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Abstract

Tracking nanoparticle movement is highly desirable in many scientific areas, and various imaging
methods have been employed to achieve this goal. Interferometric scattering (iSCAT) microscopy has
been particularly successful in combining very high spatial and temporal resolution for tracking small
nanoparticles in all three dimensions. However, previous works have been limited to an axial range
of only a few hundred nanometers. Here, we present a robust and efficient strategy for localizing
nanoparticles recorded in high-speed iSCAT videos in three dimensions over tens of micrometers. We
showcase the performance of our algorithm by tracking gold nanoparticles as small as 10 nm diffusing
in water while maintaining 5 µs temporal resolution and nanometer axial localization precision. Our
results hold promise for applications in cell biology and material science, where the three-dimensional
motion of nanoparticles in complex media is of interest.

Keywords: Interferometric scattering microscopy (iSCAT), interferometry, three-dimensional
tracking, single particle tracking (SPT)

Introduction
Single particle tracking (SPT) is a powerful tech-
nique for investigating the dynamic interaction of
individual nanoparticles with heterogeneous envi-
ronments.1,2 The key step in SPT is to image
an isolated nano-object onto a well-defined inten-
sity distribution, namely the point-spread function
(PSF) of the optical system in use. By fitting a
known theoretical or experimental model to the
PSF, one can pinpoint the particle location in each
video frame and establish its trajectory over time.
It follows that the localization precision in each
frame is dictated by the signal-to-noise ratio (SNR)
of the PSF over its background, whereby the sig-
nal, background and noise levels depend on vari-
ous imaging modalities and sample conditions.3,4

The available SNR puts a fundamental limit on
the size of a nano-object and the speed with which
it can be tracked. As an example, large signals
from particles such as a micrometer-sized bead used

in optical tweezer experiments can yield Ångstrom
localization precision within 0.1 s.5 Over the past
three decades, SPT has been extensively applied to
studies of diffusion and transport in very different
contexts, spanning cell biology and biophysics6,7 to
material science8 and statistical physics.9–11

The PSF in conventional microscopy techniques
such as fluorescence and dark-field scattering is
solely based on intensity and can usually be approx-
imated by the profile of a Gaussian beam. Because
in these methods the PSF is more extended in the
third dimension, the axial localization precision is
lower than in the lateral plane. Furthermore, it be-
comes increasingly difficult to track particles that
move away from the imaging plane. As a result,
the great majority of works have only recorded two-
dimensional (2D) projections of the 3D particle tra-
jectories. Many methods such as multi-focal plane
imaging12–14 and PSF engineering15 have been ap-
plied to extend the axial range. A powerful alter-
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native approach for performing high-precision axial
tracking is to use interferometric microscopy.16,17

Interferometric measurements are particularly ad-
vantageous due to the use of phase information
along the axial direction, which allows precise mon-
itoring of the motion of a particle away from the
imaging plane.18

Interferometric single-particle
tracking (iSPT)
Interferometric methods such as holography have
been used to track particles in different arrange-
ments, albeit mostly addressing relatively large ob-
jects.17 In the case of particles much smaller than
the wavelength of light, the optical response is gov-
erned by Rayleigh scattering, and the method of
choice is referred to as interferometric scattering
microscopy (iSCAT).19,20 This method exploits a
homodyne detection scheme, where the scattered
electric field from a nano-object interferes with the
field of a reference beam. In the wide-field mode
(see Figure 1a), a nearly-collimated illumination is
realized by focusing a light beam at the back fo-
cal plane of the microscope objective. In the most
common form of iSCAT, the reference beam is con-
stituted by reflection from the interface between
the sample medium and the substrate supporting
it. The detected iSCAT signal in this arrangement
can be written as

Idet ∝ |Eref |2 + 2|Eref ||Esca| cosϕ + |Esca|2 , (1)

where the reference field Eref = rEinc stems is
reflected from the medium-glass interface, Esca =
sEinc represents the light scattered from the sam-
ple, and ϕ is the phase difference between Eref and
Esca. To account for potential variations in the il-
lumination beam, we normalize the iSCAT images
to Iref = |Eref |2 and define the contrast C as

C =
Idet − Iref

Iref
= 2

|s|
|r|

cosϕ+
|s|2

|r|2
. (2)

Over the past two decades, many efforts have
demonstrated the remarkable sensitivity of iSCAT
for detection of nanoparticles down to single small
proteins.21–23 As compared to fluorescence SPT, iS-
CAT has a nearly infinite photon budget because
it suffers neither from saturation nor from photo-
bleaching. This provides access to both high tem-
poral resolution and long-term studies in track-

ing.16,24–26 Another decisive advantage of iSCAT
is that its interferometric nature makes the signal
highly sensitive to the axial position of the nanopar-
ticle under study.27–29 However, the ambiguity re-
sulting from the periodicity of the modulating trav-
eling phase prevents one from determining the di-
rection of travel over a range longer than about λ/4,
where λ is the wavelength of light in the medium
of interest. To get around this problem, one can
exploit the axial asymmetry of the spherical aber-
ration about the focal plane. It, thus, follows that
the radial cross section of the interferometric point-
spread function (iPSF) contains information about
the height of the particle above the cover glass.30

In our previous efforts, we exploited the axial
asymmetry caused by spherical aberration and use
an unsupervised machine learning scheme with k -
means clustering to demonstrate an axial range of
approximately 300 nm.16,30 However, extension of
this approach to longer axial ranges presented chal-
lenges such as increased computational complexity
and potential inaccuracies in clustering, as it relies
on the silhouette values for determining the optimal
number of clusters. In our current work, we estab-
lish a suitable estimator to assign the full lateral
content of the experimental iPSF along a trajectory
to the computed iPSFs specific to our iSCAT setup.
To achieve this, we calibrate the imaging system
carefully and establish a computational workflow
to model the experimental iPSF.

The algorithm

To establish an accurate 3D model of the iPSF for
a given optical setup (see Figure 1a, we first mea-
sured the iPSF profile of single nanoparticles at the
water-glass interface as the focal plane of the mi-
croscope objective was scanned through a range
of 4 µm. Here, we used circularly polarized light
to average over induced dipole orientations, yield-
ing iPSFs with circular symmetry (see Figure 1b).
Thus, we averaged the radial profile of the iPSF
over the azimuthal angle at each focal plane and
used the outcome as a representation. An exam-
ple of a radial iPSF stack from a 40 nm GNP is
depicted in Figure 1c.

To optimize the model, we maximized the Pear-
son correlation value between the experimental and
modeled iPSF stacks, considering different setup
parameters such as the thickness of the cover glass
(tg) as well as the refractive indices of the immer-
sion oil (no) and glass (ng). Figure 1d illustrates an
example of the correlation value optimization pro-
cess as a function of no and ng. The diagonal trend
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Figure 1: (a) Schematics of a wide-field iSCAT setup. The inset shows the close-up of the relation between
the axial position of the particle (zp) and the focal plane (zf ). (b) iSCAT image of a 40 nm GNP placed on
cover glass and immersed in water, after temporal median background correction. (c) Measured iPSF stack
of the GNP in (b) at different focal plane positions averaged over the azimuthal angle. (d) Normalized
correlation values (see color bar) between the measured iPSF and the modeled iPSF with different ng and
no. (e) Calibrated iPSF model based on the optimized values of refractive indices of oil (no = 1.51833)
and glass (ng = 1.52696) and glass thickness (tg = 170 µm). (f-h) Comparison between the measured and
modeled iPSF including overlays of their radial profiles for focal plane at zf = −1 µm (f), zf = 0 µm (g),
and zf = 1 µm (h). The right-hand plots show the average of the radial profiles computed over all angles for
each case. Red symbols represent the experimental data. The blue curves show the respective theoretical
models.

accounts for the compensation of the accumulated
phase in the glass substrate and immersion oil. Fig-
ure 1e exhibits the corresponding modelled iPSF
stack for the GNP under study, demonstrating a
remarkable concurrence with 99% correlation with
the experimental measurements for no = 1.51833
and ng = 1.52696. To highlight the asymmetry of
the iPSF relative to the focal plane, in Figures 1f-h
we depict the experimental and modeled iPSF im-
ages along with their radial profiles for zf = −1 µm,
zf = 0 µm, and zf = 1 µm, respectively.

Next, we computed synthetic trajectories for a
GNP that experienced Brownian motion in water.
The random step sizes of such a particle follow a
normal distribution with a standard deviation of
σ =

√
2D∆t, where D is the particle’s diffusion co-

efficient in the medium, and ∆t is the time between
two consecutive frames. We reconstructed images
at a frame rate of 100 kHz to match our experi-
mental acquisition rate acquired by a high-speed
camera (Phantom V1610) with a full-well capacity
of 23,200 electrons (see Figure 2a).

To localize a particle in the lateral plane, we
applied radial variance transform (RVT)31 to the
iPSF in each frame. This information was used to
generate a cross-section map (see Figure 2b), repre-

senting the evolution of the radial iPSF profile over
time. We then employed a normalized correlation
map in order to compare the temporal evolution
of the experimental radial profiles to those of the
model. The normalized correlation map is calcu-
lated as

ρ(i, zp) =
1

N − 1

rN∑
r=r1

((
RPe(i, r)− ⟨RPe(i, r)⟩√
⟨RPe(i, r)2⟩ − ⟨RPe(i, r)⟩2

)

×
(

RPm(zp, r)− ⟨RPm(zp, r)⟩√
⟨RPm(zp, r)2⟩ − ⟨RPm(zp, r)⟩2

))
,

(3)

where radial profiles RPe(i, r) and RPm(zp, r) rep-
resent the radial cross sections of the experimen-
tal and modelled iPSF, respectively. RP (i, r) is a
function of the frame index (i) and the discretized
radial distance from the center of the iPSF to a
given pixel (r). The parameter zp denotes the axial
position of the particle, and ⟨·⟩ represents averag-
ing over r. The dashed lines in Figure 2b,c along
with the star in Figure 2d exemplify the process,
in which the radial profile from each frame is com-
pared to the model at various zp.

Figure 2d shows the resulting correlation map
ρ(i, zp). Figure 2e,f displays a close-up of two re-
gions marked in (d). The phase difference caused
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Figure 2: (a) Synthetic iSCAT images of a 40 nm GNP diffusing in water in 3D considering shot noise based
on the camera electron well capacity. (b) Radial iPSF cross section of the GNP throughout its trajectory.
The inset shows a close-up view of the region marked by the yellow rectangle. (c) Calculated iPSF model of
a 40 nm GNP for the focal plane set at 3.2µm above the cover glass. (d) Correlation map of the trajectory.
The star indicates the correlation coefficient between the experimental and model iPSF profiles indicated
by dashed lines in (b) and (c). The black square marks the region where the stripes from both sides of
the focal plane join as zp approaches zf . (e) Close-up view of the correlation map within the upper white
dashed rectangle in (d), highlighting the striped patterns above the focal plane (zp > zf ). (f) A close-up
of a similar section (lower dashed rectangle in (d)) shows the details beneath the focal plane (zp < zf ),
revealing the partial mirror symmetry of the stripes in relation to the focal plane. (d-f) share the same
color bar, representing normalized correlation values.

by the extra travel between the cover glass and the
particle leads to the modulation of the correlation
map along zp so that the normalized correlation
value at a particular frame oscillates rapidly with
a periodicity of λ

2 . This results in the fluctuation
of the correlation values between -1 and 1 along
the vertical axis, giving rise to a striped pattern.
If the frame rate is sufficiently high such that the
particle’s axial displacement between two consecu-
tive frames does not exceed λ

4 , these areas will be
linked to one of their neighboring frames on the
correlation map.

Before elaborating on the algorithm, we remark
that a direct assignment of the axial location to
the highest correlation values in a frame-by-frame
procedure may lead to erroneous results, as various
noise factors and setup imperfections can give rise
to three potential scenarios: 1) The maximum cor-
relation value within a given frame might not be

decipherable among different stripes in the pres-
ence of noise. The white arrows in Figure 2e show
an example of two very close correlation values of
0.99 and 0.98 in two neighboring stripes. 2) The
extracted axial position of the particle undergoes
jumps between the stripes situated above and be-
low the focal plane (shown in Figures 2e, and 2f). 3)
When the particle is near the focal plane the iPSF
exhibits the least spatial features, as the scattered
light is mostly concentrated in the center of the
iPSF. Hence, the difference between the correlation
value corresponding to the true zp and its respective
mirror on the other side of the focal plane becomes
minimal. Consequently, using the maximum corre-
lation at each frame yields inaccurate localization.
Furthermore, as highlighted in the dark square in
Figure 2d, axial tracking becomes even more chal-
lenging when a particle repeatedly crosses the focal
plane along its trajectory. To overcome these chal-
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lenges, we implement an algorithm that leverages
the full spatio-temporal properties of the correla-
tion map, thus, using the information of all the
frames for determining the particle’s axial location.
Our algorithm also utilizes a graph representation
of the correlation map to determine the axial posi-
tion when the particle diffuses near the focal plane.

We start by finding the region with the highest
total correlation value. To achieve that, we first
convert the correlation map to a binary image by
setting a global threshold at zero. Next, we seg-
ment and isolate connected regions within this bi-
nary map that have values of 1. This results in
various regions Rj , which we label with unique in-
teger numbers. Figure 3a illustrates more than 900
regions that arise from the correlation map in Fig-
ure 2d. Each region Rj is then assigned a score SRj

calculated as the sum of the maximum correlation
coefficients over all its frames,

SRj
=
∑
i

max
zp∈Rj

(ρ(i, zp)). (4)

The region with the highest score, denoted as Rmax,
is selected for further analysis. Then the binary
mask of Rmax is multiplied with the original cor-
relation map to obtain a new map that exclusively
contains the values corresponding to Rmax. Figure
3b shows that this procedure results in a clear se-
lection of a region (ρ′(i, zp)) with high correlation
values. The two branches within the beginning of
the selected region above and below the focal planes
can be avoided if one adjusts the focal plane to
the cover glass interface or sets it well above the
tracking region. We choose to place the focal plane
roughly in the middle of the volume of interest be-
cause this increases the tracking range.

Branching within the selected region in Figure
3b prevents one from determining a maximum cor-
relation value for the axial localization. Moreover,
if the local maximum values associated with two
or more branches within the selected region are
close to each other, frame-wise assignment of the
maximum correlation can experience false jumps
in the 3D trajectory, leading to inaccurate local-
ization. To overcome this hurdle, we identify the
branching points (the frames at which the number
of branches varies) and create a directional graph
to represent these and the sections in ρ′(i, zp). Fig-
ure 3c depicts the correlation map near the focus
and its corresponding graph representation, illus-
trating occurrences of multiple branching (or com-
plex branching) within the selected region as the
particle diffuses near the focal plane.

We divide the selected region into sections in
which the number of branches remains constant.
The nodes and edges of the graph represent branch-
ing points and sections in ρ′(i, zp), respectively.
The directionality of the edges in the graph signifies
the chronological order of the frames in the trajec-
tory, ensuring that the paths progress forward in
time. An example of the directional graph is pre-
sented in Figure 3c. Every edge of the graph has a
distance

bm =
1∑

i∈Bm
maxzp∈Bm

(ρ′(i, zp))
, (5)

where m is the index of the branch Bm. Distances
bm calculated by Eq. 5 are inversely related to the
correlation values. Thus, the path with the mini-
mum distance in the graph includes the largest sum
of the correlation values along the trajectory. For a
given source node, Dijkstra’s algorithm32 can find
the shortest path between any two nodes in the
graph with an optimized computational overhead.
Following this procedure, the final single-branch
correlation map is reconstructed from the short-
est path of the graph, which is depicted in Figure
3d. We remark that computing the large number
of possible combinations would present a daunting
challenge. For instance, if the selected region tog-
gles 23 times between one and two branches, the
number of alternative paths from the first to the
last frame amounts to 223 (≈ 8 × 106). A brute-
force approach to determining the optimal path is,
thus, not viable for long trajectories.

To refine the axial localization beyond the axial
discretization of the modelled iPSF, we fit an adap-
tive polynomial function to the correlation values at
each frame, whereby the degree of the polynomial
depends on the sampling rate of the iPSF along zp
(1 nm in this example; see Figure 3e). The maxi-
mum of the fitted polynomial allows us to extract
the particle’s axial position along the trajectory. As
seen in Figure 3f, the algorithm accurately localizes
the axial position when compared to the ground
truth. In a representative example, using a stan-
dard desktop computer with a hexa-core processor
and 64GB RAM, a trajectory of 10,000 frames with
48 nodes and 73 branches (3.35× 107 possible out-
comes) was processed in approximately 25 seconds.
This demonstrates the practicality of our method
for real-world applications without excessive pro-
cessing time.
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Figure 3: (a) Labeled correlation map. Color bar shows the integer numbers assigned to each region. (b)
The selected region on the correlation map with the highest correlation score. Color bar represents the
correlation coefficients. (c) A magnified view of a selected region marked by the white dashed box in (b),
where the particle crosses the focal plane multiple times. Lines and circles indicate the edges and nodes of
the branching graph. (d) Debranched selected region of (b). (e) Example of adaptive polynomial fitting for
finding the location of the maximum correlation value for a frame. (f) Comparison of the extracted axial
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Localization error and robustness

We now assess our algorithm’s performance un-
der various conditions. The axial localization error
(δzp) depends on zf , zp, shot noise, and lateral lo-
calization error (δrp). The geometry of the iPSF
is influenced by both zf and zp, which in turn im-
pacts δzp. Shot noise and lateral localization pre-
cision both affect the extracted radial profile, the
former by modifying the average over azimuthal an-
gles and the latter by introducing an error in the
identification of the iPSF’s center of symmetry.

First, we assess how zf and zp influence δzp.
Here, we assume a particle is laterally fixed (i.e.,
δrp = 0) and consider a fixed level of shot noise,
anticipated from our measurements. For every zf
and zp, we generate a large number (1000) of ran-
dom realizations of the shot noise and apply our
localization algorithm to the resulting noisy iPSFs
to localize the particle. The axial localization error
for every zp and for a given zf is then calculated by
measuring the standard deviation of the differences
between the retrieved positions and their known

axial locations. Figure 4a shows the resulting axial
localization error for a 40 nm GNP as a function of
zp. The axial range spans [0, 4] µm when zf = 1 µm
above the cover glass interface. This procedure is
repeated for a series of focal planes in the range
zf = [−2, 2] µm. Figure 4b displays the resulting
σz as a function of zf and zp. As the particle ap-
proaches the focal plane, its iPSF exhibits fewer ra-
dial features, leading to an increase in axial uncer-
tainty. Nevertheless, the highest error in estimating
the axial position remains only a few nanometers.
The mean localization error within zp = [0, 4] µm
and zf = [−2, 2] µm amounts to 0.2 nm.

We also evaluated the impact of the shot noise
on δzp and δrp by generating iSCAT images of a
40 nm GNP in water. Figure 4c illustrates the
iPSF at different shot-noise levels. We simulated
videos for a particle undergoing linear axial move-
ment in the range zp = [0, 8] µm with zf = 3.2 µm
above the cover glass. We then applied our 3D
tracking algorithm, whereby δzp and δrp were av-
eraged over zp for each noise level, ranging from
σn = 1 × 10−3 to 1.2 × 10−2. Here, we define the
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normalized shot noise level as σn = 1√
Ne

with Ne

representing the average number of electrons per
camera pixel. As shown in Figure 4d, our axial lo-
calization algorithm achieves higher precision com-
pared to the lateral localization using the state-of-
the-art RVT method. This is in agreement with the
predictions of a Cramér–Rao lower bound analysis
for localization in the axial direction in iSCAT mi-
croscopy.33

As previously stated, our algorithm operates on
the radial profiles that are obtained after perform-
ing the lateral localization. To examine the sen-
sitivity of the algorithm to the lateral localization
error, we set a range of offsets for the lateral local-
ization in the interval [0, 150]nm, which is close to
the diffraction limit in our setup. In this analysis,
we did not add shot noise to the data. In Figure
4e, we present the average axial localization error
⟨δzp⟩ over the range zp = [0, 8] µm as a function of
the lateral offset. This average error is calculated
by first determining the absolute error in the ax-
ial localization at each zp and then computing the
mean of these absolute errors across different axial

positions. We find that ⟨δzp⟩ remains below 5 nm
even with a lateral localization offset of 150 nm.

When considering stationary particles, an ex-
tended integration time allows for more photon col-
lection, which reduces the effect of shot noise and
enhances the signal-to-noise ratio. Consequently,
as depicted in Figure 4d, longer integration times
(lower σn) provide higher lateral and axial localiza-
tion precisions. However, when dealing with mov-
ing nanoparticles, the integration time must be cho-
sen carefully to avoid motion blurring.

Experimental results

We now present an experimental demonstration of
3D tracking applied to GNPs of different sizes dif-
fusing in water. We used a cover glass (Schott D
263) with a thickness of 170 µm and created a liquid
chamber by placing a gasket on it (CoverWellTM).
Then we added 110 µL of DI water and 7 µL of a
suspension containing GNPs. In order to ensure
mechanical stability, the sample rested for approxi-
mately 15 minutes. To control and assess the posi-
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Figure 5: Exemplary 3D trajectories of GNPs with diameters of 80 nm (a), 60 nm (b), 40 nm (c), and 10 nm
(d) diffusing in water. Trajectories that were shorter than 1000 frames were excluded from the analysis.
For 10 nm GNPs, however, we chose a lower threshold of 200 frames. Color bars represent time. (e) A
close-up of the trajectory shown in (c). (f) An enlarged view of the marked region in (e). (g) Axial position
as a function of time for part of the trajectory in (e) . (h) Distribution of axial step sizes in (g) fitted with
a Gaussian function.

tion of the focal plane, we marked the upper surface
of the cover glass with spin coated GNPs (diameter
80 nm) prior to the chamber assembly. The axial
position of the cover glass was calibrated relative to
the maximum-bright central contrast of the 80 nm
GNPs. After localizing the cover glass surface, we
used the calibration of the piezo-electric scanner to
displace the sample by a precise amount.

Videos of 60 nm, 40 nm and 30 nm GNPs were
recorded at a frame rate of 100 kHz. For 80 nm and
10 nm GNPs, we used 70 kHz and 200 kHz frame
rates, respectively. To compensate for laser power
fluctuations, we normalized the pixel values of each
frame by dividing them by the sum of the pixel
values of that frame. Then the background was
subtracted using temporal median background cor-
rection, and RVT was applied to extract radial pro-
files in each frame. In the final step, the axial local-
ization algorithm was applied. Figure 5a-d shows
examples of 3D trajectories from freely diffusing
GNPs of different sizes.

Figure 5e provides a close-up view of the trajec-
tory within the dotted circle marked in Figures 5c,
and Figure 5f displays a further close-up view of the
trajectory within the dotted circle marked in Fig-
ures 5e. Figure 5g shows the temporal dependence

of zp over 10 ms of the trajectory in Figure 5e, re-
vealing small axial displacements in sub-ms time
scale. The axial step size distribution in Figure 5h
reveals a histogram close to a Gaussian function
as expected from a Brownian motion. By fitting a
line to the mean square displacement plots of the
3D trajectories, we extract the mean value of the
diffusion coefficients (⟨D3D⟩). For 10 nm GNPs in
water at 297K, we obtain ⟨D3D⟩ = 43.7± 1 µm2/s,
which is in very good agreement with the theoret-
ical prediction of D = 44.1 µm2/s. To the best
of our knowledge, our work presents an unprece-
dented spatio-temporal precision in 3D tracking of
small nanoparticles in highly diffusive liquids, such
as water.

Conclusions and outlook
In most single-particle tracking applications, it is
highly advantageous to use very small probes in
order to avoid perturbation of the native phenom-
ena under study due to the finite size of the probe.
Over the years, particle sizes ranging from several
100 nm down to single quantum dots or molecules
have been used, albeit with varying levels of perfor-
mance in terms of localization precision, accuracy
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and speed. In this work, we presented an experi-
mental and algorithmic pipeline for high-precision
3D tracking of individual nanoparticles over a large
range of tens of micrometers in the axial direction
and at a temporal resolution as high as 5 µs. Our
approach exploits the full information in the iSCAT
point-spread function to establish a correlation be-
tween the experimental and model radial profiles
in each frame of a video. By employing graph the-
ory and Dijkstra’s algorithm, we differentiate the
particle’s position above and below the focus in the
temporal map of the correlation coefficients. We
demonstrated an unprecedented precision of 0.2 nm
for a 40 nm GNP as validated by simulations of syn-
thetically generated noisy iSCAT images. We have
also successfully applied our algorithm to experi-
mental data, extracting the 3D positions of diffus-
ing nanoparticles with sizes ranging from 10 nm to
80 nm. The superior axial localization precision of
our algorithm, with an error that is smaller than
the lateral localization error, allows us to assess the
diffusion coefficient with greater precision. 3D SPT
of very small nanoparticles holds great promise in
studies of diffusion and transport phenomena in
many areas of science and technology.
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