQKLAHFEEILVQARTRPGT IYEGNLSIACEVFRELFAEAYARSSRESVLQFAHCCQHWLLGDLLESQYREAKGMPASIEELIPI**R**KR ACAVFVALASTDISCGLATPTEYYNSKPMKEMLDACCDFTAWH**NDVWSFKKE**IIQDKEPFSLVVAISV HRKLPYQEAAEVLTKMMSDRLKDMDRAATDLERITPPELARNFQIYVSACQTMASGTHDWHTKTV**RY**D V

Figure S1. Amino acid sequences of RIMTPSL4 (accession number UJU85541) from *R. lindenbergiana*. Highly conserved motifs are highlighted in bold.

Figure S2. Total ion chromatograms of the products obtained with RIMTPSL4 from A) GPP, B) FPP, C) GGPP and D) GFPP. Asterisks indicate spontaneous hydrolysis products and contaminants from plasticisers. E) EI mass spectrum of **1**.

		-	
Compound	[a]	/ (lit.) ^[b]	MS match ^[c]
β-elemene (3 *)	1406	1389 ^[1]	949
4,5- <i>diepi</i> -isoishwarane (1)	1478	_	_
4,5- <i>diepi</i> -aristolochene (5)	1491	1471 ^[1]	932
eremophilene (6)	1509	1503 ^[2]	925
α -selinene (4)	1518	1498 ^[1]	945
germacrene A (3)	1527	1508 ^[1]	891

Table S1. Identification of terpenes formed from FPP by RIMTPSL4 by GC/MS.

[a] Retention index on a HP5-MS GC column. [b] Retention index data from the literature on the same or a similar GC column. [c] Mass spectral match factor (0 - 999, 999) indicates identical mass spectra).

Figure S3. Structure elucidation of **1**. Bold lines show ¹H,¹H-COSY correlations, single headed arrows show key HMBC correlations, and double headed arrows show key NOESY correlations. The green double headed arrows indicate NOESY correlations that were used to conclude on the absolute configuration of **1** from the labeling experiments with (*E*)- and (*Z*)-(4- 13 C,4- 2 H)IPP (Figure 4 of main text).

Table S2. NMR data of 4,5	- <i>diepi</i> -isoishwarane (1	I) in C ₆ D ₆	recorded at 298 K.
---------------------------	---	-------------------------------------	--------------------

C ^[a]	type	¹³ C ^[b]	¹ H ^[b]
1	CH ₂	30.90	1.78 (ddd, <i>J</i> = 13.7, 13.7, 4.7, H _α)
_			1.33 (m, H_{β})
2	CH_2	21.76	1.55 (m, H _R)
3	СH.	30 77	1.44 (M, H_s) 1.34 (m, H_s)
5		50.77	1.34 (m, H_{z})
4	СН	36.97	1.54 (m)
5	Cq	40.88	_
6	CH_2	42.30	1.15 (m, H _{<i>R</i>})
			1.12 (m, H _S)
7	СН	37.07	2.10 (m)
8	CH_2	28.22	1.37 (m, H _R)
•	0.1		1.34 (m, H_s)
9	CH_2	26.23	2.16 (ddd, $J = 13.5, 9.7, 4.3, H_E$) 0.75 (m, H ₂)
10	Ca	40.94	–
11	C	130.30	
10		139.30	
12	СН	133.22	5.50 (Dr S)
13	CH₃	20.19	1.71 (d, <i>J</i> = 1.6)
14	CH₃	19.14	0.76 (s)
15	CH₃	18.15	0.79 (d, <i>J</i> = 6.7)

[a] Carbon numbering as shown in Figure S3. [b] Chemical shifts δ in ppm, multiplicity: s = singlet, d = doublet, m = multiplet, br = broad, coupling constants *J* are given in Hertz.

Figure S4. ¹H-NMR spectrum of 1 (700 MHz, C₆D₆).

Figure S6. ¹³C-DEPT-135 spectrum of 1 (175 MHz, C₆D₆). S indicates residual solvent signal.

Figure S7. ^{1}H , ^{1}H -COSY spectrum of 1 (C₆D₆).

Figure S8. HSQC spectrum of $1 (C_6D_6)$.

Figure S9. HMBC spectrum of $1 (C_6D_6)$.

Figure S10. NOESY spectrum of $1 (C_6D_6)$.

 Table S3.
 Labelling experiments with RIMTPSL4.

entry	substrate	enzyme(s)	results shown in
1	(12- ¹³ C)FPP ^[3]	RIMTPSL4	Figure 1
2	(9- ¹³ C)GPP, ^[4] IPP	FPPS, ^[5] RIMTPSL4	Figure 1
3	(6- ¹³ C)FPP ^[3]	RIMTPSL4	Figure 2
4	(3- ¹³ C,2- ² H)FPP ^[6]	RIMTPSL4	Figure 3
5	DMAPP, (<i>E</i>)-(4- ¹³ C,4- ² H)IPP ^[7]	FPPS, RIMTPSL4	Figure 4
6	DMAPP, (<i>Z</i>)-(4- ¹³ C,4- ² H)IPP ^[7]	FPPS, RIMTPSL4	Figure 4
7	(<i>R</i>)-(1- ¹³ C,1- ² H)IPP ^[8]	IDI, ^[10] FPPS, RIMTPSL4	Figure 4
8	(S)-(1- ¹³ C,1- ² H)IPP ^[8]	IDI, FPPS, RIMTPSL4	Figure 4

References

- [1] R. P. Adams, *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry*, 4th Edition, Allured Business Media, Carol Stream, Illinois, USA, **2009**.
- [2] H. D. Skaltsa, C. Demetzos, D. Lazari, M. Sokovic, *Phytochemistry* **2003**, *64*, 743-752.
- [3] P. Rabe L. Barra, J. Rinkel, R. Riclea, C. A. Citron, T. A. Klapschinski, A. Janusko, J. S. Dickschat, *Angew. Chem. Int. Ed.* **2015**, *54*, 13448-13451.
- [4] G. Bian, J. Rinkel, Z. Wang, L. Lauterbach, A. Hou, Y. Yuan, Z. Deng, T. Liu, J. S. Dickschat, *Angew. Chem. Int. Ed.* **2018**, *57*, 15887-15890.
- [5] P. Rabe, J. Rinkel, B. Nubbemeyer, T. G. Köllner, F. Chen, J. S. Dickschat, *Angew. Chem. Int. Ed.* **2016**, *55*, 15420-15423.
- [6] T. A. Klapschinski, P. Rabe, J.S. Dickschat, *Angew. Chem. Int. Ed.* **2016**, *55*, 10141-10144.
- [7] L. Lauterbach, J. Rinkel, J. S. Dickschat, *Angew. Chem. Int. Ed.* **2018**, *57*, 8280-8283.
- [8] J. Rinkel, J. S. Dickschat, Org. Lett. 2019, 21, 2426-2429.