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Recent experiments on cuprates have shown the possibility of opening a gap above the super-
conducting critical temperature, in the so-called phase-fluctuating state, by enhancing the phase
coherence of preformed Cooper pairs. Quench-drive spectroscopy, an implementation of 2D coher-
ent spectroscopy, has emerged as a powerful tool for investigating out-of-equilibrium superconductors
and their collective modes. In this work, we enrich the quench-drive scheme by developing a sys-
tematic generalization to study the nonlinear response of d-wave fully incoherent Cooper pairs in
a symmetry resolved manner. In particular, we do not only show that it is possible to obtain a
third harmonic signal from fully incoherent pairs with an equilibrium vanishing order parameter,
but we also characterize the full flourishing 2D spectrum of the generated nonlinear response. The
results provide a deeper theoretical insight on recent experimental results, opening the door to a new
symmetry-driven design of future experiments on unconventional and enhanced superconductors.

I. INTRODUCTION

Since their discovery, high-temperature superconduc-
tors have been intensely studied because of their prop-
erties and rich phase diagram [1-3]. These unconven-
tional superconductors are characterized by a complex
order parameter whose value depends on the quasipar-
ticles’ crystal momentum: it can assume both positive
and negative values with maximum absolute value at the
antinodal points of the Brillouin zone, while vanishing
at the nodal points [4]. This character is a result of
the By symmetry of the d2_,» superconducting pair-
ing, descending from their Dy crystal structure [5, 6].
However, some features of this class of materials are still
under debate, such as the conditions and possibility to
induce and experimentally observe collective modes [7—
14], or the origin of the pseudogap phase [15-17].

In particular, various attempts have been made to
study and detect the amplitude Higgs mode even in
unconventional superconductors, both investigating the
nonequilibrium nonlinear behavior of these materials
[12, 18], and characterizing the symmetries of their re-
sponse [19, 20]. Recent advances have shown that the
nonlinear behavior of unconventional superconductors
when probed by light emerges as the blending of differ-
ent contributions, depending on electron-hole doping and
impurity concentration, among others [21-23].

Beside this, it has been suggested that the pseudo-
gap phase is a precursor of the superconducting state,
characterized by finite pairing strength and pre-formed
Cooper pairs with phase incoherence [15, 16, 24]. Even
if this picture is controversial and has been disproved to
some extent, in cuprates, in a region of the phase diagram
above the superconducting critical temperature, the su-
perconducting phase is incoherent [25-27].

When an electromagnetic field interacts with a phase-
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fluctuating superconductor, for some values of intensity
and frequency of the incident radiation, it is possible
to induce phase coherence among pre-existing phase-
incoherent Cooper pairs: this process is responsible for
the transient enhancement of the order parameter, or the
appearance of a finite superconducting gap in the case of
complete phase-incoherence [24, 28]. If this transition
from an incoherent to a partially-coherent phase is fast
enough, such as when induced by a short-time quench
pulse, then oscillations of the order parameter (quasi-
particles’ and amplitude mode’s excitations) can be pro-
duced as well, similarly to what happens in light-induced
superconductors [29].

Moreover, in the last years it has been theoretically
shown and experimentally observed the generation of odd
higher harmonics from driven superconductors: this re-
sult originates from the nonlinear behavior of the optical
kernel in the superconducting state [8, 18]. 2D coherent
spectroscopy (2DCS) on superconductors [30] has devel-
oped as a systematic generalization of pump-probe [31]
in the context of the broader concept of high-dimensional
spectroscopy [32-36]. In addition, quench-drive spec-
troscopy (Fig. 1(a)) has been proposed by Puviani et al.
[37, 38] as a specific scenario of THz 2DCS to study su-
perconductors, combining a few-cycle short-time quench
pulse and a long-time multi-cycle driving field. This al-
lows to obtain a complex 2D nonlinear response embed-
ding many nonlinear contributions, providing useful in-
formation on the optical kernel of the superconductor.
In fact, this technique can be used on superconductors
to study high-harmonic generation, and to address quasi-
particles’ excitations as well as collective states, as shown
by a recent experimental realization [39]. Since then,
these two dimensional spectroscopies have widely devel-
oped [40-43], proving to be suitable for extracting novel
information and details on the superconducting order pa-
rameter and its collective modes [23, 44].

In this work we combine the quench-drive spec-
troscopy technique, which allows to investigate the non-
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Figure 1. Quench-drive spectroscopy of unconventional superconductors. (a) The 2D quench-drive spectroscopy is performed
with a short (quench) pulse, followed by a long gaussian-shaped (drive) pulse at a delayed time A¢. The output signal is
analyzed as a function of the real time ¢. (b) Band structure (on the left) and d,2_,» gap symmetry (on the right) of the
unconventional superconductors studied in this work. The nodal points are identified with Ax = 0, for k = (ks, ky = tkz),

while the antinodal ones are at k = (0, £x), (£, 0).

equilibrium behavior of materials, with the symmetry se-
lection allowed by pulses’ polarization typically used in
other spectroscopic techniques, such as Raman [5, 45, 46]
or birefringence [28] spectroscopy. Here, we study the
nonlinear response to quench-drive pulses of fully phase-
incoherent Cooper pairs with d,>_,»-wave pairing sym-
metry (Fig. 1(b)-(c)), as in unconventional superconduc-
tors. In particular, we systematically investigate the or-
der parameter’s dynamics and the high-harmonic gen-
eration process as a function of the real time and the
quench-drive delay time, as well as their Fourier spec-
tra. Interestingly, we find that it is possible to observe a
B4 third harmonic signal in the nonlinear current, me-
diated by the transient increase of phase coherence, de-
pending on the polarization and frequency of the quench
and drive pulses. We also confirm previous results ob-
tained only with a quench pulse [28], showing that the
By, symmetry is the main responsible for the increase of
phase coherence. Furthermore, we analyze the full rich
2D Fourier spectrum of the generated current, identify-
ing mixed quench-drive signals with different intensities
in different part of the spectrum, classifying them accord-
ing to their symmetry.

The paper is organized as follows: in Section II we
provide a brief theoretical overview of nonlinear current
generation by incoherent Cooper pairs with dg2_,2 sym-
metry. In Section III we describe the foundations of
symmetry-resolved quench-drive spectroscopy. In Sec-
tion IV we show and analyze the numerical results, study-
ing the symmetry-resolved nonlinear response obtained
for different configurations of quench and drive pulses.
Eventually, in Section V we conclude summarizing the
work and providing an outlook for possible extensions
and future research. In the Appendices A and B we pro-
pose the full theoretical calculations of the pseudospin
model and the quench-drive nonlinear response genera-
tion, while in Appendix C we provide more results, ob-
tained with a different choice of the quench and drive
frequencies.

II. NONLINEAR RESPONSE OF INCOHERENT
COOPER PAIRS

In this section we theoretically investigate the current
generated by a clean high-temperature superconductor
subject to quench and drive pulses: the solution is ob-
tained by solving the Bloch equations derived from the
pseudospin model of the BCS Hamiltonian described in
Appendix A and B. We want to model a state with phase-
fluctuating superconductivity characterized by the pres-
ence of pre-formed incoherent pairs: for this purpose, as
in Ref. [28], we use a new artificial equilibrium supercon-
ducting state obtained by adding a random momentum-
dependent phase ¢y to the original Cooper pairs’ state.
Therefore, the strength of the pairing potential remains
unchanged, as well as the number of total Cooper pairs,
while the superconducting order parameter decreases due
to the reduced coherence. According to the maximum
angle ¢4, which defines the range of the random phase
¢k, With ¢x € [~dmaz, +Pmaz), We are able to describe
different conditions of the material, from the pure super-
conducting phase for ¢mqer = 0, to the complete loss of
coherence for ¢q, = 7.

We define the gap of the pure superconducting state

Ag)) = A(()O) fx, and the superconducting order parame-

ter in the presence of incoherent pairs as Afj)) =A@ Jx,
such that
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where V' is the same pairing strength of the original state,

and El({o) =/ + (Afco))Q. The superconducting gap in
the new equilibrium state can be written in the pseu-
dospin formalism as [47]
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where we have introduced the equilibrium pseudospin
components
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In order to describe the dynamics of the system, we use
the Heisenberg’s equation of motion

ata_k:B X &kv (4)
with the new pseudomagnetic field defined as
B = (72A/fk, 72A/,fk, 26k) . (5)

In the presence of an external gauge field represented by
the vector potential A(t) coupling to the electrons, the
pseudospin changes in time according to

&k(t) = 5’k(0) + (55k(t) . (6)

The external electromagnetic field is included in the
pseudo-magnetic field by means of the Peierls’ minimal
substitution k — k — e¢A(¢) in the fermionic energy, re-
sulting in

bi(t) = (—2A'(t) fi, —2A0" (1) fic, Ex—ca() + Exreas)) -
(7)

The equation of motion in Eq. (4) can be decomposed
into a set of differential equations, whose solution pro-
vides the time-dependent value of the pseudospin 6y (t).
Once this term is known, we can obtain the value of
the time-dependent order parameter A®) () = A(®)(0)+
SA@)(1), as well as the generated nonlinear current (see
Appendix B). However, we notice that the complex order
parameter can be written as

A = |A®)] ¢ (8)

where 6 is the global phase of the superconducting gap,
which differs from the local phase of the Cooper pairs in
momentum space, ¢x. As a consequence, the gap equa-
tion is not self-consistent anymore (see Eq. (1)) and the
value of the gap is subject to some time-dependent noise
due to the phase incoherence of the preformed pairs.

In the full generated current, we can distinguish two
non-vanishing contributions: namely, a linear component

with the same oscillating behavior of the driving field
A(t)

iV = =3 A(D) - Vievi (2é§(0)+1) . (9)
k

and a non-linear term including all higher orders

VB = €3 Vi ear (255(1) — 268(0).  (10)
k

7/(I(/ y(/q yqq
quench drive
(n v A+ B, A+ By, A+ By,
X
(D) Alg+Bzg A18+Bzg A1g+82g
() A+ By, (A +B+ B2 A+ By

Figure 2. Table of symmetries of Raman factors, v,s, with
r,s € {q,p}, where the labels ¢ and p represent the quench
and drive pulses’ directions, respectively.

Since the third pseudospin component in equilibrium is
independent on the phase coherence (Eq. (3)), the linear
current in Eq. (9) is always nonzero, even for fully inco-
herent Cooper pairs and vanishing gap.

More details on the solution of the equation of mo-
tion and the derivation of the generated current for the
quench-drive setup are provided in Appendices A and B.

III. SYMMETRY-RESOLVED NONLINEAR 2D
SPECTROSCOPY

In this section we propose the theoretical foundations
for the symmetry-resolved quench-drive spectroscopy,
identifying the main nonlinear components for different
configurations and their corresponding symmetry [48].
First, we can conveniently write the frequency spectrum
of gap oscillations, as obtained from the solution of the
Bloch equations after transforming into Fourier space,
using the convolution operation (%) as follows [38]:

0AK(w,v) o A; x Aj % ;5 (k) , (11)

with i, j € {x,y}, and the vector potential A, ; including
both the quench and the driving fields. The Raman-like
factor 4;;(k) = Vi (Vi - J) (where j is the unitary vector
along the direction of j) represents the second-order light-
matter coupling and includes the overall symmetry of the
gap oscillations (Fig. 2). In this work, we are considering
unconventional superconductors characterized by a Dy
crystal symmetry, with dg2_,2 order parameter. For this
point group symmetry the only relevant irreducible rep-
resentations (irreps) are Aig4, Big and By, Therefore,
the Raman-like factors can be decomposed into the irreps
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Figure 3. Table of symmetry-resolved nonlinear spectra contributions. The table shows the six symmetry-resolved components

(3)

of the third-order nonlinear susceptibility x;};, o xfj‘;’,)%j'ykl (with {7, 4, k,1} € {m,q,d}, which are the measurement, quench
and drive axis, respectively) in a 2D quench-drive spectrum on a Dyp crystal. We considered three (I)-(III) given input (quench

and drive) directions as well as two (a),(b) measurement axes.

of the Dyj, point group as follows [45]:
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with 2/ = (2+¢)/v2 and § = (2—19)/v/2, corresponding

to an angle with respect to the & axis of 7/4 and —n/4,

respectively. The general rule given the angles o and 6
with respect to the & axis reads [28]:

Yao(K) = Yy, €05 (@ — 6) + 7, cos (o + )
+ By, sin (a +6) . (13)
Similarly, the third-order nonlinear current, which repre-

sents the lowest-order non-vanishing nonlinear contribu-
tion, can be written as

GO AL o Ay (1A S (k) 055 (AL, (14)
k

with 4,7, k,1 € {z,y}. We notice that in this expres-
sion the order parameter’s oscillations of Eq.(11) are em-
bedded into the time-dependent pseudospin component

d6L(t, At). Considering its spectrum in Fourier space, it
can be conveniently re-written as

3w, v) o Xy Ay x Awx A (15)

where we introduced the third-order nonlinear suscepti-
bility Xg,)d = Yij Yk XE,:Z) . Here we omitted the sum over
k and the frequency dependencies for convenience of no-
tation.

As an example, we can derive the symmetry of the zyz'y
response, which enters the nonlinear current along the x
direction with interaction of pulses along %’ and ¢ , as
follows:

B _ .3
X(ljy;p’y - X(pp) Vay Va'y

=X VB, (Var, — VBy, + VB2y)/ V2
3
= X5 V2, (16)

with ngi)q = ngp) YBa, '7329/\/5, which is the only non-

vanishing term in Eq.(16) after summing over the full
Brillouin zone. When analyzing the quench-drive spec-
tra, we can substitute the subscripts m, ¢ and d repre-
senting the measurement, quench and drive azis, respec-
tively, to the Eq.s (11), (14) and (15).

As shown by Puviani et al. [38], there are six con-
tributions of the third-order nonlinear susceptibility in a
quench-drive spectroscopy setup, which sum up to pro-
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Figure 4. Gap oscillations and frequency spectra. (a) 2D oscillations in (¢, At)of the absolute value of the superconducting gap,
|Al, for the three scheme configurations (I)-(III) described in the main text and illustrated by the plots of quench and drive
pulses. The main symmetry contributions are written for the strongest signals, according to the table in Fig.2. (b) Absolute
value of the 2D Fourier transform of the full complex gap, |F{A(t, At)}| = |A(w, V)]

vide the full nonlinear response, namely (Fig. 3):

3) _ (3 (3) (3)
X® = Xpmiaa + Xmddg T Xomgdd

3 3
+ Xgm)iqq + Xgm)zqd + Xsr?zt)zqq : (17)

Each of them can be decomposed into the Dy, symmetry
irreps as shown before. For example, selecting the output
along the x axis parallel to the driving field, and with a
quench pulse along the 7y diagonal, i.e. m =z, ¢ = 2/,
d = x, for the purely driving response we get:

3
XD ia = X Yina Yaa

3 3
where the first Raman factor represents the

measurement-driving vertex, while the second cor-
responds to the driving-driving one. Analogously, for
the mixed quench-drive response quadratic in the quench
amplitude field we have

3 3
XDria = X Ymd Vaq

3
=\ (19)
and

3 3
Xgm)]qd = ngp) Ymgq Vqd

3 3 3
= (0, B ) Ve, )

which will appear at v # 0 in the two-dimensional
quench-drive Fourier spectrum of the nonlinear response.

Interestingly, this example shows in practice how the
nature of the two-dimensional spectroscopy allows to ex-
tract an A;, symmetry response (and similarly the By,
and Byg) from only one susceptibility component. More-
over, the presence of multiple contributions for different
values of the 2D frequency components (w,v) allows to
measure and selectively address all the symmetries re-
sponse with only one experiment.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we present the results obtained from the
numerical implementation of the expressions and time-
dependent Bloch equations show in Sec. IT and ITI. We
modeled the electronic band dispersion of the unconven-
tional superconductor as ex = —2t(cosk, + cosk,) — p,
where the quasimomentum components are expressed in
units of the lattice constant a. We used the values of
t = 125 meV for the nearest-neighbour hopping energy,
chemical potential 1/t = —0.2, obtaining an electron oc-
cupation n = 0.9 as in Ref. [24]. For the d,2_,> or-

der parameter AI((O) =AY, (cosky — cosky)/2 we chose
the value AS,% = 31 meV. The calculations were per-
formed with a summation over the full Brillouin zone
{ks, ky} € {—m,m} with a homogeneous square sampling
and a total number of k points Ny = 10°. For the time-
dependent evolution we used a time-step of 6t = 3-107*
ps, and for the quench-drive delay §At = 2.5 - 1072 ps.
For the pulses we used a few-cycle quench and a gaussian-
shaped long-duration drive, with amplitudes 4, = 0.8
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Figure 5. 2D nonlinear current. Plots of the generated nonlinear current as a function of real time ¢ and the quench-drive
delay time At, for three different schemes (I)-(III) described in the main text, and two polarized output measures along (a) =
and (b) y axis, respectively. The symmetries written represent the main contribution, according to the table of the nonlinear
susceptibilities in Fig. 3. Be aware of the different color scale for each plot.

and Ay = 0.8, and gaussian envelopes 203 = 0.01 ps?
and 202 = 5 ps?, respectively. The maximum intensity
used for each pulse is provided for the corresponding vec-
tor potential in units of i/(e a), where e is the electron
charge and a the lattice constant. Moreover, we chose the
frequency of quench and drive to be different but both in
the THz spectrum, with Q4 = 11 THz and 0, = 7 THz.
In general, different choices of amplitude and frequen-
cies can be made in order to suppress or enhance specific
symmetry contributions. In this work, we focused on the
fully phase-incoherent Cooper pairs, with ¢4, = 7, for
which A(®) = 0.

In our calculations and analysis we restricted ourselves
to only three quench-drive symmetry configurations,
namely

(I) ag=0, ag4=0, (21a)
(II) ag=n/4, ag=7/4, (21b)
(III) ag=7/4, ag=0, (21c)

studying the behavior of the superconducting gap (Sec.
IV A), and the generated nonlinear current (Sec. IV B)
along the (a) x and (b) y direction, as well as their cor-
responding 2D spectra.

More results, obtained with drive and quench frequen-
cies 24 = 3.66 THz and 2, = 7.48 THz, respectively, are
provided in Appendix C: in this case the quench pulse is
nearly resonant with the bare superconducting gap, while
the drive is at a much lower energy.

A. Emergent superconducting gap and oscillations

At first, we calculated the behavior of the order param-
eter, i.e. the superconducting gap, within the quench-
drive spectroscopy setup. In Fig. 4 (I)-(III) (a) we show
the 2D time-dependent behavior of the absolute value of
the gap. Since the initial system is formed by incoherent
pairs, the initial superconducting gap is zero. However,
when the quench and drive pulses perturb the incoherent
state, they are able to induce coherence in the Cooper
pairs, giving rise to a finite gap value, in accordance
with Ref. [28]. However, thanks to the quench-drive spec-
troscopic technique, exploiting the symmetry resolution
for different quench and drive directions, we can analyze
more in depth the gap behavior and the symmetry of
its oscillations. Indeed, in Ref. [24] it was shown that a
quench pulse along the z axis, i.e. with oy = 0, tends
to reduce the superconducting gap decreasing coherence,
while with a, = 7/4 it is increased. Here, we go beyond
that scheme observing that, with the given frequencies of
the pulses, a long driving pulse with oy = 0 can also in-
duce coherence in a fully incoherent setup, while a quench
along the same direction keeps suppressing it (plots (I)(a)
and (IIT)(a) of Fig. 4). On the other hand, a long driving
pulse with ag = m/4 can also increase the gap coherence,
but with less efficiency (plot (II)(a)). In order to under-
stand this, we can use the symmetry table in Fig. 2: in
fact, for both the (I)(a) and (III)(a) conditions, the pairs
are excited mainly in the B1, symmetry channel. On the
contrary, in the (IT)(a) scheme the gap is excited with a
predominant Bs, symmetry. As a consequence, the By,
symmetry enhances the gap if used in a driving, while it
tends to suppress it if imposed by a short quench.
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Figure 6. 2D nonlinear current spectra. Plots of the Fourier transform of the nonlinear current in Fig.5, for three different
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Additional information can be extracted from the analy-
sis of the 2D Fourier spectra of the complex gap, as shown
in Fig. 4(b). On the one hand there is a 204 oscillation
for the (II) scheme, which results from the By, excita-
tion, while no 2A peak (originating from quasiparticles’
and amplitude mode excitations) appears here. On the
other hand, in the schemes (I) and (III), where the By,
symmetry is mainly excited as the relevant one, we no-
tice dominant frequency components at w ~ 0.5 24 and
w =~ 2.5 Q4. The reason is that within this symmetry
the dominant excitation of the superconducting gap is
provided by the quasiparticles’ excitation and amplitude
mode, which have an intrinsic frequency of w = 2A(%)
and w =~ 0.4 A®) as predicted in Ref. [20].

B. Nonlinear current generation

Since the order parameter is not easily accessible in
a direct way in experiments, we analyze here the gener-
ated nonlinear current by the material: this is because
the linear current contains a strong response from the in-
coherent pairs, while the interesting information is con-
tained in the purely nonlinear part. In Fig.5 we show
the 2D current and the corresponding spectra for the (I)-
(III), (a)-(b) configurations, indicating the main symme-
try contributions to each term, obtained from Fig.3.
We first notice that the current measured along the = di-
rection (sub-plots (a)) follows the behavior of the gap in
Fig.4, even though the intensity peak for the B, sym-

metries (I),(III) is one order of magnitude larger than
the one with Bs, (II). This can be partly ascribed to the
pulse duration and the frequency difference between the
quench and the drive, even though the corresponding gap
intensities are in the opposite order.

The calculations performed selecting the polarization
along the y axis are particularly interesting: in fact the
response of configuration (I)(b) vanishes (in accordance
to the symmetry-resolved susceptibility in Fig. 3), and
the response in (II)(b) is surprisingly lower than the one
in (IIT)(b), even though the gap for ¢ = At in the latter
case is smaller than in the former. We can also notice that
the response in (II)(b) occurs only when quench and drive
overlap and extends along the ¢ axis, while the current in
(II1)(b) is visible only along the diagonal ¢t = At, starting
when the driving overlaps with the quench. This means
that in the former case the Xmdqq: Xmddq a0d Xmgqd are
the most relevant contributions, while in the latter xmqdd
is, with By and B4 dominant symmetry, respectively.
Overall, the By, symmetry is responsible for the gap en-
hancement from a short pulse, while the B;, symmetry
dominates when a long driving is applied, as well as in
the nonlinear current generation.

Additional information can be extracted from the 2D
spectra, obtained with the Fourier transform of the time-
dependent plots (Fig.6). In general, the signals at v =0
are independent of the quench pulse, while all the diag-
onal lines originate from at least a quench pulse compo-
nent. The horizontal lines with v = const., which appear
in I(a) and III(a) in correspondence of the first harmonic



signal, are also independent on the w frequency and are

generated by stzi dd-

We first notice that, while in the (II)(b) scheme the most
prominent features are peaks at (w = Qq,v = nQy)
followed by diagonal spectral lines, in (III)(b) the di-
agonal features peaked below w = € are more visi-
ble, at w ~ Qg,v = 4. In particular, the diagonal
signal starting from the origin and with w = —v is

the sum of the contributions of nonlinear susceptibilities

3 3 3
Xﬁn?}dd + anzqu + Xgm)qu-

The third harmonic generated by the driving pulse, ap-

pearing along the vertical axis for v = 0, is generated by

the third-order nonlinear susceptibility XEZ’()idd, and ap-

pears in Fig. 6 I(a) and III(a). Its importance is twofold:
firstly, this generally proves that it is possible to gener-
ate a third harmonic response even in fully incoherent
Cooper pairs exhibiting an initially null gap, when prop-
erly quenched and driven. This feature has been exper-
imentally shown in cuprate superconductors above their
critical temperature, where a phase-fluctuating phase
with vanishing gap is expected [10]. Secondly, the third
harmonic is generated only when the B, symmetry is ex-
plicitly excited (see also Fig. 3). However, we can also no-
tice that in configuration (III)(b) there is a non-vanishing
third-harmonic component at v = 0, originating from
a diagonal line which accidentally overlaps with v = 0

due to a higher-order quench-drive mixing, of the kind

(5)
qu,qddd‘

V. CONCLUSION

In this work we have calculated the nonlinear response
of a phase-fluctuating superconductor with d,2_,» pair-
ing symmetry without phase coherence, characterized by
vanishing superconducting gap in equilibrium. We have
adopted the recently proposed quench-drive spectroscopy
scheme [37, 38|, with THz pulses, inducing a finite su-
perconducting gap and analyzing the generated nonlin-
ear current response. In particular, we have developed
a symmetry-resolved analysis, which allows to selectively
address symmetry components according to the quench
and drive pulses and the measurement axis chosen.

Our results confirm previous findings on the possibility
to enhance the phase coherence with quench pulses, and
show additional unique features such as third-harmonic
generation and high-harmonic modulations for specific
quench and drive polarizations and symmetry measure-
ments.

In the future, symmetry-resolved quench-drive spec-
troscopy can be applied in different scenarios, ranging
from the study of novel superconductors, exploring the
phase diagram, to the characterization of the nonlinear
response and collective modes in superconductors.

ACKNOWLEDGMENTS

Fruitful discussions with P. M. Bonetti, R. Haenel, S.
Kaiser, D. Manske and D. Vilardi are thankfully acknowl-
edged.

Appendix A: Pseudospin model for a
superconductor

In this appendix we provide a detailed description of
the usage of the pseudospin model to solve the equation
of motion of a superconductor when perturbed by an
external field. In order to describe the superconducting
phase of a material, we adopt the BCS model expressed
by the mean field Hamiltonian

ﬁBCS = Z €ké;r(7gék7g — Z (Akélﬁéik’i + h.c.) ,
k,o k
(A1)

where ex = & — p, &k is the electronic band disper-
sion, u the chemical potential and Ay the momentum-
dependent superconducting order parameter. This latter
is described by a complex number which satisfies the gap
equation

Ak = Z Vk,k’ <é,k/’¢ék/ﬁ> y (A?)
k/

Vkx being the (momentum-dependent) pairing inter-
action. It can be factorized as Vkx = V fifx, with

fx = flidzz’ﬁ) = (cos ky —cosky)/2 the d-wave form fac-
tor of the superconducting order parameter. Therefore,
it follows from Eq. (A2) that the gap function itself can
be factorized as Ax = Ag fk.

We now rewrite the BCS Hamiltonian using the pseu-
dospin formalism as [18, 47, 49]

Hpes =Y by o, (A3)
Kk
with the pseudospin vector
1. ~
b1 = iq/;r\yk, (A4)

which is defined in Nambu-Gor’kov space, with spinor
Ul =
(71, 72,73). The pseudo-magnetic field is defined by the
vector

(éLT ¢_k,1) and the Pauli matrices 7 =

bk = (72A/fk, 72A//fk, 26k) 5 (A5)

where € = £k —p, & being the fermionic band dispersion,
1 the chemical potential.

In the presence of an external gauge field represented
by the vector potential A(t) coupling to the electrons,
the pseudospin changes in time according to

ok (t) = ok (0) + dok(t), (A6)



with doy (t) = (2x(t), yk(t), 2k (t)). The external electro-
magnetic field is included in the pseudo-magnetic field by
means of the minimal substitution k — k — eA(¢) in the
fermionic energy, resulting in

by (t) = (=2A"(t) fic, —2A" (1) fic; Ek—eA(t) + Exrea(s)) -
(A7)

The Heisenberg equation of motion for the pseudospin
can be written in the Bloch form, ;0 = by X ok, pro-
viding the set of differential equations

Dpx(t) = —(x—ecA + Ekren)y(t) — é—z WOA (1)
+ 20A" (t) fie2(t)

Ayy(t) = 2exm(t) + 2(A + SA' (1)) fiez(t) (A8)
- 5A fki + QAEfk (gk—eA + Ek+eA — 26k) s

Dia(t) = —2 Afic y(t) - E—féA”(t) — 26A(1) fer (1)

Here, for simplicity of calculations and without loss of
generality, we assumed a real order parameter, A”(¢
0) = 0, at the initial time ¢ = 0, so that y(0) = 0.

Appendix B: Quench-drive nonlinear response of a
superconductor

In order to describe a quench-drive experiment we

have to choose the appropriate vector potential A(t) =
Agt) + Aqt) = Ay(t —tg) + Ag(t — tq), where A, (%)
is the quench pulse centered at time ¢t = t,, Ag(t) is the
driving field centered at t = t4. Introducing the time-
delay At = tq — t4 and putting t4 = 0 we can rewrite
A(t) = A, (t+ At)+ Ay(%). Therefore the expressions in
Eq. (A8) depend on both t and At.
The solution of Eq. (A8) provides the time-dependent
pseudospin, from which the time-dependent order param-
eter A(t) and the generated current j(¢) can be calcu-
lated. From the self-consistent gap equation we get

ka Z Uk’

The current generated by the superconductor in this
quench-drive setup is given by the expression

— oy, (t). (B1)

j(ta At) =e€ Z Vk—eA(hAt) <6L,Ték7T + éL,,Lék7$>(t7 At) .
k
(B2)

In order to separate the linear and the nonlinear con-
tributions to the full generated output current, we first
expand the velocity in series of powers of the vector po-
tential A:

Vk—eA(t,At) = Vik T VA (Vi_ea(tan) |A:0 A4
(B3)

We notice that Va(-) ‘A o = [Va(k) Vi()] ‘A:O

—e V(- ’A:O’ with kK = k — eA. Here we omitted the
explicit time-dependence of A and k from ¢ and At. Now
we can rewrite Eq. (B3) as

V,Q:Vk—GVKVH’AZO'A—f—.... (B4)
In particular, the equivalence KVK| A0 = = Vi Vi holds.
Therefore we can simplify Eq. (B3) writing
Vi=Vk—e A Vv +.... (B5)
Additionally, we expand the electron number
() (t, At) = 221 (¢, At) + 26£(0) + 1, (B6)
where we used the relation nyx = 265 + 1. Therefore,
Eq. (B2) can be expanded in the lowest orders as
jit, At) = e Z (v — e A(t, At) - Vi)
(221 (t, At) + 263(0) + 1) . (B7)

We can decompose the generated current along a generic
7' axis, in order to extract specific symmetry compo-
nents:

Jor (t, At) = (§(¢, At) - &) &

= (Ju(t, At) cos + j, (¢, At)sinf) z'. (B8)

The contribution to the current in Eq. (B7) at the lowest
order in the external field is given by

JO AL =€) vic (265(t, At) +1)
k

(B9)

which vanishes due to parity. At the next order, the
linear term reads
JO AL ==Y At Ab) - Vievie (26%(0) +1)
k
(B10)

The first non-vanishing nonlinear term generated by the
driving pulse is the third order component

D(t,At) = =2 >zt At) A(t, At) - Vievie, (B11)
k

where zy (¢, At) is the third component of the pseudospin
vector oy (t, At), containing the information of the state
of the system perturbed by the quench pulse. The full
nonlinear response, which is given by the sum of all the
odd orders of the current expansion, can be conveniently
calculated by

j(NL) (tv At) =€ Z Vk—eA(t,At) (2&]i(t7 At) - 26—1i(0)) .
k
(B12)
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Figure 7. Gap oscillations and frequency spectra. (a) 2D oscillations in (¢, At)of the absolute value of the superconducting gap,
|A|, for the three scheme configurations (I)-(III) described in the main text and illustrated by the plots of quench and drive

pulses. (b) Absolute value of the 2D Fourier transform of the full complex gap, |F{A(t, At)}| = |A(w,v)|.

In general it is useful to extract the 2D frequency spec-
trum of such a response, in order to analyze the rele-
vant high harmonics: for this reason, we compute the 2D
Fourier transform with respect to the evolution time ¢
and the quench-drive delay time At, obtaining the recip-
rocal variables w = F(t) and v = F(At), respectively.
As an example, the 2D Fourier transform of Eq.(B11) to
provide the third harmonic response of the driving fre-
quency along the direction z’ is

the quench is nearly resonant with the maximum super-
conducting equilibrium gap, A4 = 31 meV = 7.5 THz,
while the driving pulse is far from it. The generated non-
linear current is therefore affected by these conditions,
and the response appears in some cases qualitatively and
quantitatively different from the one obtained in the main
text, even if the symmetries involved in the quench-drive
spectra are the same.

We first analyze the behavior of the absolute value of

the superconducting gap as a function of the real time ¢
and the delay time At. Interestingly, we realize that the
gap is very poorly excited in configurations (I) and (III)
due to the B;, symmetry and the driving contribution,
with a maximum amplitude of about 3 meV, and as low

jg(;’)(w =3Qq,v) = —2e%Ay Z Fp (k) 2x(w = 2Qq4,v)

k
— 262Ad Z Fy (k) zk(w = 4Qd, l/) s
k
(B13)

where F,/ is an appropriate function independent of
the frequency which contains information on the driv-
ing shape, the measurement axis and the quasiparticles’
momentum.

Appendix C: Additional results

We present here additional results, obtained for the
same quench and drive intensities as the ones in the main
text, i.e. Ag = Ay = 0.8, as well as pulses’ duration and
shape, but with different frequencies: namely, Q; = 3.66
THz and Q, = 7.48 THz, respectively. As a consequence,

as 1 meV on the central peak of the driving field at ¢t = 0.
On the other hand, the scheme (II) has a higher gap
excitation. The corresponding 2D Fourier spectra show
that, for schemes (I) and (III) there are no proper gap
oscillations, but rather an almost frequency-independent
enhancement, plus quench-induced contributions (verti-
cal lines in Fig. 7(I),(III)(b)). On the other hand, for the
scheme (II) with diagonal quench and drive pulses, where
the By, symmetry is excited, a gap oscillation at w = 204
due to the driving appears, as well as at w = 2A, which
includes Higgs and quasiparticles’ excitations at twice the
induced gap amplitude, around 8.5 meV.

We now turn to the generated current: due to the dif-
ferent resonance conditions, we expect the current re-
sponses involving a quench pulse to be more intense, satu-
rating the purely drive signals. In particular, for schemes
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Figure 8. 2D nonlinear current. Plots of the generated nonlinear current as a function of real time ¢ and the quench-drive delay
time At, for three different schemes (I)-(III) described in the main text, and two polarized output measures along (a) z and
(b) y axis, respectively. This figure corresponds to Fig. 5, here obtained with different frequencies of quench and drive pulses,
as explained in the main text. Be aware of the different color scale for each plot and with respect to Fig. 5.
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Figure 9. 2D nonlinear current spectra. Plots of the Fourier transform of the nonlinear current in Fig.8, for three different
schemes (I)-(III) described in the main text, and two polarized output measures along (a) x and (b) y axis, respectively. This
figure corresponds to Fig.6, here obtained with different frequencies of quench and drive pulses, as explained in the main text.

Be aware of the different Log color scale for each plot.

(I) and (III) where the gap excitation and oscillations are
much smaller, we expect the susceptibility term indepen-
dent of the frequency to be the most relevant [8].

In Fig.s 8 and 9 the measured nonlinear responses in time
and the corresponding 2D Fourier spectra are shown, re-

spectively. We notice that the current measured along
the x axis for schemes (I) and (III), involving mainly the
B4 symmetry, is quantitatively different from the one in
Fig. 5. The lower intensity (the scales of Fig.s 5 and 8 are
different), in fact, is explained by the fact that the main



response involves the driving pulse, and the correspond-
ing susceptibility is now more far from resonance. On
the other hand, the scheme (II), with quench and drive
pulses along the 2y diagonal axis, provides now a slightly
stronger response, involving mainly the quench pulse.
The 2D Fourier spectra in Fig. 9 are even more dense of
information. In fact, the spectra of schemes (I) and (III)
present much fewer features than with the choices of fre-
quency in the main text: in particular, (I)(a) and (IT)(a)
have a weaker third harmonic generation and only one di-
agonal line, representing the nonequilibrium modulation
due to the quench pulses. Moreover, the current mea-
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sured along the y axis in (III)(b) has no first harmonic
contribution, and is saturated by the same nonequilib-
rium modulation of (I),(III) (a). On the other hand, the
spectra of (II) are much more complex, exhibiting more
and stronger frequency modulations and the emergence
of a non-equilibrium third harmonic at w = 3Q4,v = 0.
All in all, we have observed how the nonlinear signal is
still present in (I) and (III) configurations, the current in-
tensity being higher than in scheme (II), even if the gap
is less excited in the former. The reason of this behavior
can be ascribed once again to the symmetries involved
and here identified.
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