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Dynamical quasicondensation in the weakly interacting Fermi-Hubbard model
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We study dynamical (quasi)condensation in the Fermi-Hubbard model starting from a completely uncorrelated
initial state of adjacent doubly occupied sites. We show that upon expansion of the system in one dimension,
dynamical (quasi)condensation occurs not only for large interactions via the condensation of doublons, but also
for small interactions. The behavior of the system is distinctly different in the two parameter regimes, underlining
a different mechanism at work. We address the question of whether the dynamical (quasi)condensation effect
persists in the thermodynamic limit. For this purpose, we use the time-dependent two-particle reduced density
matrix method, which allows the extension to large system sizes, long propagation times, and two-dimensional
(2D) systems. Our results indicate that the effect vanishes in the thermodynamic limit. However, especially in
2D, further investigation beyond numerically tractable system sizes calls for the use of quantum simulators, for
which we show that the described effect can be investigated by probing density fluctuations.
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I. INTRODUCTION

Superconductivity is one of the most intriguing collec-
tive electronic phenomena in solid state physics. The search
for an explanation of high-temperature superconductivity in
correlated materials still drives a considerable amount of
experimental and theoretical work. Traditionally, supercon-
ductivity has been viewed as an effect of a system at (or
near) equilibrium [1], but pioneering experiments (see, e.g.,
Refs. [2–10]) have shown that states with signatures of su-
perconductivity can be induced by external driving. This has
stimulated new interest in dynamical condensation effects in
fermionic systems (see, e.g., Refs. [11–17]).

The workhorse for theoretical investigations of correlated
phenomena in solid state physics is the Fermi-Hubbard model
[18–22]. It has been shown analytically by Yang [23] that
the Fermi-Hubbard model in arbitrary dimensions has a spe-
cial symmetry, the so-called η symmetry, which gives rise
to the appearance of a fermionic condensate in the excita-
tion spectrum of the Fermi-Hubbard model. This so-called η

condensate saturates the maximally allowed occupation num-
ber for pair states, whose value was also derived by Yang
[24], and shows off-diagonal long range order [23]. Several
recent theoretical works have been devoted to showing that
ground states of the Fermi-Hubbard model can be driven to
metastable nonequilibrium states with large overlap with the
η condensate inheriting its properties (see, e.g., Refs. [12,13]).

Concomitantly, it was found in numerical studies [25,26]
and subsequently measured experimentally [27] that initially
uncorrelated states of hard-core bosons form a quasiconden-
sate in one dimension (1D) upon free expansion. This effect

*iva.brezinova@tuwien.ac.at

has been explained through the physics of emergent Hamil-
tonians where the dynamical system inherits the properties
of a ground state condensate of the emergent nonequilib-
rium Hamiltonian [28]. This study is highly relevant also for
fermions since in the case of large interactions the fermions
form pairs (doublons), which to a high degree of accuracy can
be described as hard-core bosons. This mapping has been used
to study dynamical quasicondensation of fermions in 1D at
large interactions in, e.g., Refs. [14,29].

In this work we investigate dynamical (quasi)condensation
upon a quench with similar initial conditions, but in the op-
posite limit of weak electron interactions U < 1J , where J
is the hopping matrix element. We show that this dynami-
cal (quasi)condensation effect exhibits a markedly different
behavior than its counterpart at large U . We exploit our time-
dependent two-particle reduced density matrix (TD2RDM)
method [30–32] to reach the required long expansion times
for system sizes of several tens of sites, while laying the
ground based on small systems and exact calculations. We
compare the results within the TD2RDM method with exact
results for small systems to extrapolate its accuracy for larger
systems where exact results are not available. Furthermore,
the TD2RDM method allows one to extend the investiga-
tions to two-dimensional (2D) systems enabling us to address
the question of whether the Mermin-Wagner-Hohenberg the-
orem [33,34], which prohibits any condensation in 1D in
equilibrium in the thermodynamic limit, is also valid in this
dynamical situation.

The paper is structured as follows. We introduce the system
under investigation in Sec. II and review the essential building
blocks of the TD2RDM method in Sec. III emphasizing neces-
sary extensions to incorporate the η symmetry. We investigate
dynamical (quasi)condensation in 1D in Sec. IV. We first
discuss small systems that are treatable exactly. These small
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FIG. 1. Fermi-Hubbard model in (a) 1D and narrow strips in 2D
with (b) two or (c) three transversal sites. The total number of sites
is Ms. The orange bar represents the investigated initial condition of
a block of adjacent doubly occupied sites either placed in the center
(as shown in the images) or left aligned (not shown). The upper panel
shows a few exemplary snapshots of the ensuing density fluctuations.

systems show already signatures of the effect and serve as
benchmarks for the TD2RDM method. Extensions to sub-
stantially larger systems are performed within the TD2RDM
method. In Sec. IV C we extend our research to 2D and
conclude in Sec. V. As units we use h̄ = m = e = 1 unless
otherwise stated.

II. OUT-OF-EQUILIBRIUM FERMI-HUBBARD MODEL

The system under investigation is the Fermi-Hubbard
model in 1D and 2D (see Fig. 1) given by

Ĥ = −J
∑
〈i, j〉

∑
σ

â†
iσ â jσ + U

∑
i

n̂↑
i n̂↓

i , (1)

where 〈i, j〉 denotes nearest-neighbor hopping on a 1D or
2D lattice and n̂↑(↓)

i = â†
i↑(↓)âi↑(↓). The number of sites is

Ms. As boundary conditions we use either periodic boundary
conditions or hard-wall boundary conditions. In the case of
hard-wall boundary conditions, the particle density is strictly
zero at the entire boundary of the system, which extends
beyond the sites plotted in Fig. 1. For example, in 1D, where
the sites are enumerated from 1 to Ms, the hard-wall boundary
is positioned at the sites 0 and Ms + 1.

In 1D we use half-filling, i.e., the number of particles N is
given by N = Ms and the number of spin-up and spin-down
particles is equal. As initial states |�(0)〉 we use Ms/2 ad-
jacent doubly occupied sites, either centered in the middle
of the system as shown in Fig. 1(a) or aligned to the left
edge. Similar uncorrelated initial conditions have been used
extensively as benchmarks for approximate methods to solve
the time-dependent multiparticle Schrödinger equation; see,
e.g., Refs. [35,36].

To explore the effect of dimensionality, we extend the
1D system by transversal degrees of freedom as depicted in
Figs. 1(b) and 1(c). In this case the filling corresponds to
N = Ms/2 in Fig. 1(b) and N = Ms/3 in Fig. 1(c) and the
initial conditions used in these 2D cases are those depicted
in the figure.

All these states are initially entirely uncorrelated, i.e.,
correspond to Hartree-Fock states. The correlation, however,
strongly increases as a function of time as will be dis-
cussed in Sec. IV, which is key to the emergence of the
(quasi)condensate. The initial states are highly excited, i.e.,
many states in the entire excitation spectrum have a non-
negligible overlap. One might think that an ensuing dynamical
(quasi)condensation effect requires a particularly large over-
lap with the η condensate |η〉, which is an exact excited
eigenstate of the Hamiltonian Eq. (1). The overlap between
our initial condition and the η condensate is, however, small
as can be calculated analytically using the construction |η〉 =
(η̂+)N/2|0〉, where |0〉 is the vacuum state and

η̂+ =
∑

j

(−1) j â†
j↓â†

j↑. (2)

Using simple combinatorial arguments, we obtain in 1D in the
case of half-filling, where N = Ms, that

|〈η|�(0)〉|2 =
(

Ms

Ms/2

)−1

(3)

and remains so for t > 0. For large Ms, Eq. (3) goes like
∼2−Ms and is thus exponentially suppressed. Therefore, al-
though the dynamical (quasi)condensate described in this
paper has the same energy expectation value and similar prop-
erties as the η condensate upon its dynamical formation, it
cannot be explained by an actual proximity to it.

To investigate the dynamics of the system in the follow-
ing, we solve the Schrödinger equation with the Hamiltonian
Eq. (1) either by using exact diagonalization or by employing
the TD2RDM method as discussed below.

III. TD2RDM METHOD AND η SYMMETRY

Within the TD2RDM method, we avoid the propagation
of the wave function, and thus the problem of exponential
scaling altogether, and instead resort to the propagation of the
two-particle reduced density matrix (2RDM). The price we
pay is a partial neglect of three-particle correlations, as briefly
described in the following (for more details, see [30–32]).

The 2RDM is obtained from a wave function |�(t )〉 by
tracing out N − 2 particles as

D12(t ) = N (N − 1)Tr3...N |�(t )〉〈�(t )|. (4)

Similarly, the three-particle reduced density matrix (3RDM),
required for the propagation of the equations of motion of the
2RDM, is given by

D123(t ) = N (N − 1)(N − 2)Tr4...N |�(t )〉〈�(t )| (5)

and relates to the 2RDM via D12 = 1/(N − 2)Tr3D123. For
later reference we also introduce the one-particle reduced
density matrix (1RDM) given by

D1(t ) = 1/(N − 1)Tr2D12 = NTr2...N |�(t )〉〈�(t )|. (6)
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In a given single-particle basis the elements of D12(t ) can be
written as

D
i1σ ′

1i2σ ′
2

j1σ1 j2σ2
= 〈�(t )|â†

i1σ ′
1
â†

i2σ ′
2
â j2σ2 â j1σ1 |�(t )〉. (7)

We omit the numerical index (e.g., 12 for the 2RDM) when-
ever it is obvious from the number of indices in a specific
single-particle basis which RDM we consider [as in Eq. (7)].
In the present case, a suitable basis corresponds to the indi-
vidual sites of the Fermi-Hubbard model. In this basis, the
uncorrelated initial conditions considered in this paper can be
easily constructed as

Di↑ j↓
i↑ j↓ = 1 (8)

for all doubly occupied sites i and j and zero otherwise. In
the present case of a total spin singlet case it turns out that
the construction of the entire D12 is not necessary because the
spin block D↑↓

12 contains all the information [30,32]. The equa-
tion of motion for this spin block within the Fermi-Hubbard
model is then given by

i∂t D
i1↑i2↓
j1↑ j2↓ =

∑
n

hi1
n Dn↑i2↓

j1↑ j2↓ +
∑

n

hi2
n Di1↑n↓

j1↑ j2↓ + Uδi1,i2 Di1↑i2↓
j1↑ j2↓

−
∑

n

hn
j1 Di1↑i2↓

n↑ j2↓ −
∑

n

hn
j2 Di1↑i2↓

j1↑n↓

− Uδ j1, j2 Di1↑i2↓
j1↑ j2↓ + UDi1↑i2↑i1↓

i1↑ j2↑ j1↓ + UDi1↑i2↑i2↓
j1↑i2↑ j2↓

− UD j1↑i2↑i1↓
j1↑ j2↑ j1↓ − UDi1↑ j2↑i2↓

j1↑ j2↑ j2↓, (9)

with

hi
j = −Jδi+1

j − Jδi−1
j . (10)

This equation scales like M4
s with the number of sites, which is

key to the efficiency of the TD2RDM method. The closure of
the equation of motion requires a reconstruction of the 3RDM
via the 2RDM using an approximate stable reconstruction
functional; for more details see [30–32] and Appendix A.

The η symmetry of the Hamiltonian leads to a further con-
stant of motion that has to be considered, i.e., [Ĥ, η̂+η̂−] =
[Ĥ , η̂z] = 0, with η̂+ given in Eq. (2), η̂− being its Hermi-
tian conjugate, and η̂z = 1

2

∑
j (n̂ j↑ + n̂ j↓ − 1) [23]. While the

conservation of the expectation value of 〈η̂z〉 is guaranteed
by the conservation of the particle number, the conservation
of 〈η̂+η̂−〉 requires further scrutiny. Using the 2RDM, the
expectation value 〈η̂+η̂−〉 can easily be calculated as

〈η̂+η̂−〉 =
∑
i, j

(−1)i− jDi↑i↓
j↑ j↓ (11)

and its behavior within the TD2RDM can be investigated by
calculating its time derivative. The fact that the time derivative
of Eq. (11) has to be zero, however, does not lead to further
constraints on the 3RDM reconstruction functional as it re-
quires only exchange symmetry. (This is in contrast to, e.g.,
the conservation of energy [35] which requires contraction
consistency [30].) However, the TD2RDM suffers from the N-
representability problem, which necessitates the application
of purification [31,32,37,38]. We, therefore, have to adapt our
purification procedure, which so far took only into account
contraction consistency between the 2RDM and the 1RDM as
well as energy conservation [32,38]. The modified purification

procedure, which guarantees the conservation of all constants
of motion including 〈η̂+η̂−〉, is described in Appendix B.

IV. DYNAMICAL (QUASI)CONDENSATION

Our figure of merit to assess the presence of a ferimionic
(quasi)condensate is the largest eigenvalue of the 2RDM g1

(i.e., the highest geminal occupation number) obtained from
diagonalization of the 2RDM

D12(t ) =
r(r−1)/2∑

j=1

g j (t )|g j (t )〉〈g j (t )|, (12)

where |gj (t )〉 are the geminal states (pair states) and r is the
number of single-particle basis states (orbitals). In our case
r = 2Ms. In our convention, the geminal occupation numbers
are ordered in descending order and g1 is the largest occupa-
tion number. The geminal states can be grouped according to
their spin symmetry into spin-singlet and spin-triplet states.
In all cases reported below the largest geminal occupation
number g1 belongs to a spin-singlet state |g1〉.

Yang showed [24] that g j is bounded from above by

gmax = N (r − N + 2)

r
(13)

for a system of N fermions in r modes and with the nor-
malization of the 2RDM as given in Eq. (4). Clearly, gmax

is macroscopic, i.e., O(N ), showing that the smallest re-
duced density matrix allowing macroscopic occupations in
fermionic systems is the 2RDM, in contrast to bosonic con-
densation, which manifests itself by a macroscopic occupation
of an eigenstate of the 1RDM according to Penrose and
Onsager [39]. The maximal geminal occupation number for
bosonic systems thus scales as O(N2).

In case of half-filling, N = r/2 = Ms, we obtain

gmax = N + 2

2
, (14)

and for the other cases considered here, i.e., N = r/4 =
Ms/2 and N = r/6 = Ms/3, we obtain gmax = (3N + 2)/4
and gmax = (5N + 2)/6, respectively.

When gmax is reached, all other r(r − 1)/2 − 1 states have
equal weight given by [40]

ḡ = 2N (N − 2)

r(r − 2)
. (15)

It has been shown that states reaching gmax correspond to ex-
treme antisymmetric geminal power (AGP) states [40], which
can be constructed by antisymmetrization of a product ansatz
of one pair state. The η condensate is an example for the
realization of these states.

In the search for the dynamical (quasi)condensation we
will monitor the time evolution of g1(t ), whose prox-
imity to gmax will signify the presence of a fermionic
(quasi)condensate. When g1(t ) approaches gmax, all other
eigenvalues should become close to equal. This behavior can
be analyzed by means of a single quantity, i.e., the entropy of
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FIG. 2. Distribution of geminal occupation numbers for several
distinct states. Blue: uncorrelated (Hartree-Fock) state with entropy
S0

2 ; red: extreme AGP state that reaches the predicted upper bound
of gmax [Eq. (13)] and has an entropy of S∗

2 ; green: a state with the
highest entropy Smax

2 [Eq. (16)].

the distribution of geminal occupation numbers (see Fig. 2),

S2(t ) = −
r(r−1)/2∑

i=1

gi(t ) ln gi(t ). (16)

We evaluate S2 by renormalizing
∑r(r−1)/2

i=1 gi = 1. S2 has been
used as a measure of entanglement and correlations in the
context of fermionic systems in, e.g., Refs. [41,42]. We denote
the 2RDM entropy for an extreme AGP as S∗

2 . Note that S∗
2 is

close to but not equal to the maximum Smax
2 of S2 given by an

equal distribution of gi; see Fig. 2.

A. Small systems in 1D

In this section, we want to provide a foundation for the
study of large systems by discussing the essential features
of the dynamical fermionic (quasi)condensation effect and
benchmarking the TD2RDM method with exact results. This
entails verifying whether the essential features of the effect
are reproduced. We start our investigation with Ms = 8 sites
and exact results. Tuning U from U 	 1J to U 
 1J we
observe significant differences in the system’s behavior; see
Fig. 3. For U = 4J and periodic boundary conditions, g1(t )
fluctuates around g1(t ) ≈ 2 as a function of time regardless of
the position of the initial state [see Fig. 3(c) for the example
of a left-aligned initial state]. The system thermalizes within
t ≈ 5J−1, soon after the particle density completes a full circle
around the system [Fig. 3(d)]. This behavior is also observed
for a hard wall boundary and a centered initial condition,
with thermalization occurring before any significant increase
in g1(t ).

Significantly different behavior is observed when em-
ploying a left-aligned initial state and hard wall boundary
conditions. In this scenario, more space (i.e., half of the sites)
is available for the system to expand freely until reaching
the boundary. During this period, a noticeable enhancement
of the pair-occupation number occurs, until g1 reaches at the
time Tmax a maximum of about g1(Tmax) ≈ 4. Here and in
the following, Tmax represents the time of the first significant

FIG. 3. Exact results for the Ms = 8 site Fermi-Hubbard model
in 1D for different U , boundary conditions, and alignments of the
initial state. (a), (b) U = 0.1J; (c), (d) U = 4J . Plotted is the max-
imal geminal occupation number as a function of time, g1(t ), in
(a) and (c), and the particle density at site one as a function of time,
ρ1(t ), in (b) and (d). In all subfigures solid lines correspond to hard
wall boundary conditions and a left aligned initial state, dashed lines
correspond to hard wall boundary conditions and a centered initial
state [as in Fig. 1(a) for Ms = 8], and dashed-dotted lines correspond
to periodic boundary conditions and a left aligned initial state.

maximum in g1(t ) [see Fig. 3(c)]. Overall, the process of
thermalization is slower, allowing for the observation of a sec-
ond local maximum during the “back-and-forth” movement of
the density; compare Figs. 3(c) and 3(d). These observations
are in line with the physics of emergent Hamiltonians [28],
elucidating the phenomenon of dynamical quasicondensation
in the context of hard-core bosons upon free expansion [25]:
the large interaction parameter U induces a pairing between
the fermions, facilitating a mapping to hard-core bosons, also
known as doublons (see, e.g., Ref. [14]). If the system can
expand freely for a long enough time, quasicondensation
emerges. However, the interaction with the boundary ulti-
mately destroys the validity of the emergent Hamiltonian and
with it the quasicondensate.

In our analysis of the dynamical (quasi)condensation
effect, we focus on evaluating Tmax and the associated
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FIG. 4. Time of the first maximum in g1(t ), Tmax (see Fig. 3), as
a function of U for the 1D Fermi-Hubbard model with Ms = 8, hard-
wall boundary conditions, and a left aligned initial state. Solid lines
are TD2RDM results; dashed lines correspond to exact results. The
gray dotted lines represent linear fits. (a) Interval U ∈ [0.02, 0.5]J
with inverted axis; (b) U ∈ [1, 25]J . The inset in (a) shows the full
U interval in linear scale. The gray dotted lines in each figure corre-
spond to linear fits and to a 1/U fit in the inset.

amplitude of the geminal occupation number g1(Tmax). For
U � 1J we observe that Tmax scales linearly with U , i.e.,
Tmax ∝ U [Fig. 4(b)]. This behavior can be attributed to the
rescaled hopping matrix element of the doublons, which is
proportional to J2/U (see, e.g., Ref. [14]). The dynamical
(quasi)condensation effect is least pronounced [i.e., g1(Tmax)
is smallest] in the range of U ≈ 0.6J , i.e., at values slightly
smaller compared to U = 1J , for which we observe the tran-
sition in the behavior of Tmax. At U ≈ 0.6J , the amplitude
is g1(Tmax) ≈ 3.5 (Fig. 5). As U increases, g1(Tmax) non-
monotonically increases, reaching saturation at g1(Tmax) ≈ 4.
To extract Tmax and g1(Tmax) for U � 2J both in the exact
results as well as in the TD2RDM results below, we have
averaged g1(t ) over small intervals of �t = 2.5J−1 to elim-
inate the effect of the high frequency fluctuations visible, e.g.,
in Fig. 3(c). Small local peaks around the overall maximum
would influence the position of Tmax otherwise.

For small U < 1J , the behavior of the system is strikingly
different. We observe the emergence of a broad maximum,
with g1(t ) approaching gmax independent of the initial state’s
position and the chosen boundary conditions [Fig. 3(a)]. The
specific quantitative value of Tmax is unaffected by the ini-
tial state’s position and exhibits only a mild dependence on
the selected boundary conditions. Notably, the particle den-
sity undergoes multiple fluctuations between the systems’

FIG. 5. Maximal value of the largest occupied geminal at Tmax,
g1(Tmax), for different U for the 1D Fermi-Hubbard model with
Ms = 8, hard-wall boundary conditions, and a left aligned initial
state. Solid lines are TD2RDM results; dashed lines correspond to
exact results. The black dashed horizontal line marks the maximal
possible two-state occupation number gmax = 5 for Ms = 8. The inset
shows the full analyzed U interval (the exact results extend towards
larger values).

boundaries during the development of the broad maximum
in g1(t ), without thermalizing the system. This observation
leads us to the conclusion that this phenomenon represents
a dynamical (quasi)condensation effect, distinct from those
captured by an emergent Hamiltonian. We present a detailed
analysis that further supports this statement in Appendix C,
where we show that the Hamiltonian Eq. (1) for U < 1 does
not lead to an emergent time-dependent Hamiltonian that is
(approximately) conserved during time evolution as required
by [28].

Accordingly, in contrast to the linear scaling with U for
U > 1J , we observe an inverse scaling behavior of Tmax for
U < 1J , i.e., Tmax ∝ 1/U ; see Fig. 4(a). g1(Tmax), in turn,
increases with decreasing U reaching again values close to
g1(Tmax) ≈ 4.

We now proceed to analyze whether these observations
are captured by our approximate TD2RDM method, as an
underpinning for our studies of larger systems, where the
effect is more pronounced. For U > 1J we observe that the
TD2RDM method is in very good agreement with the exact
results, accurately predicting the linear dependence of Tmax on
U and the slope. The small discrepancy for U = 4J originates
from a local fluctuation around the global maximum present
even after averaging within TD2RDM but not present in the
exact result; compare Figs. 6(c) and 6(d). For U < 1J the
TD2RDM method correctly predicts the 1/U behavior but
slightly overestimates the proportionality constant. Simulta-
neously, g1(Tmax) is overestimated but the overall behavior
is again captured very well; see Fig. 5. The most notable
discrepancy is the prediction of the minimum of g1(Tmax) as
a function of U at U ≈ 0.5J compared to the exact results,
which predict the minimum to be at U ≈ 0.6J .

To gain a deeper understanding of these discrepancies,
we further scrutinize the dynamics of all geminal occupa-
tion numbers as predicted by the approximate TD2RDM
method and compare them to the exact results. We observe
that as g1(t ) evolves towards its maximum, all other geminal
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FIG. 6. Comparison between exact and TD2RDM results for the
dynamics of all geminal occupations numbers gi(t ) for the 1D Fermi-
Hubbard model with Ms = 8, hard-wall boundary conditions, and a
left aligned initial state. The largest geminal occupation number g1(t )
is drawn with a thicker line and darker color. (a) Exact results for
U = 0.1J , (b) TD2RDM results for U = 0.1J , (c) exact results for
U = 4J , and (d) TD2RDM results for U = 4J .

occupation numbers approach each other, consistent with the
expectation that, when gmax is reached, all other geminals are
occupied by ḡ, Eq. (15) [see Fig. 6(a)]. However, the exact
results show a small time shift between the maximum of g1(t )
and the time at which all other gi>1(t ) are closest. This leads
to g1(Tmax) being noticeably smaller than gmax. Furthermore,
the exact results show a small revival of the maximum at
t ≈ 160J−1. In contrast, the TD2RDM results lack this shift,
resulting in an overestimation of the amplitude g1(Tmax). Ad-
ditionally, the TD2RDM results exhibit prominent periodic
revivals, indicating that relaxation effects are underestimated.
Notably, the TD2RDM prediction for U = 4J is remarkably
accurate, even capturing the third revival of g1(t ). The fact that
the TD2RDM predicts the effect for U > 1J more accurately
than for U < 1J is most likely an effect of time scales. While
for U > 1J the density fluctuations and the buildup of g1(t )
occur on comparable time scales, for U < 1J the density
fluctuates much faster, i.e., many times back and forth, on the

time scale of Tmax. Relative to the characteristic time scale of
the density fluctuations, the system has to evolve much longer
in the case of U < 1J for the buildup of g1(t ) than in the case
of U > 1J .

We focus in our further analysis on the scaling behavior of
Tmax and g1(Tmax), which is overall very well captured by the
TD2RDM method; see Figs. 4 and 5. We would like to point
out that our previous results [32] indicate that the TD2RDM
method is more accurate for larger systems with Ms � 20
than for systems as small as Ms = 8. While for Ms = 8 the
TD2RDM method overestimates the density fluctuations for
t > 60J−1 (not shown) consistent with the deviations obtained
for the geminal occupation numbers, we have observed almost
perfect agreement for the density fluctuations in the case of
Ms = 18 in [32]. The predictions for Tmax and the amplitude
g1(Tmax) within TD2RDM may, therefore, be even more ac-
curate than a straightforward extrapolation of the results for
Ms = 8 allows one to judge.

B. Larger systems in 1D

We now turn to the fundamental question of whether the
observed effect exhibits characteristics of a quasicondensate
that vanishes in the thermodynamic limit or whether this
dynamical setting enables a circumvention of the Mermin-
Wagner-Hohenberg theorem which prohibits condensation in
1D in equilibrium [34]. To address this question, we explore
using the TD2RDM method significantly larger system sizes
for which there are no exact benchmarks available, bearing in
mind that the TD2RDM might slightly overestimate both Tmax

as well as gmax, while maintaining a reliable prediction of the
overall behavior and scaling.

We start our investigation with a system of Ms = 20 for
which we make a detailed comparison to the system with
Ms = 8. Figure 7 shows one particular example of the behav-
ior for Ms = 20. Similar to the case of Ms = 8, the largest
geminal occupation number g1(t ) rises to a pronounced maxi-
mum of g1(Tmax) ≈ 10 close to gmax = 11 and several revivals
appear [Fig. 7(a)]. These strong revivals are again most likely
spurious.

It is instructive to explore in parallel the density fluctua-
tions of the system [Fig. 7(c)]. We observe strong fluctuations
in between the boundaries of the system and several reflec-
tions from the hard walls except for a short interval in time
around Tmax, where the particle density becomes homoge-
neous. This effect is accompanied by a local maximum in the
single-particle entropy S1 obtained from the diagonalization
of the 1RDM [Eq. (6)],

D1(t ) =
r∑

j=1

n j (t )|n j (t )〉〈n j (t )|, (17)

given by

S1(t ) = −
r∑

j=1

n j (t ) ln n j (t ). (18)

We have again renormalized
∑r

i=1 ni = 1 to calculate the
entropy S1. The maximum at Tmax is given by S1(Tmax) =
3.68, which is very close to the maximal value of Smax

1 =
3.69 for equally distributed natural occupation numbers for
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FIG. 7. TD2RDM results for the Fermi-Hubbard model in 1D
with Ms = 20, U = 0.1J , hard-wall boundary conditions, and a
centered initial condition. (a) Geminal occupation numbers, (b) en-
tropies S2 (left y axis) and S1 (dashed line, right y axis), and particle-
density fluctuations as a function of time within (c) TD2RDM and
(d) TDHF. The vertical lines mark the time Tmax. In (b) the upper
solid horizontal line corresponds to Smax

2 , the lower corresponds to
Smax

1 , and the dotted horizontal line corresponds to S∗
2 .

r = 2Ms = 40 [see Fig. 7(b)]. Overall, S1(t ) follows the curve
of the two-particle entropy S2(t ), Eq. (16).

The homogeneous distribution of the particle density over
the entire system follows from the fact that an extreme AGP
state belongs to one of the quantum many-body states that
maximize S1, and is a direct consequence of the fact that the
observed state is close to an extreme AGP state, with natural
orbitals distributed over the entire system and their occupation
numbers being almost equal.

It is instructive at this point to compare the density fluctu-
ations to time-dependent Hartree-Fock (TDHF) calculations.
Since U is relatively small, TDHF is able to predict the density
fluctuations with remarkable accuracy up until the time near
Tmax, where it completely fails to predict that the density be-
comes homogeneous; see Fig. 7(d). Interestingly, the revived
density fluctuations for t > Tmax are again very similar to the
prediction of the TD2RDM method but exhibit a π -phase shift
(i.e., the maxima coincide with the minima in the density
and vice versa). These observations are also interesting from
the point of view of the Hubbard-Stratonovich transforma-
tion [43,44], with which it is possible to transform the term
quartic in the creation and annihiliation operators in the time-
evolution operator into a quadratic term, at the expense of a
new classical field to which the now noninteracting fermions
couple. In other words, the interacting fermionic system is
transformed into a noninteracting system whose dynamics
is governed by an additional classical field. The often used
stationary phase approximation of the Hubbard-Stratonovich
transformation leads to the equations of motion of TDHF
with the classical field being the TDHF mean field [45]. It
is interesting to see that the noninteracting fermions moving
in the mean field of the TDHF approximation reproduce the
density fluctuations well until they fail to condense close to
Tmax. These observations will guide our future studies to gain
a more intuitive understanding of the effect.

The striking effect of the particle density becoming homo-
geneous during a small but finite time interval �T around
Tmax opens the door for an experimental study of these ef-
fects within the platforms of ultracold quantum simulators.
While the increase of the pair-state occupation number is
not easily accessible experimentally, the monitoring of the
density fluctuations of the system has become an experimen-
tal routine on these platforms (see, e.g., Refs. [46–50] for a
current experimental realization of a 1D periodic system, see
[51]) and would allow one to measure Tmax for even larger
systems and other geometries. �T depends on the width of the
maximum in g1(t ), which increases with Tmax, i.e., with 1/U
[see Fig. 8(a)]. In Fig. 8(a) we plot �T exemplary for hard
wall boundary conditions by determining the time interval for
which the weight of the Fourier components with k > 0 for
the density fluctuations in Fig. 7(c) fall below a certain limit
showing its approximate 1/U dependence.

When considering different boundary conditions and po-
sitions of the initial state, we observe again only a weak
dependence of the dynamical (quasi)condensation effect on
them. Tmax as a function of U is practically equal for both
boundary conditions; see Fig. 8(a). g1(Tmax) behaves simi-
larly for the two different boundary conditions but overall
the decay with U is slower in the case of periodic bound-
ary conditions and less monotonic. A further analysis of the
state |g1(Tmax)〉 reveals another interesting consequence of the
boundary conditions. When comparing the state |g1(Tmax)〉 to
the η condensate in momentum space we observe for peri-
odic boundary conditions that |g1(Tmax)〉 shows the typical
η pairing of k and k − π for particles of different spin; see
Fig. 9. |g1(Tmax)〉 shows only small deviations from the η

condensate [see Fig. 9(c)] – most notably a larger spread and
a local minimum across the k2 = π − k1 lines in momentum
space [Fig. 9(a)]. In contrast, for the system with hard-wall
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FIG. 8. (a) Tmax and (b) the amplitude of the maximum of the
largest geminal occupation number g1(Tmax) as a function of U for
Ms = 20 sites and different boundary conditions. In (a) on the sec-
ond y axis we plot with crosses exemplary for hard wall boundary
conditions �T (i.e., the width of the time window, where the density
fluctuations become homogeneous).

boundary conditions, the reflections at the boundaries lead
to the emergence of additional pairings, most notably
Cooper-pair-like pairs with k1 = −k2; see Fig. 9(b). The
Cooper-pair-like pairing becomes less pronounced for larger
systems because, during the buildup of g1(t ) up until its max-
imum at Tmax, the fluctuating density interacts less times with
the hard-wall boundary. Note that the absolute square of the
momentum distribution for the η state is equal for periodic
and hard-wall boundary conditions. Despite these differences
in the properties of the (quasi)condensate state, the geminal
occupation numbers show similar behavior for both boundary
conditions (Fig. 8).

We now turn to analyzing the behavior of the
(quasi)condensation effect with system size. Since parameter
scans are numerically increasingly demanding with system
size we focus on two parameters for the on-site interaction,

FIG. 9. Absolute square of the momentum distribution of the state |g1(Tmax)〉 for Ms = 20, U = 0.1J , (a) periodic boundary conditions, and
(b) hard-wall boundary conditions. (c) Absolute square of the momentum distribution of the η condensate for Ms = 20 and periodic boundary
conditions.

FIG. 10. Dynamical quasicondensation as functions of system
size Ms. (a) Tmax, (b) g1(Tmax), and (c) g1(Tmax) relative to the max-
imum gmax [Eq. (13)] for hard-wall boundary conditions (solid),
periodic boundary conditions (dashed), U = 0.1J (dots), and U =
0.2J (squares). The gray dotted line in (b) corresponds to a fit to a
square root function.

i.e., U = 0.1J and U = 0.2J . We observe for both values of
U that Tmax increases with Ms in a nonlinear way [Fig. 10(a)].
The influence of the boundary conditions is negligible. In
agreement with the previous investigations for Ms = 8, we
observe that Tmax is larger for U = 0.1J than for U = 0.2J
for all investigated Ms. The amplitude of the first maximum
g1(Tmax) increases monotonically with Ms [Fig. 10(b)]. Most
importantly, in the given available interval, the increase is
proportional to

√
Ms. Consequently, we observe a monotonic
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FIG. 11. (a) Largest geminal occupation number g1(t ) and
(b) g1(t ) relative to gmax as a function of time for U = 0.1J for differ-
ent 2D stripe geometries with Ms = 8 × 2 and N = 8, Ms = 20 × 2
and N = 20, and Ms = 30 × 2 and N = 30. (c) The largest value
g1(Tmax) as a function of the number of sites Ms for the systems in
(a). The gray dashed line represents a fit to a square root function
of Ms.

decrease of g1(Tmax) with respect to gmax. Since gmax

grows linearly with Ms [Eq. (13)] our results indicate that
g1(Tmax)/gmax ∝ 1/

√
Ms in the thermodynamic limit. In other

words, if the
√

Ms dependence of g1(Tmax) is preserved in the
thermodynamic limit of Ms → ∞, then in the thermodynamic
limit g1(Tmax)/gmax → 0. Our results thus predict that the
observed effect is a dynamical quasicondensate.

In the following section, we will investigate whether we
might obtain a true condensation in 2D, i.e., in the presence
of transverse degrees of motion, by extending the system to
narrow 2D stripes.

C. Extension to 2D systems

We restrict our study here to hard-wall boundary condi-
tions as these are more easily realizable experimentally in 2D
systems. The geometries we investigate here are depicted in
Figs. 1(b) and 1(c). For these systems with large Ms systematic
scans with U and Ms are increasingly expensive even within
the TD2RDM method such that we focus here on the question
of whether we get an indication of a convergence to finite
values of g1(Tmax)/gmax in the thermodynamic limit. For this
purpose we stick to U = 0.1J and U = 0.2J for different
geometries and numbers of sites Ms.

When extending the 1D system by one transversal site
along the entire length as in Fig. 1(b) we observe a buildup

FIG. 12. Largest geminal occupation number g1(t ) as a function
of time for U = 0.2J and number of particles N = 20 and dif-
ferent stripe geometries with Ms = 20 × 1 (1D), Ms = 20 × 2, and
Ms = 20 × 3 sites amounting to different fillings.

of a maximum in g1(t ) over time; see Fig. 11(a) for different
Ms and a filling of 1/4 (i.e., N = Ms/2 = r/4) and Fig. 11(b)
for g1(t ) relative to gmax. In this case, the prediction for
gmax [Eq. (13)] is equal to gmax = (3N + 2)/4, i.e., larger
than in the case of half-filling, Eq. (14). It is striking that
the maxima are much broader than in 1D extending over
longer periods of time. For g1(Tmax) we observe a sublinear
(square root) increase with Ms [Fig. 11(c)], while convergence
of g1(Tmax)/gmax towards finite values would require a linear
increase. The conclusion from these results is thus that the
condensation effect will vanish in the thermodynamic limit.

Increasing the system further by another transverse degree
of freedom as in Fig. 1 changes the picture quite strongly; see
Fig. 12. For the system with Ms = 20 × 3 sites we observe
a fast increase in g1(t ) initially but then a flattening and a
further increase at a much smaller pace. Until a time of around
t = 100J−1, which is already numerically quite costly, the
largest geminal occupation number g1 does not come close
to gmax = (5N + 2)/6 = 17 for this case of sixth filling. It is
difficult to estimate based on these observations whether the
system develops a (quasi)condensate at some later point in
time, but the curves obtained so far indicate that the effect
does not persist in 2D.

V. CONCLUSIONS

We have numerically investigated dynamical quasiconden-
sation in the Fermi-Hubbard model starting from a completely
uncorrelated initial state of adjacent doubly occupied sites.
In 1D we have shown that upon expansion of the system the
largest eigenvalue of the two-particle reduced density matrix
(2RDM), g1(t ), develops a local maximum that comes close
to the theoretical upper limit gmax predicted by Yang [24],
signaling the appearance of fermionic pair condensation. This
dynamical quasicondensation is accompanied by strong two-
particle correlations as measured by the two-particle cumulant
and the two-particle entropy obtained from the eigenstates
of the 2RDM. This condensation effect appears for all in-
vestigated values of the interaction U , but shows a distinctly
different behavior for small U < 1J as compared to large
U > 1J , where J is the hopping matrix element. In the case
of U > 1J , the quasicondensation effect has been explained
by the physics of an emergent Hamiltonian [28] and requires

174308-9
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a completely free expansion. In contrast, for small U < 1J
we observe that the system undergoes many interactions with
the boundaries of the system on the characteristic time scale
Tmax during which the dynamical quasicondensate emerges.
The effect is only weakly dependent on whether we chose
hard-wall or periodic boundary conditions. Interestingly, the
two-particle quasicondensate state does dependent on the
boundary conditions and features the typical η-condensate
pairing in case of periodic boundary conditions and both an
η-condensate pairing, and a Cooper-pair-like pairing in case of
hard-wall boundary conditions for small enough systems that
interact with the boundary sufficiently many times. Moreover,
the scaling of both Tmax and the amplitude g1(Tmax) with U
is markedly different for U < 1J and U > 1J . For U < 1J
we observe that Tmax ∝ 1/U , while for U > 1J one obtains
Tmax ∝ U .

It is so far an open question of whether it is possible to
circumvent the Mermin-Wagner-Hohenberg theorem [33,34]
in a dynamical setting. The Mermin-Wagner-Hohenber the-
orem prohibits the appearance of condensation in 1D in the
thermodynamic limit in equilibrium. We address this ques-
tion for our weakly interacting quasicondensation effect by
expanding to system sizes of up to 60 sites. To propagate
these systems over the required long periods of time we em-
ploy our time-dependent 2RDM (TD2RDM) method. Based
on comparisons with exact results for small system sizes
we have demonstrated that the TD2RDM method accurately
predicts the essential features of the effect such that extrap-
olation to large systems, where exact benchmarks do not
exist, can be made. The analysis of the effect with increasing
system size reveals that the maximum of g1 grows propor-
tionally to the square root of the system size while gmax

grows linearly. Our results thus indicate that g1(Tmax)/gmax

vanishes in the thermodynamic limit, a defining feature of a
quasicondensate.

To further expand on this question, we have extended our
system to narrow 2D stripes allowing for transversal motion
during expansion. For systems with two transverse sites, we
observe broad maxima in g1 over longer periods of time
compared to the 1D case. The scaling of g1(Tmax) with the
system size, however, again indicates a vanishing condensa-
tion effect in the thermodynamic limit. A further increase, of
the transverse degrees of freedom seems to lead to a strong
deterioration of the effect. In this case, g1 increases strongly
initially but then flattens, featuring a slow but steady increase
over the entire investigated time interval during which, how-
ever, g1 does not come as close to gmax as in the previous
cases. Further increase in the number of transversal degrees
of freedom to approach a sufficiently large square lattice is
planned in the future.

Our results open the door to further scrutinize this ef-
fect in the platform of experimental quantum simulators with
single-site resolution [46–50], where substantially larger sys-
tem sizes both in 1D and 2D could be probed. We have
shown that the appearance of the quasicondensation effect
is accompanied with spatial particle density fluctuations be-
coming homogeneous over the entire system for a short but
finite period of time around Tmax. Strong density fluctua-
tions reappear shortly after Tmax. This effect can be traced

back to the single-particle entropy obtained from the eigen-
values of the one-particle reduced density matrix showing
a local maximum. Since probing the particle density dis-
tribution is an experimental routine nowadays, observing a
homogeneous density over finite periods of time could serve
as a strong indication of the dynamical (quasi)condensation
effect.

Our results highlight the potential of the TD2RDM method
to deliver predictions for system sizes and time scales not
reachable by any other method. We would like to point out
that our present code, while exploiting several symmetries of
the system, is not fully optimized and heavily parallelized
yet. Further improvement of its optimization and employing
multinode parallelization should allow one to compute the dy-
namics in systems with a number of sites of about a factor of 2
larger than the largest systems in the present study over similar
time scales. With this extension, investigations of condensa-
tion effects on a square lattice in 2D should become possible.
The TD2RDM method could thus provide benchmarks and
guidance for studies on nonequilibrium systems on quantum
simulators for large systems.

The observed effect may also be relevant to 2D materials.
Vertical stacking of two identical layers with a small twist
angle between them yields moiré superstructures with quite
large periodicity angles, exceeding 10 nm. For the case of,
e.g., twisted bilayer graphene, the low-energy electronic struc-
ture of the resulting moiré systems features moiré flat bands
resulting in a plethora of many-body phenomena such as su-
perconductivity or correlated insulator states [52]. The density
is concentrated around the AA sites of the moiré, which form
a triangular lattice with a lattice constant of ≈15 nm, tunable
by the twist angle. Over such distances, it should be possible
to create sufficiently strong static electric fields through the
application of gate voltages to create initial conditions close
to those studied in the present paper. Another interesting
question that might arise in 2D systems is the condensation
of excitons, to which the 2RDM provides direct access (see,
e.g., Ref. [53]). The extension of our method to realistic
systems would require to take into account both finite temper-
ature and interactions with phonons. We plan to incorporate
these effects and apply our method to 2D materials in future
studies.
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APPENDIX A: RECONSTRUCTION WITHIN
THE TD2RDM METHOD

Our reconstruction functionals are based on the cumulant
expansion of the 3RDM [54]

D123 = ÂD1D2D3 + Â�12D3 + �123, (A1)

which represents a separation into elements with different
levels of particle correlations. Â is an antisymmetrization op-
erator that creates only permutations that give nonequivalent
terms,

�12 = D12 − ÂD1D2 (A2)

is the two-particle cumulant representing two-particle corre-
lations, and �123 is the three-particle cumulant. Using the
cumulant expansion, an approximate reconstruction func-
tional of D123 boils down to finding physically motivated
reconstruction functionals for the three-particle cumulant
�123. We have shown previously that a stable and accu-
rate propagation of Eq. (9) requires that the reconstructed
3RDM correctly contracts into the two-particle space [30].
Only then are conservation of energy and spin symmetries
guaranteed at all times during time propagation. This contrac-
tion consistency [30] can be achieved employing the unitary
decomposition (see, e.g., Refs. [37,55,56]), which allows one
to decompose a tensor into its trace-free kernel and the orthog-
onal component (with respect to the Hilbert-Schmidt inner
product), which carries traces. The orthogonal component
is an exact functional of the traces of the tensor and can
thus be easily determined. We employ here the reconstruction
functional by Valdemoro and co-workers [57] and enforce
construction consistency [30,32]. Enforcing contraction con-
sistency leads to a scaling with M5

s . Due to the linearity of
the unitary decomposition, this reconstruction of the 3RDM
amounts to neglecting the kernel (i.e., the trace free compo-
nent) of �123 in Eq. (A1). We do not use the Nakatsuji-Yasuda
reconstruction [32,58] of the three-particle cumulant here be-
cause the buildup of the (quasi)condensate leads to a large
two-particle cumulant as a function of time without concomi-
tant increases in the three-particle cumulant such that the
Nakatsuji-Yasuda reconstruction, while being initially more
accurate, leads to overall larger reconstruction errors as time
progresses.

The dynamics of the two-particle cumulant can be used as
an accurate measure of the quality of the TD2RDM method.
For the small system with Ms = 8 sites from Sec. IV A we
gain further insights into the approximations entailed within
the TD2RDM method. Evaluating the Frobenius norms of
the two-particle cumulants for spin-polarized pairs, |�↑↑

12 |2,
and spin-unpolarized pairs, |�↑↓

12 |2, as a measure for two-
particle correlations reveals that the TD2RDM overestimates
the pairing of spin-unpolarized pairs while underestimating
the production of spin-polarized pairs; see Figs. 13(a) and
13(b). This analysis can be complemented by means of the en-
tropy S2(t ), which concentrates the information on all geminal
occupation numbers into one quantity. We observe that S2(t )
increases as a function of time, reaching S∗

2 for an extreme
AGP state at a time close to Tmax [Fig. 13(c)]. The TD2RDM
results closely follow the exact results initially, but then
S2(t ) remains large within the exact results while spuriously

FIG. 13. Comparison between exact (dashed lines) and
TD2RDM results (solid lines) for the Frobenius norm of two-particle
cumulants (a) |�↑↓

12 |2 and (b) |�↑↑
12 |2 and the dynamics of the entropy

S2 (c). In (c) the solid horizontal line marks the maximal value of S2,
Smax

2 , and the dotted horizontal line denotes the value of S2 obtained
for a perfect condensate, S∗

2 . Red and orange lines are for U = 0.1J;
green and blue lines are for U = 4J . The system corresponds to the
1D Fermi-Hubbard model with Ms = 8 sites, hard wall boundary
conditions, and a left aligned initial state.

fluctuating within the TD2RDM results. Overall, however, we
observe good agreement up until the time scales of the order
of Tmax.

APPENDIX B: CONSERVATION OF η SYMMETRY
WITHIN PURIFICATION AND DETAILS ON THE

NUMERICAL IMPLEMENTATION

In order to preserve N representability of the 2RDM at least
partially during time propagation, we apply an a posteriori pu-
rification procedure after propagation time steps [30–32,38].
Without purification the TD2RDM method tends to produce
2RDMs with negative eigenvalues that ultimately may lead to
instabilities [35]. Purification entails removing iteratively the
defective part from the 2RDM while preserving its contraction
to the 1RDM. This can be facilitated by applying the unitary
decomposition of the 2RDM [37],

D12 = D12;⊥{D1} + D12;K , (B1)

where the kernel D12;K has vanishing traces, and all the trace
information is contained in the orthogonal component, D12,⊥.
D12,⊥{D1} indicates that the orthogonal component is a func-
tional of the 1RDM. We have empirically shown [30–32]
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that restoring the positive-semidefiniteness of the 2RDM and
the two-hole RDM is sufficient to stabilize the equations of
motion in most cases [32]. Accordingly, we determine the
defective part of the 2RDM

D<
12 =

∑
gi<0

gi|gi〉〈gi| (B2)

and similarly the defective part of the two-hole RDM, Q<
12.

Subtracting the kernel of the defective components of both
the 2RDM and the two-hole RDM from the 2RDM itera-
tively leads to a positive semidefinite 2RDM, while preserving
contraction consistency to the 1RDM. In general, however,
other symmetries like, e.g., energy conservation are broken
in this process unless further amendments are applied. It has
been shown [38] that energy conservation can be restored by
removing from D<

12 and Q<
12 the contributions that would lead

to violations of energy conservation, before calculating the
kernel. Similarly, to enforce conservation of 〈η̂+η̂−〉, Eq. (11),
we set D<i↑i↓

j↑ j↓ and Q<i↑i↓
j↑ j↓ to zero for all i and j. We then de-

termine the kernel of the correspondingly corrected defective
components D<

12 and Q<
12 and subtract them from the 2RDM.

This procedure is iteratively repeated until the required thresh-
old for the smallest geminal occupation number is reached or
until the selected maximal number of iterations is reached.

For the studies in the main text we have applied a thresh-
old of 0 for the smallest geminal occupation number and at
most 10 iteration steps within the purification for all systems
except for Ms = 60, where only one step is applied due to
its scaling with M6

s within the current implementation using
full diagonalization of the 2RDM. Purification is applied after
each global time step of dt = 0.02J−1 within which the equa-
tions of motion, Eq. (9), are solved with adaptive time steps
using a Runge-Kutta-Fehlberg propagator of fourth and fifth
order. The different orders are used to adapt the time steps to
achieve a prescribed accuracy. We have checked that changing
the global time step to dt = 0.01J−1, i.e., applying up to twice
as many purification steps, leads to the same results to a high
degree of accuracy.

APPENDIX C: FORMALISM OF EMERGENT
HAMILTONIANS

We explore the applicability of the formalism of emergent
Hamiltonians to the dynamical quasicondensation effect for
U < 1. Following [28], we define a Hamiltonian Ĥ0 such that
the initial state is an eigenstate of Ĥ0. One particular choice
following Ref. [28] for the present initial condition is

Ĥ0 = 1

Ms

Ms∑
j=1

j(n̂↑
j + n̂↓

j ). (C1)

There are, however, other possible choices such as Ĥ0 =
U

∑Ms
j=1 n̂↑

j n̂↓
j , but they lead to essentially the same conclu-

sions; see below. The system evolves under the influence of Ĥ ,
Eq. (1), such that P̂ = Ĥ0 − Ĥ can be regarded as a quench.
Starting from the initial condition (Ĥ0 − λ)|�(0)〉 = 0, one
applies the time evolution operator to obtain

(e−iĤt Ĥ0eiĤt − λ)|�(t )〉 := M̂(t )|�(t )〉. (C2)

The operator M̂(t ) is given by

M̂(t ) = Ĥ − λ + P̂ − it[Ĥ , P̂] + (−it )2

2
[Ĥ , [Ĥ , P̂]] + · · ·

= Ĥ − λ + P̂ − it Q̂ +
∞∑

n=1

(−it )n+1

(n + 1)!
Ĥn, (C3)

with the definition Q̂ = [Ĥ, P], and Ĥn describing nested
commutators starting with Ĥ1 = [Ĥ , Q̂]. According to [28]
the emergent Hamiltonian is applicable if M̂(t ) is a local oper-
ator. One particular family studied corresponds to [Ĥ, Q̂] = 0
up to boundary terms, where the time propagated state is expo-
nentially close to the eigenstate of the emergent Hamiltonian
for times proportional to the system size [28].

For the following discussion it is convenient to separate
our Hamiltonian Eq. (1) as Ĥ = T̂ + Ŵ , where T̂ stands for
the hopping operator proportional to J and Ŵ is the on-site
interaction proportional to U . For our system with hard-wall
boundary conditions (similar results hold for periodic bound-
ary conditions) we obtain

Q̂ = [Ĥ , P̂] = [T̂ , P̂]

= J

Ms

Ms−1∑
j=1

∑
σ

â†
j+1σ â jσ − J

Ms

Ms−1∑
j=1

∑
σ

â†
jσ â j+1σ (C4)

[note that with the prefactor (−i) from Eq. (C3) this contribu-
tion to M̂(t ) is Hermitian as it should be] and

Ĥ1 = [Ĥ, Q̂]

= 2J2

Ms
(n↑

Ms
+ n↓

Ms
− n↑

1 − n↓
1 )

+ UJ

Ms

[
Ms−1∑

j=1

â†
j+1↑a j↑(n̂↓

j+1 − n̂↓
j ) + H.c.

+
Ms−1∑

j=1

â†
j+1↓a j↓(n̂↑

j+1 − n̂↑
j ) + H.c.

]
. (C5)

The first contribution comes from the commutator between
T̂ and Q̂ (and corresponds to the one found in [28] for the
noninteracting system), while the second term comes from
the commutator between Ŵ and Q̂. Clearly, the commutator
[Ĥ , Q̂] does not vanish and leads to a term growing quadrat-
ically in time in M̂(t ), Eq. (C3). Higher orders Ĥn contain
elements of the form

U nJ

Ms

[
Ms−1∑

j=1

â†
j+1↑a j↑(n̂↓

j+1 − n̂↓
j )n + (−1)n+1H.c.

+
Ms−1∑

j=1

â†
j+1↓a j↓(n̂↑

j+1 − n̂↑
j )n + (−1)n+1H.c.

]
, (C6)

which originate from the evaluation of the n nested commuta-
tors [Ŵ , [Ŵ , . . . , [Ŵ , Q̂]]]. In addition, Ĥn contains all lower
orders in U , i.e., U j with j ∈ [0, n − 1] originating from dif-
ferent sequences of T̂ and Ŵ in the nested commutators and
leading to products of 2( j + 1) creation and annihilation op-
erators. These products contain elements of the form a†

j a j+m
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with m � n (up to m = Ms − 1, i.e., up to the span over the
entire system). The contribution independent of U originates
from repeated application of the commutator with T̂ and con-
tains only boundary terms. M(t ) therefore contains arbitrarily
high orders of products of creation and annihilation operators
with an increasing span over the entire system, albeit being
suppressed by U m with U < 1 in our case and m the number

of commutators containing Ŵ . While the contributions from
Eq. (C6) to Eq. (C3) can be evaluated to all orders leading
to an extensive sum of local exponential operators, the other
terms amount to an infinite series of nonlocal operators and
thus cannot be easily treated. These results underline our con-
clusion that the present effect is not captured by an emergent
Hamiltonian.
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[31] F. Lackner, I. Březinová, T. Sato, K. L. Ishikawa, and
J. Burgdörfer, High-harmonic spectra from time-dependent
two-particle reduced-density-matrix theory, Phys. Rev. A 95,
033414 (2017).

[32] S. Donsa, F. Lackner, J. Burgdörfer, M. Bonitz, B. Kloss, A.
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