日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Expulsion of Counter Evershed Flows from Sunspot Penumbrae

MPS-Authors
/persons/resource/persons214077

Castellanos Durán,  J. S.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104044

Korpi-Lagg,  A.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104218

Solanki,  S. K.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Castellanos Durán, J. S., Korpi-Lagg, A., & Solanki, S. K. (2023). Expulsion of Counter Evershed Flows from Sunspot Penumbrae. The Astrophysical Journal, 952, 162. doi:10.3847/1538-4357/acdbc9.


引用: https://hdl.handle.net/21.11116/0000-000E-79A4-1
要旨
In addition to the Evershed flow directed from the umbra toward the outer boundary of a sunspot, under special circumstances a counter Evershed flow (CEF) in the opposite direction also occurs. We aim to characterize the proper motions and evolution of three CEFs observed by the Solar Optical Telescope on board the Japanese Hinode spacecraft and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We use state-of-the-art inversions of the radiative-transfer equation of polarized light applied to spectropolarimetric observations of the Fe I line pair around 630 nm. The three CEFs appeared within the penumbra. Two of the CEF structures, as part of their decay process, were found to move radially outwards through the penumbra parallel to the penumbral filaments with speeds, deduced from their proper motions, ranging between 65 and 117 m s-1. In these two cases, a new spot appeared in the moat of the main sunspot after the CEFs reached the outer part of the penumbra. Meanwhile, the CEFs moved away from the umbra, and their magnetic field strengths decreased. The expulsion of these two CEFs seems to be related to the normal Evershed flow. The third CEF appeared to be dragged by the rotation of a satellite spot. Chromospheric brightenings were found to be associated with the CEFs, and those CEFs that reached the umbra-penumbra boundary showed enhanced chromospheric activity. The two CEFs, for which line-of-sight velocity maps were available during their formation phase, appear as intrusions into the penumbra. They may be associated with magnetic flux emergence.