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Abstract 8 

Anthropogenic activities have substantially perturbed the global nitrogen (N) cycle directly through 9 
enhancing reactive N (Nr) inputs and indirectly through climate and land-use change. However, the 10 
climatic impacts of the N cycle and its feedbacks on climate change remain very uncertain. In this 11 
review, we provide an overview of the dominant pathways by which anthropogenic Nr affects the 12 
climate system and summarize the available scientific assessments. We also review the latest progress 13 
on the responses of N cycle to changing climate to understand the potential for feedbacks between the 14 
N cycle and climate. With the urgent need to reduce Nr in the future to alleviate its negative 15 
environmental impacts, e.g. air pollution and eutrophication, we highlight the importance for bridging 16 
disciplines of atmospheric chemistry, ecology and climatology to improve the scientific understanding 17 
and develop co-benefits for both environmental protection and climate change mitigation.  18 

 19 
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 23 

1. Introduction 24 
Nitrogen (N) constitutes nearly 78% of the atmosphere, however nearly 99% of atmospheric N 25 

is gas-phase molecular N (N2) (Galloway et al., 2003). Two processes in the natural 26 

environment, i.e. biological nitrogen fixation (BNF) and lightning, can break the triple bond 27 

of N2 and thereby create reactive nitrogen (Nr). As one of the most important nutrients for 28 

living organisms supporting biosynthesis, growth, maintenance and propagation, Nr can be 29 

subjected to a vast number of chemical and biochemical reactions and functions through its 30 

importance in enzyme synthesis and biomolecules (Duce et al., 2008; Zaehle and 31 

Dalmonech, 2011). However, Nr entering marine and terrestrial ecosystems may also be 32 

exported out of the biosphere and emitted to the atmosphere, where it interferes with the 33 

radiative transfer in the atmosphere through tropospheric chemical reactions of greenhouse 34 

gases and aerosols. (Derwent et al., 2008; Shindell et al., 2009). As a result, anthropogenic 35 

Nr plays important roles in the global biogeochemical cycles (of carbon, nitrogen, phosphorus, 36 

etc.), further influencing environmental health (de Vries, 2021; Nieder and Benbi, 2022), 37 

ecosystem biodiversity (Bobbink et al., 2010), and climate changes (Erisman et al., 2011).  38 

 39 

Fossil fuel combustion and N fixation technology (e.g. the Haber-Bosch reaction) have 40 

introduced large quantities of anthropogenic Nr to the Earth system since the beginning of 41 

the industrial revolution (around 1750). The scale of this perturbation has grown 42 

exponentially since the beginning of the industrial revolution and in current decades is 43 

estimated to be on par with or even exceed natural Nr generation through BNF and lightning 44 

(Fowler et al., 2013). Excessive Nr, on the one hand, substantially affects climate. For 45 

Jo
urn

al 
Pre-

pro
of



2 
 

instance, increased nitrous oxide (N2O) concentrations and ammonium (NH4
+) / nitrate 46 

(NO3
-) aerosol loadings in the atmosphere could warm and cool the atmosphere through the 47 

greenhouse effect and solar-radiation diffusion, respectively (Thornhill et al., 2021b). The 48 

enhanced Nr inputs into ecosystems through N deposition, fertilizer and manure application 49 

may alleviate global warming by increasing ecosystem carbon sequestration (Lessmann et 50 

al., 2022; Schulte-Uebbing et al., 2022). Furthermore, short-lived nitrogen oxides (NOx) 51 

play vital roles in atmospheric chemistry and non-linearly alter atmospheric greenhouse 52 

gases of ozone (O3) (Lu et al., 2021a) and methane (CH4) (Peng et al., 2022). On the other 53 

hand, climate change induced by anthropogenic greenhouse gases also substantially affects 54 

almost all of the natural N processes (Fowler et al., 2015; Greaver et al., 2016), with the 55 

possibility of causing feedbacks to climate. The net climate effects of anthropogenic Nr as 56 

well as the N climate feedbacks, although understood in principle, are challenging to 57 

quantify and therefore remain purely constrained.  58 

 59 

The importance of interactions between N dynamics and climate has gained recognition 60 

inpast decades (Altieri et al., 2021; Erisman et al., 2011; Fowler et al., 2015). Substantial 61 

efforts have been dedicated in the past years to improve the scientific understanding 62 

through field experiments, meta-data analysis, machine learning techniques and model 63 

simulations. In this review study, we aim to give an overview on previous studies, most of 64 

which have predominantly focused on specific N compounds or processes within the global 65 

N cycles, and integrate the latest key findings with respect to interactions of N cycles and 66 

climate change. As illustrated in Fig. 1, we will firstly overview the pathways that N cycles 67 

influence climate and identify the contributions led by direct anthropogenic Nr inputs (Sect. 68 

2), then we will briefly demonstrate the recent discoveries of key N-cycle processes 69 

responses to changing climate as well as the anthropogenic perturbations (Sect. 3). Finally, 70 

we will conclude and outline future perspectives in Sect. 4. 71 

 72 

 73 

 74 
Figure 1. The climate effects of Nr compounds (left) also with anthropogenic-driven 75 

perturbations on N cycles (right). For each panel, the left part indicates the Nr inputs to the 76 

terrestrial ecosystem, while the right part indicates the Nr fluxes to the atmosphere. The 77 

blue or red dashed arrows on the top of the left panel indicate the cooling or warming effects 78 

of each component on climate, respectively.  79 

 80 

 81 

2. Main climate-affecting N compounds  82 
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2.1 N2O  83 

N2O is a long-lived greenhouse gas with a global warming potential that is about 273 times 84 
greater larger than that of CO2 per unit mass over a period of 100 years. IPCC AR6 reported 85 
with high confidence that atmospheric N2O mole fractions have risen from 270 ppb in 1750 to 86 
331 ppb in 2019 and contributed to +0.21 ± 0.03 W m–2 effective radiative forcing relative to 87 
the pre-industrial period (Canadell et al., 2021). Increases in agricultural fertilizer/manure 88 
application, N deposition and fossil fuel combustions were identified as primary drivers behind 89 
this increase of N2O (Tian et al., 2019), but the exact attribution of anthropogenic contributions 90 
to the N2O increases is still challenging. Anthropogenic sources during 2007-2016 were 91 
estimated to be 7.3 [4.2-11.4] Tg N yr-1 among the global total 17.0 Tg N yr-1 emissions (Tian 92 
et al., 2020). Limited but also challenging flux measurements (Barton et al., 2015; Liao et al., 93 
2023; Wang et al., 2020), uncertain and dynamic spatiotemporal distributions of N fertilizer 94 
application and agricultural land uses (Lu and Tian, 2017), as well as imperfections in model 95 
representations (Feng et al., 2023) together are the main cause for this large range.  96 

 97 
2.2 N-species aerosols  98 

Aerosols remain in the troposphere for a timescale of days to weeks. Most compounds result in 99 
a cooling effect on climate as they scatter solar radiation and interact with cloud formation and 100 
lifetime. Ammonium (NH4

+) and nitrate (NO3
-) are the two dominant N-species aerosols. It is 101 

well-known that the major source of ammonia (NH3), which is the primary precursor to generate 102 
NH4

+, is from agricultural activities (Hoesly et al., 2018), but significant gaps remain in 103 
quantifying global NH3 emissions. Recent bottom-up estimates assessed global agricultural 104 
NH3 emissions at about 58 Tg N yr-1 in 2010 (Liu et al., 2022a), while the top-down inversion 105 
accounting for natural and other anthropogenic NH3 sources suggested global emissions from 106 
90 to 191 Tg N yr-1 (Evangeliou et al., 2021; Luo et al., 2022). Some studies also showed current 107 
emission inventories tended to underestimate NH3 emissions particularly in hotspot regions, 108 
such as Western Europe (Cao et al., 2022) and Eastern China (Kong et al., 2019). With 109 
uncertainties in NH3 emissions, the effective radiative forcing (ERF) of NH4

+ in 2014 was 110 
estimated to be about -0.07 W m-2 based on ensemble means of earth system models (Thornhill 111 
et al., 2021b).  112 

Emissions of nitrogen oxide (NOx), which is the main precursor of NO3
-, are dominated by 113 

fossil fuel sources (Hoesly et al., 2018). Both bottom-up and top-down estimates showed 114 
consistently similar magnitudes and decadal trends in anthropogenic NOx emissions (Ding et 115 
al., 2017; Jena et al., 2015; McDuffie et al., 2020). NOx engages in numerous chemical reactions 116 
and significantly perturbates atmospheric hydroxyl radical (OH) concentrations (see below Sect 117 
2.3). The non-linearity of atmospheric chemistry introduces uncertainties in the global burden, 118 

spatial distribution as well as the particle sizes of NO3
-, all of which are essential to quantify 119 

the NO3
- climate effects. Therefore, estimates of the cooling effects of NO3

- through solar 120 
diffusion varied from very small (~-0.025 W m-2) to more substantial effects (-0.14 W m-2) (An 121 
et al., 2019; Bian et al., 2017; Hauglustaine et al., 2014; Thornhill et al., 2021b; Zaveri et al., 122 
2021). The interactions between NO3

- aerosols and cloud remained quite uncertain, with 123 
radiative forcing assessed by a limited number of studies ranging from -0.05 to -0.22 W m-2 124 
(Bellouin et al., 2011; Lu et al., 2021c; Xu and Penner, 2012).  125 

 126 
2.3 NOx indirect effects through atmospheric chemical reactions 127 

As the highly reactive gas, NOx is involved in various chemical reactions with other green-128 
house gases, in particular O3 and CH4. It thereby affects climate indirectly by changing the 129 
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lifetime and thus atmospheric burden of these gases. In general, increased atmospheric NOx 130 

concentrations will lead to higher OH concentrations, further increasing O3 concentrations (Lu 131 

et al., 2021a), while at the same time shortening CH4 lifetime and thereby reducing CH4 132 

concentrations (Peng et al., 2022). A recent assessment based on an ensemble of Earth System 133 

models showed that NOx-induced O3 enhancement warmed the climate by +0.2±0.07 W m-2, 134 

while the reduced CH4 lifetime led by NOx contributed a cooling effect of about -0.2 W m-2 to 135 
-0.37 W m-2 until 2014 since pre-industrial (Thornhill et al., 2021b). The complexity of OH 136 
chemical dynamics and non-linear interactions among NOx, volatile organic compounds and 137 
O3 is the primary cause for the uncertainty in this quantification.  138 

2.4 C-N interactions in terrestrial ecosystems 139 

The majority of the N element in the terrestrial ecosystem constitutes plants and microbes in 140 
organic forms and plays crucial roles in enzyme-mediated processes. However, the available N 141 
for plants is normally in the forms of dissolved inorganic N, such as ammonium or nitrate ions, 142 
which is mineralized from soil organic N by microbial activities (Li et al., 2019). Meanwhile, 143 
soil microbes also regulate BNF levels, thereby influencing the overall N availability for plants 144 
(Aasfar et al., 2021). A portion of the mineralized inorganic N will be lost from the terrestrial 145 
ecosystem as gases phase though nitrification and denitrification (Feng et al., 2023), or as 146 
dissolved forms through leaching (Wang and Li, 2019). 147 

Next to phosphorus, N in terrestrial ecosystems is one of the most important nutrients for plants 148 
and microbial organisms. It is essential for C assimilation, growth and maintenance and thereby 149 
tightly connected to the C cycle. The N limitation of biomass production is generally believed 150 
to be strong in natural temperate and boreal forests (Du et al., 2020), attenuating the expected 151 
increases in carbon storage due to CO2 fertilization of plant photosynthesis under future climate 152 
change (Terrer et al., 2019). Anthropogenic-driven increases in N fertilizer application and 153 
atmospheric Nr deposition can increase productivity by lifting N limitation. Synthesis of 154 
available data from ecosystem manipulation experiments by meta-analysis or machine learning 155 
have revealed responses of terrestrial C sinks to N addition, ranging from 1 kg C (kg N)-1 to 25 156 
kg C (kg N)-1 depending on different land cover types, amounts and types of N addition (Liu 157 
and Greaver, 2009; Liu et al., 2022b; Poulton et al., 2018; Schulte-Uebbing et al., 2022).  158 

Terrestrial biosphere models (TBMs) integrate process understanding of biogeochemical cycles 159 
at large scales and is another useful tool to quantify the climate effects of N-induced increases 160 
in C sequestration (Zaehle and Dalmonech, 2011). For instance, Zaehle et al. (2011 attributed 161 
a cumulative cooling effect of about -0.1 W m-2 to Nr induced carbon storage in the terrestrial 162 
biosphere since pre-industrial times by applying a TBM to reproduce global observed trends of 163 
atmospheric CO2. In recent years, dynamic C-N coupling has been induced in an increasing 164 
number of TBMs (Davies-Barnard et al., 2020; Kou-Giesbrecht et al., 2023; Wieder et al., 2015; 165 
Zaehle et al., 2014). These models generally agree with earlier findings, but evaluation against 166 
independent benchmark highlights remaining uncertainty and a formidable challenge to further 167 
constrain model uncertainties to better quantify the N effects on terrestrial carbon sinks and the 168 
resulting climate impacts (Kou-Giesbrecht et al., 2023) (Fig. 2).   169 

 170 
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 171 

Figure 2.  Latitudinal distributions and global means of BNF, vegetation C : N ratio, and soil C : N 172 
ratio simulated by the TRENDY-N ensemble (averaged across models over 1980–2021) in 173 

comparison to observations. Panels (a, c, e) show the latitudinal distribution of the mean and boxplots 174 
show the global mean. Panels (b, d, f) show the latitudinal distribution of the bias. Latitudinal 175 

distributions show the mean (black line) and the 50 %, 80 %, and 100% percentiles across models. 176 
Boxplots show the median, interquartile range (box), and 80% percentiles (whiskers) across models. 177 

Observation-based datasets are from Davies-Barnard and Friedlingstein (2020) for biological N 178 
fixation, the TRY plant trait database for vegetation C:N ratio, and SoilGrids for soil C:N ratio. This 179 

figure is from Kou-Giesbrecht et al. (2023). 180 

 181 

2.5 Other Nr-related climate effects 182 

There are additional, less well-quantified pathways of Nr known to affect climate, which are 183 
summarized here: (1) Nr-induced increases in aerosols and O3 could influence terrestrial carbon 184 
sinks by reducing ratios of direct to diffuse photosynthetically active radiation (Mercado et al., 185 
2009; Zhou et al., 2022) and by damaging leaf photosynthesis (Franz et al., 2018; Gong et al., 186 
2021; Sitch et al., 2007), respectively. (2) Nr inputs into terrestrial ecosystems may reduce soil 187 
CH4 uptake (Li et al., 2021b; Liu and Greaver, 2009) and thus increase atmospheric CH4. 188 
However, soil CH4 uptake plays only a small role in the global CH4 cycle and the magnitude of 189 
the Nr effects ranges from -60% to +10% (Xia et al., 2020). (3) Riverine and marine N2O 190 
emissions and the C-N interactions might also be influential on climate. Yao et al. (2020) 191 

suggested that increased N inputs enhanced riverine emissions of N2O from 70.4±15.4 Gg N 192 

yr-1 in 1900 to 291.3±58.6 Gg N yr-1 in 2016, while marine N deposition is estimated to 193 

contribute to present-day marine N2O emissions by about 0.01-0.32 Tg N yr-1 (Canadell et al., 194 
2021) and marine primary productivity by 0.3 Pg C yr-1 increases (Duce et al., 2008), 195 
respectively, but with neglectable changes in the resultant air-sea CO2 fluxes (Yamamoto et al., 196 
2022). 197 
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2.6 The net climate effects of anthropogenic Nr  198 

Quantifying the net climate effects of anthropogenic Nr requires crossing different time-scales 199 
and disciplines among atmospheric chemistry, climate dynamics and ecological science. To 200 
date, this gap among different scientific communities and quantifications is typically bridge in 201 
a ‘puzzle-style’ framework, wherein climate effects (e.g. radiative forcing) or key parameters 202 
(e.g. terrestrial C responses to N addition; N2O emission factors) from previous independent 203 
studies are combined to generate a ‘best estimate’ of anthropogenic Nr climate effects. Table 1 204 
summarized the four most recent and comprehensive estimates to our knowledge, covering the 205 
U.S., Europe, China and globe, respectively. To improve our understanding of the Nr imprint 206 
of anthropogenic Nr on climate, it is important to (1) address remaining uncertainties in the 207 
underlying regional to global emission data-bases for all Nr species and improve consistency 208 
between emission categories; (2) integrate process-understanding to derive non-linear response 209 
functions of ecosystems to reduce the dependency of the assessments on linear approximations, 210 
(3) and appropriately deal with the evaluation of climate impact by accounting for regional and 211 
global short- as well as long-lived climate forcers.  212 

 213 

Table 1. Summary of present-day climate effects of anthropogenic Nr. The uncertainty 214 
ranges of each estimate were indicated by standard deviation (±) or square brackets depending 215 
on each individual study.  216 
 217 

 
Erisman et 

al. (2011 
Pinder et al. (2012 

Butterbach-

Bahl et al. 

(2011) 

Shi et al. (2015 

Region Global U.S. Europe China 

Metrics  
Radiative 

forcing  

GWP20 / 

GWP100  

Radiative 

forcing*  

GWP20 / 

GWP100 

Units W m-2 Tg eCO2 W m-2 Tg eCO2 

N2O +0.16 
+314 [+202, +428] / 

+291 [+180, +395] 
0.017 

345±19 / 

311±17 

Nr-related 

aerosols 

-0.38  

-36.67 [-8.18, -103.5] / 

0 
-0.0165 

-156±45 / 

-0.12±0.13 

NOx effects 

on CH4 

lifetime 
-271 [-177.4, -385] / 

-7.19 [0, -15.64] 

-0.0046 
 

-349.8±155.6 / 

-13.2±7.6 

 
NOx effects 

on O3 
+0.13 0.0029 

N-induced 

terrestrial 

carbon sinks 

-0.2 
-206.8 [-134.65, -292.4] / 

-155.02 [-98.96, -236.76] 

-0.019 

(excluding 

agricultural 

fertilization) 

-49.9±54.7 / 

-86.2±39.7 

Other effects +0.05 [+66 +140] 0.0453 
111±100 / 

111±100 

Net climate 

effects 

-0.24 [-0.5 

+0.2] 

-200.47 [-299.6, +17.6] / 

+128.79 [+112.2, +317.1] 
-0.0173 

-100±414 / 

322±163 

*The values indicated the global radiative forcing induced by emissions in Europe.  218 

 219 

 220 
3. Climate feedbacks due to perturbated N cycle 221 
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Besides direct anthropogenic Nr inputs, anthropogenic-driven climate change substantially 222 
alters the global N cycle, which in turn results in feedback effects on climate. Here, we provide 223 
a brief overview of key findings in the past years covering changes in ecosystem N cycles and 224 
atmospheric Nr-related chemistry and extrapolate the potential climate feedbacks.  225 
 226 
3.1 Responses of ecosystem N cycling to climate changes 227 

A number of processes in the terrestrial N cycle are substantially influenced by climate changes 228 
through the responses of enzyme activities, microbial species and strategy (Mattoo and Suman, 229 
2023). Firstly, the biological nitrogen fixation, the major natural source of Nr, is responding to 230 
temperature with new emerging evidence to better quantify the optimal temperature for BNF 231 
and its thermal acclimation to growth temperature (Houlton et al., 2008; Bytnerowicz et al., 232 
2022). Secondly, increased temperature accelerates the decay of organic material, which 233 
enhances inorganic N cycling in the soil and thereby enhance terrestrial carbon storage (Kou-234 
Giesbrecht and Arora, 2023; Melillo et al., 2011). The intensification of inorganic N cycles can 235 
not only lead to a positive N2O-warming feedback (Stocker et al., 2013), but also intensify the 236 
soil emissions of NH3 (Shen et al., 2020) and NOx (Romer et al., 2018). These processes may 237 
be particularly relevant in permafrost regions and peatlands, which are even more sensitive to 238 
global warming due to arctic amplification. Recent studies have demonstrated that the increases 239 
in mineralized N with permafrost thawing failed to enhance the N availability of plants due to 240 
increased N demands and higher N-gas loss (Kou et al., 2020; Lacroix et al., 2022; Ramm et 241 
al., 2022). Thirdly, the simultaneous changes in multiple environmental factors, e.g. elevated 242 
CO2 concentrations, warming and changes in soil moisture, may enhance the strength of N 243 
limitation on terrestrial C uptake (Mason et al., 2022; Tu et al., 2022). Last but not least, land 244 
use changes and increased ecosystem disturbance (e.g. wildfire) may also deeply alter the whole 245 
ecosystem N cycle (Dove et al., 2020; Li et al., 2021a; Perez-Quezada et al., 2022). For example, 246 
the expansion of agricultural land may lead to higher N fertilizer application (Tian et al., 2022), 247 
while strategically intercropping of N-fixing crops (e.g. grain legumes) and cereals may 248 
alleviate such issue by improving N use efficiency (Jensen et al., 2020). Meanwhile, more 249 
frequent wildfire under the changing climate accelerates the turnover rates of terrestrial N into 250 
the atmosphere, generating varied Nr-related gases and particles and substantially feeding back 251 
to the climate (Fu et al., 2018; Ward et al., 2012). Overall, although specific components of the 252 
Nr related feedbacks have been studied, a comprehensive and quantitative overview of the 253 
likely effects on future climate-biogeochemical feedbacks, such as N availability for the carbon 254 
cycle, is still lacking (Canadell et al., 2021). 255 

3.2 Responses of atmospheric Nr-related chemistry to climate changes 256 

Higher temperatures in general accelerate reaction rates in atmospheric chemistry, but can also 257 
exert significant non-linear influences on individual reactions. Clear evidence supports the 258 
hypothesis that higher temperature could accelerate evaporation of ammonium nitrate and 259 
thereby reduce Nr-related aerosol loadings (Megaritis et al., 2013). Current earth system models 260 
in general reported positive sensitivities of lightning NOx emissions to the warmer climate 261 
(Thornhill et al., 2021a), while insignificant or even negative sensitivities in other studies 262 
(Finney et al., 2018; Finney et al., 2016). The NOx effects on CH4 and O3 with warming is 263 
strongly dependent on changes in global OH concentrations and distributions and therefore 264 
subject to significant uncertainties (Murray et al., 2021; Zhao et al., 2023).   265 

4. Concluding remarks  266 
 267 
In this review, we firstly summarized the known pathways that Nr impacts climate. Recent 268 
findings underscored the vital roles of the N cycles in affecting global climate, however, each 269 
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pathway was still associated with uncertainty. In particular, two major challenges of (1) 270 
improving estimates in global soil emissions of Nr gases (N2O, NH3 and NOx), and (2) reducing 271 
uncertainties in atmospheric OH chemistry and associated NOx effects on aerosols, O3 and CH4 272 
substantially impede a more comprehensive understanding of the climatic effects of 273 
anthropogenic Nr. To fill this knowledge gap, on the one hand, long-term continuous 274 
observations of soil Nr-gas fluxes, especially for short-lived NH3 and NOx, and improved 275 
understandings in microbial dynamics with soil ammonification, nitrification and 276 
denitrification (e.g. Li et al., 2020) are both essential. On the other hand, new chemical 277 
mechanisms revealed from smog chambers (e.g. Chen et al., 2022), field campaigns (e.g. Cho 278 
et al., 2023) and the constrains by satellite retrievals (e.g. Pimlott et al., 2022; Zhang et al., 279 
2018) could promote a better description in global OH chemistry. Last but not least, 280 
comprehensive Earth system models, which represent process-based terrestrial and marine N 281 
biogeochemical cycles, atmospheric chemical reactions, radiative transfer and climate 282 
dynamics, would be crucial to comprehensively reveal climate effects of anthropogenic Nr as 283 
well as the potential climate feedbacks through N cycles. 284 
We further overviewed the latest progresses on the effects of anthropogenic perturbations on 285 
global N cycles. While the direct anthropogenic Nr addition into soil (e.g. via fertilizer 286 
application and N deposition) or atmosphere (e.g. via fossil fuel combustion) has been widely 287 
studied, the effects of indirect pathways, such as N processes influenced by changing climate, 288 
elevated CO2, land use changes, intensified wildfire and diverse agricultural management 289 
strategies, remained inadequately understood. In-depth manipulating experiments in crucial 290 
zones, including tropical rainforest (Lu et al., 2021b), permafrost (Voigt et al., 2020) and 291 
agricultural lands (Patil et al., 2010), with as many N-cycle variables are urgently required. On 292 
the other hand, some national or regional practices have indicated that improved human 293 
management on both forests and croplands holds promise in mitigating ecosystem disturbances 294 
(e.g. wildfire) (Tymstra et al., 2020) and increasing N use efficiency (You et al., 2023). Those 295 
practices could increase Nr sequestration in the terrestrial plants and soil, thereby alleviating 296 
the environmental pollution led by anthropogenic Nr. For instance, the extensively practiced 297 
crop rotation, in particular over South Asian, with more N-fixing crops is effective in reducing 298 
Nr loss and increasing crop yields with less fertilizer application (Kumar et al., 2020; Venkatesh 299 
et al., 2017). Nevertheless, it is still unknown how climate will respond to the efforts of reducing 300 
anthropogenic Nr. It is urgently required to bridge knowledge gaps among communities of 301 
agricultural nutrition, global biogeochemical science, atmospheric chemistry, and climate 302 
dynamics to achieve win-win in both environmental protection and climate change mitigation. 303 

 304 
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