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ABSTRACT

Hybrid modeling integrates machine learning with scientific knowledge with the goal of enhancing
interpretability, generalization, and adherence to natural laws. Nevertheless, equifinality and regular-
ization biases pose challenges in hybrid modeling to achieve these purposes. This paper introduces
a novel approach to estimating hybrid models via a causal inference framework, specifically em-
ploying Double Machine Learning (DML) to estimate causal effects. We showcase its use for the
Earth sciences on two problems related to carbon dioxide fluxes. In the Q10 model, we demon-
strate that DML-based hybrid modeling is superior in estimating causal parameters over end-to-end
deep neural network (DNN) approaches, proving efficiency, robustness to bias from regularization
methods, and circumventing equifinality. Our approach, applied to carbon flux partitioning, exhibits
flexibility in accommodating heterogeneous causal effects. The study emphasizes the necessity of
explicitly defining causal graphs and relationships, advocating for this as a general best practice.
We encourage the continued exploration of causality in hybrid models for more interpretable and
trustworthy results in knowledge-guided machine learning.

Keywords: Knowledge-guided machine learning, Hybrid modeling, Causal effect estimation, Double machine learn-
ing, Temperature sensitivity, Carbon flux partitioning
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1 Introduction

Machine learning (ML), specifically deep learning (DL), has proven to be effective in identifying and modeling com-
plex patterns from data sets. This led to unprecedented progress in fields such as computer vision [1], natural language
processing [2], and speech recognition [3]. These data-driven models also increasingly complement or even substitute
mechanistic methods in science [4, 5].

In the Earth sciences, for instance, the common way to understand and model the Earth’s properties, structure, and
processes is using knowledge of first principles, realized in mechanistic models based on functional equations [6].
These models allow principled predictions of how the system under study would behave under different conditions.
Nevertheless, they are not always sufficient to capture the complex and usually not completely known relationships
in the real world. Support vector machines [7], random forests (RFs) [8], or neural networks (NNs) [9] are highly
flexible, make little prior assumptions on the functional form and can integrate the large datasets abundant in Earth
and climate sciences.

The flexibility of ML models comes with some known downsides: (i) Many popular machine learning models are black
boxes, meaning that we do not understand the internal reasoning behind the model’s predictions [10]. (ii) Often, ML
models are not robust and fail to generalize out of the domain of the data used for training [11, 12]. (iii) They violate
physical properties and laws of nature, such as conservation laws, symmetries, or equi- and invariances [13,14]. These
are crucial matters in Earth and climate sciences, where a prime goal is to make realistic predictions on the Earth’s
system under a changing climate [15].

All these issues are gaining attention in ML and Earth system science literature. Explainable artificial intelligence
(XAI) tackles questions on the explainability of black box models [16, 17], and research in generalization and ex-
trapolation aims at ensuring robustness outside of the training domain [18–20]. A flourishing area of research is
science-aware or knowledge-guided machine learning, which combines the knowledge-driven and data-driven worlds
to overcome inconsistencies [21–24]. One example is physics-informed neural networks (PINNs) [25], where an
additional term is added to the loss for training that punishes deviations from physical laws encoded with ODEs or
PDEs. Alternatively, ML models can be trained on a combination of data and simulations from physical models to
improve consistency in the sparse observation regime [22]. Finally, hybrid modeling replaces some components of
mechanistic models with machine learning [26–28]. This constraint makes the models more interpretable and serves
as a regularizer for better generalization to unseen data.

However, there are persisting challenges in hybrid modeling. Firstly, these models are prone to equifinality, which
denotes the existence of multiple models and sets of parameters that describe the data similarly well. Already in the
common mechanistic modeling, this is a well-known difficulty when not only model performance but also retrieving
meaningful parameters is the goal. In this setting, robust inference already poses a challenge [29], which becomes
even more difficult and prohibitively expensive in deep learning [30, 31]. Ultimately, equifinality can jeopardize the
interpretability of the results. Second, regularization techniques in machine learning can introduce bias on the physical
parameters [27]. Finally, given the flexibility of non-parametric models such as NNs, it is tempting to use different
sets of variables for the model and choose the ones that lead to the best overall performance. For a pure prediction
task, that is a sensible procedure [32]. For hybrid modeling, though, apart from equifinality, this can lead to different
interpretations of the parameter of interest and thus needs to be done with care.

Let us illustrate the opportunities and challenges of hybrid modeling in a relevant geoscience problem that will accom-
pany us throughout this work. Modeling the temperature dependence of ecosystem respiration is a fundamental step
in better understanding biosphere evolution and responses under global warming scenarios [33–35]. The functional
relationship between temperature and respiration has been classically represented via the Q10 respiration model:

Reco(X,TA) = Rb(X,TA) ·Q
(TA−TA,ref )/10
10 , (1)

where Q10 is the parameter describing temperature sensitivity, X is a set of meteorological drivers and Rb describes
the base respiration. Including air temperature TA as a driver of Rb is an optional choice if we are to believe that there
are effects of temperature beyond the exponential dependency through Q10. A common hybrid modeling approach
amounts to using a NN as an estimator for Rb, treating Q10 as a trainable parameter, and fitting everything end-to-end
with gradient descent, as it has been done in [27]. Because of the optimization technique, we will refer to this method
as gradient-descent-based hybrid modeling (GD-based HM).

Equifinality in this problem can be shown by reformulating (1) for c > 0:

Reco(X,TA) = Rb(X,TA)c
(TA−TA,ref )/10 ·

(
Q10

c

)(TA−TA,ref )/10

. (2)
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Thus, a flexible enough function estimator (e.g. a NN) could learn Rb(X,TA)c
(TA−TA,ref )/10 and obtain Q10

c as
the temperature sensitivity. In this case, we would obtain one of the solutions by chance and thus reach erroneous
conclusions about the temperature sensitivity.

In this example, equifinality arises because the problem is evidently mathematically ill-posed. It is less obvious,
however, when introducing several non-parametric models in more complicated physical equations. In practice, we
will obtain a distribution over the parameters mainly driven by inductive biases of the learning algorithm or the network
architecture [36] and which are not guided by any physical knowledge. Additional explicit information can alleviate
this problem. These include the introduction of additional losses or adding prior knowledge [37, 38]. Similarly, a
regularization term can make the problem identifiable. This has been formally proven for solving hybrid ODEs [39].
Regularization, however, is known to introduce bias on parameters of interest in semi-parametric modeling problems
[40].

Finally, to illustrate the importance of the choice of input parameters, consider that in (1), the exclusion of seasonality
variables leads to a Q10 that does not only describe the immediate temperature effects but also the stronger variability
over the year. The parameter Q10 would hence be larger than it should be if we want it to model just the immediate
temperature response. A negligent selection of input variables can strongly impact the final estimator of Q10. Being
right for the wrong reasons is thus a major problem if we want hybrid models to be interpretable.

The crucial point is that we want Q10 to describe a causal effect, as we believe that temperature is the direct driver
of respiration. This is opposed to the usual machine learning scenario, where the mere correlation of variables is
enough to achieve good predictive performance. When moving from correlation to causation, we can intervene on the
variables, i.e., change the temperature values and hope for a realistic prediction [41, 42].

Many times physical equations encode actual cause-effect relationships. It is essential to capture the causal relation-
ships between the variables to obtain interpretable and more accurate models. Respecting the causal direction of time
has shown to be effective in training PINNs for chaotic systems where previous approaches failed [43]. Furthermore,
coupling causal discovery to identify the causal drivers in climate models before applying deep learning algorithms
improved performance and interpretability [44, 45]. Ultimately, causality aims at being right for the right reasons.

Therefore, we believe it is time for a causal hybrid modeling framework, where we introduce an explicit physical
prior by assuming a causal graph and framing the problem as a causal effect estimation problem within the hybrid
modeling framework. We will show how this approach leads to well-defined problems, thus mitigates equifinality,
and is robust to biases of training and regularization. As a first step, we propose a method based on double machine
learning (DML) [40]. DML is a causal effect estimation technique developed in econometrics, where it is common
to investigate the effect of some proposed treatment [46, 47]. It has recently been used for effect estimation in the
environmental sciences [48]. We suggest that this causal effect estimation technique can be applied to a class of hybrid
models where the effect of some input driver on the output is encoded. We coin this method DML-based hybrid
modeling (DML-based HM).

Apart from the causal perspective, DML has favorable properties over naive fitting approaches. Regularization of the
estimators for the non-parametric part of the equation can introduce substantial bias in estimating the parametric part
of the equation. Using DML, even for erroneous estimators, we can still obtain consistent estimators of the causal
effect coefficient. This is particularly useful if the confounding effects are high-dimensional or are described by a
complicated function that is hard to learn. Furthermore, it enables us to do inference, as the estimators are shown to
be approximately normally distributed, which yields confidence intervals [40].

Within the proposed framework based on DML, we can solve problems that can be transformed into a regression
problem of the form

Y = θ(X) · f(T ) + g(X,W ), (3)

where T is a one-dimensional input variable and X and W are further sets of predictors. We assume that f is a known
transformation of T , and our hybrid modeling goal is to estimate the non-parametric functions θ and g. We will see
relevant examples of problems that fall into this class. This includes, in particular, the problems where θ describes the
effect of T on Y . This effect can be constant or depend on some other predictors X .

We demonstrate the advantages of DML-based HM in two examples around carbon fluxes:

1. The temperature sensitivity Q10 model for ecosystem respiration [49–51] and,

2. the light-use efficiency model for carbon flux partitioning [52].

3
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These two models are particularly relevant as they allow statements on the productivity and respiration of plants under
changing conditions.

Our contributions are as follows: In the case of synthetic data for Q10, DML retrieves the Q10 temperature sensitivity
parameter more robustly than the GD-based HM approach, especially in the low data regime and under regularization.
It retrieves Q10 values consistent with the literature on measured respiration data. We show how equifinality can yield
misleading results and how causal prior knowledge can solve the problem without giving up flexibility, as in (??). In
the carbon flux partitioning problem, we show how the method can be extended to the non-linear heterogeneous case,
where the hybrid modeling retrieves consistent fluxes and shows competitive performance to the current state-of-the-
art neural network.

In essence, we introduce DML-based HM as a novel approach to fitting hybrid models and show that the obtained
estimates are more efficient and robust than the ones from GD-based HM. We describe a path to better pose problems
with equifinality, enforcing causal interpretability instead of hoping for it.

2 Case studies and Data

Carbon fluxes are crucial in the global carbon cycle, a key component of the Earth’s climate system. Net ecosystem
exchange (NEE) is the net carbon dioxide flux measured using the eddy covariance (EC) technique [53]. The data for
our studies is half-hourly data from FLUXNET, a global network of EC towers that collect data on carbon dioxide and
water vapor exchange between the atmosphere and the terrestrial biosphere [54]. Different biogeochemical processes
contribute to the carbon balance of the land. In particular and as common, we split NEE as

NEE = −GPP +Reco, (4)

where gross primary production (GPP) describes the gross carbon uptake by the environment and ecosystem respiration
(RECO) the carbon release of all organisms.

2.1 The Q10 model

The Q10 model for RECO (1) has been presented in the introduction to illustrate the problem of equifinality. Following
the example of [27], we use data from the EC tower in Neustift, Austria, available in the FLUXNET2015 dataset [55].
Synthetic data is generated from a Q10 model with seasonally varying base respiration and measured air temperature
TA, and with true constant Q10 set to 1.5 (for details, see Appendix A.1.1).

Ecosystem respiration is a latent flux that can only be measured under controlled conditions like a sealed chamber. It is
not directly observed at flux towers during the day. At night, however, we assume GPP to be zero as no photosynthesis
occurs, and all carbon flow stems from respiration. From the available years, we use 2003 to 2007 for training and
keep 2008 and 2009 for testing. Moreover, we consider only measured observations, which amount to approximately
10% of the nighttime data for training (4331 data points).

2.2 CO2 Flux partitioning

Direct measurements of GPP or RECO at the ecosystem level are impossible. Alternatively, partitioning methods
estimate these fluxes numerically from the measured NEE. Common approaches implement functional relationships
based on physiology and estimate the fluxes using data-driven models [56–60]. Several hybrid-modeling approaches
have recently been proposed modeling both fluxes with NNs [37, 61, 62].

Separating a single signal into two additive signals is generally prone to equifinality issues. [61] tried to break the
symmetry between fluxes in the partition by enforcing different sets of explanatory environmental covariates for the
two fluxes and applying a simple hybrid model. In particular, the authors combined NNs with the light-use-efficiency
model given by

NEE = −LUE · SW +Reco, (5)

where LUE models the linear efficiency of the incoming shortwaves SW on the resulting GPP . In this form, GPP
was modeled as the product of the incoming radiation and light-use efficiency (LUE) parametrized by a NN. [37]
showed that with different random initializations, this approach can lead to different resulting fluxes. The equifinality
of the solution becomes particularly evident in extreme conditions. The authors can reduce variability through a multi-
task learning approach. They introduce a second loss, forcing the network to learn to predict solar-induced chlorophyll
fluorescence (SIF) from the separated GPP as both signals are known to be correlated under normal conditions.

4
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(a) Without dropout.
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(b) With dropout.

Figure 1: Simulation study for Q10 estimation with the GD-based HM and the DML-based HM over 100 sampled
datasets at different sample sizes. The plots show average and 95% CI for the estimated Q10 for different methods
without (a) and with (b) dropout applied as a regularizer in the NN regression models. The true Q10 parameter has
a value of 1.5. Introducing TA as a predictor in Rb leads to equifinality problems. Dropout as a regularizer intro-
duces bias on the estimation of Q10 in the GD-based HM case, while the causal hybrid modeling approach performs
satisfactorily in the absence of equifinality.

As a proof of concept, we evaluate the proposed method on synthetically generated observations (see Appendix C.1).
We only used real observations for the real data and applied the hybrid modeling approach site-wise per year. We lay
out the selection criteria for data and sites in Appendix A.2. We used data from 36 different FLUXNET2015 sites for
both synthetic and real data. Details on the single sites can be found in Appendix A.3. For comparison, we use the
respective partitioned Reco and GPP fluxes obtained from the daytime and nighttime methods, already provided as
part of the FLUXNET2015 dataset. Moreover, we compare the partitions to the results obtained with NNs from [61].

3 Double machine learning for hybrid modeling – a causal perspective

4 Results and Discussion

We show the applicability of our causal DML-based HM on two carbon flux modeling problems. We estimate the
temperature sensitivity parameter in the Q10 model to showcase the robustness to regularization biases. We further
illustrate the flexibility of the method to tackle the carbon flux partitioning problem.

4.1 Q10 ecosystem respiration model.

4.1.1 Overall improved estimation capabilities.

We simulated ecosystem respiration data from observations of FLUXNET. The true Q10 parameter was set to 1.5.
We sample 100 datasets of varying sample sizes to see how the methods perform in different data regimes. We
compare the GD-based HM approach using NNs to the proposed causal DML-based HM framework in two possible
instantiations, either using RFs or NNs as first-stage estimators. Experiments are run with and without applying
dropout regularization and introducing TA as an additional predictor in base respiration.

The Q10 estimation results are shown in Fig. 1. First, Fig. 1a shows the results where no dropout was applied to the
NNs. In this case, the estimates of the GD-based HM approach, where TA is included as a predictor for Rb, show

5
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values that are, on average, between 2.1 and 2.3 over all sample sizes. They show a substantial mismatch to the true
value of 1.5 and a wide spread at each sample size. This illustrates that equifinality expresses itself in the estimations
as a wide range of values that hardly decreases with increasing sample size. We are not obtaining the full range of
R > 0 values, which is by (1) mathematically possible, but a range that is constraint alone by the initial Q10 value,
the network’s implicit biases and the first optimization steps of the gradient descent algorithm. This can make us
mistake this for a valid inference of the method. Instead, methods that exclude TA as a predictor find good estimators
that converge with increasing data size. This is, in general, an encouraging result for all hybrid modeling approaches
in this setup. Over the whole range, the GD-based HM shows wider spreads than the DML-based HM approaches,
which converge notably faster with increasing data size. At low data, they also have lower bias than the GD-based HM
approach. Remarkably, the random forest shows very little bias for solving this task over the whole data regime.

4.1.2 Robustness against regularization bias.

Dropout is commonly used in deep learning for regularization [63] or uncertainty quantification [64]. Fig. 1b shows
the Q10 estimations where dropout is applied to all NNs of the GD-based HM approach and the HM approach based
on DML. With dropout, the GD-based HM approach has a harder time finding a good solution. It substantially
overestimates the value of Q10 in the low data regime and only slowly gets more constrained and closer to the true
value at the upper end of the used sample sizes. While the GD-based method got notably worse with the introduction
of dropout, the DML shows robust results for the estimations over the full data range. On average, the Q10 estimations
perform similarly to the experiments without dropout. In the low data regime, the bias in the estimation even decreased
further. When fitting the GD-based HM with TA, the regularization with dropout has a positive effect. The estimated
values for Q10 are closer to the true value, and the spread reduces with more data points. The regularization through
dropout restricts the space of solutions and reduces equifinality even though more data is necessary to overcome the
stochasticity introduced through dropout.

4.1.3 Results on real data

As discussed in Section 2.1, we obtain measured respiration data using night-time NEE measurements. We apply
GD-based HM and DML-based HM with NNs and RFs without dropout to the data. We used the full dataset of over
100 different random seeds. The obtained distributions of Q10 are shown in Fig. 2. The GD-based HM approach finds
a mean value of 1.322, with a skewed distribution and estimated values ranging between 1 and 2. Including TA as a
predictor in the GD-based approach, the values lie in a completely different range between 2.5 and 3.5, with the mean
being 2.816. The estimations based on DML yield a mean of 1.407 and 1.409 for the RFs and NNs, respectively,
with similarly peaked distributions. The results of the DML estimate agree fairly well with the results of [65] that
after controlling for seasonal confounding, find that Q10 takes values around 1.41±0.1 independently of mean-annual
temperature and biome.

4.2 CO2 flux partitioning

We apply the causal DML-based HM to the problem of carbon flux partitioning as defined in (4). In this scenario, we
model the effect as a heterogeneous treatment effect, a function of other predictors, parametrized with an ML model.
We use gradient boosting estimators for all three estimators involved. Moreover, we show that the plug-in estimator
for Reco obtained by combining the first-stage estimators yields useful values without the need for an additional refit.

4.2.1 Consistent flux partitioning

In real data, GPP does not follow a linear relationship with incoming radiation. Especially on a half-hourly scale, the
assimilation of CO2 saturates with increasing radiation [66]. For this reason, we transform SW before applying the
DML scheme. In particular, we employ a rectangular hyperbola similar to the established daytime method for flux
partitioning. The DML then retrieves a modulating factor of the LUE depending on various meteorological drivers.
We use vapor pressure deficit (VPD), air temperature TA, and day of the year (for seasonality) as drivers over all
sites. Where available, we also included soil water content. Since we do not have access to the real partial fluxes, we
compare the retrieved fluxes to the ones obtained by the NN approach described in [61] and by the established daytime
and nighttime methods [56,59]. The daytime and nighttime methods are assumed to capture a simple cycle depending
on a few meteorological drivers. New methods may deviate but should show a similar pattern overall. The results are
reported in Table 1. Overall the consistency of the method based on DML lies in a similar range of values to the
NN approach [61] when compared to the daytime and nighttime methods. The estimated data uncertainty of the used
NEE measurements is 1.53µmolCO2

m2s . For almost all compared fluxes, our method lies under this threshold in terms
of root-mean-square error (RMSE). Only for the GPP and NEE of the nighttime method, the values lie on average

6



A PREPRINT - FEBRUARY 22, 2024

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Q10

0

2

4

6

8

10

12

De
ns

ity

 1.331
 2.871

 1.411
 1.401

GD-based HM without TA

GD-based HM with TA

DML-based HM with NNs
DML-based HM with RFs

Figure 2: Estimation of Q10 on real data. Both DML-based HM find on average a Q10 value of 1.401 and 1.411 for
RFs and neural networks (NNs), respectively. This agrees with values from the literature that find a Q10 value around
1.41 ± 0.1 [65]. The value for the GD-based HM is lower at 1.331 when leaving out TA as a predictor. With TA,
problems of equifinality show up again.

Table 1: Cross consistency in terms of R2, RMSE and bias of retrieved GPP, RECO and estimated NEE between the
established daytime and nighttime methods and the nonparametric methods based on DML. The reported statistics are
median and in brackets 0.25/0.75 quantiles over all site-years.

Flux Methods R2∗ RMSE∗(µmolCO2

m2s ) Bias(µmolCO2

m2s )

RECO DT -DML 0.62(0.41/0.74) 1.18(0.75/1.46) 0.00(−0.20/0.14)
DT -ANN 0.69(0.50/0.81) 0.98(0.70/1.29) 0.02(−0.12/0.18)
NT -DML 0.74(0.50/0.83) 0.89(0.57/1.15) 0.00(−0.11/0.10)
NT -ANN 0.85(0.65/0.92) 0.68(0.47/0.84) 0.07(−0.02/0.16)
DT -NT 0.73(0.63/0.83) 0.95(0.64/1.21) 0.00(−0.22/0.16)
ANN -DML 0.63(0.34/0.77) 0.99(0.66/1.24) −0.07(−0.22/0.10)

GPP DT -DML 0.96(0.93/0.97) 1.25(0.74/1.49) 0.00(−0.16/0.11)
DT -ANN 0.96(0.93/0.97) 1.22(0.76/1.52) 0.04(−0.04/0.17)
NT -DML 0.90(0.84/0.92) 1.97(1.16/2.47) −0.02(−0.13/0.10)
NT -ANN 0.93(0.89/0.95) 1.53(0.90/2.02) 0.07(−0.02/0.18)
DT -NT 0.89(0.82/0.92) 1.85(1.20/2.42) 0.02(−0.16/0.13)
ANN -DML 0.95(0.92/0.97) 1.32(0.71/1.61) −0.08(−0.23/0.08)

NEE DT -DML 0.95(0.93/0.97) 1.07(0.71/1.29) −0.02(−0.11/0.07)
DT -ANN 0.94(0.91/0.96) 1.13(0.76/1.36) −0.03(−0.12/0.03)
NT ∗-DML 0.87(0.81/0.89) 1.92(1.15/2.36) 0.01(−0.02/0.06)
NT ∗-ANN 0.93(0.90/0.94) 1.29(0.79/1.82) 0.00(−0.01/0.01)
DT -NT ∗ 0.86(0.79/0.90) 1.68(1.12/2.25) −0.03(−0.12/0.03)
ANN -DML 0.94(0.91/0.96) 1.27(0.77/1.52) 0.01(−0.02/0.05)
∗The NT NEE value corresponds exactly to the measured NEE value.
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Figure 3: Retrieved GPP flux of daytime method, nighttime method and DML-based HM in July 2006 in France Le-
Bray. The DML-based HM retrieved a similar flux to the daytime method that decreases with the increase of V PD.

slightly above with 1.97µmolCO2

m2s and 1.92µmolCO2

m2s , respectively. The nighttime method fits respiration overnight
and obtains GPP as the residuals between the estimated Reco and measured NEE. Thus, by construction, the NEE
of the nighttime method corresponds to the measured NEE. Hence, both NEE and GPP of the nighttime method
are higher in noise, and thus, a higher RMSE of our method is expected. When comparing the bias between methods,
the causal DML-based HM, mostly in all cases, shows a slightly smaller bias compared to both standard methods than
these methods between them. Furthermore, it lies in a similar range to the GD-based HM.

Overall, our method shows higher similarity to the daytime method, which is expected due to the fitting of the rect-
angular hyperbola in the first step. The retrieved GPP is similar to the daytime method as the NN approach, and
the obtained NEE is even closer. At the same time, the obtained Reco shows a larger deviation even to the daytime
method. This is because we used the plugin-in estimator for Reco obtained from the first-stage DML estimators.

We could obtain a more sophisticated estimator by refitting another model on the residuals, as done in the case of the
Q10 model, where we could also employ SW as a predictor without experiencing equifinality. It would even allow
using the previously estimated GPP as a predictor of Reco. As an additional proof of concept, we apply the method
to synthetic data with different levels of heteroscedastic noise. The method finds robust estimates even to high levels
of noise. The results can be found in Appendix C.1.

4.2.2 Learned functionalities

The consistency tables served as a sanity check that the methods produce reasonable estimations that contain similar
trends over the day and year. The next questions are: Where do they produce similar outputs? When do the outputs
differ? For this, we compare the retrieved fluxes on two different sites. In Fig. 3, we see the retrieved GPP flux
over a few days in July 2006 in France Le Bray. We compare the DML-based HM to the GD-based HM, daytime and
nighttime methods. The retrieved GPP of the daytime and hybrid modeling methods show similar patterns. High
V PD, which marks low water availability, reduces productivity. The daytime method implements this functionality
parametrically. The LUE function of the DML-based HM approach learned a similar functionality that decreases
with increasing V PD and has preferred temperatures roughly between 15◦C and 30◦C (see Fig. 4). It is consistent
over the four consecutive years the method was applied to this site. This demonstrates that the causal hybrid modeling
approach can learn a similar functional relationship as the parametric daytime method in a non-parametric way. The
nighttime method shows a noisier but qualitatively similar pattern.

To highlight the differences between the methods, we look at a grassland site in Santa Rita (US) [67]. Fig. 5 shows
the estimated Reco over few days in July 2010. The selected time window was preceded by two months without rain,
leading to low soil water content and, in turn, reduced respiration activity [68]. During the shown period, a rain event
leads to a sudden increase in soil water content. Such an event is expected to lead to a sudden increase in respiration
as it stimulates microbial activity [68]. We find that the daytime and nighttime methods cannot capture this sudden
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Figure 4: Functional behavior of the learned LUE in the years 2005 to 2008 over V PD and TA. The LUE shows
a consistent functionality over the different years where an increase in V PD, which marks lower water availability,
reduces productivity. This is also consistent with the functionality that the daytime method implements parametrically.

Figure 5: Retrieved Reco flux of daytime, nighttime, and both hybrid modeling methods in July 2010 in Santa Rita
in the US. The daytime and nighttime methods show slow adaption to the change in dynamics caused by a rain pulse
event that followed a long drought. Both hybrid modeling approaches can retrieve the expected immediate increase in
respiration. The estimate of the GD-based HM are lower and less noisy.

behavior as their estimation is based on window fitting and cannot detect sudden changes in dynamics. While Reco
estimated with the nighttime method increases even before the event, the daytime method yields slowly increasing
respiration flux shortly after the event. Instead, the fluxes estimated with the non-parametric hybrid modeling ap-
proaches show an increase right at the event’s time, demonstrating that they can adapt to sudden changes in dynamics.
A difference between both hybrid modeling approaches shows that the GD-based HM estimates a stronger respiration
pulse but yields a noisier estimate from the onset of the event.

5 Conclusions

Machine learning is entering all fields of science, such as physics, chemistry, biology, or environmental sciences, due
to its ability to work with large and complex datasets to identify patterns and make predictions. It is becoming a
complementary tool to enhance scientific research and discovery traditionally ruled by knowledge of first principles
alone. Its limitations are evident: lack of transparency and interpretability, weak generalizability to unseen data, and
violation of laws of nature. Domain-guided machine learning aims to incorporate expert knowledge to overcome
these limitations. Hybrid modeling is one approach to do so which introduces machine learning models into scientific
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equations to learn complex functions from data that we cannot derive from first principles alone. It turns out that
this alone is not enough to obtain the interpretability we hope for. Spurious links between variables can lead to
equifinality: many models describe the data similarly well. Therefore, we must also teach these hybrid models what
seems evident to us: correlation is not causation. And it is causation that we want. In this paper, we proposed a first
step in this direction. We split the fitting of hybrid modeling involving treatment effects into subsequent steps, where
we first estimated the causal effect with DML and then estimated the remaining of the model. By separating different
estimation steps and being explicit about the underlying causal graph and the causal effect, we were able to obtain
a well-defined problem that, originally was ill-posed and, in practice, suffering from equifinality. We applied this
technique to two problems of carbon flux estimation, namely, Q10 estimation in ecosystem respiration and carbon flux
partitioning. We demonstrated the superiority of DML in retrieving parameters describing causal effects over end-to-
end estimations with usual hybrid modeling approaches using NNs. The estimation is shown to be efficient and robust
and effectively reduces bias through regularization techniques such as dropout. On real data, it could retrieve a value
for Q10 consistent with the literature. We further showed the flexibility of the method by transforming the treatment
and fitting a heterogeneous treatment effect of the LUE model for carbon flux partitioning as a non-parametric function.
The retrieved fluxes were consistent with the ones of established methods, showed reasonable functional dependencies,
and could improve on known limitations stemming from the window fitting of these methods. We note that to apply the
method effectively, assuming a causal graph and being explicit about the causal relationships of the involved variables
is essential. This also includes thinking about unobserved confounders, mediators, and correlations between variables.
We believe that this should be a general best practice. Our method encourages machine learners and practitioners to do
so. There are two main problems with the proposed method using DML. First, causal DML-based HM involves various
fitting steps, which may seem uncomfortable compared to the usual end-to-end learning with NNs. One may think of
ways also to make DML end-to-end possible. Here one would apply NNs for all fitting steps and introduce a common
loss over all optimization problems optimized with gradient descent. By weighting these losses adaptively, one can
force this training to first fit the first stage estimators and then the treatment effect variable similar to what has been
done in fitting PINNs respecting temporal and spatial causality [43]. Efforts would need to be put into parallelizing the
fitting of the first-stage estimators to make this approach computationally less costly. The other problem is that even
though we could show that it has broader applicability than the standard semi-linear regression problem, its relevance is
still limited to hybrid models of a particular form containing parameters or non-parametric functions describing causal
effects. Even though one loses the advantageous properties of DML for causal effect estimation, it is thinkable that to
reduce equifinality, one reduces predictors or flexibility based on causal knowledge to have the problem well-posed.
Fit the model and fix part before introducing other predictors and increasing flexibility. This procedure we applied
to introduce TA into the base respiration Rb after estimating Q10 could have similarly been applied to the approach
where Q10 was fitted using gradient descent. When possible, we still encourage using more evolved causal methods,
such as DML. Combined with dropout, it even allows us to have a full probabilistic assessment of a model such as
the Q10 model. A common technique for obtaining uncertainty estimates for NNs is dropout, which we introduced
here as a regularization technique [64]. While the GD-based HM approach suffered from the application of dropout,
the DML approach was robust. Moreover, the technique further yields confidence bands for the approximately normal
distributed estimators. By separating both estimations, we can obtain a distribution over the estimated Q10 and safely
obtain uncertainty estimates for Rb using dropout.

We believe that the marriage of causality and hybrid modeling is the obvious next step toward obtaining more inter-
pretable and trustworthy results in knowledge-guided machine learning. We have demonstrated how this can be done
with causal effect estimation. We hope that more ways of enforcing causality in hybrid models can be explored in the
future.
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A Data

A.1 Synthetic data

A.1.1 Q10 model

We use measured air temperature TA and potential incoming radiation SWPOT for the synthetic data. Further, we
compute

Q10 = 1.5, (6)

Rsyn
eco = Rsyn

b ·Q0.1·(TA−15)
10 · (1 + ϵ), (7)

Rsyn
b = 0.75 · (R̃syn

b −min(R̃syn
b ) + 0.1 · π), (8)

R̃syn
b = 0.01 · SW SM

POT − 0.005 · SW SM,diff
POT , (9)

where Rsyn
b describes the base respiration, which we compute with a smooth daily radiation cycle. The smooth in-

coming potential radiation SW SM
POT and its smoothed difference quotient SW SM,diff

POT are computed by averaging moving
windows of 10 days over the incoming potential radiation SWPOT . We apply the computations in (8) to ensure that
Rsyn

b is always positive. We sample ϵ from a centered truncated normal distribution with 0.2 standard deviation in the
interval [−0.95, 0.95] to obtain heteroscedastic noise over the observations.

A.1.2 LUE model

The code for generating the data is taken from the work of [27], where the authors approach the partitioning of fluxes
with neural networks on a synthetic dataset. Rsyn

eco is computed similarly as in the study on Q10. While, for generating
GPP, we use the light-use efficiency model with LUE being a function of V PD and temperature TA:

GPP syn = LUEsyn · SWin, (10)

LUEsyn = 0.5 · exp
(
−0.1 · (TA − 20))2

)
·min(1, exp(−0.1 · (V PD − 10))). (11)

Finally, we compute NEE following (4) with additional multiplicative heteroscedastic noise:

NEEsyn = (−GPP syn +Rsyn
eco) · (1 + σε), (12)

where noise ε ∼ N (0, 1) is sampled from a standard Gaussian distribution and σ varies in
{0, 0.05, 0.1, 0.2, 0.4, 0.7, 1.0, 2.0}.

A.2 Fluxnet data selection

For the data selection of real data from FLUXNET2015 [55], we closely followed [61] to compare our method to
the neural network approach that imposes similar structural equations. We choose the same set of sites and use the
same quality criterion to select site-years. This implies that fitting is done year-wise per site, and only measured data
is used. To have enough high-quality data, only site-years for the analysis are selected where at least 80% of the
meteorological data and 10% of each, daytime and nighttime NEE were measured. As a target, similar to [61], we use
the NEE obtained from the 50th percentile of the CUT method [55].

A.3 FLUXNET sites

The 36 FLUXNET sites used for the flux partitioning experiments are shown in Table 2. The table further provides
information on plant type, latitude, and longitude.
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Table 2: FLUXNET sites used for flux partitioning experiments with DML.
ID Site code IGBP Lat Lon

1 AU-Cpr SAV -34,00 140,59
2 AU-DaP GRA -14,06 131,32
3 AU-Dry SAV -15,26 132,37
4 AU-How WSA -12,49 131,15
5 AU-Stp GRA -17,15 133,35
6 BE-Lon CRO 50,55 4,75
7 BE-Vie MF 50,31 6,00
8 CA-Qfo ENF 49,69 -74,34
9 DE-Geb CRO 51,10 10,91
10 DE-Gri GRA 50,95 13,51
11 DE-Kli CRO 50,89 13,52
12 DE-Obe ENF 50,79 13,72
13 DE-Tha ENF 50,96 13,57
14 DK-Sor DBF 55,49 11,64
15 FI-Hyy ENF 61,85 24,29
16 FR-LBr ENF 44,72 -0,77
17 GF-Guy EBF 5,28 -52,92
18 IT-BCi CRO 40,52 14,96
19 IT-Cp2 EBF 41,70 12,36
20 IT-Cpz EBF 41,71 12,38
21 IT-MBo GRA 46,01 11,05
22 IT-Noe CSH 40,61 8,15
23 IT-Ro1 DBF 42,41 11,93
24 IT-SRo ENF 43,73 10,28
25 NL-Loo ENF 52,17 5,74
26 RU-Fyo ENF 56,46 32,92
27 US-ARM CRO 36,61 -97,49
28 US-GLE ENF 41,37 -106,24
29 US-MMS DBF 39,32 -86,41
30 US-NR1 ENF 40,03 -105,55
31 US-SRG GRA 31,79 -110.83
32 US-SRM WSA 31,82 -110,87
33 US-UMB DBF 45,56 -84,71
34 US-Whs OSH 31,74 -110,05
35 US-Wkg GRA 31,74 -109,94
36 ZA-Kru SAV -25,02 31,50

B Method

B.1 Derivation of DML estimator for g

One way of obtaining an estimator for g instead of fitting it directly is by reusing all estimators of DML. It is easy to
see that

g(X,W ) = E[g(X,W )|X,W ]

= E[Y − θ(X)f(T )− ϵ|X,W ]

= E[Y |X,W ]− E[θ(X)f(T )|X,W ]− E[ϵ|X,W ]︸ ︷︷ ︸
=0

= E[Y |X,W ]− θ(X)E[f(T )|X,W ]

≈ E[Y |X,W ]− θ̂(X)E[f(T )|X,W ],

where E[Y |X,W ] represents the estimator of Y on X and W and E[f(T )|X,W ] the estimator of f(T ) on X and W .
From here, one can use an ensemble of the first-stage estimators over all folds to obtain the estimator of E[Y |X,W ]

and the estimator of E[f(T )|X,W ]. The estimator θ̂(X) is a single estimator obtained as the result of DML.
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Figure 6: Assumed causal graphs for the estimation with the causal hybrid modeling approach in Q10 estimation.
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Figure 7: Assumed causal graphs for the estimation with the causal hybrid modeling approach in flux partitioning.

B.2 Causal graph of the Q10 model

The causal graph we assume for the Q10 model is shown in Fig. 6. The smooth potential radiation cycle given by
SW SM

POT and SW SM,diff
POT represent seasonality, and thus, they have a confounding effect on temperature TA and Reco.

For the real data, we add V PD to the graph, representing humidity and water availability. This variable enters
as a mediator in the graph as temperature affects evaporation and how much water the air can hold. Furthermore,
water availability also has a strong effect on respiration [68]. However, the temperature-sensitivity Q10 should only
describe the immediate temperature effect. Effects of water should be modeled in the base respiration factor Rb. Thus,
assuming this graph, with our choices of variables, we estimate only the direct, immediate effect and not the one
mediated through water or confounded by seasonality.

B.3 Causal graph of the LUE model

The causal graphs assumed for the LUE model are shown in Fig. 7. As Reco is modeled similarly to the Q10 model,
we keep the same variables modeling the seasonal cycle. In addition to that, we include V PD and TA, which were
used to model GPP . The incoming radiation SW has an effect on the temperature as well as on water vapor. Thus,
both variables enter as mediators on the path to NEE. For the real data, we use the day of the year DOY for modeling
the seasonality, which continues to be a confounder. In addition to the V PD and TA, we add soil water content, which
also enters as a mediator when available. Consequently, we estimate GPP as the direct effect of light on NEE,
discounting the indirect effects through temperature, V PD, and SW , which we allocate to RECO. Note that in this
setup, these three variables still enter as modifiers on the effect of light on NEE, affecting GPP .
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Table 3: Coefficient of determination R2 for generated data on all 36 flux sites with different heteroscedastic noise
levels between the GPP, RECO and NEE obtained with the DML approach and the respective ground truth. For NEE,
the noise-free value is stated. The reported statistics are the median and in brackets, the 0.25 and 0.75 quantiles over
all site-years.

σ GPP Reco NEEclean

0.00 0.997(0.994/0.998) 0.940(0.923/0.960) 0.978(0.973/0.983)
0.05 0.997(0.994/0.998) 0.940(0.923/0.959) 0.978(0.973/0.983)
0.10 0.997(0.993/0.998) 0.939(0.922/0.958) 0.978(0.973/0.982)
0.20 0.996(0.991/0.998) 0.936(0.917/0.956) 0.977(0.972/0.982)
0.40 0.993(0.985/0.996) 0.931(0.911/0.947) 0.975(0.969/0.979)
0.70 0.986(0.961/0.991) 0.914(0.888/0.929) 0.970(0.963/0.975)
1.00 0.977(0.930/0.985) 0.887(0.846/0.910) 0.964(0.955/0.970)
2.00 0.922(0.707/0.952) 0.751(0.617/0.813) 0.937(0.910/0.948)

B.4 Details on the neural networks

The NNs used for the GD-based HM had 2 hidden layers with 16 units each. A tanh nonlinearity was applied at
the end of each hidden layer. To obtain non-negative results for the base respiration, a final softplus function was
applied to the output of the last layer. This function is a smooth approximation of the ReLU function. For the case of
regularization, dropout was applied to the outputs of the hidden layers at a rate of 0.2. The initial Q10 is sampled from
a Gaussian with σ = 0.1 and µ = 1.5. For the DML-based HM approach, we used the same network architecture
without final softplus for the first-stage estimators. For the estimation of Rb after obtaining Q10, we used the same
network again, but this time we included the softplus nonlinearity. We used stochastic gradient descent with the Adam
optimizer [69] for the training. We apply exponential learning rate decay as a scheduler with a decay rate of 0.95 over
500 steps. We trained the first stage estimators of the DML over 2000 iterations each. For the GD-based HM and the
final g estimator in the causal DML-based HM, we trained over 10000 iterations. To avoid overfitting, 20% of the data
is always kept as validation data for model selection.

C Additional results

C.1 Retrievel of linear model

We generated synthetic data following [27], a partially linear LUE model with varying coefficients. As inputs, we
used time series of measured meteorological forcings and added heteroscedastic noise over different noise levels (see
Appendix A.1.2 for details).

To test the robustness of the approach to noise, we perform experiments with an increasing level of heteroscedastic
noise. The R2 and RMSE of the retrieved fluxes are reported in Table 3 and Table 4. We note that the DML approach
gives theoretical guarantees for estimating GPP and not necessarily for Reco [70,71]. Our proposed method retrieves
good estimates of GPP with a medium R2 of 0.997 in the no-noise scenario. Even a heteroscedastic noise level of
0.4 does not yield any strong drop in performance. Beyond that, the method is still robust as it retrieves the correct
GPP at a noise level of 1.00 with a median value of 0.922. In flux partitioning, retrieving Reco can be harder as it has
a smaller magnitude than GPP , implying a smaller signal-to-noise ratio. Moreover, even though there is no guarantee
on the used plugin-in estimator for Reco, which we obtain by recycling the estimators of the DML approach, we still
find it to yield useful results. The retrieved fluxes have a median R2 over all site-years of 0.94. As expected, the effect
of the noise on the retrieval of Reco is stronger, but up to a σ of 0.4, the results are not strongly affected. When we
combine both models, we obtain a model of NEE. Even with strong noise, this estimator retrieves good estimates of
the NEE signal.

D Reproducibility

The data used to carry out experiments is available at https://fluxnet.org/data/
fluxnet2015-dataset/. All code is being made available at https://github.com/KaiHCohrs/
hybrid-q10-model-chm and https://github.com/KaiHCohrs/dml-4-fluxes-chm.
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Table 4: The RMSE (in µmolCO2

m2s ) for generated data on all 36 flux sites with different heteroscedastic noise levels
between the GPP, RECO and NEE obtained with the DML approach and the respective ground truth. For NEE, the
noise-free and noisy values are stated. The reported statistics are the median and, in brackets, the 0.25 and 0.75
quantiles over all site-years.

σ GPP Reco NEEclean NEEnoisy

0.00 0.320(0.227/0.454) 0.861(0.770/1.104) 0.872(0.768/1.079) 0.872( 0.768/ 1.079)
0.05 0.330(0.234/0.467) 0.864(0.771/1.109) 0.873(0.770/1.083) 1.029( 0.827/ 1.311)
0.10 0.359(0.243/0.491) 0.878(0.778/1.136) 0.880(0.770/1.097) 1.197( 0.949/ 1.615)
0.20 0.401(0.284/0.600) 0.921(0.794/1.184) 0.898(0.781/1.128) 1.701( 1.346/ 2.573)
0.40 0.515(0.386/0.772) 0.973(0.825/1.335) 0.941(0.808/1.219) 2.977( 2.349/ 4.850)
0.70 0.758(0.543/1.152) 1.139(0.895/1.577) 1.025(0.862/1.358) 5.101( 3.965/ 8.434)
1.00 1.005(0.715/1.589) 1.285(0.971/1.872) 1.147(0.927/1.467) 7.162( 5.583/11.949)
2.00 1.804(1.268/2.972) 1.880(1.361/3.058) 1.500(1.196/2.186) 14.316(11.104/23.889)
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