Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dissecting the conformational stability of a glycan hairpin

MPG-Autoren
/persons/resource/persons290833

Yadav,  Nishu
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons282713

Djalali,  Surusch
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons267762

Garcia Ricardo,  Manuel       
Peter H. Seeberger - Automated Systems, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121849

Seeberger,  Peter H.       
Peter H. Seeberger - Automated Systems, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons187996

Delbianco,  Martina       
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yadav, N., Djalali, S., Poveda, A., Garcia Ricardo, M., Seeberger, P. H., Jiménez-Barbero, J., et al. (2024). Dissecting the conformational stability of a glycan hairpin. Journal of the American Chemical Society, 146(9), 6369-6376. doi:10.1021/jacs.4c00423.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-7E48-5
Zusammenfassung
Systematic structural studies of model oligopeptides revealed important aspects of protein folding and offered design principles to access non-natural materials. In the same way, the rules that regulate glycan folding could be established by studying synthetic oligosaccharide models. However, their analysis is often limited due to the synthetic and analytical complexity. By utilizing a glycan capable of spontaneously folding into a hairpin conformation as a model system, we investigated the factors that contribute to its conformational stability in aqueous solution. The modular design of the hairpin model featured a trisaccharide turn unit and two β-1,4-oligoglucoside stacking strands that allowed for systematic chemical modifications of the glycan sequence, including the introduction of NMR labels and staples. Nuclear magnetic resonance assisted by molecular dynamics simulations revealed that stereoelectronic effects and multiple glycan–glycan interactions are the major determinants of folding stabilization. Chemical modifications in the glycan primary sequence (e.g., strand elongation) can be employed to fine-tune the rigidity of structural motifs distant from the modification sites. These results could inspire the design of other glycan architectures, with implications in glycobiology and material sciences.