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Abstract: In this work, we address the challenge of efficiently modeling dynamical sys-
tems in process engineering. We use reduced-order model learning, specifically operator
inference. This is a non-intrusive, data-driven method for learning dynamical systems
from time-domain data. The application in our study is carbon dioxide methanation,
an important reaction within the Power-to-X framework, to demonstrate its potential.
The numerical results show the ability of the reduced-order models constructed with
operator inference to provide a reduced yet accurate surrogate solution. This repre-
sents an important milestone towards the implementation of fast and reliable digital
twin architectures.

Keywords: scientific machine learning, operator inference, non intrusive methods,
quadratic systems, process engineering, chemical engineering, methanation reactor.

Novelty statement: This contribution illustrates the robustness and approximation
capabilities of the operator inference method for a test case from process engineering.

1 Introduction

Dynamical models are particularly relevant for several important tasks and applications in the field
of engineering science, such as analyzing transient behavior under operating conditions, enforcing
parameter optimization, enabling long-time horizon prediction, and aiding control techniques. Es-
pecially in the case of high-fidelity models, their state-space dimension can easily grow to the order
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of tens or even hundreds of thousands. In such cases, handling such models becomes computation-
ally prohibitive with respect to storage or time constraints.
Model order reduction (MOR) and reduced-order modeling (RoMod) refer to classes of method-

ologies that can be used to simplify complex dynamical models or to identify the underlying
dynamics from data while enforcing an accurate approximation and using as little computational
effort as possible. Traditionally, reduced-order models (ROMs) constructed through intrusive MOR
approaches rely on the availability of the underlying mathematical equations (state-space realiza-
tions), i.e., on the actual models. For an overview of classical, intrusive (projection-based) ap-
proaches, we refer the reader to [1,6]. An advantage of such techniques is the existence of rigorous
theoretical guarantees by means of a posteriori error estimation, or by stability/passivity enforce-
ment. Moreover, established MOR techniques represent a backbone for development of digital
twin frameworks [15, 24]. A potential drawback is given by the fact that the ROMs computed
via intrusive methods employ explicit projection of the governing equations onto low-dimensional
dominant subspaces [5]. Hence, access to the underlying mathematical equations that produced
the (high-fidelity) simulations is typically required. Such access is not always provided and hence,
represents a challenge for incorporating classical MOR tools for efficient deployment to predom-
inant data-based environments. For the latter, such an accurate/exact description is unavailable
(or not fully available), in many practical scenarios. These include applications from electrical,
mechanical or from process/chemical engineering, as in the current work.
An alternative approach to classical (intrusive) methods of MOR, which rely on explicit access to

a large-scale model, is the use of data-driven (non-intrusive) techniques based on measurements or
simulation data. Unlike intrusive methods, data-driven RoMod does not require explicit knowledge
of the model structure or matrices. Instead, low-order models can be directly constructed by
using solely time-domain data, such as snapshots of the system’s state-space evolution, along
with snapshots of control inputs or of the observed outputs. Among such methods, Operator
Inference (OpInf) introduced in [26], has established itself in the last decade as a reliable RoMod
and learning approach that exploits the inherent structure of physics-based models to efficiently
capture the underlying system’s dynamics. OpInf constructs ROMs in a non-intrusive manner via
a data-driven regression problem that learns reduced matrices from snapshot data. Typically, the
learned dynamics of the ROM depend linearly and quadratically on the state variables (in reduced
coordinates), although extensions to fitting other structures were also proposed.
The efficient modeling, simulation, and complexity reduction of dynamical systems in the field

of process and chemical engineering has become pivotal in today’s industrial landscape, especially
with the ever-growing digitalization trend in modern plants and units in the age of Industry 4.0.
Driven by this motivation, our work proposes an application of established reduced-order modeling
techniques, focusing on the OpInf method, for a test case involving a CO2 methanation reactor [34].
The preliminary results reported here provide insights into the usability of the surrogate ROMs
computed with OpInf. The approximation quality attained offers promising prospects for further
developments and extensions. Finally, this approach is well-suited for handling the intricacies of
the highly nonlinear process under study. This is essential to ensure computational efficiency and
approximation accuracy for applications in process engineering and other related disciplines.
This paper is organized as follows. After the introduction and motivation are set up, in Section

2 we provide a comprehensive account of state-of-the-art methods, together with their applications
and extensions. Then, in Section 3, we introduce the main method of interest, OpInf, together
with its theoretical background and some recent innovations. Section 4 illustrates the application
of interest, a CO2 methanation reactor characterized by coupled nonlinear PDEs. We present
various numerical results when applying OpInf to this test case, while in Section 5 the conclusions
and future research endeavors are summarized.

2 Data-driven methods

Non-intrusive data-driven RoMod methods offer an alternative to conventional MOR methods,
by means of constructing ROMs directly from data, bypassing the need for accessing an explicit
realization. System identification (SI) methods [19] are considered the precursor of RoMod meth-
ods in the field of systems and control engineering. By means of incorporating input-output data
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in the identification process, such methods were fairly prolific in the last decades. The subspace
identification method [32] is one of these and it estimates linear time-invariant state-space models
using only samples of the input and output signals. Another class of methods uses rational ap-
proximation techniques to identify a ROM from frequency-domain data, such as Loewner-matrix
approaches [21]. Dynamic Mode Decomposition (DMD) [18] is used to extract the dominant dy-
namic modes of a system and is closely connected to the concept of Koopman operator. In the field
of Scientific Machine Learning (SciML), several techniques have emerged to address the challenges
and requirements of dealing with complex scientific problems, in the presence of simulation data.
Selecting the most appropriate ML algorithm can be both a challenging and a tedious task, due
to the variety of algorithms, computer architectures, and ML models available. Artificial Neu-
ral Network (ANN) architectures are particularly attractive for SciML applications due to their
ability to handle noisy or inexact data, perform automatic differentiation, and their flexibility as
mesh-free models. Therefore, there is a growing interest in combining ANN-based solutions with
traditional physics-based approaches to improve performance and reliability. Some recent works in
this direction are [11, 20, 29]. SINDy, as introduced by [8], utilizes scientific knowledge to improve
the fitted model performance and constructs parsimonious models by selecting only a few terms
from a library of candidate functions (sparse identification).
OpInf involves fitting structured models in reduced coordinates by means of solving a regres-

sion problem formed from snapshot data (trajectories of the state evolution in the time domain).
This approach provides a versatile framework for the analysis and modeling of continuous-time
processes in chemical engineering. For example, the continuous-time behavior of the temperature
and conversion profile of a chemical reactor can be accurately represented using OpInf, as will be
demonstrated in this paper. As far as the authors are aware, together with the recent contribution
[27], the current work is the first contribution towards applying OpInf to process engineering prob-
lems. Typically, OpInf was successfully applied to test cases from computational fluid dynamics [3],
mechanics [9], or aeronautics [22]. In recent years, OpInf was extended also to cope with higher-
order polynomial terms [28], or even with non-polynomial terms [4]. Additionally, parametric
problems were treated [23,33]. Then, contributions that propose regularizing the learning problem
to enable performance on large-scale systems were proposed in [22], while problems with noisy or
low-quality data sets were treated in [31]. Dealing with differential-algebraic equations (DAEs) for
incompressible flow problems was treated in [3]. The problem of stability of the ROMs constructed
via OpInf was tackled in [13, 30]. In [11], the authors propose combining the OpInf approach with
certain deep ANN approaches, to infer the unknown nonlinear dynamics of the system. For more
references, detailed principles, and technical details of OpInf, we refer the reader to the recent com-
prehensive survey paper [17]. One possible downside of this approach may be that it requires direct
access or approximation of temporal gradient information. From a numerical point of view, errors
might arise due to the inherent gradient approximation. This issue has been recently addressed in
[12], in which Runge-Kutta numerical integration schemes have been successfully integrated into
the system identification process, thereby avoiding the need for collecting derivative information.

3 The method under investigation: operator inference

3.1 General description

One of the strengths of the OpInf methodology is that it makes use of the known physical structures
and constraints at a qualitative level. That is, one can assume nonlinearities of quadratic structure
(these appear naturally in many established flow problems, such as in the Navier-Stokes or Burg-
ers’ equations). Even when the dynamics are characterized by other nonlinearities (high-degree
polynomials or more generic, analytic ones), one can equivalently embed them into a quadratic
manifold by means of lifting [2, 14].
Consider a quadratic full-order model (FOM) described by

ẋ(t) = Ax(t) +H(x(t)⊗ x(t)) +B, (1)

where x(t) ∈ Rn,A ∈ Rn×n,H ∈ Rn×n2

, and B ∈ Rn. Data preparation is an important step of
the method, i.e., the matrix X of snapshots of the state variables in (2). As we will see below,
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we can perform this step also in reduced dimension. One needs to build, in the beginning, the
following time-domain snapshot matrix for time instances ti > 0 and xi := x(ti) with 1 ≤ i ≤ k,
as

X :=

 x0 x1 · · · xk

 ∈ Rn×(k+1). (2)

Then we compute a projection matrix V ∈ Rn×r using r dominant Proper Orthogonal Decomposi-
tion (POD) basis vectors (see Ch.3 in [16] for more details) so that ∥X−VV⊤X∥ ≤ τ , depending
on a tolerance value τ > 0. Typically, the matrix V is chosen by performing a Singular Value
Decomposition (SVD) of X, and by assembling the leading r right singular vectors of X.
By setting x̂(t) := V⊤x(t), the intrusively calculated ROM via the POD approach is computed

via a Galerkin projection: Â = V⊤AV, Ĥ = V⊤H(V ⊗ V), and B̂ = V⊤B. However, the key
feature of OpInf is to infer these matrices in a non-intrusive manner, i.e., without using the FOM
matrices in (1).
The reduced-order state data matrices can be put together using the compressed snapshots

x̂i = V⊤xi, x̂
⊗
i = x̂i ⊗ x̂i, and also the time-derivative data matrix can be put together from

estimated snapshots ˙̂xi using X̂, e.g. by employing a time derivative approximation, as follows:

X̂ :=

 x̂0 x̂1 · · · x̂k

 , X̂⊗ :=

 x̂⊗
0 x̂⊗

1 · · · x̂⊗
k

 ,
˙̂
X =

 ˆ̇x0
˙̂x1 · · · ˙̂xk

 .

Then, a ROM of the form
˙̂x(t) = Âx̂(t) + Ĥ(x̂(t)⊗ x̂(t)) + B̂,

can be obtained using projected data by solving the following optimization problem:

min
Â,Ĥ,B̂

∥∥∥ ˙̂
X− ÂX̂− ĤX̂⊗ − B̂

∥∥∥+ αR(Â, Ĥ). (3)

Typically, the least squares (LS) problem in (3) is ill-conditioned, and hence requires regularization
techniques (such as the Tikhonov approach, see [22, 33] in the context of OpInf), i.e., encoded in

the term R(Â, Ĥ) above. We refer the reader to Section 4 in [3], for details on implementation
aspects for this basic, “vanilla version” of OpInf.

3.2 Solving the optimization problem

We note that, in the OpInf algorithm, the FOM is never explicitly used, at any step. When α = 0
(no regularization case), the LS problem can be written as

min
Â,Ĥ,B̂

∥∥∥ ˙̂
X−

[
Â Ĥ B̂

]
D
∥∥∥ , where D =

 X̂

X̂⊗

1T

 , (4)

with the matrix D ∈ R(r+r2+1)×(k+1) constructed in terms of the projected states. Based on the
singular value decay of D (and on a tolerance value), one can choose a suitable truncation order r̃.

More precisely, one can write the solution of (4) as
˙̂
XD†, where D† is the pseudo-inverse of matrix

D. This can be computed through a truncated SVD of D, keeping only the r̃ dominant singular
values and vectors [3].
However, matrix D may be ill-conditioned, in practice. Typically, a mixed SVD-regularization

approach is to be used in practice, since choosing fewer singular values from D (small r̃) yields a
larger mismatch of the data fidelity term, whereas, for larger r̃, the problem becomes more and more
ill-conditioned. An important property of OpInf is that it recovers the intrusive POD reduced model
if data are Markovian, as shown in [25]. Then, a paramount innovation in the OpInf framework was
made in [13], in which global-stability-informed learning was achieved through quadratic system
parameterizations. There, the authors first provide ways of enforcing local asymptotic stability, by
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imposing that the matrix Â of the learned model has all its eigenvalues in the left-half complex
plane (by imposing a parameterization of Â in terms of symmetric positive definite (SPD) and skew-
symmetric matrices). Then, an extension is proposed, that enforces global asymptotic stability by

means of specially-tailored parameterization for the Ĥ operator of the learned quadratic model.
Then, a gradient-based approach is proposed in order to obtain a solution to the optimization
problem in (3), which now has additional constraints on the matrices involved. By relaxing the
SPD condition, and by rewriting the problem of inferring operators via an integral form of the
differential equation. This circumvents the need to incorporate derivative information, at the cost
of a more complicated setup to be solved, involving integrals. By making use of a fourth-order
Runge-Kutta scheme, the latter problem is approximated and solved iteratively, as described in
detail in Section 6 of [13]. In the numerics part, i.e., in Section 4.1, we leverage these results and
provide additional explanations.

4 The application of interest

The application of interest, i.e., CO2 methanation, represents an important process in the Power-
to-X framework, which plays a key role in the storage of energy from renewable sources [10]. CO2

methanation, i.e., the conversion of carbon dioxide (CO2) and hydrogen to methane and water,
is a key aspect of this framework, facilitating the recycling of CO2 emissions. The exothermic
methanation reaction releases heat, which commonly leads to hotspots (localized areas of elevated
temperatures) that affect temperature control and reactor efficiency. Effective management of
these hotspots is critical, especially in reactors with variable energy inputs from renewable sources,
such as wind or solar energy [7].
Our study investigates a one-dimensional, pseudo-homogeneous reactor model for catalytic CO2

methanation, following [34]. We employ a simplification by excluding the consideration of effec-
tive axial mass dispersion in our analysis. The behavior of the reactor is captured by coupled
PDEs. These governing equations are written in terms of the energy balance, represented by the
temperature variable T , and the mass balance, represented by the CO2 conversion variable X, as:

εR
∂X

∂t
= −u

∂X

∂z
+

MCO2

ρyCO2,in
(1− εR)ξσeff, (5)

(ρcp)eff
∂T

∂t
= −uinρincp

∂T

∂z
+

∂

∂z

[
Λax

∂T

∂z

]
+

4U

D
(T − Tcool)−∆HR(1− εR)ξσeff,

with initial and boundary conditions as given in [34] (L is the length of the reactor):

X|z=0 = 0, Λax
dT

dz
|z=0 = uinρincp(T − Tin), (6)

X|t=0 = X0, T |t=0 = T0,
∂T

∂z
|Z=L = 0. (7)

In the formulation from (5), various parameters appear such as the reaction rate σeff, the thermal
gas conductivity Λax, heat transfer coefficient U , enthalpy of reaction Hr, gas mixture density ρ,
and surface gas velocity u. Additionally, there also some constants appearing, such as the tube
diameter D, heat capacity cp, catalyst practical fraction ξ. For more details, we refer the reader
to [34].
In our current study, we extend the analysis from our previous work [27] and concentrate on

the start-up phase of the reactor. Initially, the CO2 conversion is zero throughout the reactor
(denoted as X(z, 0) = 0 for all z), and the internal temperature is uniformly set to the cooling
temperature, Tcool. These initial conditions are crucial for analyzing the early dynamics of the
reactor and provide a baseline for observing temporal changes. Formally, the initial conditions are

X(z, 0) = 0, ∀z ∈ [0, L], T (z, 0) = Tcool, ∀z ∈ [0, L], (8)

where L is the length of the reactor. This setup allows a clear examination of the state evolution
of the reactor from a consistent and well-defined starting point. In our previous study [27], we
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investigated the dynamics of a reactor during a sudden increase in the cooling temperature, Tcool,
from 270 to 280°C.

Using a finite volume method, we semi-discretize the PDEs describing the reactor dynamics
over 200 equally-spaced control volumes. Such a high spatial resolution improves the fidelity of the
dynamics captured but increases the computational requirements. In terms of temporal resolution,
particular attention was paid to ensuring stability and convergence of the solution. The initial and
boundary conditions align with the reactor start-up scenario mentioned earlier. Notably, alongside
integrating at specific time points, we concurrently evaluate the right-hand side of the model
to obtain accurate time derivatives. To solve the discretized equations, we used the Kvaerno5

integrator from the diffrax 1 library in Python 3.10, chosen for its balance between accuracy and
computational efficiency. Computational performance, including run-time and resource utilization,
was monitored to ensure the effectiveness of the simulation approach.
Figure 1 depicts the evolution of conversion and temperature within the reactor during the

start-up scenario, showcasing both the temporal and spatial domains. For the conversion variable
X, the results show a progressive increase along the length of the reactor, reaching over 80 %
conversion towards the end. This indicates the effectiveness of the catalytic process in converting
CO2. The temperature variable T varies between 550 K and just over 800 K during the simulation.
A sharp peak in temperature is observed, representing the ignition of the reactor. This “shock-
like” behavior is a critical feature of the start-up phase, demonstrating the dynamic nature of the
system as it approaches a steady state. By the end of the simulation time, both the conversion
and temperature profiles show convergence to a steady state, highlighting the ability of the reactor
to stabilize under the given conditions.

Conversion Temperature 

Figure 1: 3D plots for CO2 conversion (left) and temperature (right) over time and reactor length.

4.1 Numerical results

In our study of the dynamic changes within the reactor, we applied Principal Component Analysis
(PCA) via SVD to the collected state snapshots and initiated the OpInf procedure. Figure 2
shows the decay pattern of the singular values resulting from the PCA. Note that the decay of the
singular values for the conversion variable X is somewhat steeper than that for the temperature
variable T . This indicates a more diverse distribution of singular values for the temperature,
suggesting its more complex and non-linear characteristics compared to the conversion process.
As a result, it is more difficult to capture the nuances of the temperature dynamics, reflecting its
complexity. Aiming to capture 99.90 to 99.99 % of the total variance in the data, we developed
ROMs across multiple dimensions. The variance of the data is measured by the cumulative sum
of the squared singular values, which represents the information richness of the system state. The
number of singular values required to reach this predefined variance threshold was determined by
their cumulative contribution to the total variance.

1See https://github.com/patrick-kidger/diffrax for details
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Temperature

Conversion

Figure 2: Representation of the singular value decay and the cumulative energy encompassed by
the primary dominant modes.

In constructing our low-dimensional data and its derivatives, we projected the high-dimensional
data onto the dominant modes using a reduced-order basis. This projection and subsequent oper-
ator inference were performed in Python 3.10, taking advantage of the language’s computational
efficiency and robust library support. Specifically, we used PyTorch’s 2 library Adam as optimiza-
tion algorithm combined with a CyclicLR scheduler for a cyclic learning rate policy. The scheduler,
operating in a triangular2 mode with no cycle dynamics, adjusted the learning rate between 10−5

and 0.5. The optimization was designed to stop early after 500 epochs if minimal improvement
was observed, thereby increasing efficiency. A regularization factor of 10−4 was applied to the
quadratic matrix for stability and to prevent over-fitting. The reduced operators Â, Ĥ, and B̂
were derived following these methods, in accordance with the stability parameterization suggested
by [13].
Figure 3 shows a flattened 3D plot comparing the actual data with our ROM, which captures

99.90 % of the energy for both conversion and temperature. The model, at a rank of r = 7 (rX = 2
and rT = 5), closely matches the actual data. However, discrepancies are observed in the regions
representing the ignition phase, a near-shock scenario. Accurately capturing such abrupt and
nonlinear transitions is a well-known challenge in modeling, often due to the inherent limitations of
linear and quadratic terms in representing extreme state changes. These observations are critical for
further refinement of the model, particularly in improving its ability to more accurately represent
rapid dynamic changes. Quantitatively, the Frobenius norm shows a small deviation of 0.45 %
from the original model, underscoring the accuracy of the ROM. The computational efficiency of
the ROM is quite high, in that it needs only 0.46 % of the time required by the full mechanistic
model.

5 Conclusion and outlook into the future

OpInf combines the advantages of physics-based modeling with optimization and learning tech-
niques by integrating first-principles models with data-driven regression. The results reported in
this work have successfully demonstrated the ability of the OpInf ROMs to capture complex sys-
tem dynamics in process engineering with increased computational efficiency. As an outlook, one
option would be to allow variable parameters, by including variable input loads that affect species

2see https://github.com/pytorch/pytorch for details
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Figure 3: Flattened 3D representation comparing the true response with the inferred model, high-
lighting deviations in both conversion and temperature.

volume flow. In addition, the incorporation of specific control terms into the model will enhance
its adaptability. By refining the tuning capabilities of the fitted models across a wide range of
parameters, control settings, and many-query environments, they will hopefully be integrated into
an effective digital twin environment.
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