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Timbral effects on consonance disentangle
psychoacoustic mechanisms and suggest
perceptual origins for musical scales

Raja Marjieh 1,2,6 , Peter M. C. Harrison 2,3,6 , Harin Lee2,4,
Fotini Deligiannaki2,5 & Nori Jacoby 2

The phenomenon of musical consonance is an essential feature in diverse
musical styles. The traditional belief, supported by centuries of Western
music theory and psychological studies, is that consonance derives from
simple (harmonic) frequency ratios between tones and is insensitive to
timbre. Here we show through five large-scale behavioral studies, compris-
ing 235,440 human judgments from US and South Korean populations, that
harmonic consonance preferences can be reshaped by timbral manipula-
tions, even as far as to induce preferences for inharmonic intervals. We show
how such effects may suggest perceptual origins for diverse scale systems
ranging from the gamelan’s slendro scale to the tuning of Western mean-
tone and equal-tempered scales. Through computational modeling we show
that these timbral manipulations dissociate competing psychoacoustic
mechanisms underlying consonance, and we derive an updated computa-
tional model combining liking of harmonicity, disliking of fast beats
(roughness), and liking of slow beats. Altogether, this work showcases how
large-scale behavioral experiments can inform classical questions in audi-
tory perception.

Many musical styles involve multiple performers playing or singing
simultaneously1–3. In Western music, this practice is underwritten by
the notion of harmony, defining how multiple musical tones may be
combined together into polyphonic sonorities or chords. To a given
listener, certain chords will sound particularly pleasant, or consonant,
while others will sound relatively unpleasant, or dissonant. This phe-
nomenon has immense importance in many musical styles, deter-
mining how musical notes are organized into scales, how these scales
are tuned, and how chords are constructed from these scales4–8. It has
consequently drawn sustained attention from many researchers ran-
ging from philosophers (Pythagoras) to mathematicians (Leibniz,
Euler), music theorists (Zarlino, Rameau), and modern-day psycholo-
gists and ethnomusicologists9–19.

Consonance perception is thought to derive from both psychoa-
coustic and cultural factors (e.g. ref. 20). Several psychoacoustic
mechanisms have been proposed over the years, including fusion21,22

and combination tones23–25, but the twomain extant theories attribute
consonance either to interference between partials26 or to harmonicity
detection19 (see refs. 12,20,27 for a similar conclusion). Both theories
predict that chords comprising harmonic tones should sound most
pleasant when the tones are related by harmonic pitch intervals (i.e.,
those that correspond to simple frequency ratios, e.g., 2:1, 3:2). This
would explain why many (though not all) scale systems across the
world seem to have developed to favor harmonic pitch intervals5,28.
Within a given society, cultural familiaritywithparticularmusical styles
will further contribute to consonance perception, biasing listeners
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toward preferring sonorities that occur often within a given musical
style. Styles based on Western tonality will therefore reinforce pre-
ferences for harmonic pitch intervals20,29, but styles with different
harmonic systems may induce different biases13,30.

To this date, a crucial unsolved question has been whether con-
sonance perception depends on the timbre of the underlying chord
tones. Previous literature provides contradictory perspectives here.
Traditional Western music theory implies that consonance should be
independent of timbre; it provides just one scheme for categorizing
intervals into consonances and dissonances, and this scheme applies
equally to all musical instruments18. On the other hand, prominent
psychoacoustic theories of consonance (in particular, Helmholtz’s
interference theory) imply that consonance judgments should vary
substantially depending on the positions andmagnitudes of the tones’
upper harmonics26; an argument which was also reiterated in later
papers31,32. Nevertheless, both Helmholtz26 and Sethares31 provide only
theoretical arguments, and while Plomp and Levelt32 cite an old
empirical paper claiming to show one such effect33, the latter paper
failed to replicate with modern methods34. Furthermore, recent dec-
ades of psychological studies seem to show that timbralmanipulations
do not qualitatively affect consonance judgments12,27,34–36; though see37

for a study of the effect of timbre on the statistical learning of melodic
grammars.

Here we address this question with a series of 23 large-scale
behavioral experiments comprising 4272 online participants and
235,440 human judgments (participants were allowed to participate in
multiple experiments, but only once within a given experiment; see
Supplementary Tables 1 and 2 for a breakdown of the number of
unique participants in each experiment). These experiments have
three important features:

First: continuous treatment of pitch intervals. Previous con-
sonance research has used stimuli drawn solely from discrete scales,
most commonly theWestern 12-tone chromatic scale12,27,29,34,35,38,39. This
is problematic because it neglects potentially interesting structure in
between the scale degrees of the chromatic scale, and because the
resulting paradigm is inherently Western-centric. Here we instead
avoid making any assumptions about scale systems, and instead take
advantage of novel psychological techniques (dense rating; Gibbs
Sampling with People40) to construct continuous consonance maps
directly from behavioral data.

Second: systematic exploration of timbral features. Several recent
consonance studies have included timbral manipulations, but gen-
erally only explored a limited number of manipulations12,34,35 or used
manipulations designed to demonstrate generalizability rather than to
test particular hypotheses27. Herewe take amore systematic approach.
We focus in particular on spectralmanipulations, because (as we show
later) these yield particularly clear hypothetical effects in computa-
tional modeling. In a series of studies, we address the three main ways
of manipulating a harmonic spectrum: (1) changing the frequencies of
the harmonics (Studies 2 and 5), (2) changing the amplitudes of the
harmonics (Study 3), and (3) deleting individual harmonics entirely
(Study 4). In Study 1 we establish an experimental baseline for har-
monic dyads (two-note chords), in Studies 2–4 we explore timbral
features in the context of dyads, and in Study 5 we generalize our
results to triads (three-note chords).

Third: concurrent computationalmodeling. Previous researchhas
developed many computational models operationalizing different
theories of consonance perception. Here we use such models to
understand what predictions different theories should make for dif-
ferent spectral manipulations. We focus in particular on the two psy-
choacoustic models that performed best in a recent systematic
evaluation of almost all extant consonance models20. The first is the
model of Hutchinson and Knopoff41, which supposes that dissonance
derives from unpleasant interactions between neighboring partials in
the frequency spectrum, potentially corresponding to the fast beats

that occur when two tones of similar frequencies are superposed.
Specifically, the model assigns a dissonance (or roughness) score for
each pair of partials based on a parametric function that depends on
the frequency difference between them, and then combines those
scores additively. The second is theharmonicitymodel ofHarrison and
Pearce42, which supposes that chords become consonant when they
align well with an idealized harmonic series. The harmonicity score is
calculated by computing similarity scores between different idealized
harmonic templates and a compact representation of the chord
spectrum. We confirm the robustness of the modeling results by run-
ning supplementary analyses with a collection of alternative inter-
ferencemodels31,43 and harmonicitymodels44,45 (Supplementary Fig. 1).
Additionally, we plot results from a new composite model that com-
prises a simple weighted average of updated versions of the inter-
ference and harmonicity models, with weights fixed throughout the
paper, and show it can account for results that arenot explainedby any
of the models in isolation.

Together, these 23 experiments characterize the relationship
between timbre and consonance in great detail, shedding light on the
psychological mechanisms underpinning consonance perception, as
well as the close connection between musical instruments and the
cultural evolution of musical styles.

Results
Baseline results for harmonic dyads (Study 1)
Following a long tradition of music theory and music psychology
research, we begin by studying the consonance of two-tone chords
(dyads) as a function of the frequency ratio between those tones (e.g.
refs. 26,27,38,41,46). We represent those frequency ratios as pitch
intervals, where the pitch interval in semitones is calculated as 12 log2

f 2
f 1
,

where f 1 and f 2 are the two frequencies. In a subsequent study (Study 5)
we then generalize the approach to three-tone chords (triads).
Throughout these studies we investigate the moderating role of timbre.

Study 1A characterizes dyadic consonance perception for syn-
thetic harmonic complex tones. These tones are constructed by
combining pure tones (i.e., simple sinusoids) whose frequencies are all
integer multiples (i.e., harmonics) of a common fundamental fre-
quency. Such tones have long been used as idealized approximations
of the pitched sounds produced by the human voice and by common
musical instruments (e.g. refs. 32,41,47).

In each trial of the experiment,weplayedUSparticipants (N = 198)
dyads comprising two harmonic complex tones (10 harmonics per
tone, 3 dB/octave spectral roll-off, 1.3 s in duration), sampling the pitch
interval between the two tones from a uniform distribution over the
range of 0–15 semitones, and sampling the pitch of the lower tone
from a uniform distribution over the range G3-F4. The participant was
then asked to rate the dyad’s pleasantness on a scale from 1 (com-
pletely disagree) to 7 (completely agree) (Fig. 1a). Following previous
research, we use pleasantness as a convenient synonym for con-
sonance that is understood well by nonmusicians (e.g. refs. 13,27,48).
Other possible synonyms exist (e.g., smoothness, purity, harmo-
niousness, tension, stability), but in practice human ratings tend to be
correlated across these synonyms48. We collected many ratings from
many participants formany dyads, and summarized the results using a
Gaussian kernel smoother (bandwidth: 0.2 semitones), finding con-
sonance peaks using a peak-picking algorithm and constructing 95%
confidence intervals using nonparametric bootstrapping (see
“Methods”).

Figure 1b summarizes the results from Study 1A (see Supple-
mentary Movie 1 for a video version). While the trial-level data (light
blue points) are relatively noisy, highlighting the subjectivity of the
perceptual evaluations, the averaging process reveals clear structure
that alignswith theWesterndiscrete scale system, aswell as traditional
hierarchies of consonance and dissonance. In particular, we find eight
clear peaks in the pleasantness judgments; these peaks are located
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close to the integer semitones that make up the Western 12-tone
chromatic scale (average distance of 0.05 semitones, 95% confidence
intervals = [0.03, 0.08] semitones; random chance would give
0.25 semitones). The relative heights of these peaks replicate tradi-
tionalmusic-theoretic classifications of intervals into consonant (blue)
and dissonant (red) categories (Fig. 1c; mean difference between
consonant/dissonant intervals is 0.38 standard deviations, 95% con-
fidence intervals = [0.29, 0.46]). The results also correlate very well
with the results of previous behavioral experiments studying the
relative consonance of different Western intervals, including aggre-
gated results from seven laboratory studies from the late nineteenth/
early twentieth centuries46 (r(10) = 0.96, p < 0.001, 95% confidence
intervals = [0.85, 0.99]), a recent laboratory study by Bowling et al.38

(r(10) = 0.91, p < 0.001, 95% confidence intervals = [0.71, 0.98]), and a
recent online study by McPherson et al.39 (r(13) = 0.94, p <0.001, 95%
confidence intervals = [0.84, 0.98]). Lastly, a Monte Carlo split-half
correlation analysis showed an excellent internal reliability (r =0.87,
95% confidence intervals = [0.74, 0.94], 1000permutations). Together,
these results give us confidence in the reliability and validity of our
experimental methods.

Synthetic harmonic complex tones are traditionally intended as
approximations to the kinds of complex tones produced by real
musical instruments. To verify that they elicit similar consonance
profiles, we conducted three follow-up experiments repeating Study
1A but with tones from three synthetic musical instruments: flute,
guitar, and piano (Study 1B, 602 participants). We find that these

instruments indeed produce broadly comparable consonance pro-
files to the idealized harmonic complex tones (Fig. 2; mean r = 0.56,
mean ρ = 0.62) though with certain peaks falling either side of the
95% statistical significance cutoff for different instruments (e.g., the
minor 7th peak, 10 semitones, is only statistically significant for the
guitar).

The differences we see between these instruments are potentially
interesting but difficult to interpret definitively, because the instru-
ments vary on multiple factors, including both temporal and spectral
features. In the rest of this paper, we therefore focus on artificial har-
monic complex tones, manipulated in very precise and interpretable
ways, so that we can better distinguish the underlying causal factors
that affect consonance perception.

Previous research has documented how consonance judgments
can vary as a function of musical experience (e.g. refs. 32,49). In all of
our experiments, we therefore asked our participants to report their
years of musical experience, allowing us to estimate the sensitivity of
our results to musical expertise. Figure 3 plots results for Study 1A
differentiated bymusical expertise (median split: 2.0 years ofmusical
experience). We found, in general, that participants with different
levels of musical experience gave qualitatively similar results. Parti-
cipants with more musical experience (>2 years, musicians) tended
to give more differentiated judgments than participants with less
musical experience (≤2 years, nonmusicians) (mean SD of z-scored
musician profiles = 0.23, 95% confidence intervals = [0.18, 0.28],
mean SD of z-scored nonmusician profiles = 0.15, 95% confidence

Fig. 1 | Dyadic consonance for harmonic complex tones (Study 1A, N = 198
participants). a Schematic illustration of the rating task. b Consonance profile
(black line) derived through kernel smoothing (z-scored, Gaussian kernel, band-
width 0.2 semitones, 95% confidence interval), superposed on raw data (blue
points). Peaks estimated by a peak-picking algorithm are marked in red as mean

values ±95% confidence intervals (bootstrapped, 1000 replicates). c Comparing
smoothed ratings at integer intervals to traditional music-theoretic classifications
and to data from McPherson et al.39 (N = 100 participants) (z-scored over partici-
pants, data presented as mean values ±95% bootstrapped confidence intervals).
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intervals = [0.11, 0.18], mean difference = 0.08, 95% confidence
intervals = [0.07, 0.10], bootstrapped over experiments), but in
general the judgments correlated quite highly across both groups
(mean ρ of 0.68, 95% confidence intervals = [0.57, 0.80], boot-
strapped over experiments). This consistency may be due to uni-
versal psychoacoustic processes, but it may also be due to the
sophisticated implicit musical knowledge that listeners are known to
develop even in the absence of formal musical training50,51. In the
following studies, we focus on analyzing data aggregated over all
musical experience levels.

Changing harmonic frequencies (Study 2)
Webegin by considering how consonance judgmentsmay be altered if
we change the frequencies of the harmonics thatmake up the complex
tone. Such effects have been previously hypothesized in previous
work15 but not yet empirically tested.

We first consider a stretching manipulation proposed by
Sethares15, wherewemanipulate the spacing between the harmonics in
the complex tone (Study 2A). Similar kinds of stretching are present to
small degrees in string instruments as a consequence of string stiff-
ness, causing slight inharmonicity52. We define the frequency of the ith
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Fig. 3 | Dyadic consonance for harmonic complex tones as a function of
musicianship (Study 1A, N = 198 participants). Consonance profiles (z-scored)
are plotted asmean values ± 95% bootstrapped confidence intervals (bandwidth of

0.2 semitones, 1000 bootstrap replicates). The musicianship threshold (2.0 years)
corresponds to a median split of the participant group. The reference dotted line
corresponds to the consonance profile derived from the full participant group.
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Fig. 2 | Dyadic consonance for synthesized Western instruments (Study 1B;
flute: N = 190 participants, guitar: N = 210 participants, piano: N = 198 partici-
pants). Consonance profiles for the Western instruments (z-scored) are plotted as

mean values ± 95%bootstrapped confidence intervals (bandwidthof0.2 semitones,
1000 bootstrap replicates). The consonance profile for harmonic complex tones
(Study 1A) is plotted as a reference dotted line.
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partial as f i = f 0γ
log2ði+ 1Þ, where f 0 is the fundamental frequency and γ

is the stretching parameter: γ = 1:9 then defines a compressed tone,
γ =2 defines a standard harmonic tone, and γ =2:1 defines a stretched
tone (Fig. 4a).

Interference models predict that this spectral stretching/com-
pressionmanipulation should yield analogous stretching/compression
in consonance profiles (e.g., Fig. 4b, red lines; see Supplementary
Figs. 2 and 3 for equivalent results fromalternativemodels). Intuitively,
this can be understood from the observation that interference is
minimized when partials from different tones align neatly with each
other; if we then stretch each tone’s spectrum,wemust also stretch the
intervals between the tones to maintain this alignment.

Interestingly, harmonicity models do not predict such an effect;
instead, they generally predict that these manipulations will largely
eliminate pleasantness variation, and any residual variation will still be
located at harmonic intervals (e.g., Fig. 4b, blue lines; see also Sup-
plementary Figs. 2 and 3). Once the individual tones become inhar-
monic, the overall chord also becomes inharmonic, irrespective of the
intervals between the tones.

We conducted a pair of experiments to construct consonance
profiles for stretched (Study 2A(i), 194 participants) and compressed
(Study 2A(ii), 202 participants) tones, and compared these to baseline
profiles for harmonic tones (Study 1A, 198 participants). As predicted
by the interference account, we find that we can indeed induce pre-
ferences for stretched and compressed intervals, in line with the

corresponding spectral manipulations (Fig. 4b; see Supplementary
Movies 2 and 3 for video versions). For example, for dyads comprising
stretched tones,we clearly see preferences for stretched octaves (peak
at 12.78, 95% confidence intervals = [12.68, 12.88] semitones; an
unstretched octave would be 12.00 semitones) contrasting with the
results from harmonic tones (peak at 12.04, 95% confidence inter-
vals = [11.97, 12.11] semitones) (Fig. 4b). We see similar stretching/
compression for other consonant intervals, though in some cases the
peaks lose clarity for the inharmonic tones. These effects are con-
sistent with the predictions of the interference models, but not with
the predictions of the harmonicity models; the results therefore pro-
vide evidence that interference between partials is an important con-
tributor to consonance perception, in contrast to recent claims in the
literature that interference is irrelevant to consonance
perception13,27,38,53. However, the results are not inconsistent with the
idea that harmonicity makes some contribution to consonance per-
ception; we see in particular that the composite consonance model
successfully predicts all of the stretching/compression phenomena
(Fig. 4b; note that whenever we plot the composite model we plot it in
itsfinal form, includingmodificationsmotivated by later experiments).

We were interested in testing whether these effects are specific to
US listeners. We therefore ran a replication experiment of the
stretching/compressing dyadic consonance study (Study 2A) aswell as
the harmonic baseline (Study 1) with Korean participants (N = 68)
recruited with the aid of a research assistant in the local area (Study
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Fig. 4 | Spectral stretching/compression and consonance (Studies 1A, 2A).
a Stretched and compressed tone spectra, with a baseline harmonic spectrum
(gray) for comparison. b Dyadic pleasantness judgments for stretched (N = 194
participants), harmonic (N = 198 participants), and compressed (N = 202 partici-
pants) tones. Behavioral results are summarized using a kernel smoother with a

bandwidth of 0.2 semitones, with 95% confidence intervals (bootstrapped, 1000
replicates) shaded in gray, peak locations plotted as red circles with red rectangles
indicating mean values ± 95% confidence intervals. Dotted lines indicate the loca-
tion of the compressed, harmonic, and stretched octaves.
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2B). Participants were required to be native Korean speakers and
resident in South Korea; all experiment instructions were translated to
Korean by a native speaker. The resulting consonance profiles are
shown in Supplementary Figs. 4–6 and Supplementary Movies 4–6.
The general effect clearly replicates with the new participant group:
stretched spectra produce a stretched consonance profile, whereas
compressed spectra produce a compressed consonance profile.

Other kinds of inharmonicity can be produced by certain per-
cussion instruments, for example the metallophones of Indonesian
gamelans and the xylophone-like renats used in Thai classical music15.
Each instrument will have an idiosyncratic spectrum that reflects its
particular physical construction, with potentially interesting implica-
tions for consonance perception.

In Study 2C we investigate an inharmonic tone inspired by one
such instrument, the bonang. The bonang is an instrument from the
Javanese gamelan comprising a collection of small gongs. In order to
achieve arbitrarymicrotonal pitches,weuse a synthetic approximation
to the bonang proposed by Sethares15 on the basis of field measure-
ments, corresponding to four equally weighted harmonics with fre-
quencies of f 0,1:52f 0,3:46f 0, and 3:92f 0 (Fig. 5a). Following Sethares

15,
we play dyads where the upper tone corresponds to this idealized
bonang, and the lower tone corresponds to a standard harmonic tone
with four equally weighted harmonics. This combination is intended to
reflect a commonkindof texture in Javanesegamelanmusic,where the
inharmonic bonang is played alongside a harmonic instrument
or voice.

The results from the corresponding dyad rating experiment are
plotted in Fig. 5b (Study 2C, 170 participants; see Supplementary
Movie 7 for a video version). As with the harmonic tones, we see a clear
pleasantness peak at the octave, 11.98 semitones, 95% confidence
intervals = [11.88, 12.05]. However, the other peaks previously seen at
harmonic intervals are now either missing or displaced to inharmonic
locations. In particular, we see clear peaks at 2.60, 95% confidence
intervals = [2.51, 2.67] semitones and 4.80, 95% confidence intervals =
[4.70, 4.95] semitones, neither of which are harmonic intervals. Con-
versely,wedonot see anypeaks at themajor third (nopeakdetected in

95% of bootstrap samples within the interval [3.5, 4.5]) or the perfect
fifth (no peak detected in 76% of bootstrap samples within the interval
[6.5, 7.5]. These peaks are each predicted by the interference model
and the harmonicity model; however, the harmonicity model also
predicts several additional peaks that do not manifest clearly in the
behavioral data (see also Supplementary Fig. 7 for additional models).

Sethares15 made an interesting claim that the two main scales of
Javanese gamelan music (the slendro scale and the pelog scale) reflect
the consonance profiles of its instruments (see also refs. 54,55). In par-
ticular, he proposed that the inharmonic slendro scale might be
explained in terms of the consonance profile produced by combining a
harmonic complex tone with a bonang tone, as in our own experiment,
emulating the interaction between the human voice and the bonang.We
have correspondingly annotated Fig. 5bwith the locations of the slendro
scale degrees, approximating the scale as 5-tone equal temperament15,56.
As predicted by Sethares15, we do find that the empirical consonance
curve aligns neatly with the slendro scale, even though our Western
participants are likely to have no or little exposure to Javanese gamelan
music; in particular, each observed peak (2.6, 4.8, and 12.0 semitones) is
located close to a slendro scale degree (2.4, 4.8, and 12.0 semitones).
Interestingly, while the two remaining slendro scale degrees (7.2 and
9.6 semitones) do not have corresponding behavioral peaks, they do
have corresponding peaks in the harmonicity curve.

To summarize, we found that manipulating the frequencies of the
harmonics can induce inharmonic consonance profiles. In particular,
stretching/compressing the harmonic series leads to stretched/com-
pressed consonance profiles (Study 2A–B), whereas replacing the
upper dyad tone with a synthetic bonang tone yields an idiosyncratic
consonance profile that alignswith the slendro scale from the Javanese
gamelan (Study 2C), even for participants with little or no prior
experience with this scale. The stretching/compressing manipulation
is interesting from a modeling perspective, because it clearly dis-
sociates the predictions of the interference and the harmonicity
models, and shows that only the former are compatible with the
behavioral data. The latter manipulation is interesting from a cultural
evolution perspective, because it supports the hypothesis that the
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Fig. 5 | Dyadic pleasantness judgments for the bonang (Study 2C, N = 170 par-
ticipants). a Idealized spectrum for the bonang (Sethares15). b Pleasantness judg-
ments (95% confidence intervals) for dyads comprising a harmonic complex tone
(lower) combinedwith an idealizedbonang tone (upper) (Study 2C). Peak locations
are plotted as red circles with red rectangles indicating mean values ± 95%

confidence intervals (bootstrapped, 1000 replicates). Interference41 and
harmonicity42 model predictions are plotted for reference. The slendro scale,
approximated as 5-tone equal temperament15, is plotted with dashed lines; note
how this scale barely overlaps with the 12-tone scale.
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slendro scale developed in part as a specific consequence of the
acoustic properties of Javanese gamelan instruments15,54,55.

Changing harmonic amplitudes (Study 3)
We now consider how consonance profiles may be affected by chan-
ging the amplitudes of their tones’ harmonics. In particular, we focus
on the so-called spectral roll-off parameter, which determines the rate
atwhich harmonic amplitude rolls off (decreases) as harmonic number
increases. For example, a tone with high roll-off might have amplitude
decrease at a rate of 12 dB per octave, whereas a tone with low roll-off
might have amplitude decrease at only 3 dB per octave (Fig. 6a).

Interference theories would predict that roll-off has a major
influence on consonance judgments: increased roll-off should reduce
the magnitude of beating effects induced by the upper harmonics,
hence producing flatter consonance profiles (Fig. 6b, red lines). In
contrast, harmonicity theories predict that pleasantness profiles
should remain highly differentiated. Harmonicity comes primarily
from integer relationships between fundamental frequencies, a phe-
nomenonwhich is relatively robust in the face of roll-offmanipulations
(Fig. 6b, blue lines).

Interference and harmonicity theories also predict potential main
effects of spectral roll-off on pleasantness (with higher overall plea-
santness rating for larger roll-off parameters). According to the inter-
ference models, almost every interval elicits some interactions
between upper harmonics, and hence becomes more pleasant with
increased roll off (Fig. 6b, red lines; standardized regression coeffi-
cients (β) for the main effects = 0.39, 0.83, 0.62 for the three models).

Harmonicitymodelsmake less consistent predictions: somepredict an
overall main effect on pleasantness (e.g., Fig. 6b, blue lines; β = 0.91),
whereas others do not predict a strong effect (β = 0.02, 0.23; see also
Supplementary Figs. 8–10).

We tested these predictions in Study 3 with a dense dyad rating
experiment (322 participants) manipulating both pitch interval (0–15
semitones) and roll-off (0–15 dB roll-off/octave, Fig. 6a; see Supple-
mentaryMovies 8–10 for video versions). We see a clearmain effect of
roll off (as predicted by both theories), with participants finding
greater roll-offs more pleasant (Fig. 6b). However, we see no clear
effect on pleasantness variability; the profiles remain highly differ-
entiated for all roll-off levels. Indeed, we find that a generalized addi-
tive model using just main effects of roll-off and of pitch interval can
explain 98% of the variance of smoothed consonance ratings, indi-
cating that, despite its strong main effect (β = 0.89), roll off has a
minimal effect on the shape of the consonance profile.

These results are clearly inconsistent with the interferencemodel,
which predicted that the consonance profile should lose its differ-
entiation at higher levels of spectral roll-off. In contrast, the results are
highly consistent with the harmonicity model, which predicted that
the profile’s differentiation should remain preserved.

The results are also evidently inconsistent with any composite
model that averages the interference and harmonicity models,
because that model will also end up being overly sensitive to roll-off
manipulations. How might we solve this problem? One solution is to
increase the interference model’s sensitivity to low-amplitude har-
monics. The original model41 takes interference as being proportional
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to amplitude squared (i.e., intensity); if we reduce the exponent (e.g.,
from 2.0 to 1.3), the interference model becomes less sensitive to roll-
offmanipulations.We incorporate this update in the compositemodel
that we plot throughout this paper, andwe see that themodel predicts
the data in the present experiment very well (Fig. 6).

Deleting entire harmonics (Study 4)
Study 3 found that reducing harmonic amplitudes had little effect on
the shape of consonance profiles, in contrast to the predictions of the
interference model. In Studies 4A and 4B, we now ask whether con-
sonance profiles are affected by a more radical manipulation: com-
pletely deleting particular harmonics.

Some previous studies have investigated the effects of harmonic
deletion, with mostly negative results. Vos57 assessed subjective
purity judgments in the neighborhood of the major third and the
perfect fifth, and found that purity ratings increased when removing
the even harmonics from the upper tone, but the overall shape of the
consonance profiles remained broadly similar. Nordmark and
Fahlén35 took the minor ninth dyad, and investigated the effect of
deleting the partials in each tone theoretically responsible for the
most interference; however, they found no effect on consonance
judgments. McLachlan et al.34 tried removing (1) all even harmonics
and (2) all harmonics above the fundamental frequency for a col-
lection of dyads, but likewise found no clear effect on consonance
judgments.

On the face of it, these historic results seem to be conclusive
evidence against interference theories of consonance, which clearly
predict that the consonance of non-unison intervals should depend on
the existence of upper harmonics34,35. However, there are a couple of
reasons to be skeptical here. One is that these historic studies do not
test intervals in between the scale degrees of the 12-tone chromatic
scale, and therefore potentially miss certain changes to the con-
sonance profiles. The second is that historic studies using pure tones
(i.e., tones with no upper harmonics) have often identified different
(typically flatter) profiles to those that used complex tones
(e.g. ref. 32).

We therefore reexamined this question in Study 4A (485 partici-
pants). We focused on three tone types (Fig. 7a): a tone with five
equally weighted harmonics (bottom row), a tone with the third har-
monic deleted (middle row), and a pure tone with all upper harmonics
deleted (top row). We chose this combination of tones because (1) it is
possible to delete the third harmonic without changing the tone’s
spectral centroid (i.e., mean spectral frequency), which is useful
because the spectral centroid is known to contribute to pleasantness10,
and because (2) pure tones are good for making comparisons with
prior studies (e.g. refs. 27,34).

We see a clear effect of the manipulation: deleting harmonics
reduces the number of peaks in the pleasantness profiles, producing
smoother and less differentiated curves (Fig. 7b; see Supplementary
Movies 11–13 for video versions). In particular, the peak-picking
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algorithm identifies seven statistically reliable peaks for the full spec-
trum (minor third, major third, perfect fourth, perfect fifth, major
sixth, octave, andmajor tenth); deleting the third harmonic causes the
minor third peak to be lost, and deleting the remaining upper har-
monics causes all but the perfect fifth and octave peaks to be lost.

At a first glance, this picture is consistent with the predictions of
both interference and harmonicity models: both predict that deleting
harmonicswill remove peaks from the pleasantness profiles. However,
closer inspection yields interesting discrepancies. For example, the
interference model erroneously predicts a complete absence of peaks
for pure tones, and so a harmonicity component is necessary to pre-
dict the behavioral peak at the perfect fifth (7 semitones) and the
octave (12 semitones). Furthermore, the harmonicity model correctly
predicts that deleting the third harmonic should eliminate the plea-
santness peak at the minor 3rd (3 semitones), unlike the interference
model. Both models successfully predict that deleting the remaining
harmonics should eliminate the behavioral peak at the major 3rd
(4 semitones), but this also eliminates the behavioral peak at the per-
fect 4th (5 semitones), something which is not predicted by either
model. In summary, the results point to an important contribution of
harmonicity to consonance perception, but there are certain details of
the timbral effects that still fail to be explained by existing models.
Moreover, these discrepancies are not obviously solved by averaging
the models to form the composite model.

As a follow-up question, we wondered what effect this timbral
manipulation would have on preferred tunings for particular musical
intervals. If listeners do indeed prefer different tunings for different
musical timbres, this would imply that there is no such thing as an ideal
tuning system for maximizing consonance, and instead the ideal tun-
ing system should depend on the timbres being used.

What tunings should Western listeners ordinarily consider most
consonant? On the one hand, interference and harmonicity models
predict that consonance should be maximized by just-intoned intervals,

which correspond to exact simple integer ratios (e.g., 2:1 for the octave,
3:2 for the fifth, and so on). On the other hand, Western listeners typi-
cally have substantial experience with 12-tone equal temperament, the
most common tuning system in Western music. Therefore, we might
expect them to consider equal-tempered intervals most consonant.

How should harmonic deletion affect these tuning preferences?
Interference theories clearly predict that listeners’preferences for just-
intoned intervals should be eliminated by this manipulation, on
account of eliminating the beating between upper harmonics (Fig. 8,
red lines). Harmonicity theories meanwhile predict that consonance
preferences peaks at just-intoned intervals should still be possible in
the absence of upper harmonics; however, in practice certain harmo-
nicity models do predict that consonance preferences will be some-
what flattened by deleting upper harmonics (Fig. 8, blue lines).

Previous work studying chordal tuning preferences has been
limited to discrete tuning comparisons (e.g., Pythagorean tuning ver-
sus equal-temperament) and often to very small participant groups
(e.g., 10 participants)58,59. Our work instead uses much larger partici-
pant groups and systematically evaluates a continuous range of pitch
intervals (Study 4B, 1341 participants). In order to maximize statistical
power forour timbral comparisons,we focus on just two tone types: (1)
harmonic complex tones with low spectral roll-off (3 dB/octave), and
(2) pure tones (corresponding to infinite spectral roll-off). We collect
ratings in the neighborhood of several prototypical consonances from
Western music theory: the major third (5:4), the major sixth (5:3), and
the octave (2:1). We chose the major third and themajor sixth because
they have significantly different tunings in just intonation versus equal
temperament, which is helpful for distinguishing the candidate the-
ories. We additionally chose the octave because of previous work
indicating listener preferences for stretched octaves (e.g. refs. 60–62).

The results for harmonic tones were considerably more interest-
ing than we anticipated (Fig. 8a, solid lines; see Supplementary
Movies 14–16 for video versions). For both the major sixth and the
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octave, we see two clear peaks that sit either side of the just-intoned
interval (8.78, 95% confidence intervals = [8.77, 8.80] and 8.93, 95%
confidence intervals = [8.92, 8.94] for the major sixth, and 11.94, 95%
confidence intervals = [11.92, 11.96] and 12.08, 95% confidence inter-
vals = [12.07, 12.1] for the octave). In neither case do these peaks
overlap with the equal-tempered interval. For themajor third, we see a
less clear version: the peak on the sharp side of just intonation is clear
(3.95, 95% confidence intervals = [3.93, 3.96]), but the equivalent peak
on the flat side is more subtle, only being detected in 66% of the
bootstrap iterations. Nonetheless, the pattern of results is clearly
inconsistent with simple preferences for just intonation or equal
temperament.

Whymight listeners prefer slight deviations from just intonation?
One explanation would be that listeners positively enjoy the slow
pulsating beats that these slight deviations induce for the feeling of
richness that they convey, as hypothesized by Hall6. However, this
concept is missed in the modeling literature; current interference
models assume that beating is universally disliked31,41,43.

If these preferencepatterns are indeed explained by enjoyment of
slow beats, then they should be eliminated by deleting the upper
harmonics from the complex tones to producepure tones. Indeed, this
iswhatwe see (Fig. 8, dashed lines): thepreference for slight deviations
from just intonation is eliminated, resulting in relatively flat con-
sonance curves (see Supplementary Movies 17–19 for video versions).

This preference for slow beats can be incorporated into the
Hutchinson-Knopoff model by modifying its dissonance kernel such
that small critical bandwidths yield negative dissonance (i.e., plea-
santness; Supplementary Fig. 11). Incorporating this modification
enables the composite consonance model to reproduce the observed
preference for slight deviations from just intonation (Fig. 8).

Overall, the results are consistent with a composite model as long
as it incorporates the adjustments to the Hutchinson-Knopoff inter-
ference model described above. The main limitation of the current
implementation is that it underpredicts the extent to which removing
harmonics flattens the octave peak. However, the model correctly
captures the peak flattening for the other harmonic intervals (i.e.,
major 3rd and major 6th).

To summarize: Studies 4A and 4B demonstrate that deleting
upper harmonics substantively influences consonance judgments. The
pattern of effects in Study 4A (intervals ranging from 0 to 15 semi-
tones) is predicted fairly well by the harmonicity model but not by the
interference model. The pattern of effects in Study 4B (tuning pre-
ferences) is meanwhile not directly explained either by existing inter-
ference or harmonicity models; however, they do seem to be
explainable by resorting to a slow beats theory that can easily be
incorporated into interference models.

Generalizing to triads (Study 5)
The previous studies definitively show that spectralmanipulations can
affect consonance perception for two-note chords (dyads). However,
much of Western music is built from chords comprising at least three
notes (triads, tetrads, etc.). It is worth asking whether these spectral
effects can generalize to these larger chords.

The dense rating techniques used in the previous studies work
well for the one-dimensional domain of dyadic intervals, but they scale
less well to higher-dimensional chords such as triads. As the number of
dimensions increases, the behavioral ratings are spread out over
increasingly wider spaces, making the local averages at any one point
less and less reliable.

Here we therefore use an alternative method called GSP40. This
method coordinates participants into collaboratively exploring the
stimulus space to find regions of (in this case) high consonance. In our
application the stimulus space is two-dimensional, and corresponds to
a space of possible triads. Each trial begins at a point on this plane,with
the participant being presented with a slider corresponding to either

horizontal or vertical motion in the plane. Moving and releasing the
slider triggers a new chord to be played corresponding to the updated
position in the plane. The participant is told to move the slider to
maximize the chord’s pleasantness (Fig. 9a); when they are finished,
the chord is then passed to next participant, who thenmanipulates the
other interval and passes the chord to the next participant, and so on
for a chosen number of iterations (typically 40) (Fig. 9b). Trials from
many participant chains starting at many different points are averaged
using a kernel density estimator.

Figure 9c shows baseline GSP results for harmonic triads with
3 dB/octave spectral roll-off (Study 5A, 228 US participants). Analo-
gous to the prior results for dyads (Fig. 1), the present results now
reflect the Western consonance hierarchy for triads. Some of the
structure is inherited directly from the dyadic profile; for example, we
see a clear diagonal line corresponding to chords whose intervals sum
to 12 semitones (e.g., ½5,7�,½7,5� where the two numbers correspond to
the intervals between the lower two notes and the upper two notes
respectively). We also see hotspots corresponding to prototypical
triadic sonorities, especially the three inversions of the major triad
(½4,3�,½3,5�,½5,4�). A further consonance hotspot corresponds to the
bare fifth, or power chord, a chord comprising the fifth but no third.
This chord is common inbothmedievalmusic and rockmusic. Looking
specifically at locations corresponding to theWestern 12-tone scale,we
further find that our results correlate well with the most comprehen-
sive available reference dataset38 (r(52) = 0.73, p <0.001, 95% con-
fidence intervals = [0.57, 0.83]). Additionally, a Monte Carlo split-half
correlation analysis showed an excellent internal reliability (r =0.93,
95% confidence intervals = [0.91, 0.96], 1000 permutations).

Figure 10 shows GSP results for stretched and compressed tones
(Study 5B, 462 participants). Similar to the dyad results (Study 2A), we
see that these tones elicit stretched and compressed consonance pro-
files respectively. This effect is visually prominent in the case of the
octave diagonal, a line running from the middle top to the middle right
of the consonanceplot corresponding to chordswhose lower andupper
tones are separated by an octave. For harmonic tones, this diagonal is
located at 12.04, 95% confidence intervals = [11.87, 12.21] semitones; for
stretched tones, the diagonal shifts to 12.80, 95% confidence inter-
vals = [12.76, 12.83] semitones, whereas for compressed tones it shifts to
11.20, 95% confidence intervals = [11.15, 11.25] semitones. As before, these
results are clearly predicted by the interference model but not by the
harmonicity model. In summary, Study 5 clearly replicates the results of
Study 2A, but generalizes them from dyads to triads.

Discussion
In this paper we sought to understand how consonance perception
depends on the spectral properties of the underlying chord tones. We
used dense rating and GSP to measure consonance judgments for
continuous intervallic spaces (Study 1), systematically varying the
spectra of the underlying chord tones (Studies 2–5), and interpreting
the results using computational models of interference and
harmonicity41,42. Our results show that these spectral manipulations do
indeed influence consonance perception, with implications for our
understanding of its underlying mechanisms.

Studies 2A–C investigated the effect of changing harmonic fre-
quencies. We found that such manipulations can induce inharmonic
consonance profiles, contrasting with the vast majority of previous
consonance research, which consistently demonstrates either pre-
ferences for harmonic intervals27,29,38,46 or (for some populations) an
absence of any preferences13. In particular, Studies 2A and 2B showed
that stretching or compressing tone spectra induced stretched and
compressed consonance profiles respectively; this finding is particu-
larly interesting because it is predicted by current interference but not
harmonicity models of consonance. Study 2C subsequently showed
that tone spectra modeled after the Javanese bonang also yield an
inharmonic consonance profile; interestingly, as hypothesized by
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Sethares15, this consonance profile aligns with an idealized slendro
scale as used in the Javanese gamelan. These results provide an
empirical foundation for the idea that cultural variation in scale sys-
tems might in part be driven by the spectral properties of the musical
instruments used by thesedifferent cultures15,54,55. They also provide an
empirical justification for certain practices in the experimental music
traditionofDynamicTonality63,64, where tone spectraand scale tunings
are manipulated in tandem (see also ref. 65).

Study 3 investigated the effect of changing harmonic amplitudes.
In particular, we studied a spectral roll-off manipulation, changing the
rate at which amplitude decays as a function of harmonic number.
Interference models predict that increasing roll-off should gradually
flatten the consonance profile, such that all intervals between four and
ten semitones become similarly consonant. In contrast, harmonicity
models predict that the consonance profile should be relatively robust
to this manipulation. In actuality, the empirical data displayed no such
flattening, only a general preference for higher roll-off, consistent with
the harmonicity model.

Studies 4A and 4B investigated the effect of deleting harmonics
entirely. First, Study 4A studied effects of harmonic deletion in the
context of intervals spanning 0–15 semitones. We found clear effects
of these manipulation, corresponding to the disappearance of certain
peaks from the consonance profile. The precise pattern of peak elim-
ination seemed best predicted by the harmonicity rather than the
interference models. Second, Study 4B studied harmonic deletion in
the context of fine-grained preferences for different tunings of parti-
cular consonant intervals. We identified a subtle but interesting phe-
nomenon for tones with strong upper harmonics, whereby listeners

prefer slight deviations from exact just intonation, as hypothesized by
Hall6. This effect seems explainable by listeners enjoying slow beats, a
phenomenon that can be straightforwardly incorporated into inter-
ference models of consonance perception. Consistent with this
hypothesis, these preferences for slight deviations disappeared upon
elimination of the upper harmonics, presumably because this elim-
inates the slow beating effect.

Study 5 then investigated whether spectral manipulations could
also affect consonance profiles for chords comprising more notes. In
particular, we tested the stretching/compressing manipulation from
Study 2A, and applied it to triads using the adaptive technique GSP40.
We successfully replicated the stretching/compressing effect from
Study 2A, showing that stretched/compressed tones yielded pre-
ferences for stretched/compressed chords respectively. Importantly,
the triad space ismuchmore complex than the dyad space, so it serves
as a hard test for the composite model’s predictions.

These results are provocative in the context of past centuries of
Western music theory and empirical psychology studies, which hold
that consonance derives fromharmonic frequency ratios and is largely
independent of timbre (e.g. refs. 34,35). The relationships we docu-
ment between timbre and consonance are particularly interesting for
explaining the cultural evolution of inharmonic scales in non-Western
musical traditions, for example linking the slendro scale to the inhar-
monic percussion instruments of the Javanese gamelan, as suggested
by Sethares15. The preferences we document for slight inharmonicity
moreover have implications for the historical development ofWestern
tuning systems: they indicate that the slight impurities of systems such
as mean-tone and equal temperament may not always detract from

Fig. 9 | Gibbs Sampling with People (GSP). a Schematic illustration of the GSP
task. b Example trajectory from a GSP chain overlaid on a kernel density estimate.
cGSPdata for harmonic triads (Study 5A,N = 228participants). Individual iterations

are plotted as white dots, whereas the KDE (bandwidth = 0.375) is plotted as a heat
map, with light areas corresponding to high density/consonance.
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subjective pleasantness, as is typically assumed, but can positively
contribute to it by creating pleasant slow beating. For example, the
perfect fifth C4-G4 elicits no perceptible beats when played in just
intonation, but elicits pleasant slow (2.43Hz) beats between the 2nd
and 3rd harmonics if played in quarter-comma meantone tuning, and
at 0.89Hz if played in 12-tone equal temperament. In contrast, the
major third elicits no perceptible beats in either just intonation or
quarter-comma meantone tuning, but elicits fast (10.38Hz) beats
between the 4th and 5th harmonics in 12-tone equal temperament, a
speed at which the beating will likely start to feel unpleasant again.

The combined results also have implications for competing the-
ories of consonance perception. Unitary explanations—for example,
that consonance is completely due to interference between partials32,
or completely due to harmonicity perception27—seem untenable in the
context of these results. The stretching/compressing results from
Studies 2A and 5B cannot be explained by current harmonicitymodels,
only by interferencemodels; the preferences for slight deviations from
just intonation in Study 4B seem best explained by interference
effects; conversely, the effects of deleting individual harmonics in
Study 3 are best explained by harmonicity modeling, and the robust-
ness to spectral roll-off demonstrated in Study 4 is consistent with an
underlying harmonicity mechanism. Overall, it would seem plausible
that consonance perception in Western listeners derives from a com-
bination of (negatively valenced) interference and (positively
valenced) harmonicity, as manifested in our composite model of
consonance perception, which provides a generally good account of
all the experiments described here.

These experiments also suggested several improvements to the
underlying computationalmodels. The results of Study 3 (spectral roll-
off) motivated a modification to the interference model, making dis-
sonance proportional to sound amplitude rather than sound intensity

(see also Vassilakis43 for a discussion of theoretical issues concerning
the connection between amplitude and dissonance). The results of
Study 4B (tuning preferences) motivated a second modification,
incorporating a liking of slow beats into the interference model. This
liking of slow beats contrasts with the dislike of fast beats that is
thought to drive the dissonance of more inharmonic intervals.

While Western listeners might have certain tendencies toward
liking or disliking certain acoustic attributes (e.g., harmonicity), it is
important to recognize that such appraisals are not necessarily uni-
versal.Musical enculturation seems tobe important here, as evidenced
for example by perceptual studieswith the Tsimane’people, who seem
(unlike Western listeners) to be indifferent toward harmonicity13.
Acoustic attributes such as roughness and slow beating should
therefore be interpreted as complementary perceptual ingredients
that different musical styles can deploy to different ends (e.g. ref. 66).

While most of our experiments focused on Western listeners, we
did perform a cross-cultural replication of our stretching/compressing
manipulation with Korean listeners (Study 2B). This comparison is
limited in that most of our participants will still have had some expo-
sure toWesternmusic, andmoreover Koreanmusic is just one ofmany
musical cultures across the world. Nonetheless, these results provide
initial evidence that timbral effects on consonancedogeneralize cross-
culturally. There is a clear gap for more systematic cross-cultural
research here; our methods should generalize well to such applica-
tions, especially given previous cross-cultural studies successfully
using both rating scales13 and slider interfaces67.

Consonance perception is known to vary between individuals,
even when the individuals are drawn from a relatively homogeneous
cultural group27,49. It would have been interesting to analyze our own
data at the participant level, but in practice our participant-level pro-
files had prohibitively low reliability due to the large stimulus space
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Fig. 10 | Triadic pleasantness judgments for stretched and compressed tones
(Study 5B; stretched: N = 229 participants, compressed: N = 233 participants).
GSP results are summarized using a KDE with a bandwidth of 0.375 semitones, and
plotted alongside interference41 and harmonicity42 model predictions. Analogous

pleasantness judgments for harmonic tones (Study 5A; harmonic: N = 228 partici-
pants) are also included as a reference. The theoretical locations of the com-
pressed, harmonic, and stretched octave diagonals are plotted as dotted white
lines. Values within each panel are scaled to the unit interval [0, 1].

Article https://doi.org/10.1038/s41467-024-45812-z

Nature Communications |         (2024) 15:1482 12



and the relatively small number of trials per participant (the median
split-half reliability in Study 1 was 0.39). As a compromise, in Fig. 3 we
break down the results by musicianship. We see that the results were
generally similar across the participant groups, though a systematic
investigation might well yield more interesting conclusions. An inter-
esting future path is to collect more data per participant and then use
unsupervised clustering methods to identify population subgroups
with different response strategies (e.g. ref. 68).

Our experiments primarily used artificial tones constructed
through additive synthesis, giving us fine control over individual parts
of the frequency spectrum, and facilitating the application of con-
sonance models that take idealized frequency spectra as their input.
However, we are excited to generalize ourmodeling and psychological
experiments to more naturalistic sounds; we are currently developing
experiments using audio samples from real pipe organs and pitched
bells, both of which should elicit interesting consonance profiles
according to our modeling.

One interesting manipulation that we did not study here is
dichotic versus diotic presentation. Several papers have argued that
presenting dyads dichotically (i.e., one tone to the left ear, and the
other tone to the right ear) eliminates interference effects (e.g.,
roughness), because the two tones no longer interact in the auditory
periphery27,69; comparing dichotic and diotic consonance profiles
should therefore isolate the contribution of interference to con-
sonance. Our dense rating and GSPmethods should generalize well to
this dichotic/diotic manipulation; however, we did not run such
experiments here because it is difficult to ensure perfect dichotic sti-
mulus presentation in online experiments.

We studied the consonance of isolated chords, but inmanymusical
styles consonance is treated as a dynamic phenomenon; for example a
dissonant note may be prepared by a previous chord and resolved by
subsequentmelodic movement. These temporal aspects of consonance
are very interesting in their own right and worthy of further research
(e.g. refs. 29,70). Nonetheless, we have shown how experiments with
isolated chords are very effective for elucidating the fundamental rela-
tionships between intervallic structure and consonance. These rela-
tionships have shaped the treatment of musical pitch in a vast number
of musical styles across the world, guiding the evolution of scales, har-
monic vocabulary, and harmonic progressions4–8.

We focused on a particular term of evaluation: pleasantness. This
term has often been used in previous research as a way of capturing
consonance perception in listeners without musical training (e.g.
refs. 13,27,53), but there are many related terms that we could equally
probe that are near-synonyms for consonance and deliver highly cor-
related evaluations, for example harmoniousness, attractiveness,
purity, fit, and so on (e.g. refs. 48,71). Perhaps more interestingly, one
could also probe a broader range of subjective connotations that
capture wider aspects of tonal perception, for example emotional
connotations such as happiness (e.g. ref. 72) and nostalgia (e.g. ref. 73).

While we have focused on identifying acoustic features that drive
pleasantness in musical contexts, it is worth considering how these
features might occur in other auditory contexts, and what the impli-
cations might be for the subjective appraisal of non-musical sounds.
Harmonicity is a characteristic feature of vocalizations, and it has been
suggested that social animals should find such sounds attractive
because they (often) indicate the presence of conspecifics9,38. Rough-
ness is meanwhile a feature of vocalizations indicating distress, in
particular screams; it is evident that such sounds should cause dis-
comfort because they are indicative of nearby danger (e.g. ref. 74). It is
less clearwhy slowbeatsmight sound attractive, but one speculation is
that these fluctuations are suggestive of relaxed (i.e., non-distressed)
vocalizations, and hence imply a safe environment. Alternatively, slow
beating might be preferred simply because it makes the sounds more
interesting. These hypotheses would imply that consonance is not
simply a musical phenomenon, but instead is the (culturally shaped)

musical manifestation of deep principles from general auditory per-
ception. However, these preferences are likely also to be shaped by
musical experience; for example, familiarity with Western music may
well encourage disliking of roughness and liking of slow beats.

Psychological research into consonance and other psychoacous-
tic domains has traditionally prioritized in-person data collection,
where participants come to the laboratory and take behavioral
experiments under supervision. In contrast, our work used online data
collection, where participants took part remotely over the Internet.
This involves surrendering some control over listening conditions
which can only be partly recouped through headphone pre-screening
tests and the like. Nonetheless, we found in practice that we could
achieve very reliable group-level data this way, as indexed both by high
internal reliabilitymetrics (correlations ranging from0.87 to 0.93) and
high correlations with previous laboratory experiments (correlations
ranging from 0.73 to 0.96). Furthermore, the online modality allowed
us to scale up data collection to orders of magnitude greater than
previous studies, enabling us to construct these detailed consonance
maps that probe continuous interval spaces, as well as systematically
exploring many timbral manipulations to prove our different con-
sonance models. We believe that this approach has exciting potential
to contribute to other classical research questions in domains such as
psychology, psychophysics, and auditory perception.

Methods
The present research has been conducted in compliance with
approved Max Planck Society Ethics Council protocols (2020_05 and
2021_42).

Paradigms
We use two behavioral paradigms in this paper: dense rating and GSP.
The special feature of these paradigms is that they do not make any a
priori assumptions about culturally specific scale systems, but instead
characterize consonance as a smooth function over continuous space.

Dense rating. In the dense rating paradigm, participants are played
chords that are randomly and uniformly sampled from continuous
intervallic space. For dyads (chords comprising two tones), we typi-
cally study intervals in the range [0, 15] semitones; in successive trials
wemight therefore see dyads such as 4.87 semitones, 12.32 semitones,
or 1.83 semitones. Each trial receives a pleasantness rating on a scale
from 1 (completely disagree) to 7 (completely agree) (Fig. 1a). We then
summarize the results from all the trials using a Gaussian kernel
smoother. The degree of smoothing is set by the bandwidth para-
meter, which can be set by the experimenter in order to achieve an
arbitrarybalancebetweenbias and variance: decreasing thebandwidth
allows the smoother to capture more detail (less bias) at the cost of
lower reliability (higher variance). To help with the interpretability of
the data, we use a single bandwidth parameter for all experiments. In
particular, we use a bandwidth of 0.2 semitones for all experiments
spanning 0–15 semitones, and a bandwidth of 0.035 semitones for
experiments spanning 0.5 semitones.We verify the appropriateness of
these bandwidths by computing Monte Carlo split-half correlations
(1,000 replicates) for two reference datasets (Study 1: harmonic dyads;
Study 4B: major 3rd with 3 dB/octave roll-off). The results indicate
excellent reliability in both cases (harmonic dyads: r =0.87, 95% con-
fidence intervals = [0.74, 0.94]; major third: r =0.93, 95% confidence
intervals = [0.82, 0.99]). We compute 95% confidence intervals for the
smoothed ratings through nonparametric bootstrapping over parti-
cipants, an approach which is robust to violations of standard para-
metric assumptions such as normality or homogeneity of variance; for
computational tractability, we approximate these by computing
bootstrapped standard errors (N = 1,000 replicates) and multiplying
by 1.96 (Gaussian approximation). To facilitate interpretation, we also
estimate peaks of the consonance curves using a custom peak-picking
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algorithm, and compute confidence intervals for these peaks using the
same bootstrapping algorithm (see details below).

GSP. Dense rating paradigms scale poorly to higher dimensions on
account of the curse of dimensionality (e.g. ref. 75), which makes
exhaustive sampling of the stimulus space impractical. For studying
consonance in triads (chords comprising three tones), we therefore
use Gibbs Sampling with People (GSP), a recent technique designed to
tackle this dimensionality problem40. We parametrize the space of
triads as pairs of intervals, building cumulatively from the bass note,
meaning that (for example) amajor triad is represented as the tuple (4,
3). This space also includes non-integer semitone chords such as (3.12,
4.17) and (4.12, 5.17). The space of possible triads can then be repre-
sented as a two-dimensional (2D) plane. Each trial begins at a point on
this plane, with the participant being presented with a slider corre-
sponding to either horizontal or vertical motion in the plane. Moving
and releasing the slider triggers a new chord to be played corre-
sponding to the updated position in the plane. The participant is told
tomove the slider tomaximize the chord’s consonance (Fig. 9a); when
they are finished, the chord is then passed to next participant, who
then manipulates the other interval and passes the chord to the next
participant, and so on for a chosen number of iterations (typically 40)
(Fig. 9b). This process can be modeled as a Gibbs Sampling process,
well-known in computational statistics (Harrison et al.40). Following
this model, we can estimate consonance for the full 2D space by
applying a kernel density estimator (KDE) over the locations of the
different trials generated by the process with a fixed bandwidth of
0.375. As before, the kernel bandwidth parametrizes a trade-off
between bias and variance; here we chose a bandwidth of 0.375 semi-
tones, and verified it as beforewith aMonte Carlo split-half correlation
analysis (1,000 replicates), which demonstrated excellent reliability
(r =0.93, 95% confidence intervals = [0.91, 0.96]).

Software implementation. All experiments were implemented using
PsyNet (v3.0.0; https://www.psynet.dev), our open-source frame-
work for complex experiment design40. This framework builds on
Dallinger (v7.6.0; https://github.com/Dallinger/Dallinger), a platform
for experiment hosting and deployment (Supplementary Fig. 12).
Participants engage with the experiment through a front-end inter-
face displayed in the web browser, which communicates with a back-
end Python server cluster that organizes the experiment timeline.
The cluster is managed by the web service Heroku which
orchestrates a collection of virtual instances that share the experi-
ment management workload, as well as an encrypted Postgres
database instance for data storage. See “Code availability” section for
details regarding accessing the code for the implemented
experiments.

Stimuli
Each of our chords can be expressed as a collection of absolute pit-
ches. We express absolute pitches using MIDI notation, which maps
each note of the 12-tone piano keyboard to a positive integer. Concert
A (A4, 440Hz) is by convention mapped to the value 69. Adjacent
integers in this scale then correspond to adjacent semitones. Formally,
the mapping is expressed as follows:

f =440× 2ðp�69Þ=12 ð1Þ

where p is the MIDI pitch and f is a frequency measured in Hz. An
equal-temperedmajor triad rooted onmiddle C can then be expressed
as the following tuple: [60, 64, 67]. This notation approach is useful for
capturing the logarithmic nature of pitch perception76.

In our experiments we also give chords intervallic representa-
tions. Intervallic representations are common in consonance experi-
ments because consonance judgments are relatively insensitive to

small-to-moderate changes in absolute pitch (though see ref. 77 for
experiments exploring large changes). The intervallic representation
expresses each non-bass tone as a pitch interval from the tone
immediately below. Since there is no tone below the bass tone, this
tone is omitted from the intervallic representation. Our experiments
randomize over (dense rating) or manipulate (GSP) the intervallic
representation; the bass tone is then treated as a separate parameter
that is randomly sampled from a finite range on a trial-by-trial basis.
For example, the dense rating proceduremight generate the intervallic
representation ½4:1,2:9�; in a given trial, this will be converted to an
absolute representation of the form ½p0,p0 + 4:1,p0 + 4:1 + 2:9�, where
p0 is the randomly generated MIDI pitch of the bass tone.

In all experiments the bass tone was randomized by sampling
from a uniform distribution over the MIDI pitch range 55–65 (G3–F4,
196–349Hz). We performed this randomization to discourage parti-
cipants from perceiving systematic tonal relationships between adja-
cent stimuli. The chord’s pitch intervals were then constrainedwithin a
particular range, depending on the experiment: ½0:5, 8:5� in Study 5,
½0, 15� in Studies 1–3 and4A, and ½Ic � 0:25, Ic +0:25�with Ic =3:9,8:9,12
in Study 4B.

We synthesized stimuli using Tone.js (v14.7.77; https://tonejs.
github.io/), a Javascript library for sound synthesis in the web browser.
Details of stimulus synthesis are provided below, split into the differ-
ent tone types used in our experiments (see also Supplementary
Tables 1 and 2). Most of our experiments used tones generated
through additive synthesis. Each tone generated through additive
synthesis can be expressed in the following form:

sðtÞ=A
XnH�1

i=0

wi sinð2πf itÞ ð2Þ

where sðtÞ is the instantaneous amplitude and t is time. Different
choices of weights wi and frequencies f i correspond to different tone
spectra types. The parameter A represents the overall amplitude.

Type I: Harmonic tones comprise nH = 10 harmonic partials with ρ
dB/octave roll off. Concretely, f i = f 0 × ði+ 1Þ and wi = 10

�ωi=20 where
ωi =ρ × log2ði+ 1Þ for i=0,:::,nH � 1.

Type II: Stretched and compressed tones are identical to harmo-
nic tones except that f i = f 0 × γ

log2ði + 1Þ where γ =2:1,1:9 for stretched
and compressed tones respectively. When γ =2 we recover standard
harmonic tones.

Type III: Pure tones comprise a single frequency ðnH = 1Þ, f 0
and w0 = 1.

Type IV: Complex tones with/without a 3rd harmonic comprise
nH = 5 harmonic partials with zero spectral roll-off. Formally, we write
f i = f 0 × ði+ 1Þ and wi = 1 (type IV+) or wi≠2 = 1 and w2 =0 for i=0,:::,4
(type IV-).

Type V: Bonang tones correspond to a synthetic approximation to
a bonang tone, after Sethares15. Each tone comprises a custom com-
plex tone given by ðf 0,1:52f 0,3:46f 0,3:92f 0Þ with wi = 1:

All additively synthesized timbres were presented with an ADSR
envelope, comprising a linear attack segment lasting 200ms reaching
an amplitude of 1.0, a 100ms exponential decay down to an amplitude
of 0.8, a 30ms sustain portion, and finally an exponential release
portion lasting 1 s.

Some experiments additionally used a collection of more
complex tones:

Type VI: Naturalistic instrument tones were based on samples
from the Midi.js Soundfont database (https://github.com/gleitz/midi-
js-soundfonts). The original database only provides samples for inte-
ger pitch values (i.e., 12-tone equal temperament); we therefore used
the Sampler tool in the Tone.js library to interpolate between these
values, synthesizing arbitrary pitches by pitch-shifting the nearest
sample to the required frequency. By allowing our bass tones to rove
over non-integer pitch values, we ensured that integer pitch intervals
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were no more or less likely to exhibit pitch-shifting artifacts than non-
integer intervals.

Procedure
Dense rating
Task. After completing a consent form and passing the pre-screening
test, participants received the following instructions:

In each trial of this experiment youwill be presented with a word and a
sound.Your taskwill be to judgehowwell the soundmatches theword.

You will have seven response options, ranging from Completely Dis-
agree to Completely Agree. Choose the one you think is most
appropriate.

This was then followed by a prompt informing participants of the
response quality bonus (for further details, see Performance incen-
tives). The experiment then proceeded as follows. In each trial, parti-
cipants heard a sound (e.g., a dyad) and were presented with the
following prompt:

How well does the sound match the following word (pay attention to
subtle differences): pleasant.

Participants then delivered their judgments on a rating scale
(Supplementary Fig. 13) ranging from 1 (Completely Disagree) to 7
(Completely Agree). Participants were assigned randomly to stimuli
and the stimuli themselves were sampled uniformly from the sti-
mulus space. We note that while we did not collect ratings for
adjectives other than pleasant in this study, the idea here was to use a
wording that would allow the dense rating paradigm to be con-
sistently applied across multiple adjectives in future work (as in
Harrison et al.40).

Gibbs sampling with people
Task. After completing a consent form and passing the pre-screening
test, participants received the following instructions:

In this experiment, youwill listen to sounds bymoving a slider. Youwill
be asked to pick the sound which best represents the property in
question.

To familiarize participants with the interface, each participant had
to complete three training examples prior to the start of the actual
experiment. These were presented with the following instructions:

We will now play some training examples to help you understand the
format of the experiment. To be able to submit a response you must
explore at least three different locations of the slider.

The training examples took an identical format to the main
experiment trials, but with their intervals generated randomly rather
than through a GSP process. Moreover, prior to the training trials
participants were informed of the performance quality bonus (for
further details, see Performance incentives).

After completing the training phase, the main experiment began.
Participants received the following instructions:

The actual experiment will begin now. Pay careful attention to the
various sounds! Sometimes the differences between the sounds canbe
subtle, choose what seems most accurate to you. Remember: the best
strategy is just to honestly report what you think sounds better! You
must explore at least three locations of the slider before submitting a
response. Also, sometimes the soundsmight take amoment to load, so
please be patient.

The experiment then proceeded as follows: in each trial,
the participant was assigned to one of the available GSP chains (Sup-
plementary Fig. 14), and was provided a stimulus (e.g., a chord) and
a slider (Supplementary Fig. 15). The slider was coupled to a particular
dimension of the stimulus space (e.g., an interval) and changed from
trial to trial. The participant was presented with the following prompt:

Adjust the slider to match the following word as well as possible:
pleasant.

Please pay attention to the subtle differences.

In otherwords, the participantwas instructed to explore the slider
to find the sound that was most associated with the word in question.
The resulting stimuluswas then passed along theGSP chain to the next
participant, with each successive participant optimizing a different
dimension. To circumvent any potential biases toward left or right
slider directions, the direction of the slider was randomized in each
trial so that in approximately half of the trials the right of the slider
corresponded tobigger values, and in theother half it corresponded to
smaller values.

Starting values. The starting location of each GSP chain was sampled
from uniform distributions over the permissible ranges of the active
stimulus dimensions.

Assigning participants to chains. The GSP process involves con-
structing chains of trials from multiple participants. We achieved this
by applying the following process each time a participant was ready to
take a new trial:

• Find all chains in the experiment that satisfy the following
conditions:

– The chain is not full (i.e., it has not yet reached the maximum
allowed number of iterations);

– The participant has not already participated in that chain;
– The chain is not waiting for a response from any other

participant.
• Randomly assign the participant to one of these chains.

Participant timeouts. Sometimes a participant will unexpectedly stop
participating in the experiment. In order to prevent chains being
blocked by perpetually waiting for such participants, we implemented
a timeout parameter, set to 60 s, after which point the chain would
stop waiting for the participant and instead open itself up to new
participants. If the blocking participant did eventually submit a trial,
they would be allowed to continue the experiment, but their trial
would not contribute to the GSP chain.

Headphone screening test. To ensure high-quality listening condi-
tions we used a previously validated headphone screening test78. Each
trial comprises a three-alternative forced-choice task where the parti-
cipant is played three tones and asked to identify the quietest. The
tones are designed to induce a phase cancellation effect, such that
when played on loudspeakers the order of their quietness is altered,
causing the participant to respond incorrectly. To pass the test the
participant had to answer at least four out of six trials correctly. As well
as selecting for headphone use, this task also helps to screen out
automated scripts (bots) masquerading as participants79, since suc-
cessful completion of the task requires following written instructions
and responding to auditory stimuli.

Performance incentives. Although our tasks are subjective in nature,
meaning that there are no a priori right or wrong answers, we
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nevertheless wanted participants to listen carefully and perform the
task honestly. To do that, prior to starting the main experiment, par-
ticipants received one of the following instructions:

The quality of your responseswill be automaticallymonitored, and you
will receive a bonus at the end of the experiment in proportion to your
quality score. The best way to achieve a high score is to concentrate
and give each trial your best attempt. (Dense rating task)

The quality of your responses will be checked automatically, and high
quality responses will be bonused accordingly at the end of the
experiment. The best strategy is to perform the task honestly and
carefully, and then you will tend to give good results. (GSP task)

Wepurposefully did not tell participants exactly how thesequality
scores were computed, so as to avoid biasing the participants to
answer in a particular way (for example answering in a way that mat-
ches the responses of other participants). In actuality, we computed
these scores by quantifying the participant’s self-consistency, reason-
ing that participants who take the task carefully are likely to provide
similar responses when presented with the same trial multiple times.
This seemed themost reasonable option given the lack of ground truth
for subjective tasks such as these.

Self-consistency was estimated as follows. Upon completion of
the main experiment trials, participants received a small number of
trials (three for GSP, and five for dense rating) which repeated ran-
domly selected trials that were encountered earlier. The data from
these trials contributed only to consistency estimation and not to the
construction of the main experiment. Consistency was quantified by
taking the Spearman correlation between the two sets of numerical
answers. Participantswerenot informedof their consistency score, but
at the end of the experiment they received a small monetary bonus in
proportion to their score, constrained to range between 0 to 0.5 dol-
lars. The exact mapping between score and bonus was
minðmaxð0,0:5 × scoreÞ,0:5Þ for dense rating and minðmaxð0,score�
0:5Þ,0:5Þ=2 for GSP.

Participants
The US cohort for Studies 1–5 was recruited from AmazonMechanical
Turk (AMT), a well-established online crowd-sourcing platform. We
specified the following recruitment criteria: that participants must be
at least 18 years of age, that they reside in the United States, and that
they have a 95% or higher approval rate on previous AMT tasks. All
participants provided informed consent in accordance with the Max
Planck Society Ethics Council approved protocol 2020_05; all data
collection was anonymous in order to protect participants’ privacy.
While we only allowed each individual to participate once in a given
experiment, we did not regulate or track whether individuals partici-
pated inmultiple experiments.Our reportedAMTparticipant numbers
therefore correspond to the total number of times someone partici-
pated in our experiments, rather than the total number of unique
individuals across experiments.

We ran each AMT experiment for about a day, targeting about
150–200 participants for 1D experiments, and targeting somewhat
larger cohorts (~200–350) for the multi-dimensional and tuning
experiments; the latter experiments required exploring larger sti-
mulus spaces and/or more subtle perceptual effects. These target
numbers were established via pilot experiments and verified post-
hoc using Monte Carlo split-half reliability analyses, which indicated
an excellent reliability for both the dyad paradigm (r = 0.87, 95%
confidence intervals = [0.74, 0.94]) and the triad paradigm (r = 0.93,
95% confidence intervals = [0.91, 0.96]). All together the AMT cohort
comprised 4204 verified participants, in addition to 2373 partici-
pants who failed to complete the pre-screening tasks or the main
experimental tasks. Details of the number of unique participants

within each individual experiment are provided in Supplementary
Tables 1 and 2.

Three additional experiments (Study 2B) were completed by a
cohort of South Korean participants which were recruited through a
research assistant residing in the local area80; AMTwas not possible in
this case as AMT does not currently run in South Korea. Participants
were required both to be born in South Korea and to be current resi-
dents there. In order to maximize the amount of available data, each
participant was allowed to participate in the same experiment up to
three times. Eachparticipant provided informed consent following the
Max Planck Society Ethics Council approved protocol 2021_42, and
took a Korean-language version as translated by a native speaker.

The overall compensation for participating in each experiment
was computed by estimating the total duration of the experiment and
multiplying by a rate of $9/h. Individual participants were paid in
proportion to the amount of the experiment that they completed.
Participants were still compensated even if they left the experiment
early on account of failing a pre-screening task.

Questionnaire
Upon completion of each experiment we collected demographic
information as well as years of musical experience from participants
(“Have you ever played a musical instrument? If yes, for how many
years did you play?”). In the US cohort, reported ages varied in the
range 18–81 (M = 37.5, SD = 11.0), and 39.8% self-identified as female,
59.0% asmale, and 1.2% as other.We note that sex and genderwere not
part of our studydesign aswewere interested in the overall population
level effects of timbre on consonance perception. Participants self-
reported 0–55 (Med = 2,M =4, SD=6:6) years of musical experience.
In the South Korean cohort, the reported age statistics were
(M =27, SD= 10:50), 50% self-reported as female and 50% as male, and
those of the years of musical experience were
(Med = 1,M =2:19, SD=2:67). Details of the demographic information
of each individual experiment are provided in Supplementary Tables 1
and 2.

Ethics and inclusion statement
The present study has been conducted in compliance with approved
Max Planck Society Ethics Council protocols (2020_05 and 2021_42).
The former protocol (2020_05) covered recruitment in the US, and the
latter protocol (2021_42) covered recruitment in South Korea. All
participants provided informed consent prior to participation in the
study. To ensure that our research conforms to ethical standards and
local norms, we included researchers who are native and have been
raised in English and Korean countries (Author P. M. C. Harrison born
in the UK and is a native English speaker; Author H. Lee born in South
Korea and is a native Korean speaker). We did not obtain additional
ethics approval from a local South Korean institution as participation
was conducted remotely, a native researcher was involved, and our
approved protocol (2021_42) covered remote data collection. Partici-
pants were treated fairly and transparently as much as possible. Our
research did not involve stigmatization, incrimination, or discrimina-
tion, and none of the experiments posed any risk to participants.

Individual experiments
Dense rating
Studies 1, 2, 4. These experiments elicited pleasantness judgments for
dyads of various timbres. Interval sizes were randomly sampled from
uniform distributions, with the ranges of these distributions varying
between studies: Studies 1 and 2 used a range of ½0, 15� semitones,
whereas Study 4 used ranges of the form ½Ic � 0:25, Ic +0:25� where
Ic = 3:9,8:9,12 respectively. The Ic values correspond to averages of
just-intoned andequal-tempered tuning values at themajor third, sixth
and octave, rounded to one decimal place. In principle, each stimulus
was to receive exactly one rating; occasionally for technical reasons the
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same stimulus was nonetheless administered to more than one parti-
cipant, but then the latter response was excluded from the data ana-
lysis. The exact number of participants, timbres and average number
of ratings per participant and per stimulus are summarized in Sup-
plementary Table 1.

Study 3. This experiment elicited pleasantness judgments from 322
participants for dyads with Type I timbre and varying spectral roll off
(ρ). Stimuli were sampled uniformly from ½0, 15�× ½0, 15�where the first
range corresponds to interval size in semitones and the second range
corresponds to spectral roll-off in dB/octave.

GSP
Study 5. In each experiment participants completed a collection of
200 GSP chains each of length 40 (excluding the random seed). The
stimuli consisted of triads composed with different fixed timbres and
parametrized by two intervals in the range ½0:5, 8:5� semitones. A
summary for each individual experiment can be found in Supple-
mentary Table 2.

Data analysis and visualization
Each of our behavioral experiments involves sampling from some kind
of continuous space. In each case we apply some kind of nonpara-
metric smoothing to infer a smooth consonance terrain from these
discrete samples. The precise nature of this smoothing varies
depending on the paradigm type (rating versus GSP), the dimensions
of the stimulus space, and the nature of the dimension (pitch interval
versus timbre).

Throughout our paper we use bootstrapping for our inferential
statistics, partly because of its well-known robustness to assumption
violations, and partly because it can be applied to complex analysis
methods like ours for which orthodox inferential statistics are not
available.

Because of the bootstrapping procedure we did not rely on p
values in the arguments in the paper and thus did not report it. How-
ever, the provided 95% confidence intervals can be used for a similar
purpose of evaluating whether the results are compatible with alter-
native hypotheses.

1D rating experiments (Studies 1, 2, 4). We computed the 1D con-
sonance profiles over a grid of 1000points spanning the interval range
of interest. In Studies 1, 2, and 4A, the range spanned 15 semitones; in
Study 4B, the range spanned 0.5 semitones.

The behavioral profiles were computed by taking the trial-level
rating data, z-scoring the ratingswithin participants, and then applying
a Gaussian kernel smoother. For experiments spanning
0–15 semitones, we used a kernel with standard deviation of
0.2 semitones; for experiments spanning 0.5 semitones, we used a
kernel with standard deviation of 0.035 semitones.

The interference model profiles were computed directly from the
corresponding computational models, supposing a bass note corre-
sponding to C4 (~262Hz), and modeling the tone spectra on the cor-
responding experimental stimuli (see below for more details on the
models).We smoothed allmodel profiles using the sameprocess as for
the behavioral profiles to maximize comparability between the two
sets of profiles.

We computed confidence intervals for the behavioral profiles by
nonparametric bootstrapping over participants. To keep computa-
tion time tractable we used 1000 bootstrap replicates to estimate the
standard error and then estimated 95% confidence intervals by
making a Gaussian approximation ([mean − 1.96 × SE, mean + 1.96 ×
SE]). We used this same approach for all bootstrapped analyses in
the paper.

We computed peaks for the behavioral profiles by applying a
custom peak-picking algorithm comprising the following steps:

(1) Take the kernel-smoothed behavioral profile as an input; this
corresponds to a vector of intervals and a vector of corresponding
pleasantness values, both of length 1,000.

(2) Approximate this profile using a cubic smoothing spline (imple-
mented as smooth.spline in R). We set the equivalent number of
degrees of freedom to 100 to ensure perfect interpolation. Write
this spline function as f ðxÞ, where x is the interval in semitones.

(3) Compute the first and second derivatives of this spline function
(f 0ðxÞ, f 00ðxÞ).

(4) Compute the rangeof the spline function,writing it as rangeðf ðxÞÞ.
(5) Compile a list of all peaks in the function. A peak is defined as a

value xi where the following holds: f 0ðxiÞ>0>f 0ðxi+ 1Þ
and f 00ðxiÞ<� rangeðf ðxÞÞ=20:

(6) Compile a list of all troughs in the function. A trough is defined as a
value xi where the following holds: f 0ðxiÞ<0<f 0ðxÞi + 1
and f 00ðxiÞ>rangeðxÞ=20:

(7) Merge peaks that aren’t separated by deep enough troughs, in
each case keeping the tallest peak. Formally: write Pi for the
location of the ith peak, Pi + 1 for the next peak, and Tmin for the
lowest trough in between; we consider Ti to be deep enough if
minðf ðPiÞ,f ðPi + 1ÞÞ � f ðTminÞ≥α × rangeðf ðxÞÞ where α =0:01.

(8) Discard peaks that aren’t sufficiently sharp. A peak P is considered
sharp if it satisfies both of the following conditions:

9a 2 ½P � 0:5, P� : f ðPÞ � f ðaÞ≥ β× rangeðf ðxÞÞ ð3Þ

9b 2 ½P, P +0:5� : f ðPÞ � f ðbÞ≥β× rangeðf ðxÞÞ ð4Þ

where β=0:01.
We estimated the reliability of these peaks via the same non-

parametric bootstrapping procedure described above. We took the
1000 bootstrap replicates of the kernel-smoothed behavioral profiles
created previously, and ran the peak-picking algorithm on each of
these, producing 1000 sets of peak estimates. For each of the peaks
obtained from the original behavioral profile, we defined a neighbor-
hood as being within ±0.5 semitones of that peak, and counted the
proportion of bootstrap iterations where a peak was observed within
that neighborhood. If this proportion was greater than 95%, we con-
sidered that peak to be statistically reliable. We then computed 95%
confidence intervals for the location of that peak by taking the stan-
dard deviation of those bootstrapped peak locations (i.e., the boot-
strapped standard error), and then performing the same Gaussian
approximation described above ([mean− 1.96 × SE, mean+ 1.96 × SE]).

2D rating × roll-off experiment (Study 3). We computed consonance
profiles for Study 3 by factorially combining three spectral roll-off
levels (2, 7, and 12 dB/octave) with the same 1000-point interval grid
from the previous analyses.We smoothed the behavioral data using an
analogous kernel smoothing process to before, using a Gaussian
function with an interval standard deviation of 0.2 semitones (as
before) and a roll-off standard deviation of 1.5 dB/octave. All other
aspects of the analysis (smoothing the harmonicitymodels, estimating
peak locations, and computing confidence intervals) were identical to
before.

2D interval × interval experiment (Study 5). We computed con-
sonance profiles for Study 5 over a grid of 500 × 500 points spanning
0.5–8.5 semitones on both dimensions. Following the standard GSP
approach40, the behavioral consonance profiles correspond to kernel
density estimates over populations of trials. Here we used a kernel
density estimator with a bandwidth of 0.375 semitones. We computed
consonance model outputs assuming a bass note of C4 as before, and
smoothed the outputs using a bandwidth of 0.375/2 = 0.1875.
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Spectral approximations for naturalistic instruments. Study 1B
reports spectral approximations for several naturalistic musical
instruments (flute, guitar, piano). We calculated these spectra using
themethod ofMcDermott et al.81 as applied to audio samples for a C4
tone. First the signal was passed through an array of equally spaced
cosine filters expressed on the MIDI scale, with 0.5 semitone spacing
between filters, 50% overlap between adjacent filters, and filter
locations spanning the range 15–119 semitones. Temporal envelopes
at each of the filter locations were then extracted by taking the
modulus of each filter’s analytic signal as computed using the Hilbert
transform, then applying a non-linearity (f ðsÞ= s0:3), and then
resampling to 400Hz. Temporal envelopes for the first 20 harmonics
were then estimated by reversing the non-linearity (i.e., applying
gðsÞ= s1=0:3) and evaluating a Gaussian kernel smoother (σ = 1.598Hz)
at each harmonic frequency over the entire temporal trajectory. Each
harmonic’s temporal envelopewas then averaged to produce a single
amplitude score.

Consonance models
While many psychoacoustic accounts of consonance perception have
been presented over the centuries, recent literature has converged on
two main candidate explanations: (1) interference between partials,
and (2) harmonicity (see ref. 20 for a review). We address both
accounts in this paper using computational modeling, as
described below.

Interference models. According to interference accounts, con-
sonance reflects interference between the partials in the chord’s fre-
quency spectrum. The nature of this interference depends on the
distance between the partials. Distant partials and very close partials
elicit minimal interference; however, partials separated by a moder-
ately small distance (of the order of a semitone) elicit a large amount of
unpleasant interference. This interference is most commonly thought
to derive from fast amplitude fluctuation (beating26) but may also
reflect masking8,82.

The literature contains many interference-based consonance
models (see ref. 20 for a review). These models vary in their mechan-
istic complexity, but interestingly the older and simpler models seem
to perform better on current empirical data20. Herewe use a collection
of so-called pure-dyad interference models31,41,43 which calculate
interference by summing contributions from all pairs of partials in the
acoustic spectrum, where each pairwise contribution is calculated as
an idealized function of the partial amplitudes and the frequency
distance between the partials. We focus particularly on the model of
Hutchinson and Knopoff41, which performed the best of all 21 models
evaluated in Harrison and Pearce20, but we also explore the other
models in the Supplementary Information. We avoided testing more
complex waveform-based models (e.g. refs. 83,84) because of their
high computational demands and relatively low predictive
performance20.

At the core of the Hutchinson-Knopoff model is a dissonance
curve that specifies the relative interference between two partials as a
function of their frequency distance, expressed in units of critical
bandwidths (Supplementary Fig. 11). This relative interference is con-
verted into absolute interference by multiplying with the product of
the amplitudes of the two partials. The main differences between the
Hutchison-Knopoff, Sethares, and Vassilakismodels correspond to the
precise shapes of the dissonance curves and the precise nature of the
amplitude weighting.

The original presentation of the Hutchinson-Knopoff model
defined the dissonance curve solely in graphical form. Here we use a
parametric approximation of this curve introduced by Bigand et al.50:
DðxÞ= ð4x exp ð1� 4xÞÞ2, where DðxÞ is the dissonance contribution of
a pair of partials separated by critical bandwidth distance x (Supple-
mentary Fig. 11, top panel). Theymodel critical bandwidth distance (x)

as a function of the frequencies of the two partials f 1, f 2:

x = f 2 � f 1
�� ��= 1:72 f 1 + f 2

2

� �0:65

ð5Þ

Our revised model (as included in the composite model plots)
includes several additional changes motivated by the results of our
experiments. These changes involve new model parameters (p, q, and
r) which were optimized numerically following the steps described in
Parameter optimization (see below).

First, the dissonance curve DðxÞ is revised to incorporate a pre-
ference for slow beats (Supplementary Fig. 11, bottom panel):

D*ðxÞ= x
p DðxÞ � qð1� x

pÞð1 + sinð2π x
p � π

2ÞÞ, for x <p

=DðxÞ, otherwise:
ð6Þ

where p=0:096 is the slow-beat boundary (the distance at which the
pleasantness of slow beats starts contributing) and q= 1:632 is the
slow-beat pleasantness (the strength of the slow-beat pleasantness
effect).

The original Hutchinson-Knopoff model sums together dis-
sonance contributions from all pairs of partials, weighting each con-
tribution by the product of those partials’ amplitudes. The
consequence is that dissonance is proportional to sound intensity.

Dissonance ðoriginalÞ=
X
i,j:i<j

AiAjDðf i,f jÞ=
X
k

A2
k ð7Þ

In our revised model, we add an additional parameter r that
nuances this amplitude weighting. Setting r = 2 recovers the intensity-
weighting of the original model. Setting r = 1 makes dissonance pro-
portional to amplitude rather than intensity. The optimized value of
r = 1:359 sits somewhere between these two interpretations:

Dissonance ðnewÞ=
X
i,j:i<j

ðAiAjÞr=2D?ðf i,f jÞ=
X
k

Ar
k ð8Þ

Harmonicity models. According to harmonicity accounts, con-
sonance is grounded in the mechanisms of pitch perception. Pitch
perception involves combining multiple related spectral components
into a unitary perceptual image, a process thought to be accomplished
either by template-matching in the spectral domain or autocorrelation
in the temporal domain (see ref. 85 for a review). Consonance per-
ception can then be modeled in terms of how well a particular chord
supports these pitch perception processes. Here we test three such
models: two based on template-matching42,45 and one based on auto-
correlation, after Boersma44 (see below for details). We focus particu-
larly on the model of Harrison and Pearce42 because of its high
performance in Harrison and Pearce20, but we also explore the other
models in the Supplementary Information. We excluded several other
candidate models because they are insensitive to spectral manipula-
tions, the main focus of this paper5,17,86.

The Harrison-Pearce and Milne models. Following Milne45, the
Harrison-Pearcemodel uses a harmonic template corresponding to an
idealized harmonic complex tone. The template is expressed in the
pitch-class domain, a form of pitch notation where pitches separated
by integer numbers of octaves are labeled with the same pitch class. It
can be transposed to represent different candidate pitches; Supple-
mentary Fig. 16a shows templates for C, D, E, and F.

Each input chord is likewise expressed as an idealized spectrum in
the pitch-class domain, after Milne45 (Supplementary Fig. 16b). This
involves expanding each chord tone into its implied harmonics, mak-
ing sure to capture any available information about the strength of the
harmonics (e.g., spectral roll-off) and their location (e.g., stretched
versus non-stretched).
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Aprofile of virtual pitch strength is then created by calculating the
cosine similarity between the chord’s spectrum and different trans-
positions of the harmonic template, after Milne45 (Supplementary
Fig. 16b). For example, the virtual pitch strength at 2 corresponds to
the cosine similarity between the chord’s spectrum and a harmonic
template with a pitch class of 2 (i.e., a D pitch template).

Finally, harmonicity is estimated as a summary statistic of the
virtual pitch strength profile. The Harrison-Pearce model treats
this profile as a probability distribution, and computes the
information-theoretic uncertainty of this distribution, equivalent
to the Kullback-Leibler divergence to this distribution from a
uniform distribution; high uncertainty means an unclear pitch
and hence low harmonicity. Milne’s45 model takes the same
approach, but instead returns the height of the highest peak of
this distribution.

The autocorrelation model. The autocorrelation model uses the
fundamental-frequency estimator of Boersma44, as implemented in the
Praat software and accessed via the Parselmouth package87. The
algorithm works by looking for the maximum of the sound’s auto-
correlation function (i.e., the temporal interval at which the sound
correlates maximally with itself).

The following steps were used to estimate the harmonicity of a
given chord:
(1) Synthesize the chord to an audio file using additive synthesis;
(2) Estimate fundamental frequency from the audio file using

Boersma’s44 algorithm, using a time-step of 0.1 s, and bounding
candidate fundamental frequencies to lie above 10Hz but more
than four semitones below the lowest chord tone.

(3) Take themedian of these fundamental frequency estimates. After
Stolzenburg17, high fundamental frequencies are taken as imply-
ing high periodicity and hence high harmonicity.

Composite model. Our composite model combines both
interference41 and harmonicity42 models, including the modifica-
tions described above. The two models are combined additively
with a weight of −1 for the interference model and +0.837 for the
harmonicity model (see Parameter optimization for details).
When applying the composite model we also median-normalize
the outputs within each experiment (i.e., subtracting the median
value across the whole experiment from each model output),
reflecting the way in which participants calibrate their scale usage
to the stimuli within each experiment. Note that we plot the final
version of the composite model throughout the paper, rather
than plotting incremental versions as motivated by each experi-
ment, to ensure that later model changes do not spoil predictions
for earlier experiments.

Parameter optimization. Our new models include several key para-
meters, listed in Supplementary Table 3.We set initial versions of these
parameters based on a combination of theory andmanual exploration
of the data; we then numerically optimized these parameters using a
gradient-free optimizer as described below.

Optimizing model parameters requires defining an objective
function that is not too time-consuming to compute. We there-
fore excluded the triad experiments from the objective function,
and solely modeled data from the dyad experiments. For each
dyad experiment, we computed consonance profiles for models
and participants as described earlier. We found that correlation
metrics were a poor measure of qualitative fit between models
and participants, so we instead measured fit by comparing the
peaks between the model and the participant profiles. Participant
profile peaks were computed as previously; model profile peaks
were obtained analogously, but instead of relying on

bootstrapping to remove unreliable peaks (the model outputs are
deterministic and hence can’t be bootstrapped) we filtered excess
peaks by increasing the peak-finding minimum depth parameter
(β) from 0.01 to 0.05. We then defined model fit by looking at the
overlap between participant peaks and model peaks. In particular,
we characterized a pair of participant and model peaks as over-
lapping if they were separated by less than 2.67% of the overall
interval range in that study (i.e., 0.4 semitones in the 15-semitone
experiments, or 0.013 semitones in the 0.5-semitone experi-
ments), and then computed the Jaccard similarity between the
sets of participant and model peaks. The overall model fit was
then calculated as the mean Jaccard similarity across all the dyad
experiments.

We optimized this objective function as a function of the para-
meters listed in Supplementary Table 3 using the subplex algorithm88

as implemented in the NLopt package (http://github.com/stevengj/
nlopt), and using the parameter bounds specified in Supplementary
Table 3. The model converged after 245 iterations to a mean Jaccard
similarity of 0.467. The resulting model parameters (Supplementary
Table 3) are used for all visualizations and analyses involving the
composite model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this work have been deposited in a publicly
available OSF repository under the following URL: https://osf.io/
83w2b/ (DOI: 10.17605/OSF.IO/83W2B). To further facilitate the pro-
cess, data can also be explored and exported via the following inter-
active web app: https://pmcharrison.gitlab.io/timbre-and-consonance-
paper/supplementary.html. Naturalistic instrument tone samples used
in this study are available at the Midi.js Soundfont database: https://
github.com/gleitz/midi-js-soundfonts. Benchmark behavioral datasets
for Study 138,39,46 are available through the following repository: https://
gitlab.com/pmcharrison/timbre-and-consonance-paper.

Code availability
All necessary code for replicating our analyses, and reproducing our
experiments are deposited at the followingOSF repository: https://osf.
io/83w2b/ (DOI: 10.17605/OSF.IO/83W2B). These can also be accessed
individually through the following links: Individual experimental
implementations, and experiment templates: https://gitlab.com/raja.
marjieh/consonance-and-timbre-data. Analysis code: https://gitlab.
com/pmcharrison/timbre-and-consonance-paper. Interactive web
app for exploring data and models: https://pmcharrison.gitlab.io/
timbre-and-consonance-paper/supplementary.html.
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