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We study dynamical (quasi)-condensation in the Fermi-Hubbard model starting from a completely
uncorrelated initial state of adjacent doubly occupied sites. We show that upon expansion of the
system in one dimension, dynamical (quasi)-condensation occurs not only for large interactions via
the condensation of doublons, but also for small interactions. The behavior of the system is distinctly
different in the two parameter regimes, underlining a different mechanism at work. We address the
question whether the dynamical (quasi-)condensation effect persists in the thermodynamic limit. For
this purpose, we use the two-particle reduced density matrix method, which allows the extension to
large system sizes, long propagation times, and two-dimensional (2D) systems. Our results indicate
that the effect vanishes in the thermodynamic limit. However, especially in 2D, further investigation
beyond numerically tractable system sizes calls for the use of quantum simulators, for which we show
that the described effect can be investigated by probing density fluctuations.

I. INTRODUCTION

Superconductivity is one of the most intriguing col-
lective electronic phenomena in solid state physics. The
search for an explanation of high-temperature supercon-
ductivity in correlated materials still drives a consider-
able amount of experimental and theoretical work. Tra-
ditionally, superconductivity has been viewed as an effect
of a system at (or near) equilibrium [1], but pioneering
experiments (see e.g. [2–10]) have shown that states with
signatures of superconductivity can be induced by ex-
ternal driving. This has stimulated new interest in dy-
namical condensation effects in fermionic systems (see
e.g. [11–17]).
The workhorse for theoretical investigations of correlated
phenomena in solid state physics is the Fermi-Hubbard
model [18–22]. It has been shown analytically by Yang
[23] that the Fermi-Hubbard model in arbitrary dimen-
sions has a special symmetry, the so-called η-symmetry,
which gives rise to the appearance of a fermionic conden-
sate in the excitation spectrum of the Fermi-Hubbard
model. This so-called η-condensate saturates the maxi-
mally allowed occupation number for pair states, whose
value was also derived by Yang [24], and shows off-
diagonal long range order [23]. Several recent theoretical
works have been devoted to showing that ground states
of the Fermi-Hubbard model can be driven to metastable
non-equilibrium states with large overlap with the η-
condensate inheriting its properties (see e.g. [12, 13]).
Concomitantly, it was found in numerical studies [25, 26]
and subsequently measured experimentally [27] that ini-
tially uncorrelated states of hard-core bosons form a
quasi-condensate in one-dimension (1D) upon free expan-
sion. This effect has been explained through the physics
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of emergent Hamiltonians where the dynamical system
inherits the properties of a ground state condensate of
the emergent non-equilibrium Hamiltonian [28]. This
study is highly relevant also for fermions since in the case
of large interactions the fermions form pairs (doublons),
which to a high degree of accuracy can be described as
hard-core bosons. This mapping has been used to study
dynamical quasi-condensation of fermions in 1D at large
interactions in e.g. [14, 29].
In this work we investigate dynamical (quasi)-
condensation upon a quench with similar initial condi-
tions, but in the opposite limit of weak electron inter-
actions U ≪ 1J , where J is the hopping matrix ele-
ment. We show that this dynamical (quasi-)condensation
effect exhibits a markedly different behavior than its
counterpart at large U . We exploit our newly devel-
oped time-dependent two-particle reduced density ma-
trix (TD2RDM) method [30–32] to reach the required
long expansion times for systems sizes of several tens
of sites, while laying the ground based on small sys-
tems and exact calculations. We compare the results
within the TD2RDM method with exact results for small
systems to extrapolate its accuracy for larger systems
where exact results are not available. Furthermore, the
TD2RDM method allows to extend the investigations to
two-dimensional (2D) systems enabling us to address the
question whether the Mermin-Wagner-Hohenberg theo-
rem [33, 34], which prohibits any condensation in 1D in
equilibrium in the thermodynamic limit, is also valid in
this dynamical situation.
The paper is structured as follows: We introduce the
system under investigation in Sec. II and review the
essential building blocks of the TD2RDM method in
Sec. III emphasizing necessary extensions to incorpo-
rate the η-symmetry. We investigate dynamical (quasi-
)condensation in 1D in Sec. IV. We first discuss small
systems that are treatable exactly. These small systems
show already signatures of the effect and serve as bench-
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Figure 1. Fermi-Hubbard model in (a) 1D, and narrow strips
in 2D with (b) two or (c) three transversal sites. The total
number of sites is Ms. The orange bar represents the investi-
gated initial condition of a block of adjacent doubly occupied
sites either placed in the center (as shown in the images) or
left aligned (not shown). The upper panel shows exemplary
a few snapshots of the ensuing density fluctuations.

marks for the TD2RDM method. Extensions to substan-
tially larger systems are performed within the TD2RDM
method. In Sec. IVC we extend our research to 2D and
conclude in Sec. V. As units we use ℏ = m = e = 1 unless
otherwise stated.

II. OUT-OF-EQUILIBRIUM FERMI-HUBBARD
MODEL

The system under investigation is the Fermi-Hubbard
model in 1D and 2D (see Fig. 1) given by

Ĥ = −J
∑
⟨i,j⟩

∑
σ

â†iσâjσ + U
∑
i

n̂↑
i n̂

↓
i , (1)

where ⟨i, j⟩ denotes nearest-neighbor hopping on a 1D or

2D lattice, and n̂
↑(↓)
i = â†i↑(↓)âi↑(↓). The number of sites

is Ms. As boundary conditions we use either periodic
boundary conditions or hard-wall boundary conditions.
In the case of hard-wall boundary conditions, the parti-
cle density is strictly zero at the entire boundary of the
system, which extends beyond the sites plotted in Fig. 1.
For example, in 1D, where the sites are enumerated from
1 to Ms, the hard-wall boundary is positioned at the sites
0 and Ms + 1.
In 1D we use half-filling, i.e. the number of particles N
is given by N = Ms and the number of spin-up and spin-
down particles is equal. As initial states |Ψ(0)⟩ we use

Ms/2 adjacent doubly occupied sites, either centered in
the middle of the system as shown in Fig. 1 (a) or aligned
to the left edge. Similar uncorrelated initial conditions
have been used extensively as benchmarks for approxi-
mate methods to solve the time-dependent multi-particle
Schrödinger equation, see e.g. [35, 36].
To explore the effect of dimensionality, we extend the 1D
system by transversal degrees of freedom as depicted in
Fig. 1 (b) and (c). In this case the filling corresponds to
N = Ms/2 in Fig. 1 (b) and N = Ms/3 in Fig. 1 (c), and
the initial conditions used in these 2D cases are those
depicted in the figure.
All these states are initially entirely uncorrelated, i.e. cor-
respond to Hartree-Fock states. The correlation, how-
ever, strongly increases as a function of time as will be
discussed in Sec. IV, which is key to the emergence of
the (quasi-)condensate. The initial states are highly ex-
cited, i.e. many states in the entire excitation spectrum
have a non-negligible overlap. One might think that an
ensuing dynamical (quasi-)condensation effect requires
a particularly large overlap with the η-condensate |η⟩,
which is an exact excited eigenstate of the Hamiltonian
Eq. 1. The overlap between our initial condition and the
η-condensate is, however, small as can be calculated ana-

lytically using the construction |η⟩ = (η̂+)
N/2 |0⟩, where

|0⟩ is the vacuum state and

η̂+ =
∑
j

(−1)j â†j↓â
†
j↑. (2)

Using simple combinatorial arguments, we obtain in 1D
in the case of half-filling where N = Ms that

|⟨η|Ψ(0)⟩|2 =

(
Ms

Ms/2

)−1

, (3)

and remains so for t > 0. For large Ms Eq. 3 goes like
∼ 2−Ms and is thus exponentially suppressed. Therefore,
although the dynamical (quasi-)condensate described in
this paper has the same energy expectation value and
similar properties as the η condensate upon its dynamical
formation, it cannot be explained by an actual proximity
to it.
To investigate the dynamics of the system in the follow-
ing, we solve the Schrödinger equation with the Hamil-
tonian Eq. 1 either by using exact diagonalization or by
employing the TD2RDM method as discussed below.

III. TD2RDM METHOD AND η-SYMMETRY

Within the TD2RDM method, we avoid the propaga-
tion of the wavefunction, and thus the problem of ex-
ponential scaling altogether, and instead resort to the
propagation of the two-particle reduce density matrix
(2RDM). The price we pay is a partial neglect of three-
particle correlations, as briefly described in the following
(for more details see [30–32]).
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The 2RDM is obtained from a wavefunction |Ψ(t)⟩ by
tracing out N − 2 particles as

D12(t) = N(N − 1)Tr3...N |Ψ(t)⟩⟨Ψ(t)|. (4)

Similarly, the three-particle reduced density matrix
(3RDM), required for the propagation of the equations
of motion of the 2RDM, is given by

D123(t) = N(N − 1)(N − 2)Tr4...N |Ψ(t)⟩⟨Ψ(t)|, (5)

and relates to the 2RDM via D12 = 1/(N − 2)Tr3D123.
For later reference we also introduce the one-particle re-
duced density matrix (1RDM) given by

D1(t) = 1/(N − 1)Tr2D12 = NTr2...N |Ψ(t)⟩⟨Ψ(t)|. (6)

In a given single-particle basis the elements of D12(t) can
be written as

D
i1σ

′
1i2σ

′
2

j1σ1j2σ2
= ⟨Ψ(t)|â†i1σ′

1
â†i2σ′

2
âj2σ2 âj1σ1 |Ψ(t)⟩. (7)

We omit the numerical index (e.g. 12 for the 2RDM)
whenever it is obvious from the number of indices in
a specific single-particle basis which RDM we consider
(as in Eq. 7). In the present case, a suitable basis cor-
responds to the individual sites of the Fermi-Hubbard
model. In this basis, the uncorrelated initial conditions
considered in this paper can be easily constructed as

Di↑j↓
i↑j↓ = 1 (8)

for all doubly occupied sites i and j and zero otherwise.
In the present case of a total spin singlet case it turns
out that the construction of the entire D12 is not neces-
sary because the spin block D↑↓

12 contains all the informa-
tion [30, 32]. The equations of motion for this spin-block
within the Fermi-Hubbard model are then given by

i∂tD
i1↑i2↓
j1↑j2↓ =

∑
n

hi1
n Dn↑i2↓

j1↑j2↓ +
∑
n

hi2
n Di1↑n↓

j1↑j2↓

+ Uδi1,i2Di1↑i2↓
j1↑j2↓

−
∑
n

hn
j1D

i1↑i2↓
n↑j2↓ −

∑
n

hn
j2D

i1↑i2↓
j1↑n↓

− Uδj1,j2D
i1↑i2↓
j1↑j2↓

+ UDi1↑i2↑i1↓
i1↑j2↑j1↓ + UDi1↑i2↑i2↓

j1↑i2↑j2↓,

− UDj1↑i2↑i1↓
j1↑j2↑j1↓ − UDi1↑j2↑i2↓

j1↑j2↑j2↓ (9)

with

hi
j = −Jδi+1

j − Jδi−1
j . (10)

These equations scale like M4
s with the number of sites,

which is key to the efficiency of the TD2RDM method.
The closure of the equations of motion requires a recon-
struction of the 3RDM via the 2RDM using an approx-
imate stable reconstruction functional [30–32]. Briefly,

our reconstruction functionals are based on the cumu-
lant expansion of the 3RDM [37]

D123 = ÂD1D2D3 + Â∆12D3 +∆123, (11)

which represents a separation into elements with dif-
ferent levels of particle correlations. Â is an anti-
symmetrization operator that creates only permutations
that give non-equivalent terms,

∆12 = D12 − ÂD1D2 (12)

is the two-particle cumulant representing two-particle
correlations, and ∆123 is the three-particle cumulant.
Using the cumulant expansion, an approximate recon-
struction functional of D123 boils down to finding physi-
cally motivated reconstruction functionals for the three-
particle cumulant ∆123. We have shown previously that
a stable and accurate propagation of Eq. 9 requires that
the reconstructed 3RDM correctly contracts into the two-
particle space [30]. Only then are conservation of en-
ergy and spin symmetries guaranteed at all times during
time propagation. This contraction consistency [30] can
be achieved employing the unitary decomposition (see
e.g. [38–40]), which allows to decompose a tensor into
its trace-free kernel and the orthogonal component (with
respect to the Hilbert-Schmidt inner product), which
carries traces. The orthogonal component is an exact
functional of the traces of the tensor and can thus be
easily determined. We employ here the reconstruction
functional by Valdemoro and coworkers [41] and enforce
construction consistency [30, 32]. Enforcing contraction
consistency leads to a scaling with M5

s . Due to the lin-
earity of the unitary decomposition, this reconstruction
of the 3RDM amounts to neglecting the kernel (i.e. the
trace free component) of ∆123 in Eq. 11. We do not
use the Nakatsuji-Yasuda reconstruction [32, 42] of the
three-particle cumulant here because the build up of the
(quasi)-condensate leads to large two-particle cumulants
as a function of time without concomitant increases in the
three-particle cumulants such that the Nakatsuji-Yasuda
reconstruction, while being initially more accurate, leads
to overall larger reconstruction errors as time progresses.
The η-symmetry of the Hamiltonian leads to a fur-
ther constant of motion that has to be considered,
i.e. [Ĥ, η̂+η̂−] = [Ĥ, η̂z] = 0 with η+ given in
Eq. 2, η− being its hermitian conjugate, and η̂z =
1
2

∑
j (n̂j↑ + n̂j↓ − 1) [23]. While the conservation of the

expectation value of ⟨ηz⟩ is guaranteed by the conserva-
tion of the particle number, the conservation of ⟨η+η−⟩
requires further scrutiny. Using the 2RDM the expecta-
tion value ⟨η+η−⟩ can easily be calculated as

⟨η̂+η̂−⟩ =
∑
i,j

(−1)i−jDi↑i↓
j↑j↓, (13)

and its behavior within the TD2RDM can be investi-
gated by calculating its time-derivative. The fact that
the time-derivative of Eq. 13 has to be zero, however,
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does not lead to further constraints on the 3RDM recon-
struction functional as it requires only exchange symme-
try. (This is in contrast to e.g. the conservation of energy
[35] which requires contraction consistency [30]). How-
ever, the TD2RDM suffers from the N-representability
problem, which necessitates the application of purifica-
tion [31, 32, 40, 43]. We, therefore, have to adapt our
purification procedure, which so far took only into ac-
count contraction consistency between the 2RDM and
the 1RDM as well as energy conservation [32, 43]. The
modified purification procedure, which guarantees the
conservation of all constants of motion including ⟨η+η−⟩,
is described in App. A.

IV. DYNAMICAL (QUASI-)CONDENSATION

Our figure of merit to asses the presence of a ferimionic
(quasi-)condensate is the largest eigenvalue of the 2RDM
g1 (i.e. the highest geminal occupation number) obtained
from diagonalization of the 2RDM

D12(t) =

r(r−1)/2∑
j=1

gj(t)|gj(t)⟩⟨gj(t)|, (14)

where |gj(t)⟩ are the geminal states (pair-states) and r
is the number of single-particle basis states (orbitals).
In our case r = 2Ms. In our convention, the geminal
occupation numbers are ordered in descending order and
g1 is the largest occupation number. The geminals can
be grouped according to their spin symmetry into spin-
singlet and spin-tripled states. In all cases reported below
the largest geminal occupation number g1 belongs to a
spin-singlet state |g1⟩.
Yang showed [24] that gj is bounded from above by

gmax =
N(r −N + 2)

r
(15)

for a system of N fermions in r modes and with the nor-
malization of the 2RDM as given in Eq. 4. Clearly, gmax

is macroscopic, i.e. O(N), showing that the smallest re-
duced density matrix allowing macroscopic occupations
in fermionic systems is the 2RDM, in contrast to bosonic
condensation, which manifests itself by a macroscopic oc-
cupation of an eigenstate of the 1RDM according to Pen-
rose and Onsager [44]. The maximal geminal occupation
number for bosonic systems thus scales as O(N2).
In case of half-filling, N = r/2 = Ms, we obtain

gmax =
N + 2

2
, (16)

and for the other cases considered here, i.e. N = r/4 =
Ms/2 andN = r/6 = Ms/3, we obtain gmax = (3N+2)/4
and gmax = (5N + 2)/6, respectively.
When gmax is reached, all other r(r−1)/2−1 states have
equal weight given by [45]

ḡ =
2N(N − 2)

r(r − 2)
. (17)

𝑔𝑔𝑖𝑖

𝑖𝑖
1 𝑁𝑁 𝑁𝑁 − 1

2
𝑟𝑟 𝑟𝑟 − 1

2

𝑔̅𝑔 =
2𝑁𝑁 𝑁𝑁 − 2
𝑟𝑟 𝑟𝑟 − 2

2𝑁𝑁 𝑁𝑁 − 1
𝑟𝑟 𝑟𝑟 − 1

𝑔𝑔max
𝑆𝑆2 = 𝑆𝑆2∗

2

0

𝑆𝑆2 = 𝑆𝑆2max

𝑆𝑆2 = 𝑆𝑆20

Figure 2. Distribution of geminal occupation numbers for sev-
eral distinct states. Blue: uncorrelated (Hartree-Fock) state
with entropy S0

2 , red: extreme AGP state that reaches the
predicted upper bound of gmax (Eq. 15) and has an entropy of
S∗
2 , and green: a state with the highest entropy Smax

2 (Eq. 18).

It has been shown that states reaching gmax correspond
to extreme antisymmetric geminal power (AGP) states
[45], which can be constructed by antisymmetrization of
a product ansatz of one pair-state. The η-condensate is
an example for the realization of these states.
In the search for the dynamical (quasi-)condensation we
will monitor the time evolution of g1(t), whose proximity
to gmax will signify the presence of a fermionic (quasi-
)condensate. When g1(t) approaches gmax, all other
eigenvalues should become close to equal. This behavior
can be analyzed by means of a single quantity, i.e. the en-
tropy of the distribution of geminal occupation numbers
(see Fig. 2)

S2(t) = −
r(r−1)/2∑

i=1

gi(t) ln gi(t). (18)

We evaluate S2 by renormalizing
∑r(r−1)/2

i=1 gi = 1. S2

has been used as a measure of entanglement and correla-
tions in the context of fermionic systems in e.g. [46, 47].
We denote the 2RDM entropy for an extreme AGP as
S∗
2 . Note that S∗

2 is close to but not equal to the maxi-
mum Smax

2 of S2 given by an equal distribution of gi, see
Fig. 2.

A. Small systems in 1D

We start our investigation with Ms = 8 sites and ex-
act results. Tuning U from U ≪ 1J to U ≫ 1J we
observe significant differences in the system’s behavior,
see Fig. 3. For U = 4J and periodic boundary condi-
tions, g1(t) fluctuates around g1(t) ≈ 2 as a function of
time regardless of the position of the initial state [see
Fig. 3 (c) for the example of a left-aligned initial state].
The system thermalizes within t ≈ 5J−1, soon after the
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Figure 3. Exact results for the Ms = 8 site Fermi-Hubbard
model in 1D for different U , boundary conditions, and align-
ments of the initial state. (a) and (b) U = 0.1J , (c) and (d)
U = 4J . Plotted is the maximal geminal occupation number
as a function of time, g1(t), in (a) and (c), and the particle
density at site one as a function of time, ρ1(t), in (b) and (d).
In all sub-figures solid lines correspond to hard wall boundary
conditions and a left aligned initial state, dashed lines corre-
spond to hard wall boundary conditions and a centered initial
state [as in Fig. 1 (a) for Ms = 8], and dashed-dotted lines
corresponds to periodic boundary conditions and left aligned
initial state.

particle density completes a full circle around the system
[Fig. 3 (d)]. This behavior is also observed for hard wall
boundary and a centered initial condition, with thermal-
ization occurring before any significant increase in g1(t).
Significantly different behavior is observed when employ-
ing a left-aligned initial state and hard wall boundary
conditions. In this scenario, more space (i.e. half of the
system) is available for the system to expand freely un-
til reaching the boundary. During this period, a notice-
able enhancement of the pair-occupation number occurs,
until g1 reaches at the time Tmax a maximum of about
g1(Tmax) ≈ 4. Here and in the following, Tmax repre-

sents the time of the first significant maximum in g1(t)
[see Fig. 3 (c)]. Overall, the process of thermalization
is slower, allowing for the observation of a second local
maximum during the ”back-and-forth” movement of the
density, compare Fig. 3 (c) and (d). These observations
are in line with the physics of emergent Hamiltonians
[28], elucidating the phenomenon of dynamical quasicon-
densation in the context of hard-core bosons upon free
expansion [25]: The large interaction parameter U in-
duces a pairing between the fermions, facilitating a map-
ping to hard-core bosons, also known as doublons (see
e.g. [14]). If the system can expand freely for long enough
time, quasicondensation emerges. However, the interac-
tion with the boundary ultimately destroys the validity
of the emergent Hamiltonian and with it the quasicon-
densate.
In our analysis of the dynamical (quasi-)condensation ef-
fect, we focus on evaluating Tmax, and the associated
amplitude of the geminal occupation number g1(Tmax).
For U ≥ 1J we observe that Tmax scales linearly with
U , i.e. Tmax ∝ U [Fig. 4 (b)]. This behavior can be at-
tributed to the rescaled hopping matrix element of the
doublons, which is proportional to J2/U (see e.g. [14]).
The dynamical (quasi-)condensation effect is least pro-
nounced in the range of U ≈ 1J , where we observe a
substantially smaller enhancement of g1(Tmax) to values
around g1(Tmax) ≳ 3.5 (Fig. 5). As U increases, g1(Tmax)
shows a steady rise, reaching saturation at g1(Tmax) ≈ 4.

For small U < 1J , the behavior of the system is strik-
ingly different. We observe the emergence of a broad
maximum, with g1(t) approaching gmax independently of
the initial state’s position and the chosen boundary con-
ditions [Fig. 3 (a)]. The specific quantitative value of
Tmax is unaffected by the initial state’s position and ex-
hibits only a mild dependence on the selected boundary
conditions. Notably, the particle density undergoes mul-
tiple fluctuations between the systems boundaries during
the development of the broad maximum in g1(t), without
thermalizing the system. This observation leads us to the
conclusion that this phenomenon represents a novel dy-
namical (quasi-)condensation effect, distinct from those
captured by an emergent Hamiltonian. We present a
detailed analysis that further supports this statement
in App. B, where we show that the Hamiltonian Eq. 1
for U < 1 does not lead to an emergent time-depedent
Hamiltonian that is (approximately) conserved during
time evolution as required by [28].
Accordingly, in contrast to the linear scaling with U for
U > 1J , we observe an inverse scaling behavior of Tmax

for U < 1J , i.e. Tmax ∝ 1/U , see Fig. 4 (a). g1(Tmax) in
turn, increases with decreasing U reaching again values
close to g1(Tmax) ≈ 4.
We now proceed to analyze whether these observations
are captured by our approximate TD2RDM method, as
an underpinning for our studies with larger systems,
where the effect is more pronounced. For U > 1J we
observe that the TD2RDM method is in excellent agree-
ment with the exact results, accurately predicting the
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Figure 4. The time of the first maximum in g1(t), Tmax,
(see Fig. 3) as a function of U for the 1D Fermi-Hubbard
model with Ms = 8, hard-wall boundary conditions, and a
left aligned initial state. Solid lines are TD2RDM results,
dashed lines correspond to exact results. The gray dotted
lines represent linear fits. (a) Interval U ∈ [0.02, 0.5]J with
inverted axis, (b) U ∈ [1, 25]J . The inset in (a) shows the full
U interval in linear scale. The gray dotted lines in each figure
correspond to linear fits.

linear dependence of Tmax on U and the slope. For
U < 1J the TD2RDM method correctly predicts the
1/U behavior but slightly overestimates the proportion-
ality constant. Simultaneously, the amplitude at Tmax is
overestimated but the overall behavior is again captured
very well, see Fig. 5.
To gain a deeper understanding of these discrepancies,
we further scrutinize the dynamics of all geminal occupa-
tion numbers as predicted by the approximate TD2RDM
method and compare them to the exact results. We ob-
serve that as g1(t) evolves towards its maximum, all other
geminal occupation numbers approach each other, con-
sistent with the expectation that when gmax is reached,
all other geminals are occupied by ḡ, Eq. 17 [see Fig. 6
(a)]. However, the exact results show a small time shift
between the maximum of g1(t) and the time at which all
other gi>1(t) are closest. This leads to g1(Tmax) being
noticeably smaller than gmax. Furthermore, the exact re-
sults show a small revival of the maximum at t ≈ 160J−1.
In contrast, the TD2RDM results lack this shift, resulting
in an overestimation of the amplitude g1(Tmax). Addi-
tionally, the TD2RDM results exhibit prominent periodic

0.0 0.2 0.4 0.6 0.8 1.0
U [J]

1

2

3

4

5

g 1
(T

m
ax

)

gmax

0 10 20
3
4
5

Figure 5. The maximal value of the largest occupied geminal
at Tmax, g1(Tmax), for different U for the 1D Fermi-Hubbard
model with Ms = 8, hard-wall boundary conditions, and a left
aligned initial state. Solid lines are TD2RDM results, dashed
lines correspond to exact results. The black dashed horizontal
line marks the maximal possible two-state occupation number
gmax = 5 for Ms = 8. The inset shows the full analyzed U
interval (the exact results extend towards larger values).

revivals, indicating that relaxation effects are underesti-
mated. Notably, the TD2RDM prediction for U = 4J is
remarkably accurate, even capturing the third revival of
g1(t).
This analysis can be complemented by means of the en-
tropy S2(t), which concentrates the information on all
geminal occupation numbers into one quantity. We ob-
serve that S2(t) increases as a function of time, reach-
ing S∗

2 for an extreme AGP state at a time close to
Tmax [Fig. 7 (a)]. The TD2RDM results closely fol-
low the exact results initially, but then S2(t) remains
large within the exact results while spuriously fluctuat-
ing within the TD2RDM results. Another quantity that
gives insights into pair-correlations is the two-particle cu-
mulant Eq. 12. Evaluating the Frobenius norms of the

two-particle cumulants for spin-polarized pairs, |∆↑↑
12|2,

and spin-unpolarized pairs |∆↑↓
12|2 as a measure for two-

particle correlations reveals that the TD2RDM overes-
timates the pairing of spin-unpolarized pairs while un-
derestimating the production of spin-polarized pairs, see
Fig. 7 (b) and (c).
We, therefore, focus in our further analysis on the scaling
behavior of Tmax and g1(Tmax), which is overall very well
captured by the TD2RDM method, see Figs. 4 and 5.
We would like to point out that our previous results [32]
indicate that the TD2RDM method is more accurate for
larger systems with Ms ≳ 20 than for systems as small as
Ms = 8. While for Ms = 8 the TD2RDM method over-
estimates the density fluctuations for t > 60J−1 (not
shown) consistent with the deviations obtained for the
geminal occupation numbers, we have observed almost
perfect agreement for the density fluctuations in case of
Ms = 18 in [32]. The predictions for Tmax and the ampli-
tude g1(Tmax) within TD2RDMmight, therefore, be even
more accurate than a straight forward extrapolation of
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Figure 6. Comparison between exact and TD2RDM results
for the dynamics of all geminal occupations numbers gi(t) for
the 1D Fermi-Hubbard model with Ms = 8, hard-wall bound-
ary conditions and a left aligned initial state. The largest
geminal occupation number g1(t) is drawn with a thicker
line and darker color. (a) Exact results for U = 0.1J , (b)
TD2RDM results for U = 0.1J , (c) exact results for U = 4J ,
and (d) TD2RDM results for U = 4J .

the results for Ms = 8 allows to judge.

B. Larger systems in 1D

We now turn to the fundamental question of whether
the observed effect exhibits characteristics of a quasi-
condensate that vanishes in the thermodynamic limit,
or whether this dynamical setting enables a circumven-
tion of the Mermin-Wagner-Hohenberg theorem which
prohibits condensation in 1D in equilibrium [34]. To ad-
dress this question, we extend our investigation using the
TD2RDM method to explore significantly larger system
sizes for which there are no exact benchmarks available,
bearing in mind that the TD2RDM might slightly over-
estimate both Tmax as well as gmax while maintaining a
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2

a)

0

1
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|
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t [J 1]
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|
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TD2RDM
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Figure 7. Comparison between exact (dashed lines) and
TD2RDM results (solid lines) for (a) the dynamics of the
entropy S2, and the Frobenius norm of two-particle cumu-
lants (b) |∆↑↓

12 |2 and (c) |∆↑↑
12 |2. In (a) the solid horizontal

line marks the maximal value of S2, Smax
2 , and the dotted

horizontal line denotes the value of S2 obtained for a perfect
condensate, S∗

2 . Red and orange lines are for U = 0.1J , green
and blues lines are for U = 4J . The system corresponds to
the 1D Fermi-Hubbard model with Ms = 8 sites, hard wall
boundary conditions and a left aligned initial state.

reliable prediction of the overall behavior and scaling.
We start our investigation with a system of Ms = 20 for
which we make detailed comparison to the system with
Ms = 8. Fig. 8 shows one particular example of the be-
havior for Ms = 20. Similar to the case of Ms = 8, the
largest geminal occupation number g1(t) rises to a pro-
nounced maximum of g1(Tmax) ≈ 10 close to gmax = 11
and several revivals appear [Fig. 8 (a)]. These strong re-
vivals are again most likely spurious.
It is instructive to explore in parallel the density fluc-
tuations of the system [Fig. 8 (c)]. We observe strong
fluctuations in between the boundaries of the system and
several reflections from the hard walls except for a short
interval in time around Tmax, where the particle density
becomes homogeneous. This effect is accompanied by a
local maximum in the single-particle entropy S1 obtained
from the diagonalization of the 1RDM (Eq. 6)

D1(t) =

r∑
j=1

nj(t)|nj(t)⟩⟨nj(t)|, (19)
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Figure 8. TD2RDM results for the Fermi-Hubbard model
in 1D with Ms = 20, U = 0.1J , hard-wall boundary condi-
tions, and a centered initial condition. (a) Geminal occupa-
tion numbers, (b) entropies S2 (left y-axis) and S1 (dashed
line, right y-axis), and (c) particle-density fluctuations as a
function of time. The vertical lines mark the time Tmax. In
(b) the upper solid horizontal line corresponds to Smax
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lower corresponds to Smax

1 , and the dotted horizontal line cor-
responds to S∗

2 .

given by

S1(t) = −
r∑

j=1

nj(t) lnnj(t). (20)

We have again renormalized
∑r

i=1 ni = 1 to calculate
the entropy S1. The maximum at Tmax is given by
S1(Tmax) = 3.68, which is very close to the maximal value
of Smax

1 = 3.69 for equally distributed natural occupation
numbers for r = 2Ms = 40 [see Fig. 8 (b)]. Overall, S1(t)
follows the curve of the two-particle entropy S2(t).
The homogeneous distribution of the particle density over
the entire system follows from the fact that an extreme
AGP state belongs to one of the quantum many-body
states that maximize S1, and is a direct consequence of
the fact that the observed state is close to an extreme
AGP state, with natural orbitals distributed over the
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Figure 9. (a) Tmax and (b) the amplitude of the maximum of
the largest geminal occupation number g1(Tmax) as a function
of U for Ms = 20 sites and different boundary conditions.
In (a) on the second y-axis we plot with crosses exemplary
for hard wall boundary conditions ∆T (i.e. the width of the
time window, where the density fluctuations become homoge-
neous).

entire system and their occupation numbers being al-
most equal. This striking effect of the particle density
becoming homogeneous during a small but finite time
interval ∆T around Tmax opens the door for an experi-
mental study of these effects within the platforms of ul-
tracold quantum simulators. While the increase of the
pair-state occupation number is not easily accessible ex-
perimentally, the monitoring of the density fluctuations
of the system has become an experimental routine on
these platforms (see e.g. [48–52], for a current experi-
mental realization of a 1D periodic system see [53]) and
would allow to measure Tmax for even larger systems and
other geometries. ∆T depends on the width of the max-
imum in g1(t), which increases with Tmax, i.e. with 1/U
[see Fig. 9 (a)]. In Fig. 9 (a) we plot ∆T exemplary for
hard wall boundary conditions by determining the time
interval for which the weight of the Fourier components
with k > 0 for the density fluctuations in Fig. 8 (c) fall
below a certain limit.
When considering different boundary conditions and po-
sitions of the initial state, we observe again only a weak
dependence of the dynamical (quasi-)condensation effect
on them. Tmax as a function of U is practically equal for
both boundary conditions, see Fig. 9 (a). g1(Tmax) be-
haves similarly for the two different boundary conditions
but overall the decay with U is slower in case of peri-
odic boundary conditions and less monotonic. A further
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boundary conditions, and (b) hard-wall boundary. (c) Absolute square of the momentum distribution of the η-condensate for
Ms = 20 and periodic boundary conditions.

analysis of the state |g1(Tmax)⟩ reveals another interest-
ing consequence of the boundary conditions. When com-
paring the state |g1(Tmax)⟩ to the η-condensate in mo-
mentum space we observe for periodic boundary condi-
tions that |g1(Tmax)⟩ shows the typical η-pairing of k and
k−π for particles of different spin, see Fig. 10. |g1(Tmax)⟩
shows only small deviations from the η-condensate [see
Fig. 10 (c)] most notably a larger spread and a local min-
imum across the k2 = π − k1 lines in momentum space
[Fig. 10 (a)]. In contrast, for the system with hard-wall
boundary conditions, the reflexions at the boundaries
lead to the emergence of additional pairings, most no-
tably Cooper-pair like pairs with k1 = −k2, see Fig. 10
(b). Note that the absolute square of the momentum dis-
tribution for the η-state is practically equal for periodic
and hard-wall boundary conditions, the only difference
being a different phase of the amplitudes and two more
data points in Fourier space due to explicitly taking into
account the vanishing density at site number 0 andMs+1
for hard-wall boundary conditions. Despite these differ-
ences in the properties of the (quasi-)condensate state,
the geminal occupation numbers show similar behavior
for both boundary conditions [Fig. 9].
We now turn to analyzing the behavior of the (quasi)-
condensation effect with system size. Since parameter
scans are numerically increasingly demanding with sys-
tem size we focus on two parameters for the on-site in-
teraction, i.e. U = 0.1J and U = 0.2J . We observe for
both values of U that Tmax increases with Ms in a non-
linear way [Fig. 11 (a)]. The influence of the boundary
conditions is negligible. In agreement with the previous
investigations for Ms = 8 we observe that Tmax is larger
for U = 0.1J than for U = 0.2J for all investigated Ms.
The amplitude of the first maximum g1(Tmax) increases
monotonically with Ms [Fig. 11 (b)]. Most importantly,
in the given available interval, the increase is propor-
tional to

√
Ms. Consequently, we observe a monotonic

decrease of g1(Tmax) with respect to gmax. Since gmax

grows linearly with Ms (Eq. 15) our results indicate that
g1(Tmax)/gmax ∝ 1/

√
Ms in the thermodynamic limit. In

other words, if the
√
Ms-dependence of g1(Tmax) is pre-

served in the thermodynamic limit of Ms → ∞, then in
the thermodynamic limit, g1(Tmax)/gmax → 0. Our re-
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Figure 11. Dynamical quasi-condensation as functions of sys-
tem size Ms. (a) Tmax, (b) g1(Tmax), and (c) g1(Tmax) rel-
ative to the maximum gmax (Eq. 15) for hard-wall bound-
ary conditions (solid), periodic boundary conditions (dashed),
U = 0.1J (dots), and U = 0.2J (squares). The gray dotted
line in (b) corresponds to a fit to a square root function.

sults thus predict that the observed effect is a dynamical
quasi-condensate.
In the following section, we will investigate whether we
might obtain a true condensation in 2D, i.e. in the pres-
ence of transverse degrees of motion, by extending the
system to narrow 2D stripes.
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Figure 12. (a) The largest geminal occupation number g1(t),
and (b) g1(t) relative to gmax as a function of time for U =
0.1J for different 2D stripe geometries with Ms = 8 × 2 and
N = 8, Ms = 20 × 2 and N = 20, and Ms = 30 × 2 and
N = 30. (c) The largest value g1(Tmax) as a function of the
number of sites Ms for the systems in (a). The gray dashed
line represents a fit to square root function of Ms.

C. Extension to 2D systems

We restrict our study here to hard-wall boundary con-
ditions as these are more easily realizable experimentally
in 2D systems. The geometries we investigate here are
depicted in Fig. 1 (b) and (c). For these systems with
large Ms systematic scans with U and Ms are increas-
ingly expensive even within TD2RDM such that we focus
here on the question whether we get an indication of a
convergence to finite values of g1(Tmax)/gmax in the ther-
modynamic limit. For this purpose we stick to U = 0.1J
and U = 0.2J for different geometries and numbers of
sites Ms.
When extending the 1D system by one transversal site
along the entire length as in Fig. 1 (b) we observe a build-
up of a maximum in g1(t) over time, see Fig. 12 (a) for
different Ms and a filling of 1/4 (i.e. N = Ms/2 = r/4),
and Fig. 12 (b) for g1(t) relative to gmax. In this case, the
prediction for gmax (Eq. 15) is equal to gmax = (3N+2)/4,
i.e. larger than in the case of half-filling, Eq. 16. It
is striking that the maxima are much broader than in
1D extending over longer periods of time. For g1(Tmax)
we observe a sub-linear (square root) increase with Ms

[Fig. 12 (c)], while convergence of g1(Tmax)/gmax towards
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Figure 13. The largest geminal occupation number g1(t) as a
function of time for U = 0.2J and number of particles N = 20
and different stripe geometries with Ms = 20× 1 (1D), Ms =
20× 2, and Ms = 20× 3 sites amounting to different fillings.

finite values would require a linear increase. The conclu-
sion from these results is thus that the condensation effect
will vanish in the thermodynamic limit.
Increasing the system further by another transverse de-
gree of freedom as in Fig. 1 changes the picture quite
strongly, see Fig. 13. For the system with Ms = 20 × 3
sites we observe a fast increase in g1(t) initially but then a
flattening and a further increase at a much smaller pace.
Until a time of around t = 100J−1, which is already
numerically quite costly, the largest geminal occupation
number g1 does not come close to gmax = (5N+2)/6 = 17
for this case of sixth filling. It is difficult to estimate
based on these observations whether the system develops
a (quasi-)condensate at some later point in time but the
curves obtained so far indicate that the effect does not
persist in 2D.

V. CONCLUSIONS

We have numerically investigated dynamical quasi-
condensation in the Fermi-Hubbard model starting from
a completely uncorrelated initial state of adjacent doubly
occupied sites. In 1D we have shown that upon expansion
of the system the largest eigenvalue of the two-particle
reduced density matrix (2RDM), g1(t), develops a local
maximum that comes close to the theoretical upper limit
gmax predicted by Yang [24], signaling the appearance
of fermionic pair condensation. This dynamical quasi-
condensation is accompanied by strong two-particle cor-
relations as measured by the two-particle cumulants and
the two-particle entropy obtained from the eigenstates of
the 2RDM. This condensation effect appears for all inves-
tigated values of the interaction U , but shows a distinctly
different behavior for small U < 1J as compared to large
U > 1J , where J is the hopping matrix element. In the
case of U > 1J , the quasi-condensation effect has been
explained by the physics of an emergent Hamiltonian [28],
and requires a completely free expansion. In contrast,
for small U < 1J we observe that the system under-
goes many interactions with the boundaries of the system
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on the characteristic time scale Tmax during which the
dynamical quasi-condensate emerges. The effect is only
weakly dependent on whether we chose hard-wall or peri-
odic boundary conditions. Interestingly, the two-particle
quasi-condensate state does dependent on the boundary
conditions and features the typical η-condensate pairing
in case of periodic boundary conditions and both an η-
condensate pairing and Cooper-pair-like pairing in case
of hard-wall boundary conditions. Moreover, the scal-
ing of both Tmax and the amplitude g1(Tmax) with U is
markedly different for U < 1J and U > 1J . For U < 1J
we observe that Tmax ∝ 1/U , while for U > 1J one ob-
tains Tmax ∝ U .
It is so far an open question whether it is possible
to circumvent the Mermin-Wagner-Hohenberg theorem
[33, 34] in a dynamical setting, which prohibits the ap-
pearance of condensation in 1D in the thermodynamic
limit in equilibrium. We address this question for our
weakly interacting quasi-condensation effect by expand-
ing to system sizes of up to 60 sites. To propagate
these systems over the required long periods of time
we employ our newly developed time-dependent 2RDM
(TD2RDM) method. Based on comparisons with exact
results for small system sizes we have demonstrated that
the TD2RDM method accurately predicts the essential
features of the effect such that extrapolation to large sys-
tems, where exact benchmarks do not exist, can be made.
The analysis of the effect with increasing system size re-
veals that the maximum of g1 grows proportionally to the
square root of the system size while gmax grows linearly.
Our results thus indicate that g1(Tmax)/gmax vanishes in
the thermodynamic limit, a defining feature of a quasi-
condensate.
To further expand on this question, we have extended
our system to narrow 2D stripes allowing for transversal
motion during expansion. For systems with two trans-
verse sites, we observe broad maxima in g1 over longer
periods of time compared to the 1D case. The scaling of
g1(Tmax) with the system size, however, again indicates
a vanishing condensation effect in the thermodynamic
limit. A further increase, of the transverse degrees of
freedom seems to lead to a strong deterioration of the ef-
fect. In this case, g1 increases strongly initially but then
flattens, featuring a slow but steady increase over the en-
tire investigated time interval during which, however, g1
does not come as close to gmax as in the previous cases.
Further increase in the number of transversal degrees of
freedom to approach a sufficiently large square lattice is
planned in future.
Our results open the door to further scrutinize this effect
in the platform of experimental quantum simulators with
single-site resolution [48–52] where substantially larger
system sizes both in 1D and 2D could be probed. We have
shown that the appearance of the quasi-condensation ef-
fect is accompanied with spatial particle density fluctu-
ations becoming homogeneous over the entire system for
a short but finite period of time around Tmax. Strong
density fluctuations reappear shortly after Tmax. This

effect can be traced back to the single-particle entropy
obtained from the eigenvalues of the one-particle reduced
density matrix showing a local maximum. Since prob-
ing the particle density distribution is an experimental
routine nowadays, observing a homogeneous density over
finite periods of time could serve as a strong indication
of the dynamical (quasi-)condensation effect.
Finally, our results highlight the potential of the
TD2RDM method to deliver predictions for system sizes
and time scales not reachable by any other method. We
would like to point out that our present code, while ex-
ploiting several symmetries of the system, is not fully
optimized and heavily parallelized yet. Further improve-
ment of its optimization and employing multi-node par-
allelization should allow to compute the dynamics in sys-
tems with a number of sites of about a factor of two larger
than the largest systems in the present study over sim-
ilar time scales. With this extension, investigations of
condensation effects on a square lattice in 2D should be-
come possible. The TD2RDMmethod could thus provide
benchmarks and guidance for studies on non-equilibrium
systems on quantum simulators for large systems.
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Appendix A: Conservation of η-symmetry within
purification and details on the numerical

implementation

In order to preserve N-representability of the 2RDM at
least partially during time propagation, we apply an a-
posteriori purification procedure after propagation time
steps [30–32, 43]. Without purification the TD2RDM
method tends to produce 2RDMs with negative eigen-
values that ultimately may lead to instabilities [35]. Pu-
rification entails removing iteratively the defective part
from the 2RDM while preserving its contraction to the
1RDM. This can be facilitated by applying the unitary
decomposition of the 2RDM [40],

D12 = D12;⊥{D1}+D12;K , (A1)
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where the kernel D12;K has vanishing traces, and all the
trace information is contained in the orthogonal com-
ponent, D12,⊥. D12,⊥{D1} indicates that the orthogo-
nal component is a functional of the 1RDM. We have
empirically shown [30–32] that restoring the positive-
semidefinitness of the 2RDM and the two-hole RDM is
sufficient to stabilize the equations of motion in most
cases [32]. Accordingly, we determine the defective part
of the 2RDM

D<
12 =

∑
gi<0

gi|gi⟩⟨gi| (A2)

and similarly the defective part of the two-hole RDM,
Q<

12. Subtracting the kernel of the defective compo-
nents of both the 2RDM and the two-hole RDM from the
2RDM iteratively leads to a positive semi-definite 2RDM,
while preserving contraction consistency to the 1RDM. In
general, however, other symmetries like e.g. energy con-
servation are broken in this process unless further amend-
ments are applied. It has been shown [43] that energy
conservation can be restored by removing from D<

12 and
Q<

12 the contributions that would lead to violations of
energy conservation, before calculating the kernel. Sim-
ilarly, to enforce conservation of ⟨η̂+η̂−⟩, Eq. 13, we set

D<i↑i↓
j↑j↓ and Q<i↑i↓

j↑j↓to zero for all i and j. We then deter-
mine the kernel of the correspondingly corrected defec-
tive components D<

12 and Q<
12, and subtract them from

the 2RDM. This procedure is iterative repeated until the
required threshold for the smallest geminal occupation
number is reached, or until the selected maximal number
of iterations is reached.
For the studies in the main text we have applied a thresh-
old of 0 for the smallest geminal occupation number
and at most 10 iteration steps within the purification
for all systems except for Ms = 60, where only one
step is applied due to its scaling with M6

s within the
current implementation using full diagonalization of the
2RDM. Purification is applied after each global time step
of dt = 0.02J−1 within which the equations of motion,
Eq. 9, are solved with adaptive time steps using a Runge-
Kutta-Fehlberg propagator of 4th and 5th order. The dif-
ferent orders are used to adapt the time steps to achieve
a prescribed accuracy. We have checked that changing
the global time step to dt = 0.01J−1, i.e. applying up
to twice as many purification steps, leads to the same
results to high degree of accuracy.

Appendix B: Formalism of emergent Hamiltonians

We explore the applicability of the formalism of emer-
gent Hamiltonians to the dynamical quasi-condensation
effect for U < 1. Following [28], we define a Hamiltonian

Ĥ0, such that the initial state is an eigenstate of Ĥ0. One
particular choice following Ref. [28] for the present initial

condition is

Ĥ0 =
1

Ms

Ms∑
j=1

j(n̂↑
j + n̂↓

j ). (B1)

There are, however, other possible choices such as Ĥ0 =

U
∑Ms

j=1 n̂
↑
j n̂

↓
j , but they lead to essentially the same con-

clusions, see below. The system evolves under the in-
fluence of Ĥ, Eq. 1, such that P̂ = Ĥ0 − Ĥ can be re-
garded as a quench. Starting from the initial condition
(Ĥ0 − λ)|Ψ(0)⟩ = 0 one applies the time evolution oper-
ator to obtain(

e−iĤtĤ0e
iĤt − λ

)
|Ψ(t)⟩ := M̂(t)|Ψ(t)⟩. (B2)

The operator M̂(t) is given by

M̂(t) = Ĥ − λ+ P̂ − it[Ĥ, P̂ ] +
(−it)2

2

[
Ĥ, [Ĥ, P̂ ]

]
+ ...

= Ĥ − λ+ P̂ − itQ̂+

∞∑
n=1

(−it)n+1

(n+ 1)!
Ĥn,

(B3)

with the definition Q̂ = [Ĥ, P ], and Ĥn describing nested

commutators starting with Ĥ1 = [Ĥ, Q̂]. According to

[28] the emergent Hamiltonian is applicable if M̂(t) is
a local operator. One particular family studied corre-
sponds to [Ĥ, Q̂] = 0 up to boundary terms, where the
time propagated state is exponentially close to the eigen-
state of the emergent Hamiltonian for times proportional
to the system size [28].
For the following discussion it is convenient to separate
our Hamiltonian Eq. 1 as Ĥ = T̂+Ŵ , where T̂ stands for
the hopping operator proportional to J and Ŵ is the on-
site interaction proportional to U . For our system with
hard wall boundary conditions (similar results hold for
periodic boundary conditions) we obtain

Q̂ = [Ĥ, P̂ ] = [T̂ , P̂ ] =
J

Ms

Ms−1∑
j=1

∑
σ

â†j+1σâjσ

− J

Ms

Ms−1∑
j=1

∑
σ

â†jσâj+1σ

(B4)

(note that with the prefactor (−i) from Eq. B3 this con-

tribution to M̂(t) is Hermitian as it should be), and

Ĥ1 = [Ĥ, Q̂] =
2J2

Ms

(
n↑
Ms

+ n↓
Ms

− n↑
1 − n↓

1

)
+
UJ

Ms

[
Ms−1∑
j=1

â†j+1↑aj↑

(
n̂↓
j+1 − n̂↓

j

)
+H.c.

+

Ms−1∑
j=1

â†j+1↓aj↓

(
n̂↑
j+1 − n̂↑

j

)
+H.c.

]
.

(B5)
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The first contribution comes from the commutator be-
tween T̂ and Q̂ (and corresponds to the one found in
[28] for the non-interacting system), while the second

term comes from the commutator between Ŵ and Q̂.
Clearly, the commutator [Ĥ, Q̂] does not vanish and leads

to a term growing quadratically in time in M̂(t), Eq. B3.

Higher orders Ĥn contain elements of the form

UnJ

Ms

[
Ms−1∑
j=1

â†j+1↑aj↑

(
n̂↓
j+1 − n̂↓

j

)n

+ (−1)n+1H.c.

+

Ms−1∑
j=1

â†j+1↓aj↓

(
n̂↑
j+1 − n̂↑

j

)n

+ (−1)n+1H.c.

]
,

(B6)

which originate from the evaluation of the n nested com-
mutators [Ŵ , [Ŵ , . . . , [Ŵ , Q̂]]]. In addition, Ĥn contains
all lower orders in U , i.e. U j with j ∈ [0, n−1] originating

from different sequences of T̂ and Ŵ in the nested com-

mutators and leading to products of 2(j+1) creation and
annihilation operators. These products contain elements

of the form a†jaj+m with m ≤ n (up to m = Ms − 1,

i.e. up to the span over the entire system). The con-
tribution independent of U originates from repeated ap-
plication of the commutator with T̂ and contains only
boundary terms. M(t) therefore contains arbitrary high
orders of products of creation and annihilation operators
with an increasing span over the entire system, albeit be-
ing suppressed by Um with U < 1 in our case and m the
number of commutators containing Ŵ . While the con-
tributions from Eq. B6 to Eq. B3 can be evaluated to all
orders leading to an extensive sum of local exponential
operators, the other terms amount to an infinite series
of non-local operators and thus cannot be easily treated.
These results underline our conclusion that the present
effect is not captured by an emergent Hamiltonian.
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