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Nonlinear optovibronics in molecular systems
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We analytically tackle optovibronic interactions in molecular systems driven by either classical or quantum
light fields. In particular, we examine a simple model of molecules with two relevant electronic levels, character-
ized by potential landscapes with different positions of minima along the internuclear coordinates and of varying
curvatures. Such systems exhibit an electron-vibron interaction, which can be composed of linear and quadratic
terms in the vibrational displacement. By employing a combination of conditional displacement and squeezing
operators, we present analytical expressions based on a quantum Langevin equations approach, to describe the
emission and absorption spectra of such nonlinear molecular systems. Furthermore, we examine the imprint
of the quadratic interactions onto the transmission properties of a cavity-molecule system within the collective
strong-coupling regime of cavity quantum electrodynamics.
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I. INTRODUCTION

Optovibrational interactions in molecular systems occur in
an indirect fashion as light couples to electronic transitions,
which are in turn coupled to the vibrations of nuclei [1–4]. A
standard description of electron-vibron interactions, under the
Born-Oppenheimer approximation, is given by the Holstein
Hamiltonian [5,6], which is a spin-boson model linear in the
vibrational displacement. Some analytical treatments based
on quantum Langevin equations (QLEs) [7–12] have been
shown to provide approximate analytical results for this model
for a large number of vibrational modes and in the presence
of fast vibrational relaxation typically occurring in both bulk
[8,13] and solvent environments [14]. Similar methods have
been used in cavity optomechanics [15,16], where cavity-
confined quantum light modes are coupled to macroscopic
oscillators via the radiation pressure Hamiltonian, to study the
strong photon-phonon coupling regime [17,18].

Such theoretical treatments are based on a polaron trans-
formation which allows for the diagonalization of the bare
Holstein Hamiltonian [19]. This can be understood as a con-
ditional displacement operation, where the electronic state
dictates whether or not a displacement in the vibrational
subspace should be performed. In consequence, when a pho-
ton excites an electronic transition between two copies of
the same harmonic potential landscape slightly shifted [see
Fig. 1(a)], the vibrational state is excited to a coherent state.
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The underlying assumption here is however that the potential
landscapes are identical. In reality it can happen that the
curvatures of the two potential-energy surfaces are differ-
ent, as illustrated in Fig. 1(b): an electronic transition will
then be accompanied by a squeezing of the vibrational wave
packet. In such a case the polaron transformation is modified
by an operation involving a conditional squeezing operator.
Most generally, one can imagine the situation depicted in
Fig. 1(c) where the proper diagonalizing transformation in-
volves a conditional displacement followed by squeezing.
In optomechanics, this corresponds to a quadratic photon-
phonon interaction [20].

We provide here an analytical treatment based on a set of
QLEs for effective spin operators dressed by vibrations, which
can be solved under some approximations to provide infor-
mation about emission and absorption spectra. Additionally,
we investigate the transmission properties of an optical cavity
within the strong-coupling regimes of cavity quantum electro-
dynamics. By studying the interaction between the molecular
systems and the cavity, we gain insight into the nature of
light-matter interactions in these complex environments.

The paper is organized as follows: in Sec. II we introduce
the modified Holstein model obtained from first-principles
derivations of the electron-vibration coupling for a scenario
depicted in Fig. 1(c). Our analytical treatment is based on a
set of simplified QLEs for vibrations and electronic degrees
of freedom as derived in Sec. III. We proceed with solving the
QLEs under the approximation of weak excitation of the up-
per electronic state to obtain absorption and emission spectra
under illumination with classical light. Finally, in Sec. IV we
add a quantum confined light field coupled to the electronic
transition via the Tavis-Cummings Hamiltonian and derive
the transmission profile of the cavity in the strong-coupling
regimes of light-matter interactions.
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FIG. 1. (a) Standard scenario where the excited-state potential
landscape is a copy of the ground-state landscape slightly shifted.
Electronic excitation is accompanied by the action of a conditional
displacement operator Dσ †σ , where σ is the ladder operator from the
excited to the ground electronic state. (b) Scenario with unshifted
potentials with different curvatures. Electronic excitation is accom-
panied by a conditional squeezing operation Sσ †σ . (c) Combined
model where electronic excitation leads to a displacing and squeez-
ing operation.

II. THE MODIFIED HOLSTEIN MODEL

We consider a molecule with two relevant electronic states
denoted by |g〉 and |e〉 for ground and excited, respectively.
Transitions between these two states are characterized by
Pauli lowering operators σ = |g〉 〈e| and their correspond-
ing Hermitian conjugates. As illustrated in Fig. 1(c), the
ground and excited potential landscapes are assumed to have
a parabolic shape, with the minima of these two potential
landscapes separated by Reg and with different curvatures,
thus having different vibrational frequencies: νg for the elec-
tronic ground state and νe for the electronic excited state.
This is typically obtained as an approximation of Morse-type
potential surfaces [21], as widely employed in theoretical
studies [1,12,22,23]. In particular we refer to molecules in
solid-state host matrices, where rotations are frozen and the
fast vibrational relaxation ensures that states with more than
one vibrational excitation are never reached, thus rendering
anharmonic effects negligible. The Hamiltonian describing
the molecular system can be expressed as (h̄ = 1)

H = Ve(R̂, P̂)σ †σ + Vg(R̂, P̂)σσ †, (1)

where Ve and Vg denote the potential landscapes in the elec-
tronic excited and ground state, respectively, defined onto the
direction of the nuclear coordinate as

Ve(R̂, P̂) = ωe + P̂2

2μ
+ 1

2
μν2

e (R̂ − Reg)2, (2a)

Vg(R̂, P̂) = ωg + P̂2

2μ
+ 1

2
μν2

g R̂2, (2b)

with the reduced mass μ, and the momentum and posi-
tion operators P̂ and R̂ satisfying the commutation relation
[R̂, P̂] = i. Notice that the matrix elements of the Hamil-
tonian H can be written in a basis formed by {|g; mg〉 =
|g〉 ⊗ |mg〉 , |e; me〉 = |e〉 ⊗ |me〉}, where the Fock states |me〉
and |mg〉, respectively, refer to the eigenstates of the vibra-
tional Hamiltonian part contained in Vg(R̂, P̂) and Ve(R̂, P̂),
respectively.

However, one can express the quadratures in terms of
creation b† = (R̂/RZPM − iRZPMP̂)/

√
2 and annihilation b =

(R̂/RZPM + iRZPMP̂)/
√

2 operators. The operators fulfill the
following commutation [b, b†] = 1 and the zero-point motion
is defined as RZPM = 1/

√
2μνg. Notice that the definition of

this bosonic operator is performed with respect to the ground
state such that it diagonalizes the ground-state vibrational
problem. The Hamiltonian in Eq. (1) can now be written as

H = νgb†b + ω0σ
†σ + λ1νg(b + b†)σ †σ

+ λ2νg(b + b†)2σ †σ. (3)

The linear coupling parameter results from the mismatch in
the positions of the minima λ1 = −μν2

e RegRZPM/νg while the
quadratic coupling parameter is proportional to the relative
change in vibrational frequencies λ2 = (ν2

e − ν2
g )/(4ν2

g ). The
bare electronic frequency splitting is modified by the vibronic
coupling ω0 = ωe − ωg + λ2

1ν
3
g/ν

2
e . However, it is more con-

venient to use a single basis formulation where only the
eigenstates of the harmonic oscillator in the ground state are
considered, i.e., the eigenstates of νgb†b denoted by {|mg〉}. To
this end, one can take the level-dependent unitary transforma-
tion H̃ = U†HU with

U = D(rd )σ
†σS (rs)σ

†σ = σσ † + D(rd )S (rs)σ †σ. (4)

The definitions of the displacement and squeezing operators
are the standard ones employed in quantum optics

D(rd ) = erd (b†−b) and S (rs) = e
1
2 rs (b2−b†2 ) (5)

which employ the following displacement rd and squeezing rs

parameters defined as

rd = −λ1
ν2

g

ν2
e

and rs = 1

2
(ln νe − ln νg). (6)

Finally, the Hamiltonian is expressed in diagonal form:

H̃ = νgb†bσσ † + (νeb†b + ω00)σ †σ, (7)

where the effective frequency ω00 = ωe − ωg + (νe − νg)/2
relates to the zero-phonon line.

This is nothing more than a generalized polaron transfor-
mation where the electronic coherence operator σ is dressed
by the vibrational modes as σD(rd )S (rs) via both a dis-
placement and a squeezing operation. This offers a recipe
to obtain the intensity of vibronic transitions in the emission
and absorption processes. Assuming the molecule initially in
the excited state with zero vibrations |e; 0e〉, the probability
of ending up in the state |g; mg〉 is governed by the overlap
between the two vibrational wave functions [see Fig. 2(a)] as

Sem
m = | 〈mg|0e〉 |2 = | 〈mg|S (rs)D(rd ) |0g〉 |2

= e−r2
d α

cosh(rs)

[
Hm

(
αrd

2
√

β

)]2
βm

m!
, (8)

where Hm(x) are Hermite polynomials, α = tanh rs + 1, and
β = (tanh rs)/2. Similarly, we can find the absorption proba-
bility amplitude for the absorption transition |g; 0g〉 → |e; me〉
via the Hermitian adjoint operator σ †S†(rs)D†(rd ) such that

Sab
m = eα′r2

d exp (2rs )

cosh(rs)

[
Hm

(
− iα′rd ers

2
√

β

)]2 (−β )m

m!
, (9)

with α′ = tanh rs − 1.
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FIG. 2. (a) Schematic diagram of a molecular system exhibiting
two parabolic electronic potential surfaces, slightly shifted and with
different curvatures quantified by the vibrational frequencies νg and
νe. Histogram of the vibrational state occupancy in the electronic
ground state upon emission from |e, 0e〉 in (b) and in the electronic
excited state upon external drive from the |g; 0g〉 state in (c) for
various values of λ2 at fixed λ1 = 1.

We numerically illustrate the departure from such a statis-
tics with various values of λ2 in Figs. 2(b) and 2(c). Given the
commutator [D(rs),S (rs)] �= 0, the presence of the product
D(rs)S (rs) renders an asymmetry between the emission event
|e; 0e〉 → |g; mg〉 and the absorption event |g; 0g〉 → |e; me〉.
Also, as a simple check, in the limiting case where λ2 = 0,
i.e., νe = νg, both transition strengths follow the same Poisso-
nian distribution exp[−λ2

1]λ2m
1 /m!, as expected, reproducing

the mirroring effect of emission and absorption spectra usu-
ally exhibited by most molecular transitions.

III. ABSORPTION AND EMISSION SPECTRA

In order to derive spectroscopic quantities, we will assume
a continuous wave classical drive coupled to the electronic
transition incorporated in the following Hamiltonian:

H� = iη�(σ †e−iω�t − σeiω�t ), (10)

with the Rabi frequency η� and laser frequency ω�. Since the
molecule is also coupled to the electromagnetic vacuum and
additional vibrational relaxation baths, we will make use of
open system dynamics methods, first formulated in terms of
a master equation. First, we include a spontaneous emission
channel with the collapse operator σ at rate γ . In addition, as
the electronic transition is modified by the vibrational mode
[24–26], the influence of the environment onto the dynamics
of the vibrational mode can be well described by a collapse
operator UbU† at the rate �. For numerical investigations, the
master equation for the system is given:

ρ̇ = −i[H + H�, ρ] + Lγ [σ ]ρ + L�[UbU†]ρ, (11)

where the standard Lindblad superoperator is written as
LγO · = γO(2O · O† − O†O · − · O†O) for a collapse oper-
ator O and a corresponding decay rate γO. In particular in the
polaron transformation ρ̃ = U†ρU , the last term in Eq. (11)
is going to the familiar form L�[b]ρ̃. The dot stands for the

position where the density operator, on which the Lindblad
superoperator is applied, is to be included.

It is convenient, for deriving analytical results, to map
the master equation into an equivalent set of QLEs. For any
system operator A this can be done as follows [7,27]:

Ȧ = −i[A,H + H�] − [A,O†](γOO −
√

2γOOin )

+ (γOO† −
√

2γOO†
in )[A,O], (12)

where Oin is the zero-averaged and delta-correlated input
noise operator associated with the collapse operator O and
γO is the associated decay rate.

For molecules in solid-state environments, the vibrational
relaxation rate is usually very large, greatly surpassing both
γ and η�. Therefore, fluorescence occurs preferentially from
the state |e, 0e〉, which lies at the bottom of the excited-state
manifold: this is generally referred to as Kasha’s rule [28]. The
same mechanism is valid for the absorption process, where
absorption occurs from the state |g, 0g〉, the lowest in energy.
We will make use of this fast vibrational relaxation to impose
a quick timescale for the modification of the bosonic b opera-
tors and use their quasi-steady-state values in the following.
First, however, let us partition the total Hilbert space into
two orthogonal subspaces (ground and excited electronic state
manifolds) via the following two projection operators: Pg =
σσ † and Pe = σ †σ . Let us first pay attention to the dynamical
equation in the manifold of Pe. For convenience reasons, we
introduce a projected bosonic operator be = UbU†Pe acting
only in this manifold and more explicitly expressed as

be = (cosh rsb + sinh rsb
† − rd ers )Pe (13)

and obeying the relation b†
ebe |e; me〉 = me |e; me〉. Mean-

while, we define a time-dependent generalized polaron
operator [7,8], by the transformation σ̃e = σS†

eD†
e exp[i(νe −

νg)b†
ebet]. This allows the derivation of a set of effective QLEs

in the rotating frame at the driving frequency ω� for the emis-
sion process (see Appendix B for details):

ḃe ≈ −(iνe + �)be +
√

2�Bin
e Pe, (14a)

˙̃σe ≈ −(i� + γ )σ̃e − η�S†
eD†

e ei(νe−νg)b†
ebet

+
√

2γ σinS†
eD†

e ei(νe−νg)b†
ebet , (14b)

Ṗe = −2γPe + η�(σ + σ †) +
√

2γ (σ †σin + σ
†
inσ ), (14c)

with the detuning � = ω00 − ω�, the displacement oper-
ator De = exp[rd (b†

e − be)]Pe, and the squeezing operator
Se = exp[rs(b2

e − b†2
e )/2]Pe. The input noises Bin

e and σin are
zero averaged and have the following two-time correlations:
〈Bin

e (t )Bin†
e (t ′)〉 = δ(t − t ′) and 〈σin(t )σ †

in(t ′)〉 = δ(t − t ′).
In a very similar fashion, projected operators in the ground

electronic state manifold can be defined. Let us introduce
the ground-state polaron operator via the transformation
σ̃g = exp [i(νe − νg)b†

gbgt]S†
gD†

gσ which allows one to derive
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FIG. 3. (a) Jablonski diagram illustrating possible emission and absorption processes. (b) Comparison of analytical and numerical results
of the excited-state population as a function of normalized detuning. Parameters are λ2 = 1 (i.e., νe/νg = 2), �/νg = 0.1, γ /� = 0.1, and
η�/γ = 2. (c) Comparison of analytical results vs numerical simulations for the absorption (shaded in orange) and emission (shaded in green)
profiles. Parameters are η�/γ = 0.1 and �/νg = 0.1.

a similar set of QLEs:

ḃg ≈ −(iνg + �)bg +
√

2�Bin
g Pg, (15a)

˙̃σg ≈ −(i� + γ )σ̃g + η�ei(νe−νg)b†
gbgtS†

gD†
g

+
√

2γ ei(νe−νg)b†
gbgtS†

gD†
gσin. (15b)

As above, the new displacement operator is Dg =
exp[rd (b†

g − bg)]Pg, and the new squeezing operator is Sg =

exp[rs(b2
g − b†2

g )/2]Pg. The nonvanishing correlation of the
zero-average noise operator is given by 〈Bin

g (t )Bin†
g (t ′)〉 =

δ(t − t ′).
We are now in the position of reconstructing the full solu-

tion of the coherence operator in steady state by summing over
the contributions in the ground- and excited-state manifolds.
This can be done by formal integration of Eqs. (14b) and (15b)
to obtain a solution for 〈σ 〉 expressed as

〈σ 〉 = −η�

∫ ∞

0
dτ �(t − τ )e−(i�+γ )(t−τ ) 〈S†

e (τ )D†
e (τ )ei(νe−νg)b†

ebeτ e−i(νe−νg)b†
ebetDe(t )Se(t )〉

+ η�

∫ ∞

0
dτ �(t − τ )e−(i�+γ )(t−τ )〈Dg(t )Sg(t )e−i(νe−νg)b†

gbgt ei(νe−νg)b†
gbgτS†

g (τ )D†
g (τ )〉. (16)

Here, we have used the Heaviside step function �(t ) and the initial value 〈σ (0)〉 = 0. Considering that the vibrational mode has
a large relaxation rate (i.e., � � γ ), we then decouple the vibronic and electronic degrees of freedom. The two-time correlation
functions on the right side of the above equation can be expressed as (see Appendix B for details)

〈De(τ )Se(τ )ei(νe−νg)b†
ebeτ e−i(νe−νg)b†

ebetS†
e (t )D†

e (t )〉 =
∞∑

m=0

Sem
m e−m(iνg+�)(t−τ )〈Pe(τ )〉, (17a)

〈Dg(t )Sg(t )e−i(νe−νg)b†
gbgt ei(νe−νg)b†

gbgτS†
g (τ )D†

g (τ )〉 =
∞∑

m=0

Sab
m e−m(−iνe+�)(t−τ )〈Pg(τ )〉. (17b)

Replacing the infinite sums from above back into Eq. (16)
leads to a convolution in time. This can be dealt with
by employing a Laplace transformation defined as f (s) =∫ ∞

0 dt f (t ) exp(−st ) for a time-dependent function f (t ) at
t � 0. In such a case, Eq. (16) takes a much simpler form

〈σ 〉 = η�

s
Gab − η�〈Pe〉(Gem + Gab), (18)

with the following functions identified corresponding to emis-
sion and absorption events, respectively:

Gem =
∞∑

m=0

Sem
m

s + m� + γ + i(� − mνg)
, (19)

Gab =
∞∑

m=0

Sab
m

s + γ + m� + i(� + mνe)
. (20)

From these expressions, one can proceed in evaluating
analytically the population of the excited state pSS

e =
lim

t→∞ 〈σ †(t )σ (t )〉 in steady state (as detailed in Appendix D):

pSS
e =

∑∞
m=0 γ ↑

m (ω�)

γ + ∑∞
m=0[γ ↑

m (ω�) + γ
↓
m (ω�)]

. (21)

The coefficients γ ↑
m (ω) and γ ↓

m (ω) represent the dynamic
equilibrium population transfer rates for absorption from the
ground state to the excited state |g; 0g〉→|e; me〉 and emission
from the excited to the ground state |e; 0e〉→|g; mg〉 as
illustrated in Fig. 3(a). The rates are analytically expressed as

γ ↑
m (ω) = η2

�Sab
m (m� + γ )

(m� + γ )2 + (ω00 + mνe − ω)2
, (22a)

γ ↓
m (ω) = η2

�Sem
m (m� + γ )

(m� + γ )2 + (ω00 − mνg − ω)2
. (22b)
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Specifically, these rates contribute to the rate equation for the
population of the excited state, given by (see Appendix E for
detailed derivations)

∂t pe = −2

(
γ +

∞∑
m=0

γ ↓
m

)
pe + 2

∞∑
m=0

γ ↑
m (1 − pe). (23)

This equation holds true under the condition η� � �. Re-
markably, one can also obtain the same expression for the
population of the excited state in steady state and compare it
with full numerical simulations to a very good fit, as illustrated
in Fig. 3(b). The parameters are given in the caption and are
chosen in close attention to other works [29,30].

Additionally, we can employ the pump-probe scenario to
analyze the absorption and emission processes. In this sce-
nario, the molecule absorbs a photon at the frequency ω�,
transitioning to the excited state |e; me〉 under the resonant
condition ω� = ω00 + mνe. Subsequently, after undergoing
fast vibrational relaxation, the molecule emits a photon cen-
tered around the frequency ω00 − m′νg, which can be detected
with a modified linewidth γ + m′�. The absorption and
emission profiles are then obtained by summing up the con-
tributions from all possible cases, resulting in Lorentzian
profiles represented by γ ↑/↓

m , as shown in Fig. 3(c):

Sab =
∞∑

m=0

γ ↑
m and Sem =

∞∑
m=0

γ ↓
m . (24)

Here, the scaling of the vibrational rates has been intentionally
exaggerated in order to clearly point out the difference in en-
ergies expected for the smaller and higher-energy sidebands.
The presence of the quadratic electron-vibron coupling un-
der realistic conditions is expected to only slightly break the
symmetry between the emission and absorption spectra, as the
expected values for λ2 lie well below in the subunit region.
More details on the procedure we have followed for the above
derivations are presented in Appendix F and basically follow
the quantum regression theorem formalism [27,31].

IV. MOLECULAR POLARITONICS

Let us now ask what is the imprint of the asymmetry
between the ground- and excited-state potential landscapes
on the signal of an optical cavity containing such a molecule
in the strong-coupling regime of cavity quantum electrody-
namics. To this end, we consider a single molecule placed
within the optical volume of a single mode optical cavity
mediating transitions between the ground and excited poten-
tial landscapes. Under strong optical confinement conditions,
the interaction of light and matter can lead to the production
of hybrid quantum states, i.e., polaritons [1,12,23,32–38], as
superpositions of ground or excited electronic states and zero-
or single-photon states. While polaritons are eigenstates solely
of the electron-photon interaction Hamiltonian, the intrinsic
electron-vibron coupling can provide a mechanism of po-
lariton cross talk, leading to a unidirectional loss of energy
from the higher state to the lower-energy state. This has been
shown analytically in Ref. [7] for the standard case of identical
ground- and excited-state potential landscapes and found to be
most pronounced when the vibrational mode is resonant to the
interpolariton frequency splitting.

FIG. 4. Schematics of an ensemble of molecules inside a Fabry-
Pérot resonator. Cavity photon loss occurs at rates κ1 and κ2 via the
mirrors M1 and M2, respectively. Light-molecule interactions occur
at rate g while spontaneous emission and cavity driving are at rates
γ and ηc, respectively.

Let us now consider the case of N molecules inside the
spatial extent of a single mode of a Fabry-Pérot optical res-
onator, as illustrated in Fig. 4. The dynamics of a single
molecule is governed by the Hamiltonian H from Eq. (3).
The interaction between the N molecules and the cavity field
mode is characterized by the Tavis-Cummings model,

Hcav = ωca†a + g
N∑

n=1

(aσ †
n + H.c.) + iηc(a†e−iω�t − H.c.),

(25)

consisting of the free cavity field at frequency ωc and with
bosonic mode a and the Tavis-Cummings interaction with
the unit light-matter coupling strength g and the laser field
drive with amplitude ηc and frequency ω�. For convenience,
we have made the assumption here that all molecules are
identical. Let us proceed with a set of effective QLEs for the
cavity mode a and the state dependent polaron operators σ̃e,n

and σ̃g,n for the nth molecule in the rotating frame at the laser
frequency ω�:

ȧ = −(ic + κ )a − ig
N∑

n=1

σn +
√

2κ1A1,in +
√

2κ2a2,in,

(26a)

˙̃σe,n ≈ −(i� + γ )σ̃e,n + igaS†
e,nD†

e,nei(νe−νg)b†
e,nbe,nt

+
√

2γ σin,nS†
e,nD†

e,nei(νe−νg)b†
e,nbe,nt , (26b)

˙̃σg,n ≈ −(i� + γ )σ̃g,n − igaei(νe−νg)b†
g,nbg,ntS†

g,nD†
g,n

+
√

2γ ei(νe−νg)b†
g,nbg,ntS†

g,nD†
g,nσin,n. (26c)

Here, the total dissipation for the cavity field κ = κ1 + κ2

encompasses the losses via both mirrors. The operator A1,in =
ηc/

√
2κ1 + a1,in describes the input classical field coming

through the left mirror ηc/
√

2κ1 and the zero-average in-
put noise with the only nonvanishing two-time correlations
〈a1,in(t )a†

1,in(t ′)〉 = δ(t − t ′). Additionally, zero-average input
noise comes through the right side mirror with similar corre-
lations 〈a2,in(t )a†

2,in(t ′)〉 = δ(t − t ′) and uncorrelated with the
a1,in(t ).

The Markovian limit is achieved under the large relax-
ation rate condition for the vibrational mode, i.e., � � κ and
� � γ . In this case, the approach to treat the vibrations as a
local phonon bath is still applicable. By formally integrating
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the equations for the polaron operator, tracing over the cavity
mode as well as electronic degrees of freedom and taking the
Laplace transformation, we have

〈σn〉 =ig(Gem + Gab)〈Pe,na〉 − igGab〈a〉. (27)

The coupling between the cavity mode a and the projection
operator Pe,n leads to nonlinear effects. However, we restrict
our analysis to the weak excitation regime, i.e., the cavity
photon number is much smaller than unity and the population
of the excited electronic state |e〉 is negligible (under the con-
dition that ηc � κ). In other words, this approximation allows
for the construction of a linear-response theory formalism
where the transmitted light gives information on the position
and linewidths of the hybrid light-matter eigenstates of the
system. In the case of identical conditions, the expectation
value of the electronic coherence operator σn for the nth
molecule will be equivalent to that of the other molecules,
i.e., 〈σ 〉 = 〈σn〉 = 〈σm〉 (m �= n). Then, the equations of mo-
tion are written in the vector form (in the Laplace transform
domain) as Mv + vc = 0, with the drift matrix

M =
(

−(ic + κ ) − s −iNg

−ig −1/Gab

)
, (28)

and the definitions v = (〈a〉, 〈σ 〉)T and vc = (ηc, 0)T . The
diagonalization of the drift matrix (under resonance condition
c = 0) yields the frequencies ω± and linewidths γ± [35,39]
of the two polaritons as

ω± = −eff

2
± 1

2
I
√

(�eff − κ + ieff )2 − Ng2, (29a)

γ± = �eff + κ

2
± 1

2
R

√
(�eff − κ + ieff )2 − Ng2, (29b)

with �eff = R lims→0 1/Gab and eff = I lims→0 1/Gab de-
noting the effective decay rate and additional frequency shift.
These particularities of the polaritons can be explored in a
very simple way by performing a scan of the laser frequency
around the cavity resonance and noticing the position of the
peaks corresponding to the hybrid light-matter states. This can
be done at the analytical level in the weak excitation regime
and compared to full exact numerics. We define the complex
cavity transmission amplitude as the ratio of the normalized
continuous outgoing field versus incoming field amplitudes,

T =
√

2κ2〈a〉SS

ηc/
√

2κ1
, (30)

and illustrate its behavior with respect to the scanning laser
frequency in Fig. 5. The quantity 〈a〉SS is the average
value of the cavity mode amplitude in steady state in the
linear-response regime:

〈a〉SS = ηc

Ng2χab + κ + i(ωc − ω�)
, (31)

with χab = lim
s→0

1/Gab.

We illustrate numerical and analytical results in Fig. 5
where the profile of the cavity transmission at ωc = ω00 is
plotted. The presence of the linear electron-vibron coupling
scaling with λ1 induces an interaction between upper and
lower polaritons already presented at the theoretical level in

Numerics Analytics(a)

(b)

FIG. 5. Cavity transmission (|T |2) of the molecule with various
linear and quadratic electron-vibron couplings λ1 and λ2 for a strong
coupling to a single cavity mode. (a) Cavity transmission with a
single molecule. (b) Cavity transmission as a function of the number
of molecules in the cavity. The white lines represent the profile at
N = 25 and 100, respectively. Parameters: ωc = ω00, g = 3κ, νg =
10κ, γ = 0.01κ, � = 20κ, 2κ1 = 2κ2 = κ; the driving is assumed
very weak ηc/κ = 0.001.

a few treatments [1,7,8]. Instead, at the level of a single
molecule, the quadratic interaction will suppress the polariton
cross talk, as illustrated in Fig. 5(a). In essence, the squeezing
term is responsible with a shift in the molecular resonance
which then in turn brings the cavity off resonance with the
electronic transition except the zero-phonon transition pro-
cess. Increasing the number of molecules while assuming very
weak driving conditions presents a different situation. This
is shown in Fig. 5(b) as an effective reduction of the upper
polariton with increasing particle number.

V. DISCUSSION AND CONCLUSIONS

In summary, we have applied the toolbox of open system
dynamics and in particular the QLEs formalism to analytically
describe spectroscopic properties of solid-state embedded
molecules in free space or in optical cavity settings. In par-
ticular, we generalized our previous approach introduced in
Ref. [7] to a scenario where the potential landscapes of a
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FIG. 6. Power spectra for (a) emission and (b) absorption pro-
cesses with δQ/νQ = 0.1 (blue-solid) and δQ/νQ = 0 (red-dashed).
The other parameters are the same as in Fig. 3.

molecule have unequal curvatures in the ground and excited
electronic state. This has seen the introduction of a general-
ized polaron operator where the electronic degree of freedom
is dressed by vibrations via a displacement operation fol-
lowed by an additional squeezing operation. The first effect
is seen in the emergent asymmetry between absorption and
emission profiles for molecular spectroscopy. A second effect
that emerges from our analytical calculations is the con-
text of cavity quantum electrodynamics where the additional
squeezing operation leads to a detuning between the
bare molecular resonance and the cavity resonance. Our
calculations can be relevant in the direction of optomechanics
or optovibronics, owing to the strong electron-vibron cou-
plings, albeit under very lossy conditions. Let us remark that
the harmonic oscillator approximation for the potential land-

scapes proves rather robust owing to the high frequency of
vibrational modes and their large relaxation rate. This can be
easily observed by incorporating an anharmonic term in the
Hamiltonian

HQ
anh = δQb†

Qb†
QbQbQ, (32)

both for ground and excited states Q ∈ {e, g}, an approach
widely used in the literature [38,40,41]. The perturbation by
HQ

anh affects the intrinsic frequencies of molecular vibrational
energy levels and causes a shift in the central frequencies of
the Lorentzian profiles γ ↑/↓

m as shown in Fig. 6. Instead, the
linewidth of the Lorentzian profile remains almost unchanged,
indicating minimal additional dephasing effects on the elec-
tronic transition (see Appendix G for details). We remark that
the primary determinant of the molecular vibration relaxation
rates is the influence of the phonon reservoir in a solid-state
environment, as discussed in Ref. [8]. However, owing to the
high vibrational frequencies, experimental observations under
cryogenic conditions confirm that the fluorescence is lifetime
limited [42,43].
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APPENDIX A: THE MODIFIED HOLSTEIN
HAMILTONIAN

Let us illustrate how the modified Holstein Hamiltonian
arises, how it can be diagonalized, and how the quantum
Langevin equations for the squeezed and displaced polaron
operators can be derived.

1. First-principles derivation of the nonlinear Hamiltonian

We consider a single molecule with ground |g〉 (frequency
ωg) and excited |e〉 (frequency ωe) electronic levels coupled
to the ground phonons (νg) and the excited phonons (νe) of
a single vibrational mode with mass μ respectively. Assume
that the ground and excited electronic states have different
parabolic shape around the minima. Then the total Hamilto-
nian of the electron-phonon system reads as (h̄ = 1)

H =
[
ωe + P̂2

2μ
+ 1

2
μν2

e (R̂ − Reg)2

]
σ †σ +

(
ωg + P̂2

2μ
+ 1

2
μν2

g R̂2

)
σσ †

= ωgσσ † + (
ωe + μν2

e R2
eg/2

)
σ †σ + P̂2

2μ
+ 1

2
μν2

g R̂2 + 1

2
μν2

e RegR̂σ †σ + 1

2
μ

(
ν2

e − ν2
g

)
R̂2σ †σ, (A1)

where σ = |g〉〈e| is the Pauli lowering operator. By rewriting
position (R̂) and momentum (P̂) in terms of creation b† =
(R̂/RZPM − iRZPMP̂)/

√
2 and annihilation b = (R̂/RZPM +

iRZPMP̂)/
√

2 operators that fulfill [b, b†] = 1, the Hamilto-

nian in Eq. (A1) can be written as

H = ω0σ
†σ + νgb†b + λ1νg(b + b†)σ †σ

+ λ2νg(b + b†)2σ †σ, (A2)
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where ω0 = ωe − ωg + μν2
e R2

eg/2 = ωe − ωg + λ2
1ν

3
g/ν2

e is
the modified frequency of the electronic excited state. λ1 =
μν2

e RegRZPM/νg and λ2 = (ν2
e − ν2

g )/4ν2
g are the linear and

quadratic coupling constants.

2. Quadratic Holstein Hamiltonian diagonalization

In the presence of both linear and quadratic couplings, the
diagonalization of the Hamiltonian in Eq. (3) can be achieved
by performing a sequence of unitary transformations. This
transformation could be accomplished by first removing
all the linear terms via the polaron transformation Ud =
[D(rd )]σ

†σ = σσ † + D(rd )σ †σ , where the displacement op-
erator is defined as D(rd ) = exp[rd (b† − b)]. The polaron
transformation has the effect that b → U†

d bUd = b + rdσ
†σ .

Specifically, when

rd = − λ1

1 + 4λ2
= −λ1

ν2
g

ν2
e

, (A3)

the resulting Hamiltonian H1 = U†
dHUd can be written as

H1 = [
ω0 + r2

dνg(1 + 4λ2) + 2λ1rd
]
σ †σ + νgb†b

+ λ2νg(b + b†)2σ †σ. (A4)

We now diagonalize this Hamiltonian via squeezing
transformation Us = [S (rs)]σ

†σ = σσ † + S (rs)σ †σ , where
S (rs) = exp[rs(b2 − b†2

)/2] is a single mode squeezing oper-
ator, so as to remove the quadratic terms. Under this transfor-
mation b → U†

s bUs = bσσ † + [b cosh(rs) + b† sinh(rs)]σ †σ ,
the resulting Hamiltonian H2 = U†

s H1Us can be written as

H2 = νgb†bσσ † + νeb†bσ †σ + ω00σ
†σ (A5)

under the condition of

e4rs = 1 + 4λ2 = ν2
e

ν2
g

. (A6)

Here ω00 = ω0 + rdλ1νg + (νe − νg)/2 is the zero-phonon
line. This transformation could be also accomplished in a re-
verse order, by first removing quadratic terms under applying
U ′

s = [S (rs)]σ
†σ and then removing the all linear terms via

polaron transformation U ′
d = [D(rders )]σ

†σ . The results are, of
course, identical.

APPENDIX B: DERIVATION OF THE EFFECTIVE
QUANTUM LANGEVIN EQUATIONS FOR

THE ELECTRONIC TRANSITION

1. Effective quantum Langevin equation
for the vibrational mode

Let us consider one special case where the relaxation rate
for the vibrations is much larger than the rate of change for
the population on the electric excited state. Then the dynam-
ical behaviors for vibrations with molecules populating on
the state |e〉 tend to be different from those with molecules
occupying in the state |g〉. This fact motivates the partitioning
of the total Hilbert space into the orthogonal subspaces via the
following two projection operators:

Pe = σ †σ and Pg = σσ †. (B1)

The bosonic annihilation operator can thus be partitioned into
b = bσ †σ + bσσ †, which gives two dynamical equations cor-
responding to the operator b1 = bσ †σ and b2 = bσσ † as

ḃ1 = b
d

dt
(σ †σ ) − [i(1 + 2λ2)νg + �]b1 − iλ1νgσ

†σ

− i2λ2νgb†
1 + �rdPe +

√
2�Bin

1 Pe, (B2a)

ḃ2 = −b
d

dt
(σ †σ ) − (iν + �)b2 +

√
2�Bin

2 Pg, (B2b)

where Bin
1 and Bin

2 are the noise operators.
Assuming a large relaxation rate for the vibrational mode,

the evolution of σ †σ can be approximately negligible, while
the vibrational mode rapidly relaxes to the steady situation.
Then we can get the effective dynamical equations of b1

and b2:

ḃ1 ≈ 1 − [i(1 + 2λ2)νg + �]b1 − iλ1νgPe

− i2λ2νgb†
1 + �rdPe +

√
2�Bin

1 Pe, (B3a)

ḃ21 ≈ 1 − (iν + �)b2 +
√

2�Bin
2 Pg. (B3b)

By introducing be = Ub1U† = cosh rsb1 + sinh rsb
†
1 −

rd exp(rs)Pe, one can get the effective Langevin equation
for be:

d

dt
be = −(iνe + �)be +

√
2�Bin

e Pe. (B4)

Under the condition � � γ , and � � η�, one can assume the
correlation between noise operators Bin

e and Bin
g is negligible

as

〈
Bin†

e (t )Bin
g (τ )

〉 ≈ 0 and
〈
Bin†

g (t )Bin
e (τ )

〉 ≈ 0, (B5)

and the nonvanishing correlation functions obey the
fluctuation-dissipation relation:

〈
Bin†

e (t )Bin
e (τ )

〉 = δ(t − τ ) and〈
Bin†

g (t )Bin
g (τ )

〉 = δ(t − τ ). (B6)

2. Effective quantum Langevin equation
for the electronic transition

Let us pay attention to the electronic transition by introduc-
ing the “dressed” dipole operator, i.e., polaron operator, σ̃ ′

e =
σS†

1D
†
1. The Langevin equation ˙̃σ ′

e = σ̇S†
1D

†
1 + σ∂t (S†

1D
†
1 )
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in a rotating frame at driving frequency ω� can be expressed as

˙̃σ ′
e ≈ −[i(ω00 − ω�) + γ ]σ̃ ′

e − η�S†
1D

†
1σ

†σ +
√

2γ σinS†
1D

†
1 − i

(
1 − νg

νe

)
σ̃ ′

e[νgb†
1b1 + λ1νg(b1 + b†

1) + λ2νg(b1 + b†
1)2], (B7)

with S1 = exp[rs(b2
1 − b†2

1 )/2]Pe and D1 = exp[rd (b†
1 − b1)]Pe.

Considering that the quadratic terms in the second line of the equation above, i.e., νgb†
1b1 + λ1νg(b1 + b1) + λ2νg(b1 + b†

1)2,
can be reformed as νeb†

ebe, where the definition of be is introduced in Eq. (B4), we can thus reform the equation above into

˙̃̃σe ≈ −[i(ω00 − ω�) + γ ] ˜̃σe − i(νe − νg) ˜̃σeb†
ebe − η�S†

eD†
eσ

†σ +
√

2γ σinS†
eD†

e , (B8)

with ˜̃σe = σS†
eD†

e , Se = exp[(rs(b2 − b†2)/2)σ †σ ]Pe, and De = exp[rd (b† − b)σ †σ ]Pe.
Taking into account the dynamical equation for exp[i(νe − νg)b†

ebet] given by

d

dt
ei(νe−νg)b†

ebet = i(νe − νg)
∫ 1

0
eiα(νe−νg)b†

ebet d

dt
(b†

ebet )ei(1−α)i(νe−νg)b†
ebet dα

= i(νe − νg)b†
ebeei(νe−νg)b†

ebet + i(νe − νg)t

[
−2�b†

ebe +
√

2�
ei(νe−νg)t − 1

i(νe − νg)t
b†

eBin
e + H.c.

]
, (B9)

one can recast Eq. (B8) into

˙̃σe ≈ −[i(ω00 − ω�) + γ ]σ̃e − η�S†
eD†

e ei(νe−νg)b†
ebetσ †σ

+
√

2γ σinS†
eD†

e ei(νe−νg)b†
ebet , (B10)

with σ̃e = ˜̃σe exp[(iνe − iνg)b†
ebet]. Here, we have dropped

the second term on the right side of Eq. (B9) to obtain the
equation above and to receive a sufficient approximation.

Notably, Eq. (B8) only concludes the contribution of the
vibrations projecting to the manifold of Pe. To get the dynam-
ics of the system in the whole Hilbert space, one also needs to
get the dynamics of the general polaron operator ˜̃σg = S†

gD†
gσ

for the vibrational mode projecting to the manifold of Pg with
Sg = exp[rs(bg − b†2

g )/2]Pg, and Dg = [rd (bg − b†
g)]Pg:

˙̃̃σg ≈ −[i(ω00 − ω�) + γ ] ˜̃σg − i(νe − νg)b†
gbg ˜̃σg

+ η�S†
gD†

gσσ † +
√

2γ σinS†
gD†

gσσ †. (B11)

Repeating the process to derive the dynamical equation of
σ̃e, one can recast the above equation into

˙̃σg ≈−[i(ω00 − ω�) + γ ]σ̃g + ei(νe−νg)b†
gbgtη�S†

gD†
gσσ †

+
√

2γ σinei(νe−νg)b†
gbgtS†

gD†
gσσ †, (B12)

with σ̃g = exp[(iνe − iνg)b†
gbgt] ˜̃σg.

Meanwhile, one can also get the dynamical equation for
the population of the excited state, given by

d

dt
σ †σ = −2γ σ †σ + η�(σ + σ †) +

√
2γ (σ †σin + σσ

†
in ).

(B13)

APPENDIX C: VIBRATIONAL DYNAMICS

As discussed in the previous section, the electronic tran-
sition is dressed by vibrations. For the further calculation of
the electronic transition, we here analyze the properties of vi-
brations and derive the expression for the two time-correlation
terms for the product of squeezing and displacement operators
S†

gD†
g and S†

eD†
e .

1. Nonlinear vibrational dynamics

In the previous section, we have derived the effective
Langevin equation (B4) describing the dynamics of the vibra-
tional mode projected onto the manifold of Pe. One can easily
obtain the exact solution of such an equation, which is given
by

be =
√

2�

∫ t

−∞
dτ e−(iνe+�)(t−τ )Bin

e (τ )Pe(τ ). (C1)

Due to the correlation time for vibrations being much shorter
than for the electronic transitions, the quantity for σ †σ (τ )
varies little around σ †σ (t ). We can thus proceed via a Markov
approximation by taking it out of the integral, which yields

be =
√

2�Pe(t )
∫ t

−∞
dτ e−(iνe+�)(t−τ )Bin

e (τ ). (C2)

With this, we can derive the two-time correlation for t > τ :

〈be(t )b†
e(τ )〉vib = e−(iνe+�)(t−τ )Pe(t ), (C3a)

〈be(τ )b†
e(t )〉vib = e−(−iνe+�)(t−τ )Pe(t ), (C3b)

where 〈·〉vib denotes taking the average over the degrees of
freedom of the vibrational mode.

Similar to the case for calculating be, we can obtain the
two-time correlation term for the vibrational operator bg pro-
jected onto the manifold of Pg as

〈bg(t )b†
g(τ )〉

vib
= e−(iνg+�)(t−τ )σσ †(t ), (C4a)

〈bg(τ )b†
g(t )〉

vib
= e(iνg−�)(t−τ )σσ †(t ). (C4b)

Thus, the two-time correlation function for the vibrational
mode in the whole Hilbert space reads

〈b(t + τ )b†(t )〉 ≈〈bg(τ )b†
g(0)〉 + 〈be(τ )b†

e(0)〉
≈ e−(iνg+�)(τ )〈σσ †(t )〉 + e−(iνe+�)(τ )

× 〈σ †σ (t )〉. (C5)

Here, the correlations between different manifolds have been
properly dropped because of the much smaller value for such
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FIG. 7. Normalized two-time correlation function in steady state for (a) 〈bg(τ )b†
g(0)〉, (b) 〈be(τ )b†

e(0)〉, (c) 〈be(τ )b†
g(0)〉, and (d)

〈bg(τ )b†
e(0)〉. The blue-solid lines in (a)–(d) are generated with the toolbox QUTIP [44] under the following parameters νg = 1, νe/νg = 2,

�/νg = 0.1, γ /νg = 0.01, and η�/γ = 2. The red-dashed lines in (a) and (b) are calculated via the first and the second term in the right side of
Eq. (C5), respectively.

terms 〈be(τ )b†
g(0)〉 and 〈bg(τ )b†

e(0)〉 comparing with that in
the same manifold, as illustrated in Fig. 7.

2. Two-time correlation function for
the displacement-squeezing operator

Using that the squeezing operator can be written in a dis-
entangled form as

S = exp
[− 1

2 tanh rsb
†2

]
exp

[− ln cosh rs
(
b†b + 1

2

)]
× exp

[
1
2 tanh rsb

2
]
, (C6)

we can calculate the two-time correlation function for the
displacement-squeezing operator under the vacuum state. For
instance, the two-time correlation for the manifold of Pe is
given by

〈S†
e (τ )D†

e (τ )De(t )Se(t )〉vib

= e−r2
d α

cosh(rs)

〈
e−βb2

e (τ )eαrd be(τ )eαrd b†
e (t )e−βb†2

e (t )
〉
vib, (C7)

with α = tanh rs + 1 = 2νe/(νe + νg) and β = (tanh rs)/2.
Using the generating function of the Hermite polynomials

given by

e2xϕ−ϕ2 =
∞∑

n=0

Hn(x)
ϕn

n!
, (C8)

we can expand the first and second exponential in the
equation above in terms of Hermite polynomials with x =
αrd/(2

√
β ) and ϕ = √

βbe. Thus, we finally obtain the ex-
pression for the two-time correlation function under the
Isserlis theorem:

〈S†
e (τ )D†

e (τ )De(t )Se(t )〉vib = Fem(−νe, t − τ )Pe(t ), (C9)

where

Fem(ν, t ) =
∞∑

m=0

Sem
m e−m(iν+�)t , (C10a)

Sem
m = e−r2

d α

cosh(rs)

[
Hm

(
αrd

2
√

β

)]2
βm

m!
. (C10b)

Of course, we can obtain the result for the following equa-
tion in the same way:〈

S†
e (τ )D†

e (τ )ei(νe−νg)b†
ebeτ e−i(νe−νg)b†

ebetDe(t )Se(t )
〉
vib

= Fem(−νg, t − τ )Pe(t ). (C11)

The two-time correlation in the manifold of Pg reads

〈Dg(t )Sg(t )S†
g (τ )D†

g (τ )〉
vib

= Fab(νg, t − τ )Pg(t ), (C12)

and also

〈Dg(t )Sg(t )e−i(νe−νg)b†
gbgt ei(νe−νg)b†

gbgτS†
g (τ )D†

g (τ )〉
vib

= Fab(νe, t − τ )Pg(t ), (C13)

where

Fab(ν, t ) =
∞∑

m=0

Sab
m e−m(iν+�)t , (C14a)

Sab
m = eαr2

d exp (2rs )

cosh(rs)

[
Hm

(
− iαrd exp (rs)

2
√

β

)]2 (−β )m

m!
,

(C14b)

with α = tanh rs − 1 = −2νg/(νe + νg).
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APPENDIX D: STABILITY ANALYSIS

It is straightforward to obtain the expression for the Pauli operator in the whole Hilbert space by formally integrating
Eqs. (B10) and (B12):

σ (t ) =
∫ t

0
dτ [−η� +

√
2�σin(τ )]e[−i(ω00−ω� )−γ ](t−τ )S†

e (τ )D†
e (τ )ei(νe−νg)b†

ebeτ e−i(νe−νg)b†
ebetDe(t )Se(t )

+
∫ t

0
dτ [η� +

√
2�σin(τ )]e[−i(ω00−ω� )−γ ](t−τ )Dg(t )Sg(t )e−i(νe−νg)b†

gbgt ei(νe−νg)b†
gbgτS†

g (τ )D†
g (τ ), (D1)

with the initial value σ (0) = 0.
Under the assumption that the correlation time for the vibrations is much shorter than that for the electronic transition, we

can treat the vibrations as a Markovian phonon bath. By taking the average of the vibrational mode and substituting Eq. (C11)
as well as Eq. (C13) into the equation above, we then obtain

σ (t ) =
∫ ∞

0
dτ [−η� +

√
2�σin(τ )]Gem(−νg, t − τ )Pe(τ ) +

∫ ∞

0
dτ [η� +

√
2�σin(τ )]Gab(νe, t − τ )Pg(τ ), (D2)

with GQ(ν, τ ) = exp[(iω� − iω00 − γ )(t − τ )]FQ(ν, t −
τ )�(t − τ ) and Q ∈ {em, ab}, where �(t ) is the Heaviside
step function.

Tracing over the electronic transition, we finally obtain the
simplified formal solution for 〈σ 〉 as

〈σ (t )〉 = − η�

∫ ∞

0
dτ Gem(−νg, t − τ )Pe(τ )

+ η�

∫ ∞

0
dτ Gab(νe, t − τ )[1 − Pe(τ )], (D3)

with the population of the electronic excited state Pe = 〈σ †σ 〉.
We proceed with our calculation via the Laplace trans-

formation [defined as f (s) = ∫ ∞
0 dt f (t ) exp(−st ) for a

time-dependent function f (t ) at t � 0]. Then Eq. (D3) can
be written in the Laplace domain as

〈σ 〉 = η�

s
Gab − η�Pe(Gab + Gem ), (D4)

where Gem and Gab are the Laplace transform of Gab(νe, t ) and
Gem(−νg, t ), expressed as

Gab =
∞∑

m=0

Sab
m

s + m� + γ + i(ω00 − ω� + mνe)
, (D5a)

Gem =
∞∑

m=0

Sem
m

s + γ + m� + i(ω00 − ω� − mνg)
. (D5b)

Assuming that the molecule is prepared in the electronic
ground state |g〉 followed by taking an average over the elec-
tronic transition on both sides of Eq. (B13), and applying the
Laplace transformation, we finally obtain

sPe = −2γ Pe + η�(〈σ 〉 + 〈σ 〉∗). (D6)

Plugging Eq. (D6) into Eq. (D3), we can get

〈σ 〉 = i2η3
�I[GabG

∗
em] + η�(s + 2γ )Gab

s
(
2γ + s + 2η2

�R[Gab + Gem]
) , (D7a)

Pe = 2η2
�

s
(
2γ + s + 2η2

�R[Gab + Gem]
)R[Gab], (D7b)

where I[·] and R[·] denote taking the imaginary and real part,
respectively. According to the final value theorem, we get the
steady values

〈σ 〉SS = lim
s→0

s〈σ 〉 = iη3
�I[χabχ

∗
em] + η�γ χab

γ + η2
�R[χab + χem]

, (D8a)

PSS
e = lim

s→0
sPe = η2

�

γ + η2
�R[χab + χem]

R[χab], (D8b)

with χQ = lim
s→0

GQ. In the limit of weak driving η� � γ , the

equation above can be simplified to

〈σ 〉SS → η�χab =
∞∑

m=0

Sab
m

m� + γ + i(ω00 − ω� + mνe)
,

(D9a)

PSS
e → η2

�

γ
R[χab] = η2

�

γ

∞∑
m=0

Sab
m (m� + γ )

(m� + γ )2+(ω00 − ω� + mνe)2 .

(D9b)

APPENDIX E: RATE EQUATION

For large vibrational relaxation rates � � η�, the elec-
tronic transition is usually going from the lowest vibrational
state in both electronic states |g〉 and |e〉. Thus, the motion of
the population pe

m on the state |e; me〉 as well as the population
pg

m on the state |g; mg〉 are given phenomenology by

∂t pe
m = 2γ ↑

m pg
0 + �pe

m+1 − �pe
m,

∂t pe
m−1 = 2γ

↑
m−1 pg

0 + �pe
m − �pe

m−1,

... (E1a)

∂t pe
0 = 2γ

↑
0 pg

0 + �pe
0 − 2γ pe

0 − 2
∞∑

m=0

γ ↓
m pe

0,

∂t pg
m = 2γ ↓

m pe
0 + 2γm pe

0 + �pg
m+1 − �pg

m,

∂t pe
m−1 = 2γ

↓
m−1 pe

0 + 2γm−1 pe
0 + �pg

m − �pg
m−1,

...

∂t pg
0 = 2γ

↓
0 pe + 2γ0 pe

0 + �pe
0 − 2

∞∑
m=0

γ ↑
m pe

0, (E1b)
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where γm describe the incoherent spontaneous emission
progress |e; 0〉 → |g; m〉 satisfying

∑∞
m=0 γm = γ . It is obvi-

ous that the total population on the state |e〉 is the sum of all
the occupations of its sublevels as pe = ∑∞

m=0 pe
m. Thus, we

have

ṗe = 2
∞∑

m=0

γ ↑
m pg

0 − 2γ pe
0 − 2

∞∑
m=0

γ ↓
m pe

0. (E2)

Considering less population on states |e; me > 0〉 and
|g; mg > 0〉 due to the large vibrational relaxation �, we can
simplify Eq. (E2) into

ṗe = 2
∞∑

m=0

γ ↑
m (1 − pe) − 2

(
γ +

∞∑
m=0

γ ↓
m

)
pe (E3)

by assuming pe ≈ pe
0 and pg = 1 − pe ≈ pg

0.

APPENDIX F: ABSORPTION AND EMISSION SPECTRA

1. Effective quantum Langevin equation for the commutator

In this subsection, we will describe the process to find the
absorption and emission spectroscopic signal. Before that, let
us introduce the following correlators dressed by a vibrational
mode

C̃e
em(t + τ ) = σ †(t )σ (t + τ )S†

e (t + τ )D†
e (t + τ ) and

C̃g
em(t + τ ) = S†

g (t + τ )D†
g (t + τ )σ †(t )σ (t + τ ) (F1)

for emission and

C̃e
ab(t + τ ) = σ (t + τ )σ †(t )S†

e (t + τ )D†
e (t + τ ) and

C̃g
ab(t + τ ) = S†

g (t + τ )D†
g (t + τ )σ (t + τ )σ †(t ) (F2)

for absorption. According to the discussion in Appendix B, one will obtain

dC̃e
em

dτ
≈−(iω00 + γ )C̃e

em − i(νe − νg)C̃e
emb†

ebe(t + τ ) − η�e−iωtσ †(t )S†
e (t + τ )D†

e (t + τ )Pe(t + τ )

+
√

2γ σ †(t )σin(t + τ )S†
e (t + τ )D†

e (t + τ )Pe(t + τ ), (F3a)

dC̃g
em

dτ
≈ −(iω00 + γ )C̃g

em − i(νe − νg)b†
gbg(t + τ )C̃e

em + η�e−iωtS†
g (t + τ )D†

g (t + τ )Pg(t + τ )σ †(t )

+
√

2γS†
g (t + τ )D†

g (t + τ )Pe(t + τ )σ †(t )σin(t + τ ), (F3b)

dC̃e
ab

dτ
≈ −(iω00 + γ )C̃e

ab − i(νe − νg)C̃e
abb†

ebe(t + τ ) − η�e−iωtσ †(t )S†
e (t + τ )D†

e (t + τ )Pe(t + τ )

+
√

2γ σin(t + τ )σ †(t )S†
e (t + τ )D†

e (t + τ )Pe(t + τ ), (F3c)

dC̃g
ab

dτ
≈ −(iω00 + γ )C̃g

ab − i(νe − νg)b†
gbg(t + τ )C̃e

ab + η�e−iωtS†
g (t + τ )D†

g (t + τ )Pg(t + τ )σ †(t )

+
√

2γS†
g (t + τ )D†

g (t + τ )Pe(t + τ )σin(t + τ )σ †(t ). (F3d)

2. Emission spectra in the transient regime

We now assume the molecule is initially prepared in the excited state |e; 0̃〉 to compute the spectrum of emission in the
transient regime. By setting η� = 0, one can obtain the expression of the two-time correlation function 〈σ †(0)σ (τ )〉 through
Eq. (F3):

〈σ †(0)σ (t )〉 = Fem(νg, τ )e−(iω00+γ )t . (F4)

Taking the Fourier transformation gives the expression of the emission spectrum:

Sem(ω) = 2R
∫ ∞

0
dτ Fem(νg, τ )e[iω−(iω00+γ )]τ =

∞∑
m=0

Sem
m (γ + m�)

(γ + m�)2 + (ω00 − ω − mνg)2
. (F5)

3. Absorption spectra in the stability regime

The formal solution of the two-time correlation function 〈σ (t + τ )σ †(t )〉 is given by

〈σ (t + τ )σ †(t )〉 = − η�

∫ ∞

t
dτGem(−νg, t + τ − τ )〈Pe(τ )σ †(t )〉 + η�

∫ ∞

t
dτGab(νe, t + τ − τ )〈Pg(τ )σ †(t )〉

+ Pg(t )Fab(νe, τ )e−(iω00+γ )t . (F6)
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For simplicity, let us assume the amplitude for the driving field is very weak, so that few molecules are occupying their excited
state, i.e., Pe(t ) � 1 and Pg(t ) ≈ 1. The solution will become

〈σ (t + τ )σ †(t )〉 ≈ η�

∫ ∞

t
dτ Gab(νe, t + τ − τ )〈σ †(t )〉 + Fab(νe, τ )e−(iω00+γ )τ

= η�

∫ ∞

t
dτ e−(iω00−iω�+γ )(t+τ−τ )Fab(νe, t + τ − τ )�(t + τ − τ )〈σ †(t )〉 + Fab(νe, τ )e−(iω00+γ )τ . (F7)

Let us pay attention to the steady-state regime by setting t → ∞. According to Eq. (D9b), we can get the expectation value of
the transition dipole moment beyond the rotating frame:

lim
t→∞ 〈σ (t )〉 = χαe−iω�t . (F8)

Inserting the expression of the function Fab(ν, t ) given by Eq. (C14) into Eq. (F7), we obtain

lim
t→∞ 〈σ (t + τ )σ †(t )〉 ≈

∞∑
m,n=0

η2
�Sab

m Sab
n [e−iω�τ − e−(iω00+imνe+γ+m�)τ ]

[γ + m� + i(ω00 + mν − ω�)][γ + n� − i(ω00 + nνe − ω�)]
(F9a)

+
∞∑

m=0

Sab
m e−(iω00+imνe+γ+m�)τ . (F9b)

As η� � γ , the contribution of the term in Eq. (F9a) can be ignored. Finally, we can simplify the expression of 〈σ (t + τ )σ †(t )〉
into

lim
t→∞ 〈σ (t + τ )σ †(t )〉 =

∞∑
m=0

Sab
m e−(iω00−imνe+γ+m�)τ . (F10)

Performing the Fourier transform, the absorption spectrum is obtained as

Sab(ω) = 2R
∫ ∞

0
dτ lim

t→∞ 〈σ (t + τ )σ †(t )〉eiωτ =
∞∑

m=0

Sab
m (γ + m�)

(γ + m�)2 + (ω + mνe − ω00)2 . (F11)

APPENDIX G: INFLUENCE OF THE ANHARMONIC TERMS

Let us introduce nonlinear terms in the Hamiltonian Hanh = Hg
anh + He

anh to investigate the dynamics of the system beyond
the harmonic approximation. We defined HQ

anh = δQb†b†bbPQ where Q stands for either g or e. Consequently, the evolution of
the molecule under the classical driving will be dictated by the following Hamiltonian in the polaron picture:

H′ = H̃ + Hanh + iη�(σ †S†D†e−iω�t − σDSeiω�t ). (G1)

1. Vibrational dynamics

According to Appendix B, the Langevin equations for the vibrational mode read

ḃQ ≈ −(iνQ + �)bQ − i2δQb†
QbQbQ + noise, (G2a)

∂t b
†
QbQbQ ≈ −(iνQ + 2δQ + 3�)b†

QbQbQ + 2δQb†
Qb†

QbQbQ + noise. (G2b)

We focus on the low occupancy limit, which should be valid for either low temperatures or high vibrational frequencies. Thus,
the term b†

Qb†
QbQbQ can be neglected as its average value tends to zero. Finally we have

∂t b
†
QbQbQ ≈ −(iνQ + 2δQ + 3�)b†

QbQbQ + noise. (G2c)

Making use the quantum regression theorem, it is straightforward to obtain the two-time correlation function for the vibrational
mode:

〈bQ(t )b†
Q(τ )〉

vib
= e−(iνQ+�)(t−τ )PQ. (G3)

2. Electronic transition

We can now derive equations of motion for both polaron operators,

˙̃̃σe ≈ −[i(ω00 − ω�) + γ ] ˜̃σe − i(δe − δg) ˜̃σeb†
eb†

ebe − i(νe − νg) ˜̃σeb†
eb†

ebe − η�S†
eD†

eσ
†σ +

√
2γ σinS†

eD†
e , (G4a)

˙̃̃σg ≈ −[i(ω00 − ω�) + γ ] ˜̃σg + i(δe − δg)b†
gb†

gbg ˜̃σg + i(νe − νg)b†
gbg ˜̃σg + η�S†

gD†
gσσ † +

√
2γ σinS†

gD†
g, (G4b)
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FIG. 8. Molecular spectra for (a) emission progress and (b) absorption progress. The red-dashed lines are numerical simulation under the
following parameters under the following parameters δg/νg = δe/νe = 0.1. The others are the same as those in Fig. 3.

and formally integrate to obtain the time evolution:

〈σ (t )〉 = −η�

∫ t

0
dτ e−[i(ω00−ω� )+γ ](t−τ )〈S†

e (τ )D†
e (τ )ei(νe−νg)b†

ebeτ ei(δe−δg)b†
eb†

ebebeτ e−i(δe−δg)b†
eb†

ebebet e−i(νe−νg)b†
ebetDe(t )Se(t )〉vib

+ η�

∫ t

0
dτ e−[i(ω00−ω� )+γ ](t−τ )〈Dg(t )Sg(t )e−i(νe−νg)b†

gbgt e−i(δe−δg)b†
gb†

gbgbgt ei(δe−δg)b†
gb†

gbgbgτ ei(νe−νg)b†
gbgτS†

g (τ ))D†
g (τ )〉vib.

(G5)
Let us direct our focus to the two-time correlation function in the above expression. It is an exceedingly challenging task to obtain
their expression according to the process introduced in Appendix C. Nevertheless, we can still utilize the pump-probe scenario
for analysis. Since the Fock states |mQ〉 still remain eigenstates of the anharmonic Hamiltonian Hanh, we can obtain the molecular
transition frequencies ω00 + mνe + (m2 − m)δe for the absorption process |g; 0g〉 → |e; me〉 and ω00 − mνg − (m2 − m)δg for the
emission progress |e; 0e〉 → |g; mg〉. Consequently, we can straightforwardly derive the expressions for the correlation functions:

〈S†
e (0)D†

e (0)e−i(δe−δg)b†
eb†

ebebet e−i(νe−νg)b†
ebetDe(t )Se(t )〉 =

∞∑
m=0

Sem
m e[imνg+i(m2−m)δg−m�]t , (G6)

〈Dg(t )Sg(t )e−i(νe−νg)b†
gbgt e−i(δe−δg)b†

gb†
gbgbgtS†

g (0)D†
g (0)〉 =

∞∑
m=0

Sab
m e−[imνe+i(m2−m)δe+m�]t . (G7)

Correspondingly, we can obtain the molecular absorption and emission spectra:

Sanh
ab (ω) =

∞∑
m=0

Sab
m (γ + m�)

(γ + m�)2 + [ω + mνe + (m2 − m)δe − ω00]2
, (G8)

Sanh
em (ω) =

∞∑
m=0

Sem
m (γ + m�)

(γ + m�)2 + [ω00 − ω − mνg − (m2 − m)δg]2
. (G9)

The comparison of analytical and numerical results of the profile for the emission and absorption processes in Fig. 8 shows
indeed the validity of the analytical expressions.
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