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Abstract

Obesity is associated with negative effects on the brain. We exploit Artificial Intelli-

gence (AI) tools to explore whether differences in clinical measurements following

lifestyle interventions in overweight population could be reflected in brain morphol-

ogy. In the DIRECT-PLUS clinical trial, participants with criterion for metabolic syn-

drome underwent an 18-month lifestyle intervention. Structural brain MRIs were

acquired before and after the intervention. We utilized an ensemble learning frame-

work to predict Body-Mass Index (BMI) scores, which correspond to adiposity-related

clinical measurements from brain MRIs. We revealed that patient-specific reduction

in BMI predictions was associated with actual weight loss and was significantly higher

in active diet groups compared to a control group. Moreover, explainable AI (XAI)

maps highlighted brain regions contributing to BMI predictions that were distinct

from regions associated with age prediction. Our DIRECT-PLUS analysis results imply

that predicted BMI and its reduction are unique neural biomarkers for obesity-related

brain modifications and weight loss.
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1 | INTRODUCTION

Obesity is an epidemic-scale disease associated with multiple comor-

bidities, such as diabetes (Leong & Wilding, 1999), liver disease

(Scheen & Luyckx, 2002) and dementia (Alford et al., 2018; Kivipelto

et al., 2005; Razay et al., 2006; Whitmer et al., 2005). The negative

impact of obesity on the brain (Uranga & Keller, 2019) includes

reduced gray matter volume (Han et al., 2021; Pannacciulli

et al., 2006), increase in inflammation markers and cognitive decline

(Nguyen et al., 2014; Spyridaki et al., 2016). Evidence suggests that

lifestyle intervention may attenuate some of the neural changes asso-

ciated with obesity (Kaplan et al., 2022). However, assessing these

beneficial neural outcomes is challenging as the effect of obesity on

the brain is complex and multifaceted (Shefer et al., 2013; Uranga &

Keller, 2019).

Lifestyle interventions were shown to have a positive impact on

general health, initiating changes such as weight loss, revised liver sta-

tus, and improved vascular health. Some interventions were beneficial

also at the cognitive and neural levels, eliciting changes in cognitive

performance (Arjmand et al., 2022), brain morphometry (Espeland

et al., 2016; Kaplan et al., 2022), and functional connectivity (Levakov

et al., 2023).

Deep learning frameworks have led to significant advancements

in a variety of fields including Computational Neuroscience. In recent

studies, deep neural networks (DNNs) were exploited to predict the

“brain age” of healthy subjects from structural brain MRI. These net-

works were trained on paired datasets which included MRI scans and

subjects' chronological age. Once trained, at the inference phase, the

networks can predict brain age based only on the imaging data, which

can be either structural as done in the current study (Cole et al., 2017;

Franke et al., 2012) or functional (Levakov et al., 2023; Lund

et al., 2022). The predicted age may differ from one's chronological

age. The discrepancy between chronological and brain age is an estab-

lished biomarker, associated with neurodegenerative diseases

(Bocancea et al., 2021) as well as higher mortality rates (Cole

et al., 2018).

The scientific potential and clinical significance of brain-age bio-

markers inspired related studies, aiming to associate particular physi-

cal traits to brain morphology. Nevertheless, to investigate such

associations, the DNN-based prediction model should be trained on

large brain MRI datasets that include the respective subjects' traits.

One such trait is the Body Mass Index (BMI) which is often available

in public brain MRI datasets. BMI is a simple, widely used measure for

assessing obesity, while taking height into consideration. Previous

studies showed that BMI could be estimated from structural MRI

using convolutional DNNs (Vakli et al., 2020; Yadav &

Razavian, 2019). In this work, we adapted a similar strategy to explore

whether differences in clinical measurements following lifestyle inter-

vention in an overweight population could be reflected in the brain.

Specifically, we aimed to address the following questions: (1) Can a

deep learning-based BMI prediction framework, fitted on a normal

population, be applied to a separate, overweight population? (2) If so,

to what extent would such predictions be correlated with other health

biomarkers? (3) Would weight loss related changes that occurred fol-

lowing lifestyle intervention be reflected in the predicted BMI? and

(4) To what extent would the features used to predict BMI be distinct

from those used in predicting age?

Our model was trained, validated, and tested on a sample of

19,275 brain images. The fitted model was then applied to 216 partici-

pants from the DIRECT-PLUS study (Dietary Intervention Randomized

Controlled Trial Polyphenols Unprocessed Study, Yaskolka Meir

et al., 2021). The DIRECT-PLUS study was an 18-month-long clinical

trial. Participants who passed the criterion for metabolic syndrome

(abdominal obesity/dyslipidemia) were randomly divided into three diet

groups: healthy dietary guidelines (HDG, an active control group), Med-

iterranean diet (MED), and green-MED. All participants underwent a T1

brain MRI scan at baseline and 18 months after the intervention. In

addition, all were assessed before and after the intervention for multi-

ple clinical measurements, including anthropometry, liver and glycemic

markers, lipid profile, and fat deposition. Since neither of these relevant

clinical measures was available in the brain MRI datasets we used for

DNN training, we chose to predict BMI as their proxy (see Figure 1).

Although BMI is a measure of obesity and does not qualify as a crite-

rion for a metabolic syndrome, it was shown to be correlated with waist

circumference in patients with metabolic syndrome (Gierach

et al., 2014; Weiss et al., 2004). In addition, we generated explainable

AI maps to detect brain regions that contributed to the prediction.

2 | MATERIALS AND METHODS

2.1 | Participants

2.1.1 | Dataset used for training and validating

To train a model that could handle large variability associated with

subjects' demography and scan-related differences, we collated train-

ing data from eight different open datasets. We only included samples

with available BMI, age, gender, and a T1w MRI brain scan. Subjects

with diagnosed neurological conditions were excluded. The total sam-

ple size was 19,275, randomly divided into training (N = 13,471;

70%), validation (N = 1957; 10%) and testing (N = 3847; 20%). See

Table S1 in Supplementary section 1 for a list of the studies and corre-

sponding BMI, age, and gender distributions.
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2.1.2 | The DIRECT-PLUS study

Study description

This work was based on a sub-study of the DIREC-PLUS clinical trial

(clinicaltrials.gov ID: NCT03020186). The Dietary Intervention Ran-

domizEd Controlled Trial PoLyphenols UnproceSsed (DIRECT-PLUS,

Yaskolka Meir et al., 2021) trial was initiated in 2017 and lasted

18 months. During the trial, a group of participants who fitted the cri-

terion for metabolic syndrome (abdominal obesity or dyslipidemia)

underwent a lifestyle intervention. Participants were scanned (struc-

tural MRI) and multiple clinical measures were taken at baseline and

18 months following the beginning of the trial. We refer to data from

baseline as T0 and data from the end of the trial, 18 months later as

T18. Out of 378 volunteers, 294 met the inclusion criteria of age

(30+) and abdominal obesity or dyslipidemia, where 89% had abdomi-

nal obesity. Abdominal obesity was measured by waist circumference

(WC, men >102 cm, and women >88 cm), while dyslipidemia by Tri-

glycerides (TG > 150 mg/dl) and high-density lipoprotein cholesterol

(HDL-c, men ≤40 mg/dl and women ≤50 mg/dl). The 216 participants

who completed the two structural brain scans at T0 and T18 were

included in this sub-trial. The Soroka Medical Center Medical Ethics

Board and Institutional Review Board provided ethics approval. All

participants provided written consent and received no financial

compensation.

Randomization and intervention

Participants were randomly divided into one of three weight-loss diet

groups, Healthy Dietary Guidelines (HDG), Mediterranean

Diet (MED), and green-MED, all accompanied by physical activity. All

participants received free gym membership and dietary guidance and

consultation and were aware of their assigned diet group (open-label

protocol).

MRI acquisition

MRI scans were conducted at the Soroka University Medical Center

(SUMC), Beer Sheva. Participants were scanned in a 3 T Philips Inge-

nia scanner (Amsterdam, The Netherlands) equipped with a standard

head coil. Subjects were instructed to refrain from food and non-

water beverages 2 h before the MRI sessions. Each of the two ses-

sions before and after the intervention included a 3D T1-weighted

anatomical scan. High-resolution anatomical volumes were acquired

with a T1-weighted 3D pulse sequence (1 � 1 � 1 mm3, 150 slices,

TR = 2500, TE = 30 ms, field of view 240 � 220 � 150). Details

regarding the abdominal and liver fat deposition acquisition are avail-

able in Data S1, section 8: Liver and visceral fat imaging protocols.

BMI and additional clinical measurements

All measures were taken for each participant at baseline (T0) and after

18 months of intervention (T18). BMI was calculated by dividing

F IGURE 1 Study design and analysis overview. (a) The DIRECT-PLUS was an 18-months lifestyle intervention clinical trial. Participants were
randomly assigned to one of three intervention groups: healthy dietary guidelines (HDG) which served as an active control group, Mediterranean
diet (MED), and green-MED. All intervention groups were combined with physical activity (PA) and participants were assessed before and after
the intervention (T0 and T18 correspondingly). Assessments included anthropometric measurements, blood biomarkers, fat deposition, and brain
imaging. For more details, see Section 2.1.2. (b) The suggested ensemble architecture consisted of 10 CNN regressors ensembled by linear
regression to a single scalar representing BMI. Then, saliency maps were extracted based on the predictions to reveal contributing brain regions.
(c) Sub-study design. The suggested model was trained and validated on a collation of public datasets to predict BMI, and later tested on an
independent test set as well as on the DIRECT-PLUS dataset at T0 and T18.
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participants' weight (in kg) by squared height (in m), hence measured by

units of kg
m2. Bodyweight was measured without shoes to the nearest

0.1 kg, and height was measured to the nearest millimeter using a

standard wall-mounted stadiometer. Waist circumference was mea-

sured to the nearest millimeter using an anthropometric measuring

tape, halfway between the last rib and the iliac crest. Serum total cho-

lesterol (TC) and High-density lipoprotein cholesterol (HDL-c) were

determined enzymatically. Plasma glucose and insulin levels, and

Plasma polyphenols metabolites were also measured. An assessment

of nutritional intake and lifestyle habits was self-reported by a

computer-administered questionnaire. Additional measures, such as

blood samples, fecal samples, and intrahepatic fat (IHF) were taken

as well.

2.2 | Preprocessing

We applied the following preprocessing steps to the T1w images

using Nipype (Gorgolewski et al., 2011). First, the neck and shoulders

were removed from each scan using RobustFov (Jenkinson

et al., 2012). Next, brain extraction was performed using Robex

(Iglesias et al., 2011), followed by an expansion of the brain mask to

include the CSF surrounding the brain. The image was then corrected

for intensity non-uniformity with N4BiasFieldCorrection (Tustison

et al., 2010). Next, intensity normalization was applied using fuzzy

c-means, and WM-based mean normalization (Reinhold et al., 2018).

Finally, images were resampled to a 1.75 � 1.75 � 1.75 mm3 isotropic

resolution and cropped to a 90 � 120 � 99 voxels box around the

center of mass of the brain mask.

2.3 | BMI and age estimation

To estimate age and BMI we utilized an ensemble architecture, previ-

ously developed in our lab (Levakov et al., 2020). We trained two differ-

ent ensembles for BMI and age, respectively. Each ensemble was

composed of 10 CNN models, randomly initialized, and separately

trained to predict age or BMI. For additional details of a single CNN

architecture, see Section 2.7. The loss function of each CNN was

defined as the MSE (mean squared error) between observed and pre-

dicted BMI or age. Finally, to optimally combine the 10 outputs to a sin-

gle output scalar, we used a linear regression model. See Figure 1b for

the architecture of the entire model. For training and validation, we used

the open dataset's training and validation sets, described in Section 2.1.1.

For testing, we used a separate test set from the open datasets, as well

as the DIRECT-PLUS dataset at T0 and T18. We trained each CNN for

50 epochs using the Adam optimizer (lr = 0.00015). The linear regres-

sion model was trained on the validation set of the open dataset. The

overall model's accuracy was evaluated using mean absolute error

(MAE) and Pearson correlation coefficient between the network predic-

tions and observed BMI or age. Code and weights are available at:

https://github.com/ofekfink/BMI_Prediction.git.

2.4 | Models' explainability and features similarity

We created ensemble population-based explanation maps to reveal

brain regions that contributed to the models' predictions. The maps

were based on each of the trained ensembles separately (BMI/age),

and on an additional ensemble of five random untrained CNNs as a

control (Adebayo et al., 2018). Population-based maps were previ-

ously shown to be more consistent and reliable across groups of sub-

jects (Levakov et al., 2020). To generate such maps, we followed a

previously developed methodology that introduced an inference

scheme, which enables averaging the individual maps to population-

based ones (Levakov et al., 2020). Then, from the thresholded maps

(first percentile), we extracted clusters bigger than 100 voxels, and

identified the corresponding brain regions. To validate that the brain

regions highlighted by the explanation maps were relevant and spe-

cific to the predicted domain, we compared the BMI and age based

maps. We created these maps for 100 random subjects from the

DIRECT-PLUS dataset, at T0 and T18. To quantify the differences

between types of explanation maps, we compared each pair of maps

before aggregating over different CNNs (N = 25, 10 for age predic-

tion, 10 for BMI prediction, and five random untrained for sanity

check) using the Dice similarity coefficient: Let X and Y be two sets of

voxels that passed the threshold in two different XAI maps. The Dice

score is calculated according to the following formula: 2 X\ Yj j
Xj jþ Yj j

(Dice, 1945), where jXj, jYj are the number of voxels in each set, and

X\Yj j is the number of intersecting voxels. See Section 2.7 for addi-

tional elaboration.

2.5 | Statistical analysis

In all relevant analyses, we accounted for multiple comparisons using

False Discovery Rate (FDR, Benjamini & Hochberg, 1995). Student's

t-test (Student, 1908) was used to compare between the predicted

BMI loss of the control group (HDG) and the active intervention

groups (Med and Green-Med), as well as to compare between the

Dice scores of different explanation maps. To control for the effect of

the observed BMI on the BMI predictions, a linear regression model

was used to predict the desired clinical outcome with the observed

BMI or age covariates as predictors, keeping only the residual. To cor-

rect for regression attenuation bias when predicting BMI at each time

point (T0 and T18), we used a correction methodology previously

described for age prediction (Beheshti et al., 2019). An offset was sub-

tracted from the BMI predictions. This offset was calculated as

offset¼ s�observedBMIþ i, where s and i are the slope and the inter-

cept of a linear least-squares regression model of predicted BMI

minus observed BMI against observed BMI. The bias of predicted

BMI loss is calculated as T0 corrected minus T18 corrected. This cor-

rection procedure was used only during inference and not for testing

the correlation between the predicted and observed BMI. When test-

ing for significant differences of the predicted BMI loss between the

intervention groups, outliers were defined as subjects whose
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predicted loss after bias correction was 2 or more standard deviations

away from the mean predicted loss after bias correction.

2.6 | Implementation details

CNN models were implemented using Keras (Chollet et al., 2018). Each

CNN model received a 3D volume of size 90 � 120 � 99 as input, and

its output was a single scalar representing BMI or chronological age.

Each CNN model was comprised of three blocks, each containing two

3D convolution layers (3 � 3 � 3 filters), followed by max-pooling and

batch normalization layers. Those blocks were then followed by a drop-

out layer and two fully connected layers. Each layer included a rectified

linear unit (ReLU) activation function. For a detailed description of the

architecture, see Figure S1 in Data S1 section 3.

To generate population-based explanation maps, we followed the

aforementioned inference scheme (Levakov et al., 2020): first, a

subject-specific explanation map was generated for 100 random sub-

jects from the DIRECT-PLUS dataset, using the SmoothGrad algo-

rithm (Smilkov et al., 2017) implemented as iNNvestigate (Alber

et al., 2018). The SmoothGrad method adds random noise from a nor-

mal distribution to an input image and then computes the partial

derivative of each voxel with respect to the trained model's output.

We repeated this process 64 times and averaged the results. Then,

each map was registered to the subject's anatomical image and

aligned to MNI space using FreeSurfer (Fischl, 2012). Next, each vol-

ume was standardized and smoothed with a 3D Gaussian (van der

Walt et al., 2014) and averaged across subjects. Finally, to aggregate

the CNNs maps of each ensemble, each voxel's median was calculated

and taken across the generated maps.

Then, using FSL cluster (Woolrich et al., 2009) we extracted clusters

of voxels from the thresholded explanation maps (first percentile) and

focused on clusters bigger than 100 voxels. Due to FSL's clustering algo-

rithm, which creates spatially close clusters, a cluster could contain vox-

els from multiple anatomical brain regions. To identify the analogous

brain regions, we used each cluster's MNI coordinates at the point of

maximum intensity. To match the aforementioned coordinates to brain

regions, we used the following atlases: Desikan–Killiany Atlas for GM

structures (Desikan et al., 2006), ICBM-DTI-81 white-matter labels atlas

for WM structures (Mori et al., 2006), and manually for CSF spaces.

3 | RESULTS

We first demonstrated that in a held-out sample, the predicted BMI

was significantly correlated with the observed BMI. We then showed

that the predicted BMI was associated with multiple clinical outcomes

after controlling for the observed BMI. Next, we verified that weight

loss and characteristics of the lifestyle intervention (e.g., specific diet)

were reflected in the predictions. Lastly, we revealed that brain

regions contributing the most to BMI predictions were distinct from

age-based ROIs.

3.1 | BMI estimation

To estimate BMI from brain structure, we used an aggregated sample

of 19,491 brain scans (mean ± SD BMI: 26.42 ± 4.51) for the model

training (n = 13,471), validation (n = 1957), and testing (n = 3847).

DIRECT-PLUS test set included 216 scans (mean ± SD BMI at T0:

31.02 ± 3.66, at T18: 30.12 ± 4.01). On the unseen test set, the model

reached a mean absolute error (MAE) of 2.06 kg/m2 and a Pearson

correlation of .80 between the predicted and observed BMI (p < .01,

Figure 2a,b). For comparison, on their test set—a subset of the UK

Biobank dataset, Vakli et al. reached a MAE of 2.41 kg/m2 and Pear-

son correlation of .7 (Vakli et al., 2020).

Applying the fitted model to the DIRECT-PLUS data at T0

resulted in a MAE of 5.29 and Pearson r = .46 (p < .001). Similar

results were found at T18, with MAE = 5.23, Pearson r = .5 and

p < .001 (Figure 2c,d). When tested on a subset of the unseen test set

that that only includes subjects within the DIRECT-PLUS BMI range

at T0 (23.73 to 50.97), the model reached a MAE of 2.11 and Pearson

correlation of .69 (p < .01). The results of the age prediction model

are available in Data S1, section 4: Age Prediction.

3.2 | Baseline characteristics

Baseline characteristics at T0 are described in Table 1. Note that for

the following measurements: GGT, FGF21, Chemerin, Glucose,

HOMA-IR, Liver Fat, VAT, SSC, and DSC, the information is incom-

plete for several participants.

3.3 | Relation between predicted BMI and clinical
measurements

We asked whether the predicted BMI, based solely on brain imag-

ing, would be correlated with obesity-related clinical measure-

ments. We tested the correlation of predicted BMI with

anthropometry, liver, glycemic, lipids, and MRI-assessed fat deposi-

tion biomarkers. We found that predicted BMI was significantly

correlated (p < .05 after FDR correction) with BMI (r = .456,

p < .001), WC (r = .437, p < .001), AST(r = .182, p = .007), ALT

(r = .165, p = .015), HOMA-IR (r = .291, p < .001), HDL-C

(r = �0.193, p = .004), Liver Fat (r = .322, p < .001), VAT (r = .420,

p < .001), and DSC (r = .288, p < .001; see Figure 3). As the

observed BMI might have mediated this relation, we repeated the

analysis after regressing out the observed BMI. We found that after

FDR correction, HDL-C (r = �0.188, p = .005), Liver Fat (r = .164,

p = .02), VAT (r = .298, p < .001), and SSC (r = �.169, p = .016)

were still significantly correlated (p < .05) with the predicted BMI.

These results imply that the predicted BMI is a neural marker

related to multiple health biomarkers beyond the observed BMI.

(See Figure S2a in Data S1 section 5 for a similar analysis of pre-

dicted BMI at T18).
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3.4 | BMI loss prediction and group differences

As described above, predicted BMI was correlated with observed

BMI. Hence, we examined whether structural brain alteration follow-

ing 18 months of lifestyle intervention would be reflected in changes

in the predicted BMI. We computed weight loss [before minus after

the intervention] for both the predicted and the observed BMI. We

found that the two weight loss values were significantly correlated

(r = .29, p < .001).

Next, we asked whether a change in predicted BMI would differ

among intervention groups. First, we compared all three groups

(HDG, Med, and Green-MED) using one-way ANOVA. However,

there were no statistically significant group differences (F = 2.099,

p = .125). To further probe the potential effect of the dietary inter-

vention, we compared the Med and Green-MED groups to the HDG,

the active control group. Predicted BMI loss of the Med and Green-

MED groups (1.196 ± 2.580) was significantly higher than the HDG

group (0.470 ± 2.291; t = �2.043, p = .042; Figure 4b) after bias cor-

rection (Beheshti et al., 2019) and the removal of outliers (±2 STD).

Taken together, these results suggest that neuronal alterations

following 18 months of lifestyle intervention are reflected in the pre-

dicted BMI measure. Moreover, these changes were more pro-

nounced following a Mediterranean diet.

3.5 | Models explainability and features similarity

3.5.1 | Extraction of brain ROIs contributing to the
model's predictions

To examine the effects of lifestyle intervention on the brain, we

explored which brain regions contributed the most to the model's

prediction. Voxel-wise contribution to the model's output was

assessed using population-based XAI maps for each ensemble model

(Section 2.4). We extracted clusters that were larger than 100 voxels

from the thresholded maps (1%), and mapped them to brain regions

according to their MNI coordinates. The brain regions are listed in

Table 2, along with their cluster size, and MNI coordinates, where

the specified coordinates are at the point of maximum intensity

within the cluster. We consider the possible implications of these

F IGURE 2 Regression plots and
histograms of observed BMI versus
model's prediction for: (a) The open
dataset training set (BMI mean ± SD:
26.41 ± 4.51). (b) The open dataset
untouched test set (BMI mean ± SD:
26.38 ± 4.47). (c) The DIRECT-PLUS
dataset at T0, overweight (BMI mean
± SD: 31.02 ± 3.66). (d) The DIRECT-

PLUS dataset at T18, overweight (BMI
mean ± SD: 30.12 ± 4.01). Pearson
correlation coefficients between
observed and predicted BMI are
indicated on each plot (r). p value, the
number of samples (n), and mean
absolute error (MAE) are also noted.
The model generalized from a normal
to an overweight population with
different BMI distribution.
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results on the relationship between BMI and brain anatomy in the

Section 4.

For XAI results obtained for a subset of subjects with high BMI in

the public dataset, see Data S1, section 6: XAI Maps Results (a).

For XAI comparison between T0 and T18 in 100 subjects of the

DIRECT-PLUS dataset, see Data S1, section 6: XAI Maps Results (b).

3.5.2 | A comparison of age and BMI XAI maps

Next, by comparing the XAI maps of age and BMI, we tested

whether the two are predicted based on spatially distinct brain

regions. Figure 5a,b depicts a glass brain projection of the BMI and

age based ensemble models. There was only a small overlap between

the two, such that the common voxels included 16.6% of the age-

based map and 21.4% of the BMI-based map (Dice

coefficient = 0.187). Figure 5c displays the similarity matrix compar-

ing each pair of population-based explanation maps resulting from

age, BMI, and unfitted, randomly initialized CNN models (see

Section 2.4). The average Dice score between maps which resulted

from the same model type was 0.369, 0.283, and 0.114 for age, BMI,

and random, respectively. Contrarily, we found an average Dice

score of 0.114 for all non-compatible model types. Importantly, we

found that Dice scores comparing models of similar type (e.g., age

and age, BMI and BMI) were higher than Dice scores comparing dif-

ferent types of models (e.g., age and BMI; t = 11.663, p < .001).

These findings suggest that age and BMI are predicted based on dis-

tinct brain regions.

TABLE 1 Baseline characteristics of the DIRECT-PLUS at T0.

HDG

(mean ± SD)

Med

(mean ± SD)

Green-med

(mean ± SD)

Test statistics

(f, p values) All (mean ± SD)

All

(n)

Anthropometric measurements

Age 51.68 ± 10.01 52.11 ± 10.03 51.21 ± 11.53 0.53, 0.59 51.66 ± 10.48 216

Sex (% male) 89.47% 91.43% 90% 0.08, 0.92 90.28% 216

BMI (kg/m2) 31.16 ± 3.69 31.14 ± 3.9 30.75 ± 3.41 0.29, 0.75 31.02 ± 3.66 216

WC (cm) 109.12 ± 8.93 110.53 ± 9.62 108.27 ± 7.63 1.18, 0.31 109.3 ± 8.78 216

Liver markers

AST (U/L) 25.63 ± 7.8 25.86 ± 7.1 26.73 ± 8.38 0.40, 0.67 26.06 ± 7.75 216

ALT (U/L) 35.23 ± 16.39 34.53 ± 12.48 36.97 ± 18.09 0.44, 0.64 35.57 ± 15.8 216

GGT (U/L) 35.22 ± 26.2 38.12 ± 29.72 35.91 ± 17.95 0.15, 0.86 36.37 ± 24.81 202

ALKP (mg/dl) 73.67 ± 17.05 73.74 ± 19.71 75.24 ± 23.27 0.14, 0.87 74.2 ± 20.01 216

FGF21 (pg/ml) 183.91 ± 106.39 176.1 ± 101.43 213.22 ± 143.33 1.92, 0.15 190.77 ± 118.58 215

Chemerin (ng/ml) 200.64 ± 36.7 206.35 ± 41.16 203.86 ± 41.82 0.38, 0.69 203.53 ± 39.74 215

Glycemic markers

Glucose (mg/dl) 104.54 ± 30.04 100.81 ± 17.66 103.76 ± 21.41 0.49, 0.62 103.07 ± 23.74 214

HOMA-IR 3.91 ± 2.9 3.56 ± 1.74 3.56 ± 2.18 0.55, 0.58 3.68 ± 2.33 212

HbA1c (%) 5.53 ± 0.75 5.41 ± 0.47 5.56 ± 0.72 1.07, 0.34 5.5 ± 0.66 216

Lipid profile

Cholesterol (mg/dl) 190.51 ± 34.76 193.11 ± 27.94 185.03 ± 29.26 1.25, 0.29 189.58 ± 30.95 216

HDL-C (mg/dl) 45.71 ± 10.91 47.21 ± 9.03 47.09 ± 12.78 0.42, 0.66 46.64 ± 10.98 216

LDL-C (mg/dl) 125.08 ± 30.77 127.18 ± 28.99 123.86 ± 29.59 0.22, 0.80 125.36 ± 29.71 216

Triglycerides (mg/dl) 152.43 ± 72.74 149.2 ± 61.93 131.94 ± 58.82 2.05, 0.13 144.74 ± 65.33 216

MRI fat deposition

Liver Fat (%) 9.81 ± 8.16 9.8 ± 8.49 10.47 ± 9.04 0.13, 0.88 10.02 ± 8.52 201

VAT (cm2) 127.88 ± 40.75 129.32 ± 47.81 127.55 ± 54.93 0.12, 0.88 128.22 ± 47.54 212

SSC (cm2) 105.93 ± 39.57 112.89 ± 36.27 96.99 ± 31.59 0.76, 0.47 105.09 ± 36.27 203

DSC (cm2) 208.47 ± 73.46 222.16 ± 59.89 202.29 ± 56.97 1.19, 0.31 210.74 ± 64.17 209

Abbreviations: Measurements: ALKP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransaminase; BMI, body mass index;

DSC, deep subcutaneous fat; FGF21, fibroblast growth factor 21; GGT, gamma glutamyl transferase; HbA1c, hemoglobin A1c; HDL-C, high-density

lipoprotein cholesterol; HOMA-IR, homoeostatic model assessment of insulin resistance; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides; SSC,

superficial subcutaneous fat; VAT, visceral adipose tissue; WC, waist circumference. Units: mg/dl, milligrams per decilitre; ng/ml, nanograms per millilitre;

pg/ml, picogram per milliliter; U/L, units per liter.
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4 | DISCUSSION

In the current study, we examined the association between excessive

weight and brain morphology, and how this relation changes following

a lifestyle intervention. Specifically, we explored whether differences

in clinical measurements of overweight participants before and after

such intervention could be reflected in their structural brain MRI

scans. This was accomplished by exploiting deep learning models for

the development of an obesity-related neural biomarker—the brain-

BMI gap, and its application to the DIRECT-PLUS clinical trial dataset

(Yaskolka Meir et al., 2021). This study is the first of its kind, applying

the novel brain-BMI gap biomarker to an obese population which

underwent a lifestyle intervention.

The proposed model was based on an ensemble of CNNs, where

each was independently trained to predict BMI given a comprehen-

sive dataset of sMRI acquisitions (public dataset). The trained CNN

ensemble was then used to predict BMI for the overweight DIRECT-

PLUS population. A key difference between the public training dataset

and the DIRECT-PLUS datasets was the fact that the BMI distribu-

tions of the scanned subjects were different. Specifically, the DIRECT-

F IGURE 3 The DIRECT-PLUS dataset (n = 216). Scatter plots of clinical measures taken at baseline (T0) and their association to predicted
BMI at T0. Pearson's correlation coefficient between each measure to predicted BMI and the corresponding p-value are noted by r, p, while
Pearson correlation coefficient between each measure to the cleaned predicted BMI (observed BMI regressed out) and the corresponding p value
are noted by *r, p. Both variations are shown at the bottom of each plot. Associations that are significant following FDR correction are marked in
bold for each measure. See Section 3.2 for information about the baseline characteristics.
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PLUS population was overweight with high BMI levels. In contrast,

our training dataset was of subjects with normal BMI distribution.

Additionally, following changes initiated by the lifestyle intervention,

the DIRECT-PLUS dataset was highly fluctuative. In addition to the

variability of BMIs and weight loss trajectories, we conjecture that

there was a possible delay between weight loss and brain morphology.

Nevertheless, our model was able to generalize and achieved a BMI

prediction error of about 5 units.

We note that there was a reduction in BMI prediction accuracy

between the public datasets (Figure 2b) and the DIRECT-PLUS data-

set (Figure 2c,d). This may be due to the difference in BMI distribution

between the training and the test datasets. It is interesting to note

that the prediction error was slightly lower for the DIRECT-PLUS

dataset following the intervention (T18). At this time point, the partici-

pants' average BMI was reduced, and their BMI distribution was

somewhat closer to that of the subjects in the training datasets. This

F IGURE 4 The DIRECT-PLUS dataset. (a) Regression plot showing a significant association between predicted and observed BMI loss, with
Pearson correlation coefficient r = 0.23 (p = .00). (b) Box plot demonstrating the significant difference in predicted BMI loss between
intervention groups after bias correction and outliers removal.

TABLE 2 Location of clusters in the
XAI Maps.

Region Size Max value x y z

Parietal cortex

Interhemispheric fissure

22,904 0.579 �10 �80 51

Interhemispheric fissure

Orbitofrontal cortex

Anterior cingulate cortex

Anterior temporal cortex

14,763 0.753 0 1 �32

Lateral occipital cortex

Lateral cerebellum

5200 0.606 52 �70 �17

Right insula 3175 0.497 50 17 �7

Interpeduncular cistern 1981 0.538 12 �38 �9

Left cingulate cortex 1085 0.5 1 17 33

4th ventricle 412 0.53 �1 �44 �40

Left occipital pole 351 0.468 �30 �97 5

Right lateral ventricle 250 0.557 26 �44 6

Left superior parietal gyrus 239 0.483 �30 �45 68

Left lateral ventricle 204 0.529 �21 �46 9

Right cingulate cortex 145 0.486 �16 �19 �32

Right temporal inferior gyrus 143 0.453 45 �17 �35

Right anterior temporal cortex 129 0.45 42 6 �43

Precentral gyrus

Superior frontal cortex

109 0.451 54 15 36
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reduction in test accuracy on an entirely new dataset was also seen in

a previous study (Vakli et al., 2020) where BMI distributions were sim-

ilar. Hence, a more general explanation to the lower test accuracy was

a dataset bias (Ashraf et al., 2018; Tommasi et al., 2017; Wachinger

et al., 2021).

Despite the MAE obtained for the test dataset, the predicted BMI

was still correlated with other obesity-related clinical measures, which

validated its clinical relevance and the future potential of the brain-

BMI gap biomarker. Importantly, we demonstrated that the predicted

BMI was significantly positively correlated with WC, AST, ALT,

HOMA-IR, Liver Fat, and VAT and negatively correlated with HDL-C.

Furthermore, some of these statistically significant correlations were

preserved after controlling for the observed BMI and following FDR

correction: HDL-c, liver fat, and VAT. It is worth mentioning that

HDL-C is considered a protective type of cholesterol and its defi-

ciency is associated with low GM and WM volume (Wang et al., 2021;

Ward et al., 2010) while the high level of visceral fat was associated

with lower brain volume (Debette et al., 2010) and reduced cortical

thickness (Veit et al., 2014). These results imply that the predicted

brain BMI was not only related to observed BMI but also to various

other health biomarkers implicated in obesity.

One main advantage of the DIRECT-PLUS trial design was the

acquisition of brain imaging both before and after the lifestyle

intervention. Statistical analysis of the BMI predictions in the two

time points revealed two key findings. First, as shown in Figure 4a, we

found a correlation between the actual subject-specific BMI loss and

the predicted one. With the absence of available longitudinal data to

train on, it was impossible to predict the BMI loss. Therefore, it is

based on two separate predictions for T0 and T18 and composed of

an accumulated error from both. This may explain the low, yet signifi-

cant correlation. This result further supports the generalization ability

of the proposed brain-BMI prediction model. Second, the plot pre-

sented in Figure 4b, which shows the significant prediction difference

between the active-control (HDG) and the active-dietary intervention

groups (MED, Green-Med), underscores the validity of the brain-BMI

biomarker. These findings suggest that the tested forms of lifestyle

intervention may result in structural brain changes that can be cap-

tured by the proposed biomarker.

A main goal of this research was the identification of the brain

regions which contributed to the BMI prediction. For this purpose, we

created population-based explanation maps based on the trained

CNN ensemble, as presented in Figure 5a and Table 2. Some of the

highlighted brain regions include the orbitofrontal cortex, the cerebel-

lum, the right insula, the anterior temporal cortex, and the lateral

occipital cortex. We note that XAI maps are not evidence of a direct

relation between brain morphology and BMI, which is a tool to

F IGURE 5 The DIRECT-PLUS
dataset (n = 216). Regions highlighted
by the BMI ensemble model and the
differences between age and BMI
features at T0. (a) Glass brain
projections of the first percentile of
the population-based maps of BMI
prediction model (b) Glass brain
projections depicting the population

XAI maps for age (green), BMI (blue)
and the regions common for both
maps (red). (c) Similarity matrix
presenting Dice scores of all possible
pairs of population-based explanation
maps (before aggregation over
separate CNNs, after a threshold of
99%). The color of each of the matrix
entries denotes the Dice coefficient
between each pair of maps. The Dice
scores are color coded between 0 to
1, where higher scores are brighter. As
can be seen, there is a higher similarity
within group (e.g., BMI and BMI maps)
rather than between groups (e.g., age
and BMI maps) (t = 11.663, p < .001).
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quantify obesity. Hence, we suggest cautiously that the identified

regions were related to the manifestation of obesity in the brain. Nev-

ertheless, several previous studies reported such a link between the

aforementioned brain regions and excessive weight.

A previous study showed that reduced gray matter volume

(GMV) in the orbitofrontal cortex was associated with obese or mor-

bidly obese people (Seabrook & Borgland, 2020) and structural

changes in the orbitofrontal cortex were associated with obesity

(Chen et al., 2020; Seabrook & Borgland, 2020; Shott et al., 2015).

Furthermore, activation of the orbitofrontal cortex was also associ-

ated with an eating-related reward system (Seabrook &

Borgland, 2020). Reduced GMV was also found in the cerebellum of

obese subjects (Pannacciulli et al., 2006), and obesity-related mea-

sures were associated with lower GMV in the bilateral cerebellum

(García-García et al., 2019). Additionally, a previous study revealed

reduced global connectivity in the right insula of adolescents with

excess weight compared with normal weight (Moreno-Lopez

et al., 2016). Another study revealed that obese patients had reduced

GMV in the right insula as well as in the right inferior frontal gyrus

(Herrmann et al., 2019). Moreover, an association between BMI and

decreased cortical thickness in the insula was found (Veit et al., 2014).

Some previous studies also showed that reduced GMV in these

regions was associated with increased BMI and increased VAT (Kurth

et al., 2013; Medic et al., 2016; Veit et al., 2014). The studies men-

tioned above provide some supportive evidence to the proposed

BMI-related explanation maps, yet the heterogeneity of the method-

ologies do not allow to draw a direct connection between the

highlighted brain regions, BMI and lifestyle intervention.

A previous study used a somewhat similar methodology to predict

BMI from T1 MRI scans and analyze regions highlighted by localiza-

tion maps (Vakli et al., 2020). This study, applied to the UK Biobank

and Information eXtraction from Images (IXI) datasets, revealed

regions that were mostly different than those found in our study

(i.e., the left caudate, the left medial temporal lobe, and the lateral sur-

face of the right temporal cortex). This inconsistency might be

explained by the different populations for which the maps were gen-

erated, and specifically the difference in the BMI distributions. With

no ground truth for comparison, we attempted to validate our results

to the best of our ability. First, we utilized an ensemble architecture,

which was shown to be robust (Levakov et al., 2020). Second, as dis-

cussed above, we confirmed the relationship between obesity and

areas revealed by the maps in the literature. Third, we demonstrated

the consistency between our maps in Figure 5c. Fourth, to test

whether the aforementioned differences can be explained by obesity,

we generated maps for obese participants from the UK Biobank data-

set and discovered substantial overlap with the brain regions found

for the participants in our DIRECT-PLUS study (Data S1, section 6).

Although the BMI predictions contained a certain error, the

population-based explanation maps were validated and statistically

reliable.

Finally, the XAI maps obtained for BMI prediction with those

obtained for age prediction for the DIRECT-18 dataset were com-

pared in Figure 5b,c. The minimal overlap between the maps implied

that the brain-BMI biomarker was independent of the brain-age bio-

marker. This is an important result in light of several studies that

showed that BMI tends to increase with age (Boutari &

Mantzoros, 2022; Chooi et al., 2019; Elia, 2001; Reas et al., 2007).

One of the implications of the DIRECT-PLUS study was the vari-

ability in weight-change patterns following the intervention period.

For example, two subjects with the same extent of BMI reduction

could still have very different weight change trajectories. For some

subjects, a significant weight loss was detected about 6 months after

the beginning of the intervention but afterward they regained weight

(for details, see Figure S3 in Data S1, section 7). This heterogeneity

may be reflected in the brain scans conducted in T18. Future work

should sample more frequent scanning time points throughout the

intervention that would allow us to monitor weight-change dynamics.

Dataset bias is a common challenge, particularly where the distribu-

tions differ (Tommasi et al., 2017). In our case, the training and testing

datasets have different BMI distributions, which affect the predictive

performance while testing on higher BMIs. So far, we were not able

to locate a publicly available dataset which contains a population with

a BMI distribution that matched that of the DIRECT-PLUS's popula-

tion. Future studies should focus on improving the predictive models,

and or train the models on data with more compatible BMI distribu-

tion, when available.

5 | CONCLUSION

Our findings validate the predicted BMI as a clinically significant neu-

ral biomarker. This novel biomarker captures structural changes in the

brain that occurred due to weight loss initiated by lifestyle interven-

tion. It is also independent of the brain aging process. To the best of

our knowledge, the current study is the first clinical application of the

brain-predicted BMI in a randomized control trial. The brain-predicted

BMI is a promising, novel framework that allows exploring the link

between obesity, weight loss, and the brain.
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