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Abstract
Purpose  We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal gan-
glia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]
PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomog-
raphy (SPECT) for dopamine transporter (DaT) availability.
Methods  Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with 
clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT 
imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their 
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principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the 
residuals of their association were correlated with clinical severity scores in 4R-tauopathies.
Results  In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associ-
ated with striatal DaT availability (i.e. globus pallidus internus and putamen (β =  − 0.464, p = 0.006, Durbin-Watson statis-
tics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant 
regression factor with DaT availability in the striatum (β = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with 
α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher 
DaT-SPECT binding relative to tau burden was associated with better clinical performance (β =  − 0.522, p = 0.011, Durbin-
Watson statistics = 2.663) in patients with 4R-tauopathies.
Conclusion  Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic 
dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite 
tau accumulation may preserve motor function.

Keywords  4R-Tau · DaT imaging · [18F]PI-2620 tau-PET · Motor reserve

Background

Progressive supranuclear palsy (PSP) and corticobasal 
degeneration (CBD) are primary tauopathies that belong 
to the spectrum of atypical parkinsonian syndromes. While 
neurodegenerative parkinsonian syndromes (i.e. Parkin-
son’s disease (PD) and atypical parkinsonian disorders) 
jointly show a loss of function in the dopaminergic system, 
PSP and CBD are histopathologically distinct compared to 
α-synucleinopathies such as PD and multiple systems atro-
phy (MSA). The key histopathological features in PSP and 
CBD are pathological neuronal and glial cell inclusions of 
the four-repeat (4R)-tau isoform [1–3]. 4R-tau pathology 
plays a key role in neuronal dysfunction and its accumula-
tion in PSP and CBD is thought to follow specific spati-
otemporal patterns, initially accumulating in the brainstem 
and subcortical areas followed by cortical deposition in 
later disease stages [4–7]. There is growing evidence that 
the spreading of tau in neurodegenerative disorders occurs 
in a prion-like manner into anatomically and functionally 
connected regions of the brain thereby enabling disease 
progression [8–12]. Yet the connection between patho-
logical tau accumulation and loss of dopaminergic cells in 
4R-tauopathies remains poorly understood. In this study, we 
aimed to elucidate the association between tau pathology 
and dopaminergic loss using [18F]PI-2620 tau- positron-
emission-tomography (PET) and [123I]-Ioflupane single-
photon-emission-computed tomography (SPECT) imaging 
in the same individuals in vivo. Using PET radiotracers, 
imaging of tau deposits has become feasible lately and sec-
ond generation tau-PET tracers such as [18F]PI-2620 [13] 
and [18F]PM-PBB3 [14] provide new possibilities to detect 
not only 3/4R-tau depositions typically found in Alzheimer’s 
disease (AD) but also have affinity to 4R-tau. Our consor-
tium showed autoradiography binding to PSP tissue in vitro 

and discrimination of patients with PSP and corticobasal 
syndrome (CBS) from controls in vivo using [18F]PI-2620 
[15–18]. Others were successful to show in vitro binding and 
differentiation of 4R-taupathies from controls in vivo using 
[18F]PM-PBB3 [14, 19, 20]. [123I]-Ioflupane on the other 
hand is a well-established SPECT ligand for in vivo imaging 
of the dopaminergic system with a high affinity to the stri-
atal presynaptic dopamine transporter (DaT)[21]. In a clini-
cal setting, [123I]-Ioflupane SPECT imaging is frequently 
used to differentiate degenerative parkinsonian disorders 
from non-degenerative parkinsonism (e.g. vascular, toxic, 
drug-induced) as well as to distinguish Dementia with Lewy 
bodies (DLB) from AD [22, 23]. Using [18F]PI-2620 tau-
PET, we hypothesized that high tau burden in brain regions 
involved in direct or indirect pathways of the basal ganglia 
correlates with a more severe loss of DaT availability visual-
ized by [123I]-Ioflupane SPECT imaging.

Methods

Study design and patient selection

Thirty-eight patients with a clinically diagnosed 4R-tauop-
athy [PSP with Richardson syndrome (PSP-RS) and CBD 
with corticobasal syndrome phenotype (CBD-CBS)] were 
examined in comparison to a group of 15 patients with 
assumed α-synucleinopathies [Parkinson’s disease (PD), 
multiple systems atrophy (MSA), DLB] in this combined 
tau-PET and DaT-SPECT study.

Patients with 4R-tauopathies according to current diag-
nostic criteria [24] were recruited from three different cent-
ers: Munich, Leipzig and New Haven (25 cases from the 
LMU University Hospital of Munich, 9 cases from Leipzig 
and 4 cases from New Haven). The 4R-tauopathy group 
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(age: 69.0 ± 8.5 years, 21 male) consisted of 26 patients 
with PSP-RS (PSP rating scale: 36.9 ± 13.8), 12 fulfill-
ing criteria for CBD-CBS (PSP rating scale: 36.0 ± 11.7). 
Patients with clinically diagnosed α-synucleinopathies 
(age: 66.1 ± 10.3 years, 8 male) consisted of 13 cases from 
Munich and two cases from Leipzig, characterized by 10 
patients with PD, three patients with MSA, two patients with 
DLB. Both groups were evaluated by dual imaging of [18F]
PI-2620 tau-PET and [123I]-Ioflupane SPECT. The two scans 
were performed with a time gap of 3 ± 5 months and a maxi-
mum allowed time gap of 2 years.

To quantify the tau-PET scans, z-scores were calculated 
against an age-matched cognitively healthy control group 
consisting of 23 individuals from three different centers in 
Munich (n = 10), New Haven (n = 8) and Melbourne (n = 5).

Patients from Munich are part of the observational 
study registered at the German Clinical Trials Register 
(DRKS00016920) and the tau-PET data from these patients 
were partly published elsewhere [15, 18]. All participants 
provided written informed consent for PET imaging. The 
study protocol as well as PET data analyses were approved 
by the local ethics committee of LMU of Munich (applica-
tion numbers 17–569 and 19–022). The study was carried 
out according to the principles of the Helsinki Declaration.

[18F]PI‑2620 tau‑PET and [123I]‑Ioflupane DaT‑SPECT 
imaging

Radiosynthesis

Radiosynthesis of [18F]PI-2620 was achieved by nucleo-
philic substitution on a BOC-protected nitro precursor using 
an automated synthesis module (IBA Synthera, Louvain-la-
neuve, Belgium). The protecting group was cleaved under 
the radiolabelling conditions. The product was purified by 
semipreparative HPLC. Radiochemical prurity was 99%. 
Non-decay yields were about 35% with a molar activity of 
3•106 GBq/mmol at the end of synthesis. [123]-Ioflupane was 
purchased from GE healthcare.

Dynamic [18F]PI‑2620 tau‑PET acquisition 
and reconstruction

The cohort of this study underwent scanning in a full 
dynamic setting (0–60 min p.i.) on two different scanners at 
the Department of Nuclear Medicine, LMU Munich, either 
a Biograph 64 or a Siemens mCT PET/CT scanner (both 
Siemens, Erlangen, Germany), on a Siemens ECAT EXACT 
HR + camera at MNI, on a Siemens Biograph mMR (Sie-
mens, Erlangen, Germany) in Leipzig and on a Philips Gem-
ini TF 64 PET/CT (Eindhoven, The Netherlands) in Mel-
bourne. Details on all scanners, as well as acquisition and 
reconstruction parameter are provided in the Supplement of 

our previous study [15]. The intravenous injected bolus dose 
was 168 to 334 MBq and was followed by a 10 ml saline 
flush [25]. Continuous brain imaging started right after 
the injection, divided into a series of 23 frames (6 × 30 s, 
4 × 60 s, 4 × 120 s, and 9 × 300 s). Before processing, all 
dynamic images underwent correction for head motion or 
non-standard posture (i.e. excessive head hypokinesis), in 
case they did not pass a visual check. A single 20–40 min 
frame was summed and analyzed after motion correction 
[25].

DaT‑SPECT image acquisition and reconstruction

In order to protect against irradiation of the thyroid, the sub-
jects were pretreated with perchlorate at 30–60 min before 
intravenous injection of a mean 145 ± 7 MBq [123I]-Ioflupane 
as a single bolus. Single frame SPECT emission record-
ings of 30 min duration were recorded at four hours after 
tracer injection using a triple-headed gamma camera (Picker 
Prism3000, Cleveland, OH) equipped with low-energy, high-
resolution fan beam collimators. The acquisition param-
eters consisted of a rotational radius of 12.7–13.0 cm, a 
20%energy window centered on 159 keV, 120 projection 
angles over 360° (60 s per projection), and a 128 × 128 
matrix. Images were reconstructed by filtered back- projec-
tion (low-pass filter with a cut-off frequency of 0.27Nyquist, 
fifth order) and corrected for attenuation according to Chang 
(µ = 0.12 cm−1). Final voxel size in the reconstructed and 
reoriented images was 2.26 × 2.26 × 3.56 mm.

Tau‑PET data analysis

All image data were processed and analyzed with PMOD 
(Version 3.4, PMOD Technologies Ltd., Zurich, Switzer-
land). Late phase 20–40 min [18F]PI-2620 PET images were 
coregistered to the Montreal Neurology Institute (MNI) 
space using a non-linear transformation (brain normalization 
settings: nonlinear warping, 8 mm input smoothing, equal 
modality, 16 iterations, frequency cutoff 3, regularization 
1.0, no thresholding) [26]. Standardized uptake value ratios 
(SUVr) were generated by dividing the 20–40 min static 
[18F]PI-2620 PET images through a cerebellar reference 
region, excluding the dentate nucleus, the cerebellar white 
matter and superior and posterior layers [15]. SUVr were 
extracted from 13 PSP target regions of interest in the MNI 
space: bilateral putamen, bilateral globus pallidus (internal 
and external part), bilateral subthalamic nucleus, bilateral 
substantia nigra, dorsal midbrain, bilateral dentate nucleus 
while keeping in mind that substantia nigra generally shows 
a higher background signal possibly due to additional neu-
romelanin off-target binding [15]. Tau-PET z-scores were 
calculated against the age-matched cognitively healthy con-
trol group.
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DaT‑SPECT data analysis

The DaT-SPECT scans were examined as DICOM files by 
using Hermes BRASS (Hermes Medical Solutions, Stock-
holm, Sweden) with the occipital lobe as the reference 
region (BRASS model 5 and BRASS model 7). Caudate 
nucleus, anterior putamen and posterior putamen served 
as target regions (all bilateral) and z-scores against healthy 
controls with correction for age were calculated [27]. DaT-
SPECT data of one patient from New Haven had to be 
evaluated with manual created VOIs fitting to the selected 
areas by using PMOD (Version 3.4, PMOD Technologies 
Ltd., Zurich, Switzerland) due to failed coregistration to 
the template of the software package.

Statistics

The statistical analyses were performed using SPSS 
(version 26.0, Armonk, New York, USA) and Excel 
(Microsoft, Redmond, WA, USA). Statistical signifi-
cance was defined at a level of p < 0.05 in all analyses. 
The data showed as n ± x represent the average and the 
standard deviation. Tau-PET and DaT-SPECT z-scores 
were normally distributed, as assessed by the Kolmogo-
rov–Smirnov-test, p > 0.05. T-tests and X2 tests were per-
formed to compare demographics between patients with 
4R-tauopathies and patients with α-synucleinopathies. 
One-way analysis of variance with age, gender and center 
as covariates (ANCOVA) was performed for comparison 
of tau-PET and DaT-SPECT SUVr and z-scores including 
p value and η2 as a measure of effect size.

We calculated a multiple regression analysis including the 
two biomarkers as well as age, gender and center as covari-
ates in all target regions. The Durbin-Watson statistics of all 
regression models performed in this study provided a value 
close to 2.0, which showed that the residuals were inde-
pendent and not inter-correlated. We performed a principal 
component analysis (PCA) for each of the two biomarkers 
concerning all target regions in order to achieve a dimen-
sional reduction of the data to its essential features while 
mitigating possible effects of multileg testing. Subsequently, 
we performed a multiple regression analysis including the 
calculated components. The Kaiser-Mayer-Olkin (KMO) 
measure for sampling adequacy and Bartlett’s test of sphe-
ricity showed that the data was suitable for data-driven 
dimension reduction.

To assess potential motor reserve effects, we performed 
a multiple regression analysis including the residuals of 
the Tau/DaT regression model and PSP rating scale scores. 
Moreover, the PSP rating scale was differentiated between 
items that cover motor and cognition function, which then 
were included in a separate multiple regression model.

Results

Demographics

A total of 38 patients with 4R-tauopathies and 15 patients 
with α-synucleinopathies were included in the analysis (Sup-
plementary Table 1). Patients with 4R-tauopathies did not 
differ in age (69.0 ± 8.5 years vs. 66.1 ± 10.3 years; p = 0.21; 
t-test) and gender (55% male vs. 53% male; p = 0.899; X2 
test) from patients with α-synucleinopathies. Patients 
with 4R-tauopathies showed a mean disease duration of 
26.2 ± 16.6 months compared to a mean disease duration 
of 15.6 ± 10.6 months in patients with α-synucleinopathies 
(p = 0.27; t-test).

[18F]PI‑2620 tau‑PET and [123I]‑Ioflupane DaT‑SPECT 
binding

As expected from previous studies [15, 18], higher [18F]
PI-2620 signal was observed all 13 target regions of 
patients with 4R-tauopathies when compared to patients 
with α-synucleinopathies (Fig.  1a, Supplementary 
Table 2). Strongest regional [18F]PI-2620 signal differences 
between patients with 4R-tauopathies and patients with 
α-synucleinopathies were observed in the right globus pal-
lidus internus (SUVr: 1.47 ± 0.27 vs 1.27 ± 0.14; p = 0.028, 
ANCOVA controlled for age, gender and center). 63.2% 
of patients with 4R-tauopathies and 6.7% of patients with 
α-synucleinopathies (p < 0.001; X2 test) showed at least one 
[18F]PI-2620 positive target region (z-score > 2). In regard 
to the SN the right SN showed a significantly higher sig-
nal in 4R patients than in α-synucleinopathies while there 
was no significant difference to HC (SUVr: 1.36 ± 0.20 
vs 1.24 ± 0.11 α-syn vs 1.32 ± 0.12 HC; p(α-syn): 0.04, 
p(HC): 0.50; ANCOVA controlled for age, gender and 
center). Quantitative DaT-SPECT showed similar dopa-
mine deficiency in patients with 4R-tauopathies compared 
to patients with α-synucleinopathies (Fig. 1b, Supplemen-
tary Table 3). DaT-SPECT binding in at least one target 
region was significantly reduced (z-score <  − 2) in 89.5% 
of patients with 4R-tauopathies and in 86.7% of patients 
with α-synucleinopathies (p < 0.001; X2 test). Figure 1c 
visualizes Tau-PET SUVr and DaT-SPECT ratio images of 
the group average of patients with 4R-tauopathies versus 
α-synucleinopathies.

Regional associations between tau burden and DaT 
availability

In patients with 4R-tauopathies, several negative asso-
ciations were observed between regional tau-PET signal 
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and DaT-SPECT binding in the basal ganglia in a multi-
ple regressions model including age, gender and center 
(Fig. 2a). Contrary, there was no significant association 
between tau-PET and DaT-SPECT quantification in patients 
with α-synucleinopathies (Fig. 2a). As an example, tau-
PET signal in the right globus pallidus internus showed the 
strongest negative regression factor with DaT availability in 
the right posterior putamen of patients with 4R-tauopathies 

(β =  − 0.464, p = 0.006, Durbin-Watson statistics = 1.824; 
Fig.  2c), whereas this association was not observed in 
patients with α-synucleinopathies (β =  − 0.178, p = 0.637, 
Durbin-Watson statistics = 1.810; Fig. 2c). As a negative 
control region without striatal projection, tau-PET binding 
in the dentate nucleus was not associated with DaT-SPECT 
loss in both patient populations (Fig. 2a). Due to asymmetri-
cal and higher DaT loss on the left hemisphere in our patient 

Fig. 1   Quantitative tau-PET and DaT-SPECT comparison of 
patients with clinical diagnosis of 4R-tauopathies (4RT) and 
α-synucleinopathies (α-syn). A Z-score distribution of tau-PET 
including p-value and effect size η2 in representative brain regions 
of patients with 4R-tauopathies and patients with α-synucleopathies. 
SUVr = standardized uptake value ratio. B Z-score distribution of 

DaT-SPECT including p-value and effect size η2 in comparison of 
patients with 4R-tauopathies and patients with α-synucleopathies. C 
Tau-PET SUVr and DaT-SPECT ratio images show the group aver-
age of patients with clinically diagnosed 4R-tauopathies and clini-
cally diagnosed α-synucleinopathies
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group, we also examined regional associations focused on 
the more affected side of each patient, which showed a simi-
lar negative association (Supplementary Fig. 1). A schematic 
visualization of the connection between brain regions with 
high tau burden and striatal dopaminergic loss is given in 
Fig. 2b.

Data‑driven tau‑PET and DaT‑SPECT correlation

To achieve a dimensional reduction, we performed a data-
driven principal component analysis (PCA) using all target 

regions for each of the two biomarkers. The PCA com-
prised two principal components for [18F]PI-2620 target 
regions (Kaiser Mayer Olkin criteria: 0.805, Bartlett’s test 
on sphericity: p < 0.001; accounted variance for the two 
components: 72.38%, 11.15%; Fig. 3a, b, Supplementary 
Table 4) and one principal component for DaT-SPECT target 
regions (Kaiser Mayer Olkin criteria: 0.829, Bartlett’s test 
on sphericity: p < 0.001, accounted variance for the compo-
nent: 88.2%; Supplementary Table 5). Principal component 
1 of tau-PET (nigrostriatal pathway regions) was associ-
ated in the multiple regression analysis with the principal 

Fig. 2   Regional associations between tau-PET and DaT-SPECT in 
patients with 4R-tauopathies (4RT) and α-synucleinopathies (α-syn). 
A Heat maps show regional associations between tau-PET (y-axis) 
and DaT-SPECT (x-axis). Significant associations providing a p 
value < 0.05 are indicated with *. Blue colors indicate negative mul-
tiple regression coefficients (β). Orange colors indicate positive mul-
tiple regression coefficients (β). Regions analyzed for tau-PET: puta-
men right, left (PUT r/l), globus pallidus externus right, left (GPe 
r/l), globus pallidus internus right, left (GPi r/l), subthalamic nucleus 
right, left (STN r/l), substantia nigra (SN r/l), dorsal midbrain (DMB) 
and dentate nucleus right, left (Dentate r/l). Regions analyzed for 

DaT-SPECT: caudate right, left, anterior putamen right, left (aPUT 
r/l) and posterior putamen right, left (pPUT r/l). B The scheme shows 
the basic idea of the connection between high tau burden in brain 
regions involved in direct or indirect pathways of the basal ganglia 
and striatal dopaminergic loss. Arrow thickness shows the level of 
correlation of the examined regions for patients with 4R-tauopathies, 
whereas no significant correlations were found in α-synucleopathies 
(dashed lines). C Linear correlation between tau burden in the globus 
pallidus internus and the DaT availability in the posterior putamen of 
the right hemisphere
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component of DaT-SPECT using age, gender and center 
as covariates (β =  − 0.442, p = 0.015, Durbin-Watson sta-
tistics = 2.270; Fig. 3c). There was no association between 
principal component 2 of tau-PET (dentate nucleus and dor-
sal midbrain) and the principal component of DaT-SPECT 
(β = 0.105, p = 0.572, Durbin-Watson statistics = 2.084; 
Fig. 3c).

Preserved DaT availability relative to tau burden 
suggests concept of a motor reserve in patients 
with 4RT

Finally, we explored the associations between both biomark-
ers and clinical severity in patients with 4R-tauopathies. The 
principal components 1 and 2 of tau-PET did not indicate an 
association with the PSP rating (PC1: β =  − 0.016, p = 0.944, 

Durbin-Watson statistics = 2.492/ PC2: β =  − 0.190, 
p = 0.401, Durbin-Watson statistics = 2.491), whereas the 
principal component of DaT-SPECT showed a significant 
negative association with the PSP rating scale in a mul-
tiple regression analysis with age, gender and center as 
covariates (β =  − 0.512, p = 0.013, Durbin-Watson statis-
tics = 2.877). To investigate potential reserve mechanisms, 
we tested for an association between the residuals resulting 
from the regression analysis of tau-PET and DaT-SPECT 
with the PSP rating scale, PSP rating scale items for motor 
function and items for mentation as well as the Montreal 
Cognitive Assessment (MOCA) score separately (Sup-
plementary Table 6). PSP rating scale single item scores 
as well as MOCA scores were only available for patients 
from Munich. Interestingly, we observed a significant nega-
tive association between the residuals resulting from the 

Fig. 3   Data driven correlation between tau burden and DaT availabil-
ity. A Visualization of the brain regions resulting from the principal 
component analysis of tau-PET target regions. The color bar indicates 
corresponding loading values. Two  principal components emerged, 
consisting of putamen, globus pallidus, subthalamic nucleus and the 
substantia nigra (principal component 1) as well as  dentate nucleus 
and dorsal midbrain (principal component 2). B Visualized values of 

the rotated component matrix derived from the principal component 
analysis. C Tau-PET principal component 1 (tau-PET PC1) indicated 
a significant negative association with the DaT-SPECT principal 
component (DaT-SPECT PC), whereas tau-PET principal component 
2 (tau-PET PC2) was not associated with the DaT-SPECT PC in a 
multiple regression model
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tau-PET/DaT-SPECT association and the PSP rating scale 
in the multiple regression (β = -0.522, p = 0.011, Durbin-
Watson statistics = 2.663; Fig. 4a). Preserved clinical per-
formance was also observed in individual patients with 
4R-tauopathies and high tau burden but sustained dopamine 
transporter availability (Fig. 4b), speaking for a variable 
vulnerability of dopaminergic neurons in presence of 4R 
tau. Furthermore, the regression model between the residu-
als and PSP rating scale motor function items showed an 
even stronger significant association (β =  − 0.590, p = 0.019, 

Durbin-Watson statistics = 2.319; Fig. 5), whereas items that 
represent mentation or the Montreal Cognitive Assessment 
Score did not provide a significant regression model (Men-
tation items: β =  − 0.302, p = 0.214, Durbin-Watson statis-
tics = 2.070; Fig. 5/ MOCA: β = 0.180, p = 0.408, Durbin-
Watson statistics = 1.392).

To analyze which factor, tau burden, DaT loss or the 
combination of both, is the best regressor to explain symp-
toms of the PSP rating scale subsets, we performed a two-
way interaction multiple regression analysis. The strongest 

Fig. 4   Preserved DaT availability relative to tau burden suggests con-
cept of a motor reserve in patients with 4RT. A Residuals of the lin-
ear regression between the tau-PET principal component 1 (tau-PET 
PC1) and the DaT-SPECT principal component (DaT-SPECT PC) 
positive (green) and negative (red) were obtained as an index of pre-
served DaT availability despite tau burden. Preserved DaT availabil-
ity was associated with lower disease severity in the PSP rating scale 
(right panel). Only patients with PSP rating scale scores are depicted. 

B Exemplary patients with 4R-tauopathies showing high tau burden, 
preserved DaT availability and mild clinical severity (upper row, 73y, 
female, PSP-CBS, PSP rating scale: 26) as well as moderate tau bur-
den, strongly decreased DaT availability and severe clinical deteriora-
tion (lower row, 79y, female, PSP-CBS, PSP rating scale: 49). Axial 
slices show individual tau-PET z-scores on a standard MRI-template 
in contrast against healthy controls and individual DaT SPECT ratio 
images
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significant regression factor for motor function items was 
accounted by the principal component of DaT-SPECT 
(Supplementary Table 7).

Discussion

We present the first study using the second generation tau-
PET tracer [18F]PI-2620 to investigate associations between 
tau pathology and dopaminergic loss in the striatum of 
patients with 4R-tauopathies. We demonstrate in vivo that a 
high tau burden in brain regions involved in direct or indirect 
pathways of the basal ganglia of patients with 4R-tauopa-
thies is associated with aggravated loss of DaT availability 
in the striatum as visualized by [123I]-Ioflupane SPECT, sup-
porting the role of tau pathology as a potential driver for 
dopaminergic dysfunction. Regarding dopaminergic func-
tioning, our data show that preserved DaT-SPECT binding 
relative to the individual tau load was associated with better 
clinical performance. This highlights the potential of com-
bined tau-PET and DaT-SPECT imaging to detect patients 
with a high motor reserve due to sustained dopamingeric 
transmission relative to 4R tau burden.

4R-tau is the key neuropathological feature in PSP and 
CBD which both show a broad spectrum of cognitive and 
motor symptoms [24, 28]. Post mortem studies revealed 
that distribution and burden of tau pathology is closely 
related to different phenotypical subtypes [4, 28, 29]. In 
this regard, first generation tau-PET tracers such as [18F]
AV-1451 showed a good correlation between autopsy con-
firmed cases and of tracer uptake [30–32]. In a recent post 
mortem tracer binding study of second generation tau tracers 
[18F]PI-2620, [18F]MK-6240 and [18F]RO-948 in AD, PSP 
and CBD patients all tracers showed similar binding patterns 

in AD while only [18F]PI-2620 showed a high specificity for 
PSP and CBD tau pathology [33] highlighting its diagnostic 
utility for detecting 4R-tau. In addition, a recent in silico 
study confirms that among the second-generation tau-tracers 
PI-2620, PM-BB3 and CBD-2115 bind to 4R-tau [34]. [18F]
PM-PBB3 also showed high binding affinity to 4R-tau but 
binding in clinically diagnosed patients with MSA [35]. So 
far, the availbility of PET-tracers binding to 4R-tau is very 
limited and further development and utilization of specific 
4R-tau PET tracers are warranted.

Regarding the regional associations of tau-PET signal 
in typical target regions of tau accumulation in 4R-tauopa-
thies and striatal DaT binding, we found that only regions 
of the nigrostriatal pathway and regions involved in direct 
or indirect pathways of the basal ganglia revealed a signifi-
cant negative correlation between tau-PET and DaT-SPECT 
(Fig. 2). The close association between tau deposition within 
the dopaminergic system and its loss of function supports 
the view that tau related toxicity reacts as a driver in the 
degeneration/dysfunction of dopaminergic cells. Second, the 
correlation of tau deposition within a functionally highly 
connected system and its loss of function strengthens the 
concept of interneuronal tau propagation which states that 
tau is transmitted via synaptic and extrasynaptic pathways 
while the transmission is enhanced by neuronal activity [12, 
36–38]. This concept was also underpinned by our recent 
investigation that could demonstrate an association between 
in vivo and ex vivo tau deposition patterns and functional 
connectivity in a PSP and CBD cohort using [18F]PI-2620 
tau-PET, histopathology and fMRI [39]. In the current study, 
the specificity of tau-PET to DaT-SPECT correlations to 
connected brain regions was determined by lacking asso-
ciations between tau burden in the dentate nucleus and stri-
atal DaT availability. In this regard, the dentate nucleus is 

Fig. 5   Comparison PSP rating scale items for motor function and 
mentation. Preserved DaT availability was associated with lower dis-
ease severity in the PSP rating scale scores for motor function (left 
panel), while there was no significant association between preserved 

DaT availability and lower disease severity in the PSP rating scale 
scores for mentation (right panel). Only patients with PSP rating scale 
scores for motor function and mentation items are depicted
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known to be affected in later disease stages of PSP [7] and 
not considered as a part of the dopaminergic system or the 
basal ganglia pathway, thus providing value as a negative 
control region. Furthermore, the PCA analysis revealed that 
condensed tau-PET signals of the dorsal midbrain and the 
dentate nucleus showed no correlation with the DaT compo-
nent while the condensed component of tau signals in func-
tionally connected brain regions of the nigrostriatal pathway 
showed a significant correlation to the DaT component. This 
supports that tau spreading in 4R-tauopathies occurs within 
highly connected brain areas [39] where tau accumulation 
disturbes neuronal function, such as dopamine transmission 
(Fig. 3).

Earlier studies using the first generation tau tracers [18F]
AV-1451 and [18F]THK-5351 as well as a recent study 
using [18F]PM-PBB3 demonstrated tau-PET signals in PSP 
patients correlated with clinical severity [40, 41]. Like in 
our previous investigations, regional [18F]PI-2620 tau-PET 
signals as well as condensed tau-PET components resulting 
from the PCA did not correlate with symptom severity meas-
ured by the PSP rating scale. Contrary, the DaT component 
of the PCA showed a significant negative correlation with 
PSP rating scale scores. This strengthens DaT-SPECT imag-
ing as an index of clinical functionality in 4R-tauopathies 
while [18F]PI-2620 tau-PET imaging preferably serves as a 
diagnostic tool. More importantly, residuals of the tau-DaT 
association correlated with clinical perfomance measured by 
PSP rating scale. We note that the PSP rating scale also con-
tains several non-motor items (see Supplementary Table 6), 
which implies that the observed resilience is not entirely 
specific to motor function. To adress this issue, we expanded 
our analysis on the group of the patients from Munich by 
separating PSP rating scale motor items and mentation 
items as well as adding the MOCA scores as an additional 
measure of cognitive function. Interestingly, this analysis 
revealed an even stronger association between the residu-
als of the tau-DaT association and motor symptoms while 
there was no association to PSP rating scale mentation items 
or the MOCA scores. These findings support the emerg-
ing concept of motor reserve in analogy to the well studied 
concept of cognitive reserve in AD research [42–44] which 
suggests that patients with a high motor reserve are able to 
sustain motor function despite brain neuropathology in tar-
get regions [45]. While the concept of motor reserve is being 
established in the field of PD and the underlying resilience 
mechanisms remain poorly understood, our data suggest 
that this concept may also be applicable to 4R-tauopathies. 
Patients with a high motor reserve could be identified by 
combined [18F]PI-2620 tau-PET and DaT-SPECT imaging, 
facilitating investigation of possible resilience mechanisms.

While pathological aggregation of 4R-tau is thought to 
be the key feature in 4R-tauopathies, the potentially crucial 
role of iron dysregulation needs to be kept in mind [46–48]. 

Subcortical iron accumulation in PSP is well-documented 
[49–51] and in Parkinsons disease, the excessive iron accu-
mulation in the substantia nigra is suggested to have toxic 
effects on the dopaminergic neurons, directly interfering 
with dopamine synthesis and function [48, 52–54]. There-
fore, iron accumulation could possibly have a direct or addi-
tional influence on the observed effects of DaT-SPECT and 
PI-2620 Tau-PET associations in our study. Hence, in future 
imaging studies, the use of additional iron-sensitive MRI 
scans should be considered when looking at the tau-/DaT 
interconnection. Generally, further research in this field is 
needed to elucidate the precise mechanisms by which iron 
contributes to tau pathology as it would be of great interest 
to unravel whether iron dysregulation precedes or coincides 
with tau aggregation and how they possibly exacerbate each 
other.

For interpretion of the results of this study, the lim-
ited sample size of the cohort consisting of 38 clinically 
diagnosed PSP/CBS patients and 15 clinically diagnosed 
α-synucleinopathy disease controls that did not receive 
autopsy confirmation needs to be acknowledged. However, 
our data build the grounds for future studies with larger 
cohorts investigating the association between 4R-tau and 
the dopaminergic system. Furthermore, there is an ongoing 
debate whether semiquantitative [123I]-Ioflupane SPECT is 
actually a function of the striatal dopaminergic cell count, 
i.e. the actual cell loss or if it really reflects axonal dysfunc-
tion/DaT density. In a recent study, the postmortem count 
of substantia nigra pars compacta neurons did not correlate 
with antemortem DaT binding quantified by DaT-SPECT 
imaging in 11 confirmed PD cases [55], suggesting that DaT 
imaging reflects a biomarker of dopaminergic functioning. 
On the other hand, there is contrary postmortem evidence 
that reduced striatal [123I]-Ioflupane SPECT signals correlate 
with reduced density of dopaminergic neurons in the sub-
stantia nigra in a cohort of 21 patients (12 PD, 4 AD, 7 DLB) 
[56]. In accordance, another study revealed that antemortem 
striatal DaT-SPECT binding correlated with the postmortem 
neuronal cell count of the SN in a cohort of 6 patients (1 
PD, 2 DLB, 1 MSA, 1 AD, 1 Creutzfeldt-Jakob) proposing 
that DaT imaging is a biomarker for nigrostriatal degenera-
tion [57]. Considering the results of our present study, these 
inconsistent findings lead to the conclusion that the [18F]
PI-2620 tau-PET signal could be either correlated to reduced 
dopaminergic function or to nigrostriatal cell loss.

Possible off-target binding also needs to be considered as 
another limitation of this study. As a derivative of AV-1451 
which is known to show several off-target binding sites 
including the basal ganglia or neuromelanin and iron deposi-
tions [58, 59], this issue is especially important for PI-2620. 
Obviously, second generation tau tracers such as PI-2620 
were designed explicitly to adress this problem and so far 
PI-2620 has shown very high affinity especially to 4R-tau 
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with fast washout from cortical and subcortical areas with 
substantially lower off-target binding to sites like the basal 
ganglia, choroid plexus, meninges and other sites commonly 
found in first generation tau tracers [60, 61]. Especially off-
target binding in the basal ganglia, mainly caused by binding 
to monoamine oxidase, in first generation tau-tracers limited 
their use in 4R-tauopathies [62, 63]. However for PI-2620, 
several studies [33, 64, 65] could reveal that this issue has 
been overcome, which makes us confident that the influence 
of possible off-target binding in this brain region is limited in 
this study. However, among all second generation tau-PET 
tracers, [18F]PI-2620 shows off-target binding to neuromela-
nin which serves as a possible confounder of PET signals in 
the substantia nigra [61].

Furthermore, during the disease course of 4R-tauopathies, 
progressive atrophy in regions like thalamus, midbrain and 
basal ganglia occurs frequently [66] which could potentially 
mask the PET signal in these regions. We cannot exclude 
a possible influence of partial volume effects in this study 
since we did not have a high resolution 3D T1 MRI data set 
available for all patients, which in consequence would have 
further restricted our moderate sample size. Indeed increas-
ing atrophy in target regions like the globus pallidus leading 
to partial volume effects could produce a decrease in tracer 
signal, especially in patients with long disease duration. 
Hence, further studies applying partial volume correction 
will be needed to adress this issue.

In regard to the sometimes rapidly progressing 4R 
tauopathies PSP and CBS, the relatively long time gap of 
3 ± 5 months between DaT and tau imaging also needs to 
be considered regarding possible limitations of this study 
as in some cases, disease severity might have progressed 
between scans.

Conclusions

Our study suggests that the degree of pathological tau 
accumulation is associated with dopaminergic dysfunction 
in 4R-tauopathies and supports the concept of tau being 
a potential driver of neuronal dysfunction and death in 
4R-tauopathies. Furthermore, our data imply that besides 
the effects of tau on the dopaminergic system, resilience 
factors may have a major influence on symptom severity 
emphasizing the potential of combined tau-PET and DaT-
SPECT imaging in motor reserve research.
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