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ABSTRACT

We aimed to replicate recent findings on the association between the extent of cerebral small vessel disease (cSVD), 
functional brain network dedifferentiation, and cognitive impairment. We analyzed demographic, imaging, and behav-
ioral data from the prospective population-based Hamburg City Health Study. Using a fully prespecified analysis 
pipeline, we estimated discrete brain states from structural and resting-state functional magnetic resonance imaging 
(MRI). In a multiverse analysis, we varied brain parcellations and functional MRI confound regression strategies. The 
severity of cSVD was operationalized as the volume of white matter hyperintensities of presumed vascular origin. 
Processing speed and executive dysfunction were quantified using the Trail Making Test (TMT). We hypothesized a) 
that a greater volume of supratentorial white matter hyperintensities would be associated with less time spent in func-
tional MRI-derived brain states of high fractional occupancy; and b) that less time spent in these high-occupancy 
brain states associated with a longer time to completion in part B of the TMT. High-occupancy brain states were 
characterized by activation or suppression of the default mode network. Every 5.1-fold increase in WMH volume was 
associated with a 0.94 -fold reduction in the odds of occupying DMN-related brain states (P = 5.01×10−8). Every 5% 
increase in time spent in high-occupancy brain states was associated with a 0.98-fold reduction in the TMT-B com-
pletion time (P = 0.0116). Findings were robust across most brain parcellations and confound regression strategies. In 
conclusion, we successfully replicated previous findings on the association between cSVD, functional brain occu-
pancy, and cognition in an independent sample. The data provide further evidence for a functional network dediffer-
entiation hypothesis of cSVD-related cognitive impairment. Further research is required to elucidate the mechanisms 
underlying these associations.
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1.  INTRODUCTION

Cerebral small vessel disease (cSVD) is an arteriolopathy 
of the brain associated with age and common cardiovas-
cular risk factors (Wardlaw, C. Smith, & Dichgans, 2013). 
cSVD predisposes patients to ischemic stroke (in partic-
ular lacunar stroke) and may lead to cognitive impairment 
and dementia (Cannistraro et  al., 2019). Neuroimaging 
findings in cSVD reflect its underlying pathology (Wardlaw 
et  al., 2015) and include white matter hyperintensities 
(WMH), lacunes of presumed vascular origin, small sub-
cortical infarcts and microbleeds, enlarged perivascular 
spaces, as well as brain atrophy (Wardlaw, E. E. Smith, 
Biessels, et  al., 2013). However, the extent of visible 
cSVD features on magnetic resonance imaging (MRI) is 
an imperfect predictor of the severity of clinical sequelae 
(Das et  al., 2019) and our understanding of the causal 
mechanisms linking cSVD-associated brain damage to 
clinical deficits remains limited (Bos et al., 2018).

Recent efforts have focused on exploiting network 
aspects of the structural (Tuladhar, et  al., 2016, 2020; 
Lawrence, Zeestraten, et  al., 2018) and functional (Dey 
et al., 2016; Schulz et al., 2021) organization of the brain 
to understand the relationship between cSVD and clinical 
deficits in cognition and other domains that rely on dis-
tributed processing. Reduced structural network effi-
ciency has repeatedly been described as a causal factor 
in the development of cognitive impairment, particularly 
executive dysfunction and reduced processing speed in 
cSVD (Lawrence, Chung, et al., 2014; Shen et al., 2020; 
Reijmer et  al., 2016; Prins et  al., 2005). Findings with 
respect to functional connectivity (FC), however, are more 
heterogeneous than their SC counterparts, perhaps 
because FC measurements are prone to be affected by 
hemodynamic factors and noise, resulting in relatively 
low reliability, especially with resting-state scans of short 
duration (Laumann et al., 2015). This problem is exacer-
bated in the presence of cSVD and worsened by arbitrary 
processing choices (Gesierich et  al., 2020; Lawrence, 
Tozer, et al., 2018).

As a promising new avenue, time-varying, or dynamic, 
functional connectivity approaches have recently been 
explored in patients with subcortical ischemic vascular 
disease (Xu et al., 2021; Yin et al., 2022). Although the 
study of dynamic FC measures may not solve the prob-
lem of limited reliability, especially in small populations or 
participants with extensive structural brain changes, it 
adds another—temporal—dimension to the study of 
functional brain organization, which is otherwise over-
looked. Importantly, FC dynamics not only reflect 
moment-to-moment fluctuations in cognitive processes, 
but are also related to brain plasticity and homeostasis 

(Laumann & Snyder, 2021; Laumann, et al., 2017), which 
may be impaired in cSVD.

In the present paper, we aimed to replicate and extend 
the main results of Schlemm et al. (2022). In this recent 
study, the authors analyzed MR imaging and clinical data 
from the prospective Hamburg City Health Study (HCHS, 
Jagodzinski et  al., 2020) using a coactivation pattern 
approach to define discrete brain states, and found asso-
ciations between the WMH load, time spent in high-
occupancy brain states characterized by activation or 
suppression of the default mode network (DMN), and 
cognitive impairment. Specifically, every 4.7-fold increase 
in WMH volume was associated with a 0.95-fold reduc-
tion in the odds of occupying a DMN-related brain state; 
every 2.5 seconds (i.e., one repetition time) not spent in 
one of those states was associated with a 1.06-fold 
increase in TMT-B completion times.

The fractional occupancy of a functional MRI-derived 
discrete brain state is a participant-specific measure of 
brain dynamics and is defined as the proportion of BOLD 
volumes assigned to that state relative to all BOLD vol-
umes acquired during a resting-state scan.

Our primary hypothesis for the present work was  
that the volume of supratentorial white matter hyper
intensities is associated with fractional occupancy of 
DMN-related brain states in a middle-aged to elderly 
population mildly affected by cSVD. Our secondary 
hypothesis was that fractional occupancy is associated 
with executive dysfunction and reduced processing 
speed, measured as the time to complete part B of the 
Trail Making Test (TMT).

Both hypotheses were tested in an independent sub-
sample of the HCHS study population using the same 
imaging protocols, examination procedures, and analy-
sis pipelines as those in Schlemm et  al. (2022). The 
robustness of the associations was explored using a 
multiverse approach by varying key steps in the analysis 
pipeline.

2.  METHODS

2.1.  Study population

This study analyzed data from the Hamburg City Health 
Study (HCHS), an ongoing prospective, population-
based cohort study aiming to recruit a cross-sectional 
sample of 45000 adult participants from the city of Ham-
burg, Germany (Jagodzinski et al., 2020). From the first 
10000 participants of the HCHS, we planned to include 
those who were documented to have received brain 
imaging (n = 2648) and exclude those who were analyzed 
in our previous report (Schlemm et al., 2022) (n = 970). 
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The ethical review board of the Landesärztekammer 
Hamburg (State of Hamburg Chamber of Medical Practi-
tioners) approved the HCHS (PV5131), and all partici-
pants provided written informed consent.

2.2.  Demographic and clinical characterization

From the study database, we extracted the participants’ 
age at the time of inclusion in years, their sex, and the 
number of years spent in education. During the visit to 
the study center, participants underwent cognitive 
assessment using standardized tests. From the data-
base, we extracted their performance scores on the Trail 
Making Test part B, measured in seconds, as an opera-
tionalization of executive function and psychomotor 
processing speed (Arbuthnott & Frank, 2000; Tombaugh, 
2004). For descriptive purposes, we also extracted data 
on past medical history and reported the proportion of 
participants with a previous diagnosis of dementia.

2.3.  MRI acquisition and preprocessing

The magnetic resonance imaging protocol for the HCHS 
includes structural and resting-state functional sequen
ces. The acquisition parameters for a 3 T Siemens Skyra 
MRI scanner (Siemens, Erlangen, Germany) have been 
previously reported (Frey et  al., 2021; Petersen et  al., 
2020) and are given as follows:

For T1-weighted anatomical images, a 3D rapid acqui-
sition gradient-echo sequence (MPRAGE) was used with 
the following sequence parameters: repetition time 
TR = 2500 ms, echo time TE = 2.12 ms, 256 axial slices, 
slice thickness ST = 0.94 mm, and in-plane resolution 
IPR = 0.83× 0.83( ) mm2.

T2-weighted fluid attenuated inversion recovery (FLAIR) 
images were acquired with the following sequence  
parameters: TR = 4700 ms, TE = 392 ms, 192 axial slices, 
ST = 0.9 mm, IPR = 0.75× 0.75( ) mm2.

125 resting state functional MRI volumes were acquired 
(TR = 2500 ms; TE = 25 ms; flip angle = 90°; slices = 49; 
ST = 3 mm; slice gap = 0 mm; IPR = 2.66 × 2.66( )  mm2). 
The participants were asked to keep their eyes open and 
to think of nothing.

We verified the presence and voxel dimensions of 
expected MRI data for each participant and excluded 
those for whom at least one of T1-weighted, FLAIR, and 
resting-state MRI was missing. We also excluded partici-
pants with neuroradiologically confirmed space-occupying 
intra-axial lesion. To ensure reproducibility, no visual qual-
ity assessment of raw images was performed.

For the remaining participants, structural and resting-
state functional MRI data were preprocessed using Free-

Surfer v6.0 (https://surfer​.nmr​.mgh​.harvard​.edu/), and 
fMRIPrep v20.2.6 (Esteban et  al., 2019), using default 
parameters. Participants were excluded if automated 
processing using at least one of these packages failed.

2.4.  Quantification of WMH load

For our primary analysis, the extent of ischemic white 
matter disease was operationalized as the total volume of 
supratentorial WMH obtained from automated segmen-
tation using a combination of anatomical priors, BIANCA 
(Griffanti et  al., 2016), and LOCATE (Sundaresan et  al., 
2019), post-processed with a minimum cluster size of 30 
voxels, as described in Schlemm et  al. (2022). In an 
exploratory analysis, we partitioned voxels identified as 
WMH into deep and periventricular components accord-
ing to their distance to the ventricular system (cut-off 
10 mm, Griffanti et al., 2018).

2.5.  Brain state estimation

The output from fMRIprep was post-processed using 
xcpEngine v1.2.3 to obtain de-confounded spatially 
averaged BOLD time series (Ciric et  al., 2017). For the 
primary analysis, we used the 36p regression strategy 
and the Schaefer-400 parcellation (Schaefer et al., 2018), 
as in Schlemm et al. (2022).

Different atlases and confound regression strategies, 
as implemented in xcpEngine, were included in an explor-
atory multiverse analysis.

Co-activation pattern (CAP) analysis was performed 
by first aggregating parcellated, de-confounded BOLD 
signals into a (nparcels × ∑ i ntime points,i ) feature matrix, 
where ntime points,i  denotes the number of retained volu
mes for participant i  after confound regression. Cluster-
ing was performed using the k-means algorithm (k = 5) 
with a distance measure given by 1 minus the sample 
Pearson correlation between points, as implemented in 
Matlab R2021a. We estimated the participant- and state-
specific fractional occupancies, which are defined as the 
proportion of BOLD volumes assigned to each brain 
state (Vidaurre et al., 2018). The two states with the high-
est average occupancies were identified as the basis for 
further analysis.

2.6.  Statistical analysis

For demographic (age, sex, and years of education) and 
clinical (TMT-B) variables, the number of missing items is 
reported. For non-missing values, we provide descriptive 
summary statistics using median and interquartile range. 
The proportions of men and women in the sample are 

https://surfer.nmr.mgh.harvard.edu/


4

T. Ingwersen, C. Mayer, M. Petersen et al.	 Imaging Neuroscience, Volume 2, 2024

reported. Since we expected based on our pilot data 
(Schlemm et al., 2022) that the proportion of missing data 
would be small, primary regression modelling was carried 
out as a complete-case analysis.

As an outcome-neutral quality check of the implementa-
tion of the MRI processing pipeline, brain state estimation, 
and co-activation pattern analysis, we compared fractional 
occupancies between brain states. We expected that the 
average fractional occupancy in the two high-occupancy 
states would be higher than the average fractional occu-
pancy in the other three states. Point estimates and 95% 
confidence intervals are presented for the difference in 
average fractional occupancy to verify this assertion.

For further analyses, non-zero WMH volumes were 
subjected to logarithmic transformation. Zero values 
retained their value of zero; to compensate, all models 
included a binary indicator for zero WMH volume if at 
least one non-zero WMH value was present.

To assess the primary hypothesis of a negative asso-
ciation between the extent of ischemic white matter dis-
ease and time spent in high-occupancy brain states, we 
performed a fixed-dispersion Beta regression to model 
the logit of the conditional expectation of the average 
fractional occupancy of two high-occupancy states as an 
affine function of the logarithmized WMH load. Age and 
sex were included as covariates. The strength of the 
association was quantified as the odds ratio per inter-
quartile ratio of the WMH burden distribution, and is 
accompanied by a 95% confidence interval. Significance 
testing of the null hypothesis of no association was con-
ducted at the conventional significance level of 0.05. 
Estimation and testing were carried out using the 
“betareg” package v3.1.4 in R v4.2.1.

To assess the secondary hypothesis of an association 
between time spent in high-occupancy brain states and 
executive dysfunction, we performed a generalized linear 
regression with a Gamma response distribution to model 
the logarithm of the conditional expected completion time 
in part B of the TMT as an affine function of the average 
fractional occupancy of two high-occupancy states. Age, 
sex, years of education, and logarithmized WMH load 
were included as covariates. The strength of the associa-
tion was quantified as a multiplicative factor per percent-
age point and accompanied by a 95% confidence interval. 
Significance testing of the null hypothesis of no associa-
tion was conducted at the conventional significance level 
of 0.05. Estimation and testing were performed using the 
glm function included in the “stats” package from R v4.2.1.

2.7.  Pre-registered analyses

The analysis plan was pre-registered on June 27, 2023 at 
https://osf​.io​/fcqmb. The sample size calculation was 

based on an effect size on the odds ratio scale of 0.95, 
corresponding to an absolute difference in the probability 
of occupying a DMN-related brain state between the first 
and third WMH-load quartile of 1.3 percentage points, 
and between the 5% and 95% percentile of 3.1 percent-
age points. Approximating half the difference in fractional 
occupancy of DMN-related states between different task 
demands (rest vs n-back) in healthy participants, which 
was estimated to lie between 6 and 7 percentage points 
(Cornblath et al., 2020), this value represented a plausible 
choice for the smallest effect size of theoretical and prac-
tical interest. It also equals the estimated effect size 
based on the data presented in Schlemm et al. (2022).

Simple bootstrapping was used to create 10000 hypo-
thetical datasets of size 200, 400, 600, 800, 900, 910, … , 
1090, 1100, 1200, 1400, 1500, and 1600. Each dataset 
was then subjected to the estimation procedure described 
above. For each sample size, the proportion of datasets 
in which the primary null hypothesis of no association 
between fractional occupancy and WMH load could be 
rejected at α = 0.05 was computed and recorded as a 
power curve in Figure 1.

A sample size of 960 would have allowed the replica-
tion of the reported effect with a power of 80.2%. We had 
anticipated a sample size of 1500, which would have 
yielded a power of 93.8%.

Fig. 1.  Sample size and power estimation. A-priori 
estimated power for different sample sizes was obtained 
as the proportion of synthetic data sets in which the null 
hypothesis of no association between WMH volume 
and time spent in high-occupancy brain states could be 
rejected at the α = 0.05 significance level. Proportions are 
based on a total of 10000 synthetic data sets obtained by 
bootstrapping the data presented in Schlemm et al. (2022). 
Highlighted in orange are the smallest sample size ensuring 
a power of at least 80% (n = 960), the sample size of the 
pilot data (n = 988, post-hoc power 81.3%), the expected 
sample sample size for this replication study (n = 1500,  
a-priori power 93.8%), and the achieved sample size 
(n = 1651, a-priori power 95.4%).

https://osf.io/fcqmb
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2.8.  Multiverse analysis

In both (Schlemm et al., 2022) and our primary replication 
analysis, we made certain analytical choices in the oper-
ationalization of brain states and ischemic white matter 
disease, namely the use of the 36p confound regression 
strategy, the Schaefer-400 parcellation, and a BIANCA/
LOCATE-based WMH segmentation algorithm. The 
robustness of the association between WMH burden and 
time spent in high-occupancy states with regard to other 
choices was explored in a multiverse analysis (Steegen 
et al., 2016). Specifically, in an exploratory analysis, we 
estimated brain states from BOLD time series processed 
according to a variety of established confound regression 
strategies and aggregated over different cortical brain 
parcellations (Table 2, Ciric et al., 2017, 2018). The extent 
of cSVD was additionally quantified by the volume of 
deep and periventricular white matter hyperintensities.

For each combination of analytical choice of con-
found regression strategy, parcellation, and subdivision 
of white matter lesion load (9× 9× 3 = 243 scenarios in 
total), we quantified the association between WMH load 
and average time spent in high-occupancy brain states 
using odds ratios and 95% confidence intervals as 
described above.

No hypothesis testing was performed for these multi-
verse analyses. Rather, they serve to inform about the 
robustness of the outcome of the test of the primary 
hypothesis. Any substantial conclusions about the asso-
ciation between the severity of cerebral small vessel 
pathology and the time spent in high-occupancy brain 
states were drawn from the primary analysis using pre-
specified methodological choices, as stated in the Scien-
tific Question in Table 1.

2.9.  Further exploratory analysis

In previous work, two high-occupancy brain states have 
been related to the default mode network (Cornblath 
et  al., 2020). We further explored this relationship by 
computing, for each individual brain state, the cosine 
similarity of the positive and negative activations of the 
cluster’s centroid with a set of a priori defined functional 
‘communities’ or networks (Schaefer et  al., 2018; Yeo 
et al., 2011). The results were visualized as spider plots 
for the Schaefer atlases.

In further exploratory analyses, we describe the asso-
ciations between brain state dynamics and other mea-
sures of cognitive ability such as memory and language.

2.10.  Pilot data and analysis

Summary data from the first 1000 imaging data points of 
the HCHS have been published with Schlemm et  al. Ta
b
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Table 2.  Multiverse analysis.

Name of the atlas #parcels Reference

Desikan–Killiany 86 Desikan et al., 2006
AAL 116 Tzourio-Mazoyer et al.,  

2002
Harvard–Oxford 112 Makris et al., 2006
glasser360 360 Glasser et al., 2016
gordon333 333 Gordon et al., 2016
power264 264 Power et al., 2011
schaefer{N} 100 Schaefer et al., 2018

200
400

(a) Parcellations

Design Reference

24p Friston et al., 1996
24p + GSR Macey et al., 2004
36p Satterthwaite et al.,  

2013
36p + spike regression Cox, 1996
36p + despiking Satterthwaite et al.,  

2013
36p + scrubbing Power et al., 2014
ACompCor Muschelli et al., 2014
TCompCor Behzadi et al., 2007
AROMA Pruim et al., 2015

(b) Confound regression strategies, adapted from 
(Ciric et al., 2017)

Overview over different brain parcellations and confound 
regression strategies implemented using xcpEngine (Ciric et al., 
2018). A total of 9 × 9 = 81 analytical combinations were explored 
to assess the robustness of our results with respect to these 
processing choices.
AAL: Automatic Anatomical Labeling; AROMA: Automatic Removal 
of Motion Artifacts; GSR: Global signal regression.

(2022) and formed the basis for the hypotheses tested in 
this replication study. Before preregistration, we had 
implemented our prespecified analysis pipeline described 
above in R and Matlab, and applied it to this previous 
sample. Data, code, and results from this pilot analysis 
have been stored with the archived Stage 1 report on 
GitHub (https://github.com/csi-hamburg/HCHS-brain 
-states-RR, v1.5) and preserved on Zenodo.

2.11.  Timeline and access to data

At the time of planning of this study, all demographic, 
clinical, and imaging data used in this analysis had been 
collected by the HCHS and were held in the central trial 
database. Quality checks for non-imaging variables had 
been performed centrally. WMH segmentation based on 
structural MRI data of the first 10000 participants of the 
HCHS had been performed previously using the BIANCA/
LOCATE approach (Rimmele et al., 2022). Functional MRI 

data and clinical measures of executive dysfunction 
(TMT-B scores) had not previously been analyzed by the 
pre-registering author (ES).

2.12.  Deviations from preregistration

For deconfounding and aggregating BOLD data at brain 
parcellation level, the software xcpEngine was used in 
version 1.2.3, not 1.2.1, to ensure that that the correct 
MNI reference template (MNI152NLin2009cAsym) is used 
for registration of brain atlases. This decision was made 
before analyzing the data.

3.  RESULTS

For this replication study, a total of 2648 datasets were 
available, of which 970 were already included in our pre-
vious analysis and thus discarded. In 13 of the resulting 
1678 datasets, one or more MRI sequences were miss-
ing. Of the complete datasets (n = 1665), we excluded 5 
participants due to intra-axial space-occupying lesions. 
An additional 9 participants were excluded because of 
unsuccessful preprocessing, WMH segmentation, or 
xcpEngine failure, resulting in 1651 datasets for analysis. 
A study-flowchart is provided in Figure 2.

Baseline demographic and cognitive values, includ-
ing the number of missing items, are reported in 
Table 3.

WMH volumes (median 1.05 mL, IQR 0.47 mL  to  
2.37 mL ), motion estimates, and fractional occupancies 
of brain states 1 through 5 are reported in Table 4.

In an outcome-neutral quality check of the imple-
mentation of (i) the MRI processing pipeline, (ii) brain 
state estimation, and (iii) co-activation pattern analysis, 
the mean difference in fractional occupancy between 
high- and low-occupancy states was consistently main-
tained, with a point-estimate of the separation between 
two high-occupancy and three low-occupancy states of 
6.7% (95% confidence interval, 6.2% to 7.1%) in the 
36p paradigm. This indicates that the implementation of 
the pipeline was correct and that the brain state est
imation and co-activation pattern analysis worked as 
intended.

3.1.  Pre-registered hypotheses

3.1.1.  Association between WMH load  
and fractional occupancy

The results of the test of our primary preregistered 
hypothesis of an association between supratentorial 
WMH volume and the time spent in high-occupancy 
brain states are shown in Figure 3 and Table 5.

https://github.com/csi-hamburg/HCHS-brain-states-RR
https://github.com/csi-hamburg/HCHS-brain-states-RR
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Adjusted for age and sex, there was a 0.94 -fold 
reduction in the odds of occupying a high-occupancy 
brain state for every 5.1-fold increase in WMH load  
(P = 5.01×10−8 ).

3.1.2.  Association between executive function  
and fractional occupancy in DMN-related states

The results of the test of our secondary preregistered 
hypothesis of an association between time spent in high-
occupancy brain states and executive function as mea-

sured by the complete part B of the TMT are shown in 
Figure 4 and Table 6.

Adjusted for age, sex, WMH volume, and years of 
education, there was a 0.98-fold reduction in the time to 
complete the TMT-B for every 5% increase in the time 
spent in high-occupancy brain states (P = 0.0116).

3.2.  Multiverse analysis

In a multiverse analysis, the main findings of associations 
between WMH load and FO and, to a lesser extent, 

Fig. 2.  Study flowchart. Composition of the study population after application of inclusion and exclusion criteria, and 
image processing.
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Table 3.  Descriptive statistics of the study population.

N = 1651

Demographics (no Missing, n (%))

Age, yr
  Median (IQR) 66 (59–72)
Sex
  Male 940/1651 (57%)
  Female 711/1651 (43%)

Cardiovascular risk factors

Hypertension
  Present 1177/1611 (73.1%)
  Missing n (%) 40 (2.4%)
Diabetes
  Present 157/1566 (10%)
  Missing n (%) 85 (5.1%)
Smoking
  Present 200/1360 (14.7%)
  Missing n (%) 201 (12.9%%)
Hyperlipidaemia
  Present 426/1578 (27%)
  Missing n (%) 73 (4.4%)

Cognitive test results

MMSE, # (max. 30)
  Median (IQR) 28 (27–29)
  Missing n (%) 129 (7.8%)
Vocabulary (MWT-B), # (max. 37)
  Median (IQR) 32 (30–34)
  Missing n (%) 295 (18%)
Word recall, # (max. 10)
  Median (IQR) 8 (6–9)
  Missing n (%) 180 (11%)
Animal Naming
  Median (IQR) 24 (20–29)
  Missing n (%) 116 (7.0%)
TMT-A, seconds
  Median (IQR) 38 (31–48)
  Missing n (%) 144 (8.7%)
TMT-B, seconds
  Median (IQR) 83 (65–110)
  Missing n (%) 162 (9.8%)

History

Diagnosed dementia
  Present 6/1645 (0.4%)
  Missing n (%) 6 (0.4%)
Years of education
  Median (IQR) 13 (12–16)
  Missing n (%) 34 (2%)

Data are presented as median (interquartile range) or count 
(percentage) of non-missing items, as appropriate. Number of 
percentage of missing items is reported separately.

Table 4.  Structural and functional imaging characteristics

N = 1651

WMH volume1, mL
  Total 1.05 (0.47–2.37), 9 Z
  Periventricular 0.94 (0.43–2.04), 9 Z
  Deep 0.10 (0.03–0.37), 344 Z
Motion during rs-fMRI
  Framewise displacement, mm 0.21 (0.15–0.63)
  RMSD, mm 0.086 (0.058–0.12)
  DVARS 27.8 (24.3–31.8)
Fractional occupancy, %
  DMN+ 24.8 (20.8–28.0)
  DMN- 24.0 (20.0–28.0)
  S3 18.4 (15.2–22.4)
  S4 16.8 (12.8–20.8)
  S5 15.2 (12.0–19.2)

Data are presented as median (interquartile range). Supratentorial 
WMH volumes were obtained by semiautomatic segmentation 
of FLAIR images using a BINACA/LOCATE-based k -nearest 
neighbors algorithm and stratified by their distance to the lateral 
ventricles (<10  mm, periventricular; > 10 mm, deep). Motion 
parameters were estimated during fMRIprep processing of BOLD 
scans. Fractional occupancies were calculated by assigning 
individual BOLD volumes to one of five discrete brain states 
defined by k-means clustering-based co-activation pattern 
analysis. Two high-occupancy states are labeled DMN+ and DMN, 
in view of their network connectivity profiles as shown in Figure 6.
1Number of zero values indicated by Z.

between FO and TMT-B were robust with respect to the 
processing choices of brain parcellation and confound 
regression strategy.

A nominally statistically significant negative associa-
tion between the total WMH load and time spent in high-
occupancy states was observed in 48 out of 81 scenarios, 

with 8 out of 81 significant positive associations occur-
ring with the Desikan–Killiany parcellation only (Fig. 5A). 
For periventricular (deep) WMH volume, the results were 
similarly robust with 49 out of 81 (39/81) negative and 8 
out of 81 (0/81) positive associations of nominal statisti-
cal significance, respectively (Appendix Figures 1 and 2).

The secondary finding of an association between 
greater TMT-B times and lower fractional occupancy was 
less robust with only 16 out of 81 nominally statistically 
significant negative and no significant positive associa-
tions, irrespective of operationalization of cSVD (total vs. 
periventricular vs. deep WMH volume) (Fig. 5B, Appendix 
Figures 1 and 2).

3.3.  Additional analyses

3.3.1.  Connectivity profiles of brain states—relation 
to default mode network

Based on the cosine similarity between positive and nega-
tive activations of cluster centroids and indicator vectors 
of pre-defined large-scale brain networks, network activa-
tion profiles were computed for brain states estimated 
from Schaefer parcellations of varying spatial resolutions.

Figure 6 shows the corresponding spider plots, identi-
fying states characterized by activation (DMN+) or sup-
pression (DMN-) of the default mode network as states 
with the highest fractional occupancy.
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3.3.2.  Association with other cognitive domains

Associations between the time spent in high-occupancy 
DMN-related brain states and cognitive measures beyond 
TMT-B are shown in Figure 7.

Adjusted for age, sex, WMH load, and years of educa-
tion, FO in DMN-related states appeared to be associ-
ated with better word recall (adjusted OR 1.19, nominal P 
0.013), but not with global cognitive functioning (MMSE, 
adjusted OR 1.09) or vocabulary (aOR 1.09), nor with ver-
bal fluency (animal naming, adjusted exp(β) 1.04), or pure 
processing speed (TMT-A, adjusted exp(β)  0.97).

4.  SUMMARY AND DISCUSSION

In this pre-registered cross-sectional study, we replicated 
the key findings of Schlemm et al. (2022) in an indepen-
dent population-based sample of 1651 middle-aged to 
elderly participants of the Hamburg City Health Study.

First, we confirmed that the severity of cerebral small 
vessel disease is associated with the time spent in high-
occupancy brain states, defined by functional MRI. 

Fig. 3.  Association between time spent in high-
occupancy brain states and supratentorial WMH volume. 
Point estimates (black line) and 95%-confidence region 
(light blue ribbon) of the conditional mean fractional 
occupancy are obtained from unadjusted beta regression 
modeling. Each marker represents one of N = 1642 
independent participants with a non-zero total WMH 
volume.

Table 5.  Association between time spent in high-
occupancy DMN-related brain states and WMH volume 
adjusted for age and sex.

Estimate P 95%-CI

Intercept 0.24 <0.0001 0.21–0.27
WMH, per 5.1-fold 
increase1

0.94 <0.0001 0.92–0.96

Age, per 10 years 1.04 0.001 1.01–1.06
Female sex 1.12 <0.0001 1.09–1.16
1 WMH=0{ } 0.93 0.477 0.75–1.14

Beta regression table estimated from n = 1651 independent partici
pants using the model equation FOhigh ∼ logWMH+ +1 WMH=0{ }
+age + sex .
1Interquartile ratio 2.37 / 0.468 = 5.06.

Fig. 4.  Association between time spent in high-occupancy 
DMN-related brain states and TMT-B completion time. 
Point estimates (black line) and 95%-confidence region 
(light blue ribbon) of the conditional mean TMT-B 
completion time are obtained from unadjusted Gamma 
regression modeling. Each marker represent one of 
N = 1482 independent participants with non-zero total 
WMH volume and available TMT-B data.

Table 6.  Association between TMT-B and time spent in 
high-occupancy DMN-related brain states adjusted for age, 
sex, WMH volume, and years of education.

Estimate P 95% CI

Intercept 53.41 < 0.0001 42.7–66.8

FOhigh, per 5% 0.98 0.0116 0.96–0.99
WMH, per 5.1-fold  
increase1

1.01 0.367 0.98–1.05

Age, per 10 years 1.18 <0.0001 1.15–1.21
Female sex 0.99 0.666 0.95–1.03
Education, per year 0.97 <0.0001 0.97–0.98
1 WMH=0{ } 0.97 0.398 0.92–1.03

Gamma regression table estimated from n = 1483 independent 

participants using the model equation TMT −B ∼ FOhigh + logWMH+

+1 WMH=0{ } + age + sex + educationyears.
1Interquartile ratio 2.37 / 0.468 = 5.06
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More precisely, we showed that every 5.1-fold increase 
in the volume of supratentorial white matter hyperinten-
sities of presumed vascular origin (WMH) was associ-
ated with a 0.95-fold reduction in the odds of occupying 
a brain state characterized by activation or suppression 
of the default-mode network, at any given time during 
the resting-state scan.

Second, we confirmed that the time spent in high-
occupancy brain states at rest is associated with cogni-
tive performance. More precisely, a 5%-reduction in the 

fractional occupancy of DMN-related brain states was 
associated with a 1.02-fold increase in the time to com-
plete part B of the trail making test (TMT).

In a pre-planned multiverse analysis, findings relating 
to our primary and, to a lesser extent, secondary hypoth-
eses were robust with respect to variations in brain  
parcellations and confound regression strategies. Incon-
sistent results were found with the Desikan–Killiany par-
cellation, likely reflecting the notion that the spatial 
resolution and functional specificity of this coarse, struc-

Fig. 5.  Multiverse analysis. Adjusted effect size estimates of the associations between cSVD severity (WMH volume) 
and network dedifferentiation (less time spent in high-occupancy DMN-related brain states) (A), and between network 
dedifferentiation and executive function (TMT-B completion time) (B). Effect sizes are given per 5.1-fold increase in WMH 
volume and a 5%-increase in fractional occupancy, respectively. Markers and line segments indicate point estimates and 
95%-confidence intervals for adjusted odds ratios for different combinations of confound regression strategy and brain 
parcellation. The primary analytical choices are indicated by dark blue circles (36p) and light blue shading (Schaefer-400). 
Model equations for beta and gamma regressions, respectively, are given at the top. Vertical lines indicate no effect (black) 
and the effect size observed in the discovery cohort (Schlemm et al., 2022) (light blue), respectively, for reference. Effect 
sizes not reaching nominal statistical significance (α = 0.05) are desaturated. Corresponding data based on periventricular 
and deep WMH volumes are presented in the Appendix.
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Fig. 6.  Connectivity profiles of brain states. [Top] Centroids of each identified brain state visualized in brain space. Note 
the individual color scales. [Bottom] Cosine similarity between centroids of brain states and signed indicator vectors 
corresponding to activation (green) and suppression (red) of each of seven predefined large-scale functional brain 
networks (Yeo et al., 2011). States are ordered by mean fractional occupancy across N = 1651 independent participants, 
indicated by parenthetical percentages. Two high-occupancy states are characterized by activation or suppression of the 
DMN; the remaining three low-occupancy states (S3–5) were not used in the present study. Note that mean FO values are 
similar, but not identical, to median FO values reported in Table 4.

Fig. 7.  Association between time spent in high-occupancy DMN-related brain states and cognitive measures. Point 
estimates (black line) and 95%-confidence region (light blue ribbon) of the conditional mean cognitive measures are obtained 
from unadjusted binomial (top row: Mini-Mental State Examination, Vocabulary, Word List Recall, logit link) and Gamma 
regression (bottom row: Animal Naming, Trail Making Test [TMT] A/B: log link) modeling. Each marker represents one of N 
independent participants, as indicated. Insets report effect sizes with (adjusted [a-]) and without adjustment for the nuisance 
variables age, sex, WMH volume (coded as in Fig. 5), and years of education. Effect sizes were quantified as odds ratios 
(ORs) (top) or response scale multipliers [exp(b)] (bottom) complemented by 95%-confidence intervals, and correspond to a 
20%-increase in fractional occupancy. Note the different reference change in FO compared to Table 6 chosen to adequately 
represent some of the smaller effect sizes. The bottom right panel highlighted in dark blue reproduces Figure 4.
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turally defined atlas are inadequate for analyzing func-
tionally defined brain states. Across brain parcellations, 
effect sizes were smaller with the ICA-AROMA confound 
regression strategy and failed to reach nominal statistical 
significance. This might be due to a relatively large resid-
ual motion component in measures of dynamical func-
tional connectivity after de-noising with ICA-AROMA, as 
described previously (Lydon-Staley et al., 2019).

We also confirmed across several brain parcellation 
resolutions that high-occupancy states at rest are char-
acterized by either activation or suppression of the 
default mode network, reflecting its role as the predomi-
nant task-negative brain network.

In unplanned, exploratory analyses, we described the 
association between brain state dynamics and cognitive 
measures other than executive function and processing 
speed and reported a strong, preliminary association 
between time spent in high-occupancy states and 
delayed word recall.

We further explored, and report in Appendix Tables 1 
and 2, the effect of motion; results relating to our primary 
and, to a lesser extent, secondary, hypotheses were 
robust to additional, unplanned adjustments for DVARS, 
RMSD, and mean framewise displacement.

The presented results provide robust evidence for  
a behaviorally relevant association between cerebral 
small vessel disease and functional brain network 
dedifferentiation.

Further research is required to replicate our findings in 
different populations, such as those affected more 
severely by cSVD or cognitive impairment, or being stud-
ied using different imaging protocols, to determine the 
generalizability of our findings with respect to varying 
operationalizations of the notions of cSVD, brain state, 
and cognition, and to understand the mechanisms under-
lying the reported associations.
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APPENDIX

A1.  SUPPLEMENTARY RESULTS

A1.1.  Deep and periventricular WMH

Here we present, in analogy to Figure  5, the results  
of the multiverse analyses of the association between cSVD 
burden, FO of DMN-related states, and executive function, 
when cSVD is operationalized as the volume of deep or 
periventricular white matter hyperintensities, respectively.

Appendix Fig. 1.  Multiverse analysis. Adjusted effect size estimates of the associations between cSVD severity (deep 
WMH volume) and network dedifferentiation (less time spent in high-occupancy DMN-related brain states) (A), and 
between network dedifferentiation and executive function (TMT-B completion time) (B). For details, see caption to Fig. 5.

A1.2.  Motion parameters

We also present, in analogy to Tables 5 and 6, regression 
tables for the association between time spent in DMN-
related brain states (FO) and WMH volume, and between 
TMT-B and FO, adjusted for DVARS, RSMD, and  
framewise displacement, in addition to age, sex, and, in 
the latter case, years of education.

https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.3389/fneur.2022.913241
https://doi.org/10.3389/fneur.2022.913241
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Appendix Fig. 2.  Multiverse analysis. Adjusted effect size estimates of the associations between cSVD severity 
(periventricular WMH volume) and network dedifferentiation (less time spent in high-occupancy DMN-related brain states) (A), 
and between network dedifferentiation and executive function (TMT-B completion time) (B). For details, see caption to Fig. 5.
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Appendix Table 2.  Association between TMT-B and time 
spent in high-occupancy DMN-related brain states adjusted 
for age, sex, WMH volume and years of education, and 
motion parameters.

Estimate P 95%-CI

Intercept 46.83 <0.0001 36.74–59.72
FOhigh , per 5% 0.71 0.0718 0.49–1.03
WMH, per 5.1-fold  
increase1

1.01 0.3414 0.98–1.04

Age, per 10 years 1.02 <0.0001 1.01–1.02
Female sex 1.00 0.8171 0.96–1.04
Education, per year 0.97 <0.0001 0.97–0.98
1 WMH=0{ } 0.96 0.7581 0.73–1.29

DVARS 1.01 0.0001 1.00–1.01
RMSD 0.31 0.4695 0.01–7.45
Framewise  
displacement

1.08 0.9322 0.16–7.13

1Interquartile ratio 2.37 / 0.468 = 5.06.

Appendix Table 1.  Association between time spent  
in high-occupancy DMN-related brain states and  
WMH volume adjusted for age, sex, and motion 
parameters.

Estimate P 95%-CI

Intercept 0.32 <0.0001 0.28–0.36
WMH, per 5.1-fold  
increase1

0.96 0.0004 0.94–0.98

Age, per 10 years 1.01 <0.0001 1.00–1.01
Female sex 1.11 <0.0001 1.08–1.15
1 WMH=0{ } 0.91 0.3552 0.74–1.11

DVARS 0.98 <0.0001 0.98–0.99
RMSD 28.29 0.0055 2.67–299.8
Framewise  
displacement

0.16 0.0112 0.04–0.66

1Interquartile ratio 2.37 / 0.468 = 5.06.


