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Abstract: By computing a feedback control via the linear quadratic regulator (LQR)
approach and simulating a non-linear non-autonomous closed-loop system using this
feedback, we combine two numerically challenging tasks. For the first task, the com-
putation of the feedback control, we use the non-autonomous generalized differential
Riccati equation (DRE), whose solution determines the time-varying feedback gain ma-
trix. Regarding the second task, we want to be able to simulate non-linear closed-loop
systems for which it is known that the regulator is only valid for sufficiently small
perturbations. Thus, one easily runs into numerical issues in the integrators when the
closed-loop control varies greatly. For these systems, e.g., the A-stable implicit Euler
methods fails.
On the one hand, we implement non-autonomous versions of splitting schemes and BDF
methods for the solution of our non-autonomous DREs. These are well-established DRE
solvers in the autonomous case. On the other hand, to tackle the numerical issues in
the simulation of the non-linear closed-loop system, we apply a fractional-step-theta
scheme with time-adaptivity tuned specifically to this kind of challenge. That is, we
additionally base the time-adaptivity on the activity of the control. We compare this
approach to the more classical error-based time-adaptivity.
We describe techniques to make these two tasks computable in a reasonable amount of
time and are able to simulate closed-loop systems with strongly varying controls, while
avoiding numerical issues. Our time-adaptivity approach requires fewer time steps than
the error-based alternative and is more reliable.

Keywords: differential Riccati equation, non-autonomous, closed-loop simulation,
feedback control, step size control

Novelty statement: The novelty of this work is twofold:

• Until now, numerical methods for non-autonomous differential Riccati equations
have been restricted to very specific assumptions on the time-dependent matri-
ces. We propose new low-rank splitting schemes and backward differentiation
formulas to numerically solve general non-autonomous differential Riccati equa-
tions.

• We overcome numerical issues that occur during the simulation of the cor-
responding closed-loop system by utilizing the fractional-step-theta algorithm
combined with a time-adaptive strategy that is specifically adapted to quickly
varying controls.
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1 Introduction

The combination of the two tasks, to compute a feedback control for a (possibly) non-linear non-
autonomous system and to apply this control in a simulation of the closed-loop system, consists of
three steps. First, we simulate the (open-loop) non-linear problem, (possibly) with a feedforward-
control, to assemble the reference solution trajectory and data for the feedback computation. Then,
we linearize the equations around the reference trajectory and apply the linear-quadratic regulator
(LQR) approach, to the linearized system, to receive the feedback gain. In the third step, we apply
the feedback gain to the non-linear problem during a closed-loop simulation. The novelty of this
approach lies in the application of this framework to large-scale non-autonomous systems. This
can include problems with free boundaries and moving interfaces.
The second step, the computation of a feedback control with the LQR approach on a finite time-

horizon, results in the necessity to solve a differential Riccati equation (DRE) [15, 41]. In fact,
DREs arise for other applications as well and have been studied in great detail [1]. We focus in
particular on the generalized DREs [29] and DREs resulting from differential-algebraic equations
(DAEs) [30]. The algebraic constraint equations can arise, e.g., from divergence-free conditions
in convection-diffusion equations or from coupling constraints with free boundaries and moving
interfaces.
In order to numerically solve the corresponding DRE as well as the non-linear problem in step one

and three, we first semi-discretize in space. Thereby, the DRE becomes matrix-valued with large-
scale, but sparse, coefficients and a solution that, in most cases, can be approximated sufficiently
accurate by a low-rank factorization [49]. There is a range of methods available to numerically solve
this kind of DREs. To enumerate several, splitting schemes can be applied to DREs [39,40,46–48].
Further, there are the backward differentiation formulas (BDF) [12,13,32,38] as well as Rosenbrock
and Peer methods [10, 31, 32, 38]. Recently, also Krylov subspace methods have been applied to
DREs [8,21,25,28] as well as exponential integrators [33] and an all-at-once space-time approach [16]
(computing a low-rank tensor format solution).
The just mentioned methods are mainly focused on autonomous DREs. In contrast to this,

DREs are especially challenging when the coefficient matrices are time-dependent. In detail, these
non-autonomous DREs are particularly challenging for problems with free boundaries [4, 6] and
moving interfaces like fluid structure interaction (FSI) [19] and the Stefan problem [6,7]. Addressing
such problems, the numerical solution of large-scale non-autonomous DREs has not been studied
in a lot of detail so far. For instance, in [13, 38], the authors formulate non-autonomous BDF
and Rosenbrock methods without going into detail about the implementation or performance.
Moreover, non-autonomous BDF and Rosenbrock methods are used in [31, 32] as well as non-
autonomous Peer methods in [10], but are restricted to the case of constant matrices scaled by time-
dependent scalar functions. The applications we consider have no restriction on the non-autonomy
of the matrices. Consequently, in this manuscript, we extend the existing BDF methods (and to a
limited extent also splitting methods) for solving large-scale fully non-autonomous DREs. Further,
we give details on how to correctly incorporate the weight parameter from the cost functional into
the DRE and provide a numerical implementation in the software package M-M.E.S.S. [43].

In addition to these contributions, this manuscript focuses on solving closed-loop problems with
free boundaries and moving interfaces. This is a very broad and active field of research, see
e.g., [18,23,26,27,35], and there are numerous numerical methods available. During the simulation
of problems with moving interfaces, we can observe numerical issues, which are similar to the
ones in [20]. This is especially true for closed-loop problems with strongly varying controls. In
this setting, common methods like the implicit Euler method and the trapezoidal rule run the
risk to break down as in [20]. To overcome this, our method of choice is the fractional-step-
theta algorithm [17] combined with adaptive time stepping. It has successfully been applied for
Navier-Stokes equations [36, 37] as well as for FSI problems [20, 42, 52]. Part of this method can
be classical error estimates for the time-adaptivity, e.g., heuristics, based on models of the actual
error [22,24,50], like the one that is used in [20]. Others are residual-based like the dual weighted
residual, which yields the best results in [20]. Unfortunately, this method has high computational
costs and, thus, is not feasible for our purpose. Therefore, our approach is to modify an error-based
heuristic and adapt it to the case of closed-loop systems with quickly varying controls.
For specific problems that have moving inner boundaries as well, there are time-adaptive strate-
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gies available that differ from ours. One example is an adaptive time stepping applied for a two-
phase flow with a proportional–integral–derivative (PID) control in [2]. Another example is [44],
where temporal and spatial discretizations are used that are adaptive with respect to Courant-
Friedrichs-Lewy and non-self-intersection conditions for a dendritic Stefan problem.

Structure of the Manuscript. In Section 1.1, we state a general definition of the (possibly) non-
linear non-autonomous closed-loop system we consider. To design a feedback controller for this
system, we choose the LQR approach and formulate the non-autonomous DRE in Section 1.2.
To solve this DRE, the non-autonomous versions of the BDF methods and the splitting schemes
are discussed in Section 2. With this solution, we can compute a feedback control, which is
then used in the closed-loop system. For a robust numerical solver of this system, we describe
several time stepping methods for closed-loop integrators, e.g., a time-adaptive fractional-step-
theta algorithm with several indicators in Section 3. We demonstrate and compare the performance
of the presented methods and their behavior with respect to different control-parameter choices in
Section 4. Additionally, we specify how to access the codes and data for our experiments in [5]
and summarize our conclusions in Section 5.

Notation. In most equations, we omit the time-dependence (t), the spatial dependence (x), or
the combination of both (t, x). This is intended to improve the readability of the equations.

1.1 Problem Definition

Our goal is to derive and apply a feedback control uK for possibly non-linear non-autonomous
systems. This section describes the corresponding control problem in an abstract form such that
it can be applied to different dynamical systems.
We define this abstract, controlled, dynamical system

ẋ = f(x, u) (1)

on a finite time horizon t ∈ I = [t0, tend] and a domain Ω ⊂ Rd of dimension d > 0. The domain
has a fixed outer shape and can contain moving interfaces or free inner boundaries. However, we
expect that our methods work as well with a time-dependent domain that is finite and with a
volume that is uniformly bounded away from zero. Additionally, the function f is possibly non-
linear in x(t). This state x ∈ Vx as well as the control u ∈ Vu are unknowns, with the function
spaces Vx and Vu being suitable spaces chosen with respect to the underlying dynamical problem.

Further, we assume that a reference pair (xref, uref) ∈ Vx × Vu is given, which is a solution to
Equation (1). In particular, this represents the desired state trajectory of the system, which we
want to stabilize with the feedback control uK. That means, in this scenario, that the resulting
input is given as u = uref + uK. To clarify, the additional feedback control is necessary because we
assume that the system (1) is influenced by model inaccuracies or perturbations, which cause the
state to deviate from the desired trajectory. This deviation is expressed as

x∆ = x− xref, uK(t, x∆(t)) = u− uref.

Consequently, we reformulate system (1) in closed-loop form

ẋ∆ = f(x∆, uK). (2)

With this setup, the desired state of system (2) is the zero state.
In order to measure the deviation of the state in a performance index, we denote the function

that maps the state to the output y∆(t) of the system by C : Vx → Vout, where Vout is a suitable
space:

y∆ = Cx∆.

These output and control costs are measured in a performance index J : Vx×Vu → R≥0, defined
by

J (x∆, uK) =
∫ tend

t0

∥y∆∥2 + λ ∥uK∥2 dt+ xT
∆(tend)Sx∆(tend), (3)
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where S is positive semidefinite and λ > 0 is a regularization parameter. A smaller λ makes the
problem numerically more challenging and allows the feedback control greater activity. As a result,
minimizing the performance index corresponds to the objective to stabilize the system (2) to zero.
To perform this task computationally, we use numerical methods to solve the system (2) and

compute a feedback control t 7→ uK(t, x∆(t)), thus approximating an optimal pair (x∗, u∗) ∈ Vx×Vu

that minimizes the performance index J (x∗, u∗) with the LQR approach.

1.2 Linear Quadratic Regulator

The optimal feedback control for a linear control system in state-space formulation with a quadratic
cost functional is given by the linear quadratic regulator, see e.g. [34]. Moreover, non-linear systems
can be stabilized with this method if the deviation from the desired trajectory is sufficiently
small [45, Section 8.5]. We use this approach because it is well studied for related types of problems,
e.g., convection diffusion equations [51], and demonstrates promising performance for these. For
the non-linear case, first, we linearize system (2) around the reference pair (xref, uref). Next, we
apply the LQR approach to the linearization. Then, the derived feedback control can be applied
to the non-linear system.
To begin with, the linearization of system (2) can always be written in the form

Mẋh = Axh + B̂uh,

yh = Cxh.
(4)

In detail, the system is considered to be semi-discretized in space with the sparse square matrices
A(t),M(t) ∈ Rn×n, the input matrix B̂(t) ∈ Rn×m, and the output matrix C(t) ∈ Rp×n. These
matrices are possibly time-dependent and we assume M(t) to be differentiable and uniformly non-
singular. Further, xh ∈ V h

x ⊂ I × Rn, uh ∈ V h
u ⊂ I × Rm, and yh ∈ V h

out ⊂ I × Rp with
V h
x ⊂ Vx,V h

u ⊂ Vu, and V h
out ⊂ Vout being semi-discrete subspaces. Additionally, we assume that

m, p ≪ n, such that low-rank methods are applicable in the next step.
The main task for computing an optimal feedback control is to solve a matrix-valued non-

autonomous generalized differential Riccati equation (DRE), given by

− d

dt
(MTXM) = CTC +ATXM+MTXA−MTXBBTXM,

M(tend)
TX(tend)M(tend) = S.

(5)

In contrast to this general non-autonomous problem, the DRE with constant mass matrix, i.e.,
M(t) ≡ M̂, is more common in literature [10,13,31,32,38] and requires no special treatment of the
time-derivative at the left-hand side of Equation (5). Here, this time-derivative can be reformulated
using the chain rule:

− d

dt
(MTXM) = −ṀTXM−MTẊM−MTXṀ.

With a constant mass matrix, the terms on the left and right vanish and Equation (5) simplifies
to

−M̂TẊM̂ = CTC +ATXM̂+ M̂TXA− M̂TXBBTXM̂,

M̂(tend)
TX(tend)M̂(tend) = S.

(6)

Otherwise, by subtracting the two terms containing Ṁ(t) from Equation (5) we get a DRE that
contains the time-derivative of M(t):

−MTẊM = CTC + (Ṁ+A)TXM+MTX(Ṁ+A)−MTXBBTXM,

M(tend)
TX(tend)M(tend) = S.

(7)

Here, the coefficient matrices are time-dependent and so is the Rn×n-valued solution X(t). Note
that the input matrix B(t) = 1√

λ
B̂(t) is scaled with the weight factor from the performance

index (3).
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With the solution of Equation (7), we can compute the feedback gain matrix

K =
1

λ
B̂TXM =

1√
λ
BTXM.

Then, we obtain the feedback control uh
K(t, x

h
∆(t)) that minimizes the performance index (3) by

applying −K(t) to the semi-discrete state deviation xh
∆(t) as in [11,34,45]:

uh
K = −Kxh

∆. (8)

This semi-discrete feedback control can then be applied to the non-linear system (2).
One main contribution of this manuscript are the numerical methods to efficiently solve the

DRE (7) and, thus, compute the feedback gain K(t). Such methods, which can also treat the
time-dependent coefficients, are presented in the next section.

2 DRE Solver

In this section, we present methods to numerically compute a low-rank approximation of the
solution X(t) ∈ Rn×n of the DRE (7). For the autonomous DRE (6), i.e., when all matrix
coefficients are constant in time, many efficient low-rank methods exist, as we have discussed in
the introduction. These methods are mostly tailored for the autonomous DRE and not yet suited
to handle time-dependent coefficients. Here, we introduce the BDF methods and splitting schemes
adapted to the non-autonomous DRE (7).
To this end, we introduce an equidistant temporal discretization consisting of the nt + 1 grid

points tk defined by

τ =
tend − t0

nt
, T = {tk = t0 + k · τ, k = 0, . . . , nt}.

The DRE is solved backwards in time starting at tend. For reasons of better readability and for
consistency with previously published material on the autonomous case, we perform a change of
variables t → tend + t0 − t such that we can formulate the methods forward in time. The DRE to
be solved is therefore

MTẊM = CTC + (A+ Ṁ)TXM+MTX(A+ Ṁ)−MTXBBTXM,

M(t0)
TX(t0)M(t0) = X0 = S.

(9)

The DRE solvers in this section then efficiently approximate Xk ≈ X(tk), representing Xk by a
low-rank factorization.

2.1 Low-rank Methods

Motivated by [49], with m, p ≪ n, we assume the solution of the DRE, X(t), to have a small
(numerical) rank s(t) ≪ n. Even if the matrices A(t),M(t) ∈ Rn×n are sparse, at each time (t),
the solution X(t) ∈ Rn×n is a dense matrix. However, since it has a low numerical rank, it can be
well approximated by

X ≈ LDLT, (10)

where the low-rank factors L(t) ∈ Rn×s(t) and D(t) ∈ Rs(t)×s(t) have the rank s(t) ≪ n [32]. With
this low-rank factorization, just the low-rank factors L(t) andD(t) need to be stored. Consequently,
the memory requirement for the storage of the solution reduces to O(s(t)n+s(t)2) instead of O(n2),
per time step. This factorization technique is used by the methods we introduce in this section.

Non-autonomous BDF Method We choose the BDF methods because the existing implemen-
tations can be adapted to the non-autonomous case relatively straight forward since the original
method is, in theory, not restricted to autonomous data. However, the existing BDF methods for
matrix-valued DREs like [32, Algorithm 3.2] are tuned for constant data. Nevertheless, we can
extend these BDF methods to solve the non-autonomous DRE (7) with a feasible amount of extra
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Algorithm 1 Non-autonomous low-rank factor BDF method of order ℘

Input A(t),M(t),Ṁ(t),B(t), C(t), λ,T , ℘, L0, . . . , L℘−1, D0, . . . , D℘−1

Output Kk, k = 0, . . . , nt − 1

1: Invert the direction of time in all matrix functions, e.g. A(t) → A(tend + t0 − t)

2: Knt−k = 1√
λ
B(tk)TLkDkL

T
kM(tk), k = 1, . . . , ℘− 1

3: for k = ℘, . . . , nt do
4: Ak = τβ(Ṁ(tk) +A(tk))− 1

2M(tk)
5: Mk = M(tk)
6: Bk =

√
τβB(tk)

7: CT
k =

[
C(tk)T,MT

kLk−1, . . . ,MT
kLk−℘

]

8: Sk =




τβIp
−α1Dk−1

. . .
−α℘Dk−℘




9: solve ARE (11) for Lk and Dk

10: Knt−k = 1√
λ
B(tk)TLkDkL

T
kMk

Algorithm 2 BDF Start-up Time-steps

Input T , ℘, n℘

Output T

1: if ℘ > 2 then
2: τ = t1 − t0, τ̃ = τ

2n℘

3: t̃0 = t0, t̃1 = t0 + τ̃
4: if ℘ = 3 then
5: for k = 2, . . . , n℘ + 2 do
6: t̃k = t0 + 2k−1τ̃

7: T = {t̃0, . . . , t̃n℘+2, t2, . . . , tnt
}

8: else if ℘ = 4 then
9: for k = 1, . . . , n℘ + 2 do

10: t̃2k = t0 + 2k τ̃
11: t̃2k+1 = t0 + 3 · 2k−1τ̃

12: T = {t̃0, . . . , t̃2n℘+5, t4, . . . , tnt
}

computational cost. This results in Algorithm 1 formulated forward in time. Note that the actual
numerical implementation is backward in time. An equivalent formulation of the non-autonomous
BDF methods backward in time can be found in [7].
The inputs of Algorithm 1 are the time-dependent matrices A(t), M(t), Ṁ(t), B(t), C(t), the

time grid T , and the order ℘ ∈ {1, 2, 3, 4} of the BDF method. Further, the low-rank factors
L0, . . . , L℘−1, D0, . . . , D℘−1 of the initial values X0, . . . ,X℘−1 are required as inputs with sufficient
accuracy to obtain the desired order of convergence ℘.
These initial values could be computed with a different DRE solver of at least order ℘. Instead, we

compute the initial solution snapshots with sufficiently small time steps of lower, but successively
increasing, order BDF in a wind-up procedure. This way, the method becomes entirely self-
contained. No extra time steps are required for ℘ = 1, where the initial solution X0, which is
available, is sufficient and for ℘ = 2, where the additional initial solution X1 can be computed
with one BDF 1 step. But, we generate extra time steps for ℘ ∈ {3, 4} with a specific wind-up
procedure.
We summarize this wind-up procedure in Algorithm 2, which has the inputs T , ℘, and n℘. With

these, the smallest additional time step is of length τ̃ = t1−t0
2n℘ . This is used to compute small BDF

steps with step size τ̃ and increasing order from 1 up to ℘−1. Then, BDF steps are computed with
time step lengths that are doubled n℘ times until the time steps coincide with the first t0, . . . , t℘−1.
Usually, we choose n℘ = 10. Independently of nt, this results in 10 extra time steps for BDF 3
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and 22 for BDF 4. For implementation details of Algorithms 1 and 2, see [43, mess bdf dre.m].
In each step of the BDF method, we solve an algebraic Riccati equation (ARE)

0 = CT
k SkCk + (Ṁk +Ak)

TXkMk +MT
kXk(Ṁk +Ak)−MT

kXkBkBT
kXkMk (11)

for the low-rank factors LkDkL
T
k ≈ Xk. The matrices in Equation (11) are constructed in Lines 4

to 8 of Algorithm 1 and the coefficients αj and β can be found in, e.g., [3, Table 5.2]. Instead of
storing the solutions for each time step, Algorithm 1 computes the feedback gain matrices Kk ≈
K(tk), k = 1, . . . , nt directly, which further decreases the storage requirements to O(mn) per time
step. Note that we look at the on-disk storage after completion of the computation. Intermediately,
we may need more memory. However, we use the Newton alternating-direction implicit (Newton-
ADI) method to solve the ARE (11), which can accumulate the feedback gain matrices directly
avoiding assembling the low-rank solution factors. This is a significant performance advantage in
terms of the memory requirements during the computations, especially for large-scale DREs.
There are several new developments in Algorithm 1 compared to [32, Algorithm 3.2]. First,

the method has the ability to handle non-autonomous DREs with time-dependent matrices and,
especially, non-constant M(t). Also, the start-up with X0, . . . ,X℘ for order ℘ with Algorithm 2
is independent of any other DRE solver. Altogether, the extra computational cost of the non-
autonomous method are the memory requirements for the time-dependent coefficient matrices
and the matrix-matrix multiplications MT

kLj in Line 7. In the autonomous case, only M̂TLk−1 is

computed and M̂TLk−2, . . . ,M̂TLk−℘ are reused from the previous time steps since M̂ is constant
in time. Further, Algorithm 1 is embedded in the freely available software package M-M.E.S.S.
([43]), where it benefits from efficient solvers for the ARE (11) and can handle various forms of
structures in the coefficient matrices.

Non-autonomous Splitting Schemes. The splitting schemes for autonomous DREs utilize the
fact that there are closed-form solutions for the two subproblems that arise when treating the affine
and the quadratic part of the equation separately. This idea can be partially extended also to the
non-autonomous case. The relevant subproblems are

MTẊFM = CTC + (A+ Ṁ)TXFM+MTXF (A+ Ṁ), (12)

MTẊGM = −MTXGBBTXGM. (13)

The solution to Equation (13) is given implicitly by

XG(t) =
(
I +XG(s)

∫ t

s

B(τ)B(τ)Tdτ
)−1

XG(s) (14)

for s ≤ t. This is easily seen by multiplying by the inverted term from the left and then differen-
tiating. In the autonomous case (see [48]), the corresponding formula is

XG(t) =
(
I + (t− s)XG(s)BBT

)−1

XG(s),

and the only difference when solving this subproblem in the non-autonomous case is, thus, that
the integral

∫ t

s
B(τ)B(τ)Tdτ needs to be evaluated rather than simply BBT.

For the affine subproblem, we introduce the two-parameter semigroup

T (r, t) = exp

(∫ t

r

(
(A(τ) + Ṁ(τ))M(τ)

−1)T
dτ

)
.

Denote the integrand by Q(τ). If Q(t)Q(s) = Q(s)Q(t) for any t and s, then also the integrals
commute: ∫ t

r

Q(τ)dτ

∫ s

r

Q(τ)dτ =

∫ s

r

Q(τ)dτ

∫ t

r

Q(τ)dτ .

As a consequence,
(
(A(t) + Ṁ(t))M(t)−1

)T
commutes with T (r, t) and

d

dt
T (r, t) =

(
(A(τ) + Ṁ(τ))M(τ)

−1)TT (r, t).
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Then, the solution to Equation (12) is given implicitly by

XF (t) = T (r, t)XF (r)T (r, t)T +

∫ t

r

T (s, t)M(s)−TC(s)TC(s)M(s)
−1T (s, t)Tds, (15)

for t0 ≤ r ≤ t. This follows quickly by differentiating each of the two terms separately using the
above identity and noting that the first term satisfies Equation (12) without the C(t)TC(t) term,
and the second satisfies Equation (12) but with XF (r) = 0.
The condition that

Q(t)Q(s) = Q(s)Q(t) (16)

for any t and s does not hold in general, and needs to be verified. Note that it does hold, e.g.,
when A(t) = α(t)Ā and M(t) = µ(t)M̄, with constant matrices Ā and M̄ and scalar functions
α(t) and µ(t). This is a common application, e.g., when considering heat flow with a variable
thermal conductivity. In case a different approach can be used to solve Equation (12) efficiently,
the condition in Equation (16) is not required.
In the low-rank setting, we can utilize the Sherman-Morrison-Woodbury matrix inversion lemma

to express the solution XG to the nonlinear subproblem (13) in low-rank form. Given that XG(s) =
LGDGL

T
G, from Equation (14) we get

XG(t) = LG

(
I +DGL

T
G

∫ t

s

B(τ)B(τ)TdτLG

)−1

DGL
T
G. (17)

Since the integral does not depend on XG(t) and the integrand has a low-rank factorization for
each τ , it can easily and efficiently be approximated by applying a quadrature formula followed by
a column compression step. This can potentially even be done in an offline phase.
For the affine problem, the constant term in Equation (15) is in low-rank form if the initial

condition XF (r) is, and so is the integrand in the integral term. We can, therefore, apply a
quadrature rule to approximate the integral and compress the columns of the resulting sum to
acquire an approximation to XF (t). For each of the terms of this sum, we need to evaluate
T (c, t)L for different values of c and L. For this, we utilize the fact that, at time s = t, it is the
solution to the system

M(s)TẎ (s) =
(
A(s) + Ṁ(s)

)T
Y (s), Y (r) = L. (18)

In the autonomous case, a single integral can be approximated once and then reused in every split-
ting step, but in the non-autonomous case we need to approximate an integral term in every step.
In the autonomous case, we may additionally use the semigroup property T (r, t)L = T (r, s)T (s, t)L
to avoid recomputing the same values several times in the quadrature formula. This is no longer
possible in the non-autonomous case, because the semigroup will be applied to different L at differ-
ent quadrature nodes. As a consequence, most of the benefits arising from the splitting, that make
these methods very competitive in the autonomous case, are lost in the non-autonomous case.
We summarize the procedure in Algorithm 3. For clarity, we only consider the Lie splitting case,

where we first solve the nonlinear subproblem over a full time step, then the affine subproblem
over a full time step. Other splitting schemes will use different combinations of these subproblems,
as can be found in [48]. However, it is straightforward to adapt Algorithm 3 to those cases. The
output of Algorithm 3 is the same as in Algorithm 1, and so are the basic inputs. The only difference
is in the parameters {cj}sj=1 and {wj}sj=1, which denote the quadrature nodes and weights of a
quadrature formula.

3 Time stepping Schemes for Closed-loop integrators

Once we have computed a feedback gain K(t) with a method from the previous section, we can
apply it to the solution of the non-linear closed-loop system (2), as denoted in Equation (8), and
get a closed-loop input uh

K(t, x
h
∆(t)). In that case, the numerical simulation of this closed-loop

system can be challenging if uh
K(t, x

h
∆(t)) has very large variation as we demonstrate in Section 4,

where numerical issues can cause blow-ups. Similar numerical issues occur in [20] for FSI problems
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Algorithm 3 Non-autonomous (Lie) splitting scheme

Input A(t),M(t),Ṁ(t),B(t), C(t), λ,T , L0, D0, {cj}sj=1, {wj}sj=1
Output Kk, k = 0, . . . , nt − 1

1: Invert the direction of time in all matrix functions, e.g., A(t) → A(tend + t0 − t)
2: for k = 0, . . . , nt − 1 do

3: Set L̂ = Lk and compute D̂ =
(
I +DkL

T
k

∫ tk+1

tk
B(τ)B(τ)TdτLk

)−1

Dk as in Equation (17)

4: Compute L̃ = T (tk, tk+1)L̂ by solving Equation (18) and set D̃ = D̂
5: Approximate the integral term in Equation (15) by quadrature

∑s
j=1 L̃jD̃jL̃

T
j , where L̃j =

T (tk + cj , tk+1)M(tk + cj)
−TC(tk + cj)

T, D̃j = τkwjI
6: Column compress Lk+1Dk+1L

T
k+1 with Lk+1 =

[
L̃ L̃1 · · · L̃s

]
and Dk+1 =

blkdiag(D̃, D̃1, . . . , D̃s)
7: Knt−k−1 = 1√

λ
B(tk+1)

TLk+1Dk+1L
T
k+1M(tk+1)

with, e.g., the implicit Euler method and the trapezoidal rule. There, the numerical issues can
be overcome with time-adaptive fractional-step-theta schemes. Since these FSI problems model
moving interfaces and use time-dependent meshes, similar to some of the problems we discuss in
Section 4, we follow [20] and the references therein and overcome the blow-up behavior in our
examples with time-adaptive fractional-step-theta schemes, as well.
To this end, we consider the system to be spatially semi-discretized with finite elements on a

mesh of triangular cells Qh(t) = {Q(t)}. The cells Q(t) cover the domain Ω and are time-dependent
in order to treat moving interfaces with time-dependent meshes. The spatial discretization is a
problem-related choice, which we specify in Section 4. Part of this is the finite element space V h,
which we use to define xh

∆ ∈ V h. With this, the closed-loop system (2) in semi-discretized form
reads

ẋh
∆(t) = fh(t;xh

∆(t), u
h
K(t, x

h
∆(t))), (19)

where the function fh : [t0, tend]×Rn ×Rp → Rn is the semi-discretized version of the function f .
For the time discretization, we use nt sub-intervals [tk−1, tk] to partition the time-interval

[t0, tend] with the time grid Tfwd:

Tfwd = {t0, . . . , tnt
= tend}, τk = tk − tk−1.

In contrast to the time discretization T for the DREs, the time steps in Tfwd are not necessarily
equidistant to allow time-adaptivity, but T ∈ Tfwd. With these time steps, we define discrete
approximations (xk, uk) by

xk ≈ xh
∆(tk), uk ≈ uh

K(tk, xk),

and the discrete approximation (xk,ref, uk,ref) of the reference trajectory (xref, uref) on the corre-
sponding time grid:

T ref
fwd = {t0 = t0,ref, . . . , tnt,ref = tend} ∈ Tfwd.

For the computation of these discrete approximations, we formulate different time stepping
schemes in the same framework by denoting the parameter Θ ∈ [0, 1]. With this, the closed-loop
system (19) in discrete form can be approximated by

xk − xk−1

τk
= Θfh(xk, uk) + (1−Θ)fh(xk−1, uk−1). (20)

In case the function fh is nonlinear, Equation (20) can be solved with, e.g., a Newton method,
otherwise with a direct linear solver. As a result, we can obtain various time stepping schemes by
choosing different parameters Θ. For Θ = 0, Equation (20) is the explicit Euler scheme and for
Θ = 1, the implicit Euler scheme. With Θ = 0.5, the scheme corresponds to a trapezoidal rule1.
These are some straight-forward choices for Θ. Though, the described framework can be used to
formulate more time stepping schemes as well, where Θ can vary in between time steps, as for the
fractional-step-theta scheme, which is described next.

1In different PDE contexts, like in [20], the scheme with Θ = 0.5 is also called Crank-Nicolson
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Algorithm 4 Time-adaptive Step-size Control

Input tk, tk+1,ref, xk, uk, τk,TOL, γ, r, δ, δ
Output τk+1,RetryStep

1: compute Ik ∈
{
Ie
k, I∆u

k , I u̇
k

}
▷ choose one variant

2: δ =
(
γ TOL

Ik

)r

3: RetryStep = δ < δ
4: if δ < δ < δ then
5: τk+1 = τk
6: else
7: τk+1 = δτk

8: if tk + τk+1 > tk+1,ref then ▷ ensure to meet the reference time steps
9: τk+1 = tk+1,ref − tk

3.1 Fractional-step-theta Scheme

To have a more reliable and robust method regarding the numerical issues that we demonstrate in
Section 4, we combine time-adaptivity with the fractional-step-theta scheme. It is known to be of
second-order accuracy and to be A-stable [17]. Another advantage is that it has little numerical
dissipation, which is beneficial for many problems. To formulate this method in our framework,
we follow [19] and define the two parameters

Θ = 2−
√
2 and β =

Θ− 1

Θ− 2
= 1−

√
1

2
.

In each time step, we perform three sub-steps, in which we solve Equation (20) with the parameters

(Θk,0, Θk,1, Θk,2) = (Θ, 1−Θ, Θ), (τk,0, τk,1, τk,2) = (βτk, (1− 2β)τk, βτk).

For each sub-step, the initial condition is the solution of the previous sub-step.
Next, we describe the time-adaptive strategies in detail, which we combine with the fractional-

step-theta scheme.

3.2 Time-adaptive Strategy

The numerical behavior of the methods for solving the closed-loop system significantly depends on
the discretization in space and time. Namely, an equidistant time-discretization with too large time
steps (nt too small) can lead to several numerical issues. For instance, for nonlinear FSI problems,
numerical blow-ups with the implicit Euler scheme and the trapezoidal rule have been observed
in [20] even though these two methods are A-stable. Related to this, similar issues can appear when
solving the closed-loop system (20). This is potentially be caused, e.g., by small weight parameters
λ in the cost functional (3), which can cause the feedback control uh

K(tk, xk) to have very large
variation. Such numerical blow-ups can be prevented by fine time-discretizations. However, since
uh
K(tk, xk) is unknown a priori, also the required time step size is unknown. Especially, choosing

a fine, equidistant time-discretization with possibly smaller time steps than necessary can become
very computationally costly.
To overcome this difficulty, we refine and coarsen the time steps adaptively in the time-intervals

that might suffer from numerical blow-ups. For this, we use an indicator in order to determine
whether the time steps are supposed to be larger, smaller, or stay the same. We denote the
indicator as Ik = I(tk, ζk, uk).
This indicator is used in Algorithm 4, the time-adaptive step size control, which is similar

to [20, Algorithm 3]. From the indicator Ik, the threshold δ is computed with the two parameters
0 < γ ≤ 1 and r > 0. The bounds, δ ≤ 1 ≤ δ, for this threshold set the interval in which the
current solution is accepted and the step size stays the same. Otherwise, the algorithm decides
that, either, the current solution is considered reasonable (RetryStep = False), if δ < δ, and the
step size for the next time step is increased since we assume that we solved with more accuracy
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than necessary. Or, the solution will be recomputed (RetryStep = True), if δ < δ, with the smaller
step size δτk. Further, Algorithm 4 returns the possibly updated step size τk+1.

Additionally, we ensure that the time steps from T ref
fwd are respected in Lines 8 and 9. For these

time steps, we have computed Kk as described in Section 2. Otherwise, we use linear interpolation
to compute Kk between time steps from T ref

fwd.
A crucial part of this strategy are the heuristic indicators Ik computed in Line 1. Of these,

we define three different variants, which indicate whether the time step size should be changed
adaptively. One is an error-based indicator, which comes with significantly higher computational
costs, while the other two monitor the feedback control and have no extra computational costs.

Error-based Indicator. This indicator is based on a heuristic error estimation. First, we compute
the solution (x̃k, ũk) with one step of the fractional-step-theta scheme with step size τk. Addition-
ally, we compute (xk, uk) with three steps of step size τk

3 . Then, the indicator

Ie
k = ∥χ(x̃k)− χ(xk)∥

estimates the error between x̃k and xk. The function χ : Rn → Rne , with ne ≤ n, elects certain
entries from the solution vector. It can be the identity as well (ne = n).

This indicator is supposed to refine the time steps especially in time-intervals that might suffer
from numerical issues, which can lead to a blow-up behavior. Since this behavior strongly depends
on the time-discretization, Ie

k is expected to be large in these time-intervals. However, the compu-
tation of Ie

k requires extra computational effort. Three additional time steps are calculated, which
quadruples the cost per time step. We use the approximate solution with the finer discretization,
(xk, uk), to continue the time stepping.
The two control-based indicators, that we describe next, come without the extra computational

effort.

Absolute Control-based Indicator. We assume that the reference time-discretization T ref
fwd is

chosen such that the reference trajectory snapshots (xk,ref, uk,ref) are computed with sufficient
accuracy. Thus, no further refinement is required as long as the feedback control uk is inactive
which is the case as long as the state xk does not deviate from xk,ref. Therefore, no numerical
issues occur during the solution of the closed-loop system as long as the feedback control is inactive.
On the other hand, refinement of the time steps might be necessary, especially, when uk changes
quickly.
The indicator

I∆u
k = ∥uk − uk−1∥

monitors the change of the feedback control. This indicator is computationally cheap to evaluate
and tailored to the solution of closed-loop systems, i.e., the feedback control, which is the focus of
this manuscript.

Scaled Control-based Indicator. Since I∆u
k monitors an absolute value, this indicator might

be sensitive when the time step size τk is large and less sensitive with a small time step size.
Consequently, it can be strongly problem dependent. An alternative is to monitor the scaled
change of the feedback control:

I u̇
k =

∥∥∥∥
uk − uk−1

τk

∥∥∥∥ .

The indicator I u̇
k is an approximation to the norm of the gradient of the feedback control. Accord-

ingly, it indicates to refine the time steps if uk has very large variation as well. At the same time,
it is more robust with respected to the time step size.
We demonstrate the behavior of the time-adaptive strategies with several numerical examples

in Section 4.2.
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4 Numerical Experiments

In this section, we use three numerical examples to put the methods from Sections 2 and 3 to the
test and demonstrate the interplay between the closed-loop system (2) and the DREs. In contrast
to the theory in Section 2, we do not perform the change of variables in time here, such that the
DREs are solved backwards in time.
With the first example in Section 4.1, we compare the DRE solvers from Section 2. This

example is a small-scale approximation of the Laplacian with time-dependent coefficients generated
artificially for this purpose. Due to the size of 25 × 25, it is small enough to compute a reference
solution and accurate numerical errors.
The next example models the optimal control of heat flow in a 2D cross-section of a steel rail with

a time-varying thermal conductivity and thus a time-dependent A-matrix. Also for this example,
we can compute a reference solution, since the matrices for this example are available in different
sizes, starting from dimension 109× 109 and going up to n = 79 841. Consequently, we are able to
compare the performance of the DRE solvers in terms of error, runtime, and rank of the computed
low-rank factorizations.
The third example is the two-dimensional two-phase Stefan problem, which naturally results

in large-scale time-dependent matrices due to a moving interface. This type of time-dependency
in the matrices causes that condition (16) is not fulfilled. Consequently, the splitting schemes in
their current state are not applicable to this example. However, the BDF methods can handle
these time-dependent matrices, and we confirm that they still behave similarly to the previous
examples. While we used the previous examples only to investigate the performance of the DRE
solvers, for this example we additionally apply several of the computed feedback gain matrices in
the closed-loop system (19). Like this, we compute feedback controls for the Stefan problem. With
these feedback controls, we solve the non-linear closed-loop system (2) using the methods from
Section 3. In doing so, we put special emphasis on the time-adaptive techniques, since those can
prevent the solution of the closed-loop system from blowing up.
The computations are run on a computer with 2 Intel Xeon Silver 4110 (Skylake) CPUs with 8

cores each and 192 GB DDR4 RAM on CentOS Linux release 7.9.2009. The used software packages
are FEniCS 2018.1.0, NumPy 1.20.3, SciPy 1.3.3, and MATLAB® R2017b. We provide the codes
and data for our experiments in [5], including execution logs of the experiments and the results.

4.1 DRE Solver

A naive method to solve DREs, is to vectorize them. This means that the DRE is transformed into
an equivalent vector-valued non-linear ordinary differential equation (ODE). Existing numerical
solvers for ODEs can then be applied. However, this approach does not exploit the low-rank
structure of the solution and is unfeasible for large-scale problems. Still, for the sufficiently small
examples, we use this method and apply MATLAB’s ode*-functions to generate a high order
reference DRE solution for error comparisons.

Small-scale Academic Example. With this small example, we intend to analyze the convergence
behavior of the DRE solvers. Therefore, for this example, we compute a reference solution and
compare the numerical errors of the BDF methods and splitting schemes as well as the order of
convergence. In particular, we show how the BDF method (Algorithm 1) of order 3 and 4 depends
on the parameters for the BDF startup time steps from Algorithm 2. Since they would have little
meaning in this small-scale example, we do not compare the runtimes of these large-scale methods.
To generate this example, we use a finite-difference approximation of the Laplacian on the unit

square [0, 1]
2
and assemble the matrices Â ∈ Rn×n, B̂ ∈ Rn×3, Ĉ ∈ R1×n. For details about the

implementation, see [5]. Then, these matrices are multiplied with time-dependent scalar functions
to get the time-dependent matrices

A(t) =

(
1 +

1

2
sin(2πt)

)
Â, M(t) =

(
2 +

1

2
sin(2πt)

)
In,

B(t) = (3 + cos(t))B̂, C(t) = (1−min(t, 1))Ĉ.
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Figure 1: Convergence orders of BDF with different n℘, small scale example.
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Figure 2: Convergence of splitting and BDF and the theoretical convergence orders ℘ (dashed),
small scale example.

Additionally, we choose n = 25, [t0, tend] = [0, 0.1] and compute a reference approximation Xref(t)
applying ode15s from MATLAB after vectorization, as mentioned above. With this, in order to
assess the quality of our approximate solutions, we compare the pointwise relative error:

eDRE(t) =
∥X(t)−Xref(t)∥2

∥Xref(t)∥2
.

Following the theory, a BDF method with ℘ ≤ 6 stages should converge with order ℘, as well [3,
Section 5.2.3, Example 5.9]. As described in Section 2.1, to achieve these convergence orders, the
initialization must be sufficiently accurate. For ℘ = 3 (BDF 3) and ℘ = 4 (BDF 4), we compute
the required initial values with the extra time steps from Algorithm 2. Here, we demonstrate the
effect of this on the convergence order. However, for ℘ = 1 (BDF 1) and ℘ = 2 (BDF 2) no extra
time steps are required.
Correspondingly, Figure 1 shows the experimental order of convergence (EOC) for BDF 3 and 4.

In detail, with no extra time steps or n℘ too small both methods converge with order 2 only. At
the same time, for n℘ ≥ 8 both methods achieve the expected convergence order ℘ in this example.
Moreover, larger values of n℘ have no (especially also no negative) further effect on the convergence.
Note, that the choice of n℘ is problem-dependent, and that for the further computations in this
section we use n℘ = 10.
With this, BDF 1, 2, 3, and 4 as well as the splitting methods of order ℘ = 1 (split 1) and

℘ = 2 (split 2) can meet their theoretical convergence orders. This can be seen in Figure 2, which
displays the error of the DRE solvers for different time step sizes. The observation that the splitting
methods yield significantly smaller errors than the BDF methods of the same order is also clearly
visible here.
In addition, Figure 3 shows the error of the different DRE solvers over the whole time interval

for a fixed time step size. The BDF methods start with larger transient errors at tend. Then, the
errors decrease during the backward-in-time solve of the BDF methods. Especially BDF 4 is more
accurate than the splitting methods in the first half of the time-interval. The root cause is that
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Figure 3: Errors of splitting and BDF for nt = 512 and n℘ = 10, small scale example.

the BDF schemes preserve fixed points, while the splitting schemes do not. At the same time, it is
important to note that the errors of the splitting methods are varying less over the time-interval
and stay on roughly the same level. Particularly for order ℘ = 1 and ℘ = 2, the splitting schemes
outperform the BDF methods of the same order. In essence, the errors in Figure 3 are a typical
behavior for these DRE solvers, which is already known for the autonomous variants of BDF and
splitting methods [31,48].
For the next example, the BDF and splitting methods benefit from the low-rank factorization

of the solution since the spatial discretizations can result in large-scale DREs.

Partially Non-autonomous Steel Profile. The semi-discretized heat transfer model for optimal
cooling of steel profiles [9] is an autonomous model. Hence, we modify the example to be non-
autonomous and study the performance of the BDF and splitting methods for different matrix sizes
and weight parameters in Equation (3). We choose this example, because the matrices M, S, Mγ ,
B and C are available for different spatial discretizations n ∈ {109, 371, 1 357, 5 177, 20 209, 79 841}
(see [43, mess get linear rail.m]) and we can easily modify the model to be non-autonomous
such that it fulfills the condition, which is necessary for the splitting methods.
In detail, the model has 7 inputs and 6 outputs and the given matrices form a system equivalent

to Equation (4):

Mẋh = (
κ

c · ρS +
γ

c · ρMγ)x
h +

γ

c · ρBu
h,

yh = Cxh.

Here, the material parameters are the thermal conductivity κ = 26.4 kgm
s3 ◦C , the heat capacity c =

7620 m2

s2 ◦C , the coefficient of thermal conductivity at the input boundary regions γ = 7.0164 kg
s3 ◦C ,

and the density ρ = 654 kg
m3 . Following [14], we use the real time-interval [0, 45s], which corresponds

to model-time [t0, tend] = [0, 4 500]. Further, to make this system partially non-autonomous, we
augment the thermal conductivity with a non-linear, smooth, and scalar function:

κ(t) = 26.4 + 0.1 ·
(
2 + cos

(
2 · π · t
tend

))
kgm

s3 ◦C
.

With this modification the example is similar to, e.g., [31]. The difference lies in the scalar
function κ(t), where we specifically picked a non-linear function. Also, due to the constant mass
matrix, Algorithm 1 is equivalent to the BDF method therein. In addition, the default matrix
sizes, number of time steps, and weight parameter for this example are given in Table 1. We vary
those one by one to examine the behavior of the BDF and splitting methods.
Starting with different matrix dimensions n, Figure 4a displays the corresponding runtimes.

The first thing to recognize is that the runtime of the BDF methods grows linearly with respect
to the dimension and there is no significant difference between the orders ℘ ∈ {1, . . . , 4}. In
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n nt m p λ
109 128 7 6 1

Table 1: Partially non-autonomous steel profile parameters (smallest example).
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(a) for different n (matrix dimension).
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(b) for different nt (no. of time steps).

Figure 4: Runtime of splitting and BDF, steel profile example. All the methods use the same
temporal grid.

contrast, the splitting methods require considerably more runtime. As an illustration, while the
BDF methods take around 2.3 minutes for the smallest dimension n = 109, the splitting methods
require 3.6 and 6.4 hours. For n = 371 it is 6.1 minutes versus 28.5 and 22.6 hours for BDF and
splitting, respectively. Forthwith, for dimensions n > 1 357, we stopped the computations since
the splitting methods did not finish in reasonable time. Accordingly, we continue the remaining
tests with n = 109 to have reasonable runtimes for the splitting methods even though, like this,
the problem is not large-scale.
Next, in Figure 4b, for nt ∈ {22, . . . , 213}, we compare the runtime, which grows with more time

steps, as expected, for all methods. Notably, the time per time step is getting slightly smaller
since the underlying subproblems converge faster. A possible explanation is, that in Line 6 of
Algorithm 1 the quadratic term of the ARE is scaled with

√
τ . Moreover, the additional overhead

to compute the initial values for BDF 3 and 4 with Algorithm 2 is visible for nt ∈ {22, . . . , 26}.
To better evaluate the efficiency of the methods, Figure 5a shows the runtime in relation to

the relative error. Similar to the small scale-example, we compute a reference solution through
vectorizing the DRE. Since not all matrices are time dependent but only A(t) in the way that
it is a scalar function times a constant matrix no stiff ODE solver is required and it is sufficient
to use ode45. Since this example involves large-scale matrices, we do not store the DRE solution
anymore but only the feedback gain matrices Kk. Thus, for this example, the errors are computed
by comparing Kk at t0:

eK(t0) =
∥K0 −K0,ref∥2

∥K0,ref∥2
The splitting methods achieve better accuracy than the BDF methods of the same order. However,
the main computational benefit of the splitting schemes is lost in the non-autonomous case. For
an autonomous DRE, only one integral term needs to be approximated for the whole time interval,
but now one such integral approximation is needed in each time step. The computational cost is
therefore increased by a factor roughly as large as the number of time steps. This is not the case
for the BDF schemes, which, therefore, in direct comparison, need significantly less computational
effort. The effect can be alleviated by choosing larger tolerances for the splitting subproblem
approximations, but as seen in Figure 5a, where this was tried for the 2nd-order splitting scheme,
this runs the risk of destroying the overall convergence behavior. We also note that the BDF
methods converge faster for higher orders, while requiring almost the same runtime for the same
nt. Thus, BDF 4 is the most efficient method for an accuracy below 10−5.
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Figure 5: Runtime of splitting and BDF, steel profile example. All the methods use the same
temporal grid.
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Figure 6: Runtime of splitting and BDF, steel profile example. All the methods use the same
temporal grid.

We further study the influence of the number of inputs m, the number of outputs p, and the
weighting factor λ from the performance index (3) on the runtime.
By default, this model has 7 inputs and thus 7 columns in B(t). On the one hand, to test

the methods with m ∈ {1, . . . , 7}, we truncate B(t) after m columns. On the other hand, for
m ∈ {8, . . . , 10}, we generate additional columns that are filled with random values. As a result,
Figure 5b shows that the BDF methods need slightly more time with those random columns, which
are not physically motivated in the model. Besides this, the runtimes of the BDF and splitting
methods are independent of m.
In contrast, the methods runtimes are affected by different numbers of rows in C(t). Figure 6a

displays the runtimes for p ∈ {1, . . . , 10}. Again, we used the first 6 rows in C(t) that are defined
in the model. This time, for p ∈ {7, . . . , 10}, we add additional rows for physically motivated
quantities of interest, which are constructed similar to the first 6 outputs. The resulting runtimes
grow with more rows in C(t), but the BDF methods are affected more strongly in this respect.
This is, because in each BDF step, the underlying iterative ARE solver generates solutions, which
have p times the number of iterations of columns. Thus, the ARE solution has significantly more
columns for larger p and the column compression that we perform on these solutions is significantly
more expensive.
Lastly, the weight λ in the cost functional is an important parameter. For instance, the perfor-

mance of the BDF methods is strongly impacted by λ, which influences the balance between the
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Figure 7: One instance of the domain Ω ⊂ R2 of the Stefan problem.

quadratic and the constant term in the ARE (11). In detail, a smaller λ makes the quadratic part
more dominant and consequently the inner ARE solver in the BDF methods requires more itera-
tions to converge. This results in larger runtimes of the BDF methods for smaller λ, as illustrated
in Figure 6b. In contrast, the runtimes of the splitting methods are not affected by λ since it only
affects Equation (13), which is solved exactly. However, we note that the temporal discretization
errors for both the BDF and splitting schemes depend on the problem being solved and thus on λ.
To acquire an error of a specific size we might therefore need to use differently sized time steps for
different λ. The actual computational effort required for a certain accuracy thus varies for both
classes of methods. A thorough investigation of these error structures is out of the scope of this
paper, but will be the subject of future research.
Further, the solutions computed by the splitting methods have a smaller numerical rank of

s(t0) = 68 compared to s(t0) = 84 for the BDF methods. This results in smaller memory re-
quirements for the low-rank solution factors as well as lower computational effort to compute the
feedback gain matrices Kk. Ultimately, we apply Kk to generate a feedback control and do not
need the actual DRE solution for this once we have computed Kk. Thus, we can reduce the on-disk
memory requirement by storing Kk ∈ Rn×m only, which is of fixed size and usually much smaller
than the low-rank solution factors.

Two-dimensional Two-phase Stefan Problem. The Stefan problem, which is treated in [6, 7]
as well, provides large-scale DREs with time-dependent matrices. This time-dependency goes
beyond condition (16). For this example, we demonstrate the interplay between the feedback gain
computation and the application of the feedback control during the simulation in Section 4.2.
The two-dimensional two-phase Stefan problem can model solidification and melting of pure

materials. In our test setup, we consider the time-interval [t0, tend] = [0, 1] and the domain Ω is a
rectangle [0, 0.5]× [0, 1] ⊂ R2 with the initial interface position at height 0.5. This interface Γint(t)
splits the domain Ω into two regions that correspond to the solid phase Ωs(t) and the liquid
phase Ωl(t), as illustrated in Figure 7. Because the inner phase-boundary can move, its position
is time-dependent. Thus, also the two regions Ωs(t) and Ωl(t) are time-dependent, as well as their
corresponding boundary regions. They are Γu(t), Γcool(t) and ΓN(t) as denoted in Figure 7. The
boundary region for the input Γu(t) is constant in this representation of the domain. However, we
do not restrict ourselves to this case and, therefore keep the time-dependence in our notation.
We follow the definition of the Stefan problem from [6], but use it in a more compact form

omitting the couplings with the Navier-Stokes equations and the interface graph formulation. Both
introduce additional nonlinearities to the problem and the Navier-Stokes equations add additional
DAE structure. Before treating these technical challenges, we study the feedback control problem
in this compact form, without the couplings, to develop the general numerical strategy.
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nt m p λ n℘

401 1 2 10−4 10

Table 2: Two-dimensional two-phase Stefan problem parameters.

The temperature is denoted as Θ(t) and modeled by Equation (21):

d

dt
Θ −Υ · ∇Θ − α∆Θ = 0, on (0, tend]× Ω, (21a)

∂nΘ = u, on (0, tend]× Γu, (21b)

Θ = Θcool, on (0, tend]× Γcool, (21c)

∆Υ = 0, on (0, tend]× Ω, (21d)

Υ =
(1
ℓ
[k(∇Θ)]

s
l

)
· nint, on (0, tend]× Γint. (21e)

In Equations (21a) and (21e), the temperature is coupled with the extended interface move-
ment Υ(t), which we model with the system of algebraic equations (21d) and (21e). On the
interface, Υ

∣∣
Γint

(t) = Υint(t) is the interface movement in the normal direction where nint(t) is

the unit normal vector pointing from Ωs(t) to Ωl(t). The extended interface movement Υ(t) is the
smooth extension of Υint(t) to the whole domain. We use Υ(t) to implement a spatial discretization
that respects the position of Γint(t) and follows the interface movement, while preventing mesh
tangling and too strong deformations.
Equation (21e) is the Stefan condition, with the latent heat constant ℓ and the jump of the

temperature gradient
[k(∇Θ)]

s
l = ks∂nint

Θ
∣∣
Ωs

− kl∂−nint
Θ
∣∣
Ωl
, (22)

across Γint(t). Thus, Υ(t) depends on Θ(t) as well as the heat conductivities in the solid phase ks
and in the liquid phase kl collected in α(t):

α =

{
ks, on Ωs,

kl, on Ωl.

Due to this temperature-dependence, the terms Υ ·∇Θ and α∆Θ in Equation (21a) are non-linear.
Further, in Equation (21b), we apply the control u(t) as a Neumann condition on the control bound-
ary Γu(t). Additionally, Equation (21c) is a Dirichlet condition on the cooling boundary Γcool(t)
with the constant Θcool. A more detailed description including all boundary conditions, material
parameters, details on the linearization and discretization, and the matrix assembly for the DRE
can be found in [7].
In summary, the Stefan problem is a non-linear system of DAEs with a moving interface Γint(t),

which is represented by a moving mesh. Our aim is to control the position of Γint(t).
This example results in a large-scale problem with dimension n = 11 429 (max. cell width: 0.0268,

min. cell width: 0.0061, initial mesh). For the Stefan problem example, we evaluate the runtime
performance of the BDF methods in relation to different parameters and matrices B(t) and C(t).
However, the splitting methods are not applicable to this example since the time-dependent ma-
trices do not fulfill the necessary assumptions in Equation (16). To examine their influence on the
BDF methods, we individually change the default parameters from Table 2.
First, we vary the number of time steps nt from 101 to 8 001. As a result, the runtime of the

BDF methods grows linearly with nt as can be seen in Figure 8. Another key point is that, the
runtimes for ℘ = 1, . . . , 4 are similar. For nt = 8001, BDF 3 and 4 are even slightly faster than
BDF 1 and 2. This results from the fact that the underlying ARE solver (Newton-ADI) requires
fewer iterations to converge in these cases. A possible explanation is that the solutions computed
by BDF 3 and 4 are more accurate resulting in faster convergence.
Then, as for the example of the steel profile, we vary the number of inputs m, the number

of outputs p, and the weight λ in the cost functional (3). The results are consistent with the
findings from the previous example and the resulting figures can be found in the supplementary
material. Moreover, the average numerical ranks of the approximated solutions are avg(s(t)) = 28
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Figure 8: Runtime of BDF for different nt (no. of time steps), Stefan problem example.
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Figure 9: Runtime vs. approximate error (compared with BDF 4, nt = 8001) of BDF, Stefan
problem example. All the methods use the same temporal grid.

for BDF 1 and 2, avg(s(t)) = 27.9 for BDF 3, and avg(s(t)) = 27.8 for BDF 4 (for details see
supplementary material).
In contrast to the previous example, we evaluate only the low-rank methods since the trans-

formation to an ODE is infeasible to compute. Thus, we do not compare any accurate errors in
the sense that we compare to a reference solution for the DRE. Instead, we assume the BDF 4
method with the finest time-discretization (nt = 8001) to be most accurate and use that as the
reference solution for the comparison in Figure 9. Similar to the results in Figure 5a, the BDF
methods are more efficient with higher orders. However, the difference is smaller especially between
BDF 3 and 4, which might not fully meet their order of convergence.
In the next section, we will use several of the feedback gain matrices that we computed in this

paragraph and apply them in the closed-loop system.

4.2 Closed-loop System

In this section, we use the time stepping methods from Section 3 to numerically solve the non-linear
Equation (2) for the two-dimensional two-phase Stefan problem from the previous paragraph. In
this case, we introduce a perturbation to Equation (21) by augmenting the Dirichlet boundary
condition (21c) at the bottom of the domain with the function φ(t):

Θ = Θcool + φ, on (0, tend]× Γcool.

Here, the control objective is to stabilize the interface position from the discrete reference ap-
proximation (xk,ref, uk,ref) and the perturbation φ(t) drives the interface away from the desired
trajectory in the experiments in this section. For this, we use a single input (m = 1) at the top of
the domain as depicted in Equation (21b). Note, that with the present formulation of the Stefan
problem in Equation (21) the interface position can not be measured explicitly. Thus, the interface
position does not enter the performance index (3). With this in mind, we use two temperature
measurements at the walls ΓN of the domain (p = 2) as output. These two outputs are intended
to indicate the deviation of the interface from the reference position.
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Figure 10: Perturbed interface position relative to the reference trajectory with different feedback
controls.

As a result, we obtain several feedback controls by applying the feedback gain matrices computed
in Section 4.1 with different weight factors λ.
With these feedback controls, we test the time stepping methods implicit Euler (IE), trape-

zoidal rule (TR) and our fractional-step-theta scheme (FT) from Section 3.1 to numerically solve
Equation (2). For FT, we further compare the different time-adaptivity strategies. Those are the
error-based indicator (FT-err), the absolute control-based indicator (FT-u) and the scaled control-
based indicator (FT-dt-u). Additional examples for the Stefan problem with more emphasis on
different numbers of inputs and outputs as well as different types of perturbations can be found
in [7]. From there, we use the simpler example since the numerical effects that are highlighted in
this manuscript are more clearly visible. Further, for the more complicated example from [7], IE
as well as TR are not able to compute a feedback control that successfully stabilizes the interface
position due to the issues that are discussed next.
Figure 10 displays the relative interface position Γint,∆(t, x

∗) = Γint(t, x
∗)− Γint,ref(t, x

∗) at the
point x∗ on the interface which has the largest deviation from the reference trajectory. With a
weight factor larger than λ = 10−4, the computed feedback control shows very low activity and is
not able to steer the interface back towards the reference trajectory in the computed time-frame.
Decreasing λ means that the performance index (3) is more dominated by the output deviation and
the control cost term has less impact. Thus, a smaller λ leads to a more active feedback control,
which prevents the interface from deviating. In Figure 10 this is demonstrated with λ = 10−4 for
IE, TR, and FT. Note that all three lead to very similar results and are summarized in one line
for this value of λ.
For smaller λ, the interface can be steered back even faster but IE and TR show a numerical

blow-up behavior similar to the experiments in [20]. This is shown in Figure 10 for λ = 10−7. In
our experiments, these blow-ups occur when the feedback control has very large variation and the
time step size is too large to properly resolve this.
To overcome this issue, we use time-adaptive FT-dt-u. In Figure 10, this is demonstrated with

λ = 10−12 and FT-dt-u (TOL = 10−2). Here, the computed feedback control is able to steer the
interface position back to the reference trajectory shortly after the perturbation.
The time-adaptive FT-dt-u comes with extra computational cost compared to IE and TR, which

both require 15.6 minutes to numerically solve the closed-loop system with nt = 401 time steps.
On the other hand, for the same closed-loop system (λ = 10−4), FT-dt-u computes 5 761 time
steps and requires 546.3 minutes. This is partly due to the long time that is needed to steer
the interface back to the desired trajectory. Hence, the control is active in this time period and
the time-adaptivity is very expensive. In contrast, with λ = 10−12, the interface is back to the
reference position in shorter time and the feedback control becomes inactive earlier as well as the
time-adaptivity. Thus, FT-dt-u computes 2 405 time steps and requires 232.3 minutes. However,
IE and TR fail with nt = 401 and λ ≤ 10−7. The number of time steps nt = 401 is chosen as
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Figure 11: Perturbation and different time-adaptive feedback controls (clipped, max. value: 8.4,
min. value: -39.3) (top), Perturbed interface position (center), and time step sizes
(bottom) for λ = 10−12.

default since we observed that this is the smallest nt for which the error of the DRE solution and
the simulation of the reference trajectory stabilize.
The corresponding feedback control that is computed with FT-dt-u for λ = 10−12 is shown in

comparison with the feedback controls computed with the different time-adaptive strategies FT-u
and FT-err for the same closed-loop system in Figure 11 (top). Further, the figure displays the
perturbation φ(t) as a dotted line. To clarify the y-axis labeling, it is important to note that it is
relative to the original boundary value Θcool.
An important parameter for the adaptive step size computation in Algorithm 4 is TOL. With

smaller TOL, Algorithm 4 computes smaller time step sizes when the indicator grows. On the one
hand, a larger TOL can save some time steps by increasing the time step size earlier with dropping
indicator values and reduce the computational effort. On the other hand, Algorithm 4 can fail to
prevent a numerical blow-up if TOL is chosen too large and the time step sizes grow too early. This
effect is presented in Figure 11 for FT-u with TOL = 10−2 and FT-err with TOL = 10−8. Both
increase the time step size when the feedback control is nearly inactive but still active enough to
lead to a blow-up. This blow-up then leads to an increase of the indicator, and consequently a
decrease of the time step size such that the feedback controls become inactive again. The result is
that the feedback control is quickly bouncing back and forth between large and small values.
In contrast to this, for FT-dt-u, the indicator monitors the relative change of the feedback

control. Thus, as long as the feedback control is active the algorithm sets τk to the minimum value
(τk = 0.0001). However, when the control is inactive the algorithm sets τk back to the maximum
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Figure 12: Number of time steps nt and runtimes of IE, TR, and FT with different time-adaptive
strategies, λ = 10−12.

value (τk = 0.0025) as can be seen in Figure 11 (bottom, dashed line). We expect this to be the
general behavior of FT-dt-u if TOL is chosen sufficiently small.
To emphasize a meaningful comparison, for FT-u, the indicator monitors the absolute change

of the feedback control. This means, with a smaller TOL, it behaves the same as FT-dt-u (TOL <
10−5). In particular, it depends on the magnitude of the feedback control values, and the right
choice of TOL is therefore strongly problem dependent. From our numerical experiments, we expect
FT-dt-u to be more robust with respect to the magnitude of the feedback control values and, thus,
the problem dependent choice of TOL. Further, we can choose a smaller TOL to be on the safe
side and get the same nt since it jumps back and forth from the maximum to the minimum τk.
Different from the other two, the indicator FT-err monitors the difference of the computed

solutions for two different time step sizes. This results in a larger computational effort for a single
time step compared to the alternative indicators. For instance, if the feedback control has very
large variation and consequently the solution changes more, then τk is reduced. However, FT-err
can not distinguish between high activity of the reference solution and of the perturbed solution.
In addition, it enlarges τk gradually. Altogether, it requires significantly smaller TOL, larger nt,
and, consequently, increases the runtime to prevent a blow-up. To illustrate this, the computed
time steps for three different choices of TOL are presented in Figure 11 (bottom). To clarify the
behavior of FT-err, Algorithm 4 is restricted to meet the reference time steps T ref

fwd for all the time-
adaptive strategies. This can result in time step sizes that are smaller than the minimum τk if the
adaptively computed time steps would otherwise jump past the next time step from T ref

fwd. Some
quickly alternating time step size adjustments computed by FT-err result from this restriction.
To illustrate the just described effects and differences between the time-adaptive strategies,

Figure 12 displays the different nt and runtimes. Notably, IE and TR require 2.3 seconds per time
step. With the latter two methods, it would take 390 minutes to solve the closed-loop system with
10 000 equidistant time steps. This number of time steps corresponds to the step size that FT-dt-u
uses while the control is active. Compared to that, FT-u and FT-dt-u require shorter runtime
and significantly fewer time steps while using the same small time step size locally. Further, they
simulate the closed-loop system more reliably in presence of strongly varying controls due to their
adaptivity, which is tuned to this problem. In detail, the runtime per time step is 6.9 seconds for
FT-u and 5.8 seconds for FT-dt-u on average. FT-u takes longer on average since it discards time
steps more often than FT-dt-u since it tries to take larger time steps too early. A discarded time
step results in a re-computation of this time step with a smaller step size, which makes this time
step more expensive. Finally, with around 21 seconds per time step and a larger number of time
steps, FT-err is significantly more expensive than FT-dt-u.

5 Conclusions

The two numerical challenges, to derive a feedback control for problems with moving interfaces or
free boundaries and to reliably simulate the resulting non-linear closed-loop system, are tackled
successfully in this work. In detail, we apply the LQR approach and implement non-autonomous
versions of the BDF methods and splitting schemes to solve the arising DREs with time-dependent
coefficients. Overall, the splitting methods, in their current state, are not competitive for the non-
autonomous case. Other advantages of the splitting methods carry over to the non-autonomous
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case, like better predictability of the accuracy due to a more uniform error distribution and less
sensitivity to several problem-parameters. Besides the shorter runtimes, the BDF methods can
handle more general time-dependencies in the coefficient matrices. They are not restricted to the
case that, e.g., A(t) = α(t)Ā and M(t) = µ(t)M̄ with constant matrices Ā and M̄. This condition
does, e.g., not hold for problems with a time-dependent domain resulting from moving boundaries
or interfaces. Thus, we exclusively use the BDF methods for the next example, which incorporates
a moving interface.
In addition, we have established that the fractional-step-theta scheme with our time-adaptive

strategy can simulate the closed-loop systems with different feedback controls reliably and effi-
ciently. Namely, our time-adaptivity is tuned to strongly varying controls and prevents blow-ups
that can occur with other time stepping schemes. Furthermore, it requires significantly less time
steps and runtime compared to classical error-based time-adaptivity.
Forthwith, we observed that the non-autonomous BDF methods and time-adaptive fractional-

step-theta scheme, in interaction with each other, are well suited for non-linear large-scale control-
problems with moving interfaces. They perform efficiently and reliably with respect to various
problem parameters and problem dimensions. After all, despite several stages of approximation
and a linearization for the LQR approach, the computed feedback control stabilizes the non-linear
problem successfully.
Besides these results, the runtime performance of the BDF methods, as well as the splitting

schemes, can potentially be improved significantly by exploring alternative ways to solve the un-
derlying subproblems. For example, regarding the ARE also available are RADI and projection
based methods like EKSM and RKSM. However, for large problems, a clear advantage of the
Newton ADI used in this work in terms of memory requirements is that only the feedback gain
matrices can be accumulated, thus avoiding the formation of the low-rank solution factors. In this
case, the restrictions on time-dependent coefficients for splitting schemes could also be removed.
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Figure 1: s(t0) (numerical rank of the solution) for BDF for different nt (no. of
time steps), steel profile example.
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Figure 2: Runtime of BDF for different m (columns in B(t)), Stefan problem
example.
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Figure 3: Runtime of BDF for different p (rows in C(t)), Stefan problem example.
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Figure 4: Runtime of BDF for different λ (weight in cost functional), Stefan
problem example.
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Figure 5: Numerical rank of the solution s(t) for BDF 1 to 4, Stefan problem
example. (used truncation tolerance: machine precision times square of largest
singular value)
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